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ABSTRACT

Reinforcement learning (RL) is crucial for aligning Vision-Language Models
(VLMs), but its practical application is hampered by significant system-level bot-
tlenecks. The typical RL pipeline, encompassing data loading, inference-based
rollouts, and model updates, suffers from severe inefficiencies when applied to
VLMs due to the extreme heterogeneity of multimodal data. Centralized data
loading creates I/O bottlenecks with large media files, while variations in sequence
length across text, image, and video inputs lead to critical load imbalance during
computation, leaving expensive GPU resources underutilized. Existing systems
either focus on text-only RL or employ general load-balancing techniques that
are incompatible with the small-batch, iterative nature of RL training. To address
these challenges, we present FlexRL, a holistic system designed to optimize the
end-to-end VLM RL pipeline. FlexRL introduces two core contributions: (1)
a Decentralized Data Pipeline that parallelizes data fetching and preprocessing
across worker nodes, facilitates metadata-only scheduling on the single controller,
eliminating the central bottleneck and accelerating data-intensive stages; and (2) a
novel Hybrid Sequence Sharding mechanism that partitions sequences into fine-
grained chunks. This enables sub-sequence level load balancing for both inference
and training, effectively mitigating workload skew. Our evaluation on a 128-GPU
cluster shows that FlexRL significantly improves training efficiency by up to 4.2×
in long video training scenarios compared to state-of-the-art baselines, enabling
more efficient and scalable RL for large multimodal models.

1 INTRODUCTION

Reinforcement learning (RL) has proven to be a powerful paradigm for aligning Vision Lan-
guage Models (VLMs) with human preferences and enhancing their instruction-following capa-
bilities (Team et al., 2025a;b;d; Wang et al., 2025b). A typical RL workflow for VLMs involves
several distinct stages (1) loading diverse multimodal data and prompts, (2) generating responses
via policy model inference (i.e., rollouts), and (3) updating the model parameters based on rewards.
While conceptually straightforward, scaling this process for VLMs exposes severe system-level bot-
tlenecks across the entire pipeline, hindering training efficiency and scalability.

The challenges are multifaceted and manifest differently in each stage. Firstly, the data loading
stage becomes a significant bottleneck. VLMs are trained on heterogeneous datasets containing
text, high-resolution images, and long video clips. In many RL frameworks (e.g., VeRL (Sheng
et al., 2025)), data loading and preprocessing are centralized, causing the master node to become
a chokepoint, limited by its memory and compute capacity, especially when handling large media
files. Secondly, both the inference stage and the model update stage suffer from a critical load
imbalance problem. In these phases, a single batch can contain a mix of short image-text queries,
long text-only reasoning tasks, and video inputs with tens of thousands of tokens. This extreme
variation in sequence length and modality leads to a highly skewed distribution of computational
and memory loads across GPUs. Consequently, some devices are overwhelmed while others remain
underutilized, creating a bottleneck that stalls the entire distributed system.

Existing systems fail to provide a holistic solution for the VLM RL pipeline. On one hand, tradi-
tional RL frameworks (Sheng et al., 2025; Hu et al., 2024) are optimized for text-only models and
lack sophisticated mechanisms to handle the load imbalance inherent in multimodal data. These
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Figure 1: FlexRL Overview. We implement a decentralized data pipeline and hybrid sharding
method to achieve workload balance for VLM RL Training.

frameworks typically employ naive sequence bucketing and packing strategy, which has limitations
due to sequence-level granulation. On the other hand, general-purpose large model training sys-
tems (Wang et al., 2025c;d; Li et al., 2024; Ge et al., 2024; 2025) propose heterogeneous parallelism
methods over DP instances and gradient steps, which either require large batch sizes and gradi-
ent accumulation to be effective. This assumption breaks down in the context of RL, which often
utilizes small batch sizes to maximize the utility of dynamically generated samples and maintain
training stability. These methods are thus inefficient for the dynamic and iterative nature of the RL
rollout-update loop.

To this end, we introduce FlexRL, a system designed to provide a comprehensive, end-to-end opti-
mization for the VLM RL pipeline. FlexRL deconstructs the performance bottlenecks in each stage
of the RL process and introduces targeted solutions: For the Data Loading Bottleneck: We design
a Decentralized Data Pipeline that parallelizes the expensive data fetching and preprocessing tasks
across all worker nodes and only operates lightweight metadata of samples on the single controller.
This decentralizes the workload, eliminating the master node bottleneck and significantly accelerat-
ing data throughput for large media files. For Inference and Update Load Imbalance: We propose
a novel Hybrid Sequence Sharding mechanism. Instead of treating sequences as indivisible units, we
partition them into fine-grained chunks. This allows FlexRL to balance the load at a sub-sequence
level, effectively mitigating the imbalance caused by extreme length variations during both the in-
ference and training steps. This is complemented by a specialized balancing strategy for the vision
tower. FlexRL incorporates an efficient decision algorithm to determine the optimal sharding strat-
egy for each sequence and a dynamic execution engine to orchestrate the complex computation and
communication patterns, maximizing hardware utilization.

We implement FlexRL on top of the veRL framework and conduct extensive experiments on a clus-
ter of 128 H800 GPUs. Our evaluation demonstrates that by optimizing the entire RL workflow,
FlexRL achieves significant end-to-end performance gains. For instance, when training on a diverse
mix of multimodal data, FlexRL improves training throughput by up to 4.2× and forward computa-
tion by up to 3× compared to existing baseline systems.

In summary, our contributions are:

• We provide a systematic analysis of the performance bottlenecks across the entire VLM
RL pipeline, from data loading to inference and model updates.
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• We propose FlexRL, a Hybrid Sequence Sharding mechanism for more general and flex-
ible load balancing to address these stage-specific challenges and a holistic system that
integrates a lightweight metadata-based dataloader to eliminate the storage bottleneck.

• We design an efficient algorithm and a dynamic execution engine to solve the complex
scheduling problem introduced by our fine-grained, hybrid sharding approach.

• Our evaluation shows that FlexRLsignificantly improves training efficiency in VLM train-
ing and achieves workload balancing in various scenarios compared to traditional methods.

2 RELATED WORK

2.1 RL TRAINING FRAMEWORKS

Reinforcement learning has become a central paradigm for aligning and enhancing large language
models (LLMs). Recent frameworks such as VeRL (Sheng et al., 2025), siiRL (Wang et al.,
2025e), AReal (Fu et al., 2025), StreamRL (Zhong et al., 2025), MiroRL (Team & Team, 2025),
ROLL (Wang et al., 2025a), and OpenRLHF (Hu et al., 2024) provide system-level support for
distributed RL training. These frameworks focus on issues such as asynchronous rollout-update
decoupling, scalable data pipelines, and integration with model-parallel training backends. While
these systems improve throughput and modularity, they are largely developed for text-only LLMs
and short-context RLHF settings. Their load balancing strategies often assume relatively homoge-
neous workloads, leaving open challenges in multi-modal and long-context reinforcement learning.

2.2 VLM TRAINING FRAMEWORKS

The emergence of multi-modal LLMs has motivated training frameworks such as DistTrain (Zhang
et al., 2025), DistMM (Huang et al., 2024), LongVILA (Chen et al., 2025), and VeOmni (Ma et al.,
2025). These systems propose optimizations for heterogeneous architectures combining vision tow-
ers and language backbones. For instance, they disaggregate model components, employ hybrid
parallelism, or develop scheduling algorithms to reduce communication overheads. Despite these
advances, existing VLM frameworks primarily target pretraining or supervised fine-tuning. They do
not explicitly address the unique challenges of RL training, such as small batch sizes, dynamically
generated trajectories, and highly variable sequence lengths across modalities.

2.3 LOADING BALANCING FOR LARGE MODEL TRAINING

A line of work focuses on load balancing techniques for efficient large model training. Classic
methods rely on sequence bucketing and packing, which sort samples by length and allocate them
across GPUs to minimize padding (Team et al., 2025b;c;d; Wang et al., 2025b). More recent ap-
proaches introduce heterogeneous parallelism and dynamic reconfiguration, as in FlexSP (Wang
et al., 2025c), HotSPa (Ge et al., 2024), Hydraulis (Li et al., 2024), ByteScale (Ge et al., 2025),
and WLB-LLM (Wang et al., 2025d), which adjust parallelism configuration across DP(Data Paral-
lel) ranks depending on sequence characteristics. Although effective for load balance of large-scale
pretraining, these approaches typically operate at coarse sequence-level granularity, employing dif-
ferent parallelism configurations across sequence buckets or gradient steps. These methods rely on
a large batch size that requires gradient accumulation, providing opportunities for load balancing.

3 RL TRAINING OF VLMS

Existing loading balancing works mainly focus on LLM pretraining. They usually involve sequence
reordering and grouping (also known as bucketing). However, these methods have limitations when
applied to RL training, especially for VLMs.

3.1 CHALLENGES OF VLM RL TRAINING

The RL training of VLMs presents unique challenges due to the extreme variations in sequence
lengths and computational requirements arising from different data modalities, such as text, images,
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Figure 2: Motivation of Hybrid Sharding. Left: Distribution of token counts in typical video-text
(NExTQA (Xiao et al., 2021)) and image-text (Geo3K(Lu et al., 2021)) datasets, showing extreme
variation in sequence lengths. Middle: An imbalance with shorter sequences, where conventional
bucketing and Heterogeneous DP (e.g. FlexSP (Wang et al., 2025c)) lead to load imbalance. Right.
For longer sequences, bucketing can cause out-of-memory (OOM) errors and further imbalance,
while our approach enables fine-grained sharding and balanced attention computation across GPUs.

and videos, and model heterogeneity. For example, in a single training batch, we may have image-
text sequences of a few hundred tokens, long reasoning sequences with thousands of tokens, and
long video sequences of tens of thousands of tokens. Firstly, due to the variations in the number of
visual tokens, the vision tower can have significantly different computational requirements across
different samples. In Figure 2, we show the distribution of two typical video-text and image-text
datasets. We observe that video data contains far more tokens than typical multi-image samples and
varies significantly. Secondly, the backbone LLM also faces extreme variations in sequence lengths,
leading to a significant imbalance in both memory and compute workloads across different samples.
Besides, unlike text data, multimodal data contains pixel data of videos and images, which requires
a huge amount of space. Existing RL frameworks like veRL use a central controller to preprocess,
store, and transfer multimodal data, leading to both high latency and pressure on CPU memory.

Sequence Bucketing and Packing. Some works (Team et al., 2025b;c; Wang et al., 2025b; Team
et al., 2025d) employ a bucketing algorithm that iteratively traverses the sequences in descending
order of their lengths and assigns each sequence to the bucket with the least computation load. In
each GPU, the sequences in the same bucket are packed together and padded to the GPU’s token
capacity. The parallelism configuration is fixed for all buckets. This method is simple and efficient,
as it only requires a single pass through the sequences and does not involve modifying either the
parallelism configuration or the training algorithm. However, in this method, on single longest
sequence can easily lead to the worst case, as shown in Figure 2(middle). In this example, we
have 11 sequences (1×32K, 2×16K, and 8×8K) and four GPUs. No sequence surpasses the GPU
capacity, so we can simply use data parallelism (e.g., FSDP (FSD, 2023)) with a bucketing algorithm
to balance the workload. No matter how we bucket the sequences, one GPU will always get the
longest sequence (32K), leading to 4× slowdown. This problem can be extended to more general
3D/4D parallelism, as they employ a homogeneous parallelism configuration for all DP ranks.

3.2 UNDERSTANDING THE ISSUE OF EXISTING LOADING BALANCING METHODS

Existing methods fall short in the RL regime for three reasons: (a) Small-batch RL leaves little
split-batch freedom. With only a handful of sequences per step, sequence-level bucketing/packing
(sort-by-length, pack-to-capacity with fixed parallelism) cannot hide outliers; the step time is dom-
inated by the longest sequence (e.g., 1×32K, 2×16K, 8×8K on 4 GPUs inevitably yields a 32K
straggler and ∼4× slowdown; Fig. 2(Middle)). Moreover, attention compute scales as O(L2) while
activation memory is O(L), so no single per-sequence placement can simultaneously equalize com-
pute and memory across GPUs, leading to both padding waste and stragglers. (b) Heterogeneous
DP across buckets (e.g., FlexSP (Wang et al., 2025c), HotSPa (Ge et al., 2024), Hydraulis (Li et al.,
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2024), ByteScale (Ge et al., 2025), relies on gradient accumulation and step-wise reconfiguration.
In RL, frequent rollout–update alternation and small batches make re-sharding, extra synchroniza-
tion, and optimizer-state movement non-trivial overheads. When sequence/context parallelism is
enabled, many short sequences pay redundant all-to-all communication; choosing a single SP/CP
degree per bucket mismatches mixed-length samples and reintroduces imbalance. (c) Multimodal-
ity introduces heterogeneity. Vision-tower cost scales roughly with the number of images/frames,
not text tokens; bucketing by text length alone ignores visual workload, so mixing videos and im-
ages within a bucket yields highly skewed per-GPU compute/memory even if token counts look
balanced. These limitations motivate a granularity finer for better and more universal load balancing
(see Sec. 4).

4 FLEXRL

FlexRL is designed to accelerate the end-to-end reinforcement learning pipeline for Large Mul-
timodal Models (VLMs). A typical VLM RL training loop, such as PPO, consists of three main
phases: (1) Inference Phase, where the actor/reward model performs forward computation on the
generated trajectories; (2) Data Preparation Phase, where experiences are sampled and prepro-
cessed for training, often bottlenecked by I/O and CPU processing for large media data; and (3)
Update Phase, where the policy and value models are trained on the collected trajectories. that
these sequences should fill all GPUs memory for the purpose of maximizing utilization.

4.1 PRELIMINARIES: SEQUENCE PARTITIONING FOR LOAD BALANCING

To address the load imbalance caused by highly skewed sequence lengths, a foundational strategy
is to partition original sequences into smaller, more manageable units. By creating smaller, equal-
sized chunks, we establish uniform computational and memory footprints, which provides a crucial
opportunity for effective load balancing.

A prominent technique that implements this principle is Ulysses Sequence Parallelism (Jacobs et al.,
2023). While Ulysses was originally proposed to enable the training of exceptionally long sequences
that would otherwise exceed single-GPU memory, we observe that its underlying partitioning mech-
anism can be repurposed as a powerful tool for load balancing. This shifts the perspective on se-
quence parallelism: instead of scaling sequence length, it becomes a flexible strategy for balancing
workloads of varied-length sequences, such as the one depicted in Figure 2(Middle), which actually
doesn’t necessarily require sequence parallelism.

In the Ulysses approach, a sequence x of length L is split along the sequence dimension across
N devices. Each device i ∈ {0, . . . , N − 1} receives an equal-sized chunk xi of length L/N .
During the forward pass of a layer, each device computes its local Query (Qi), Key (Ki), and Value
(Vi) tensors from its chunk xi. To compute the full attention scores, the Ki and Vi tensors must
be shared among all N devices. This is achieved via an all-to-all communication operation.
After the all-to-all, each device possesses the complete Key and Value tensors for a subset
of attention heads, allowing it to compute its shard of the attention output. Another all-to-all
operation is then performed to gather the output, which is then passed to the subsequent layers.

4.2 HYBRID SEQUENCE SHARDING FOR WORKLOAD BALANCING

Strawman Solution: Greedy Sharding. When moving from a single sequence to a batch, it is
evident that we can achieve perfect load balancing by sharding every sequence to all GPUs. While
theoretically leading to an equal distribution of computation and memory, this strategy is impractical
as it presents two significant drawbacks. First, Ulysses’ scalability is capped by the number of
attention heads, limiting the degree of parallelism. Second, it incurs substantial communication
overhead. While the computational complexity for a batch of packed sequences is approximately
O(

∑
L2
i ), the communication volume is proportional to the total sequence length, leading to an

increased communication-to-computation ratio and a higher GPU idle ratio.

Our Solution: Hybrid Sharding. As shown in Figure 2(Middle), a more effective strategy is to
adopt a hybrid strategy by assigning a tailored sharding degree to each sequence. Firstly, this ap-
proach can resolve the redundant communication issue while maintaining a near-optimal load bal-
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Algorithm 1 Training Step with FlexRL.

1: Input: Global batch of sequences Sglobal = {s1, s2, . . . , sB}
2: Phase 1: Decision (on the single controller)
3: Determine an assignment map M by solving the per-sequence parallelism optimization prob-

lem.
4: for each sequence si ∈ Sglobal do
5: (Ni, Gi)←M [si] ▷Ni is SP size, Gi is the device group for si. Utilizing a tailored

bucketing algorithm for efficiency.
6: Phase 2: Dynamic Execution (on all ranks in parallel)
7: for rank k ∈ {0, . . . ,world size− 1} in parallel do do
8: Initialize local packed sequence xlocal

k ← ∅. Pack the sequences with the same Ni into
sequence group SGj .

9: Perform all2all1 of SG0. ▷Overlapping communication
10: for each sequence group SGj do
11: Let j be the local rank of device k within process group Gi.
12: Launch all2all1 of SGj + 1. ▷Overlap Communication
13: Launch all2all2 of SGj .
14: lossk ← ComputeLoss
15: lossk.backward()
16: Synchronize gradients and update model parameters.

ancing. Secondly, both the all-to-all communications and attention computations of different
sequences are independent, providing opportunities for communication computation overlapping.

Key Challenges. However, this hybrid approach introduces two significant implementation chal-
lenges. Firstly, the search space is prohibitively large. Finding an optimal configuration requires
solving a two-level combinatorial problem: (a) Sharding Degree Selection, which involves choosing
a sharding degree for each of the B sequences, creating a search space that grows exponentially with
batch size B. (b) Device Group Placement requires assigning a concrete GPU group to each sharded
sequence. This is a constrained task analogous to an NP-hard bin-packing problem, as placements
for different sequences are coupled and must collectively satisfy per-GPU resource limits. Secondly,
the resulting configuration poses a complex scheduling challenge. The solution to the placement
problem is a heterogeneous plan where sequences are processed by different and potentially overlap-
ping device groups. This breaks the conventional SPMD (Single Program, Multiple Data) paradigm.
Since all-to-all operations are collective and require synchronization, a naive implementation
that serializes the communication for each group would introduce significant GPU idle time (bub-
bles), diminishing the benefits of hybrid sharding. Therefore, a sophisticated scheduling mechanism
is required to manage these diverse computation and communication patterns efficiently.

4.3 SOLVING THE HYBRID SHARDING CHALLENGE

Structured device grouping and decoupled assignment. We adopt a simple yet restrictive device-
grouping scheme that jointly shrinks the search space and eases scheduling. Concretely, we partition
GPUs into disjoint device groups such that: (i) each group size is a power of two, (ii) groups are
preferentially formed within a single node to maximize locality, and (iii) groups of different sizes
never overlap (a GPU participates in at most one group across all sizes). On 8 GPUs, for example, 2-
way groups are uniquely determined as [0,1], [2,3], [4,5], [6,7]. These constraints essentially induce
a unique partition, drastically curbing combinatorics and simplifying downstream orchestration. To
further lower complexity, we decouple grouping from placement: we first instantiate all admissi-
ble device groups, then shard sequences and assign them to groups using a lightweight bucketing
heuristic that packs by sharding degree and estimated cost while meeting per-GPU memory limits
and balancing both compute and memory across groups.

Deadlock-free overlapped execution. On each GPU, we schedule the communication and com-
putation of assigned sequences to maximize overlap (Fig. 3). For sequences with sharding degree
> 1, we process them in descending sharding degree; sequences with the same degree communicate
within independent process groups, and this global descending-order discipline eliminates deadlocks
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Figure 3: Sliced sequence computation pattern of hybrid sharding and communication overlapping
strategies.

and busy waiting. Unsharded sequences (degree = 1) are executed first, so their compute overlaps
with the first issued communication, which comes from the largest-degree shard, thereby maximiz-
ing overlap. We further pipeline communication across sequences: within a sequence the depen-
dency is all2all1 → compute → all2all2; since sequences are independent, we prelaunch
the next sequence’s all2all1 as soon as the current sequence enters compute, overlapping the
next sequence’s communication with the current sequence’s computation.

Vision Tower Balancing. Unlike LLM backbone, the vision tower’s workload is inherently par-
allelizable at the sequence length level. For multi-image inputs, vision encoders typically process
images independently by stacking them along the batch dimension. Techniques like dynamic resolu-
tion may further tile high-resolution images into smaller, independent images (Wang et al., 2025b).
For video inputs, frames are sampled and processed with intra-frame attention, making computation
independent across frames. Consequently, both the computational and memory costs of the vision
tower scale near-linearly with the number of images or frames. We leverage this property by dis-
tributing images and video frames evenly across available GPUs, thereby balancing both compute
and memory loads.

4.4 SOLVING THE DATALOADING BOTTLENECK

Implementing Hybrid Sharding requires solving a two-level optimization problem and scheduling
the resulting heterogeneous plan.

In frameworks like veRL that employ a hybrid-controller architecture, a single controller is respon-
sible for data loading. This encounters a bottleneck with large data modalities like videos. As the
batch size increases to scale up distributed training, the master node’s memory becomes a limit-
ing factor, leading to potential CPU out-of-memory. Furthermore, the preprocessing of large video
files, which includes decoding and frame sampling, is computationally intensive and exacerbates the
bottleneck.

Decentralized Data Pipeline. To address this, we design a distributed dataloader and only trans-
fer lightweight metadata of multimodal data through the single controller. At initialization, a
lightweight Proxy Dataloader is launched on the master node, and a Local Dataloader is instantiated
on each worker node. Both hold only the dataset’s metadata, consuming minimal memory. When a
batch is requested, the Proxy Dataloader partitions the global batch into shards and distributes these
data-loading tasks to the Local Dataloaders. Each Local Dataloader then independently performs
the heavy preprocessing tasks—such as decoding, frame sampling, and data augmentation—on its
assigned data shard. This distributes both memory and computational loads across the cluster. Once
complete, the Local Dataloaders send the metadata of other multimodal data and materialized data
of text tensors to the Proxy Dataloader. Then, the scheduler on the single controller operates on the
metadata to determine the optimal data placement across GPUs for vision tower balancing. Finally,
the single controller transfer of the metadata of multimodal data to their designated GPUs. Each
GPU fetches the desired data on the fly from the corresponding node for load balancing

This design ensures that the master node’s memory is only used for the lightweight text tensor and
metadata of visual data, while the expensive preprocessing is parallelized and the memory bottleneck
is alleviated, significantly improving data throughput and scalability.
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Table 1: Model and dataset configurations used in our evaluation. In the short video setting, we set
max frame per sample to 128; In the long video setting, we set it to 512.

Model ViT Layers Hidden Size Attention Heads KV Heads FSDP Dataset
7B 600M 36 4096 32 8 8 Short/Long Video

32B 600M 64 5120 64 8 16 Short/Long Video
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Figure 4: Comparison of token/GPU/second across different datasets, models, and methods.

5 EVALUATION

5.1 EVALUATION SETUP

Implementation. We implement FlexRL in Python on top of veRL (Sheng et al., 2025) and
RAY (Moritz et al., 2018) framework, leveraging their distributed computing capabilities for scal-
able deployment. The core system components are built using PyTorch (Paszke et al., 2019) for
tensor operations and automatic differentiation, while communication primitives are implemented
using NCCL (ncc, 2023) for efficient GPU-to-GPU communication. Our implementation consists
of approximately 8K lines of Python code.

Testbed. We evaluate our system on a high-performance computing cluster comprising 128 NVIDIA
H800 GPUs distributed across 16 nodes. Each node is equipped with 8 H800 GPUs (80GB HBM3
memory each) interconnected via high-bandwidth 900GB/s NVLink fabric. Inter-node connectivity
is a 3200Gb/s RoCEv2 RDMA network.

Models and Datasets. As shown in Table 1, we evaluate FlexRL on two Qwen-2.5-VL-like VLM
variants (7B, 32B) that share the same 600M vision tower using different FSDP sizes. All models
are trained on a unified mixture of short-video, long-video, and image-only datasets, represent-
ing different real-world scenarios. The 7B model follows Mimo-VL(Team et al., 2025a), because
Qwen-2.5-VL-7B uses 28 attention heads, which is unfriendly to head-level sharding in the attention
components.

We compare the following methods: (1) veRL+Bucketing: The original veRL system without any
optimization for short videos.; (2) veRL+DS Ulysses: veRL with sequence parallelism for long
videos, sp size = 8; (3) FlexRL: automatically decides the sharding degree and computation pat-
tern of each sequence for workload balancing.

5.2 MAIN RESULTS

We present the training throughput of our methods and baselines in Figure 4. The results clearly
demonstrate that FlexRL consistently and significantly outperforms the veRL baseline across all
evaluated scenarios, including both 7B and 32B models on short and long video datasets.

The most substantial gains are observed in the forward computation phases. As shown by the
ref log prob bars, our system dramatically accelerates the forward pass, achieving a speedup of
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Figure 5: Left: Balance ratio of the attention computation across all GPUs. A high balance ratio
indicates severe load imbalance, while 1.0 means perfect load balancing. Right: CPU memory
usage on master node and model inputs transfer latency comparison.

up to 3x compared to veRL. This highlights the efficiency of our workload balancing and sharding
strategy in inference-heavy computations.

While the end-to-end training throughput is ultimately bottlenecked by the training phase,
FlexRL still delivers a remarkable overall performance improvement. By optimizing the entire
pipeline, our system boosts the total training throughput by up to 4.2x, with the peak acceleration
observed for the 32B model on the long video dataset. These results validate the effectiveness of our
proposed optimizations in enhancing the training efficiency of large-scale video language models.

Workload Balance Study. We further conduct experiments to show how our methods balance the
workload. For 7B model with short videos, we record the theoretical computation of the attention
components of all sequences in each training step. Then, we calculate the balance ratio of each GPU
by dividing the total computation of all sequences in the GPU by the average value of all GPUs. The
result is shown in Figure 5. Our result demonstrates that our method achieves good load balance
through the training steps, while the bucketing algorithm leads to at most 7.5× imbalance.

6 CONCLUSION AND DISCUSSION

In this work, we present FlexRL, a holistic system that addresses the unique system-level challenges
of reinforcement learning for large Vision-Language Models. By systematically analyzing the bot-
tlenecks across the RL pipeline, we identify critical inefficiencies in both data loading and workload
balancing that hinder scalability and hardware utilization. FlexRL introduces a decentralized data
pipeline to eliminate I/O and memory bottlenecks on the controller, and a novel hybrid sequence
sharding mechanism to achieve fine-grained, sub-sequence level load balancing across GPUs. Our
efficient scheduling algorithm and dynamic execution engine further maximize overlap between
computation and communication, ensuring high throughput even under extreme data heterogeneity.
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