
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNIVERSAL AND EFFICIENT LOADING BALANCING
FOR RL TRAINING OF LARGE MULTIMODAL MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) is crucial for aligning Vision-Language Models
(VLMs), but its practical application is hampered by significant system-level bot-
tlenecks. The typical RL pipeline, encompassing data loading, inference-based
rollouts, and model updates, suffers from severe inefficiencies when applied to
VLMs due to the extreme heterogeneity of multimodal data. Centralized data
loading creates I/O bottlenecks with large media files, while variations in sequence
length across text, image, and video inputs lead to critical load imbalance during
computation, leaving expensive GPU resources underutilized. Existing systems
either focus on text-only RL or employ general load-balancing techniques that
are incompatible with the small-batch, iterative nature of RL training. To address
these challenges, we present FlexRL, a holistic system designed to optimize the
end-to-end VLM RL pipeline. FlexRL introduces two core contributions: (1)
a Decentralized Data Pipeline that parallelizes data fetching and preprocessing
across worker nodes, facilitates metadata-only scheduling on the single controller,
eliminating the central bottleneck and accelerating data-intensive stages; and (2) a
novel Hybrid Sequence Sharding mechanism that partitions sequences into fine-
grained chunks. This enables sub-sequence level load balancing for both inference
and training, effectively mitigating workload skew. Our evaluation on a 128-GPU
cluster shows that FlexRL significantly improves training efficiency by up to 4.2×
in long video training scenarios compared to state-of-the-art baselines, enabling
more efficient and scalable RL for large multimodal models.

1 INTRODUCTION

Reinforcement learning (RL) has proven to be a powerful paradigm for aligning Vision Lan-
guage Models (VLMs) with human preferences and enhancing their instruction-following capa-
bilities (Team et al., 2025a;b;d; Wang et al., 2025b). A typical RL workflow for VLMs involves
several distinct stages (1) loading diverse multimodal data and prompts, (2) generating responses
via policy model inference (i.e., rollouts), and (3) updating the model parameters based on rewards.
While conceptually straightforward, scaling this process for VLMs exposes severe system-level bot-
tlenecks across the entire pipeline, hindering training efficiency and scalability.

The challenges are multifaceted and manifest differently in each stage. Firstly, the data loading
stage becomes a significant bottleneck. VLMs are trained on heterogeneous datasets containing
text, high-resolution images, and long video clips. In many RL frameworks (e.g., VeRL (Sheng
et al., 2025)), data loading and preprocessing are centralized, causing the master node to become
a chokepoint, limited by its memory and compute capacity, especially when handling large media
files. Secondly, both the inference stage and the model update stage suffer from a critical load
imbalance problem. In these phases, a single batch can contain a mix of short image-text queries,
long text-only reasoning tasks, and video inputs with tens of thousands of tokens. This extreme
variation in sequence length and modality leads to a highly skewed distribution of computational
and memory loads across GPUs. Consequently, some devices are overwhelmed while others remain
underutilized, creating a bottleneck that stalls the entire distributed system.

Existing systems fail to provide a holistic solution for the VLM RL pipeline. On one hand, tradi-
tional RL frameworks (Sheng et al., 2025; Hu et al., 2024) are optimized for text-only models and
lack sophisticated mechanisms to handle the load imbalance inherent in multimodal data. These

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Multimodal Data

Si
ng

le
 C

on
tr

ol
le

r

Traditional RL Data Pipeline

Samples’
Metadata

Ours: Decentralized Data Pipeline

Only lightweight metadata

Metadata

Metadata
3 1

2 0
1 1

0 0

GPU Imbalance

Ours: Balance Workload

Si
ng

le
 C

on
tr

ol
le

r
0 1 1 0

breakdown
the computation

Workers
Workers Rollout

Workers

Workers
Workers Actor

Workers

Workers
Workers Rollout

Workers

Workers
Workers Actor

Workers

CPU OOM🚨

GPU

Balanced
Workload

Latency: 10s

Hybrid Ulysses

Latency: 5s

👎

👍

0 1 2 3

0 0 1

Experiences

Dataset

balanced

Figure 1: FlexRL Overview. We implement a decentralized data pipeline and hybrid sharding
method to achieve workload balance for VLM RL Training.

frameworks typically employ naive sequence bucketing and packing strategy, which has limitations
due to sequence-level granulation. On the other hand, general-purpose large model training sys-
tems (Wang et al., 2025c;d; Li et al., 2024; Ge et al., 2024; 2025) propose heterogeneous parallelism
methods over DP instances and gradient steps, which either require large batch sizes and gradi-
ent accumulation to be effective. This assumption breaks down in the context of RL, which often
utilizes small batch sizes to maximize the utility of dynamically generated samples and maintain
training stability. These methods are thus inefficient for the dynamic and iterative nature of the RL
rollout-update loop.

To this end, we introduce FlexRL, a system designed to provide a comprehensive, end-to-end opti-
mization for the VLM RL pipeline. FlexRL deconstructs the performance bottlenecks in each stage
of the RL process and introduces targeted solutions: For the Data Loading Bottleneck: We design
a Decentralized Data Pipeline that parallelizes the expensive data fetching and preprocessing tasks
across all worker nodes and only operates lightweight metadata of samples on the single controller.
This decentralizes the workload, eliminating the master node bottleneck and significantly accelerat-
ing data throughput for large media files. For Inference and Update Load Imbalance: We propose
a novel Hybrid Sequence Sharding mechanism. Instead of treating sequences as indivisible units, we
partition them into fine-grained chunks. This allows FlexRL to balance the load at a sub-sequence
level, effectively mitigating the imbalance caused by extreme length variations during both the in-
ference and training steps. This is complemented by a specialized balancing strategy for the vision
tower. FlexRL incorporates an efficient decision algorithm to determine the optimal sharding strat-
egy for each sequence and a dynamic execution engine to orchestrate the complex computation and
communication patterns, maximizing hardware utilization.

We implement FlexRL on top of the veRL framework and conduct extensive experiments on a clus-
ter of 128 H800 GPUs. Our evaluation demonstrates that by optimizing the entire RL workflow,
FlexRL achieves significant end-to-end performance gains. For instance, when training on a diverse
mix of multimodal data, FlexRL improves training throughput by up to 4.2× and forward computa-
tion by up to 3× compared to existing baseline systems.

In summary, our contributions are:

• We provide a systematic analysis of the performance bottlenecks across the entire VLM
RL pipeline, from data loading to inference and model updates.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We propose FlexRL, a Hybrid Sequence Sharding mechanism for more general and flex-
ible load balancing to address these stage-specific challenges and a holistic system that
integrates a lightweight metadata-based dataloader to eliminate the storage bottleneck.

• We design an efficient algorithm and a dynamic execution engine to solve the complex
scheduling problem introduced by our fine-grained, hybrid sharding approach.

• Our evaluation shows that FlexRLsignificantly improves training efficiency in VLM train-
ing and achieves workload balancing in various scenarios compared to traditional methods.

2 RELATED WORK

2.1 RL TRAINING FRAMEWORKS

Reinforcement learning has become a central paradigm for aligning and enhancing large language
models (LLMs). Recent frameworks such as VeRL (Sheng et al., 2025), siiRL (Wang et al.,
2025e), AReal (Fu et al., 2025), StreamRL (Zhong et al., 2025), MiroRL (Team & Team, 2025),
ROLL (Wang et al., 2025a), and OpenRLHF (Hu et al., 2024) provide system-level support for
distributed RL training. These frameworks focus on issues such as asynchronous rollout-update
decoupling, scalable data pipelines, and integration with model-parallel training backends. While
these systems improve throughput and modularity, they are largely developed for text-only LLMs
and short-context RLHF settings. Their load balancing strategies often assume relatively homoge-
neous workloads, leaving open challenges in multi-modal and long-context reinforcement learning.

2.2 VLM TRAINING FRAMEWORKS

The emergence of multi-modal LLMs has motivated training frameworks such as DistTrain (Zhang
et al., 2025), DistMM (Huang et al., 2024), LongVILA (Chen et al., 2025), and VeOmni (Ma et al.,
2025). These systems propose optimizations for heterogeneous architectures combining vision tow-
ers and language backbones. For instance, they disaggregate model components, employ hybrid
parallelism, or develop scheduling algorithms to reduce communication overheads. Despite these
advances, existing VLM frameworks primarily target pretraining or supervised fine-tuning. They do
not explicitly address the unique challenges of RL training, such as small batch sizes, dynamically
generated trajectories, and highly variable sequence lengths across modalities.

2.3 LOADING BALANCING FOR LARGE MODEL TRAINING

A line of work focuses on load balancing techniques for efficient large model training. Classic
methods rely on sequence bucketing and packing, which sort samples by length and allocate them
across GPUs to minimize padding (Team et al., 2025b;c;d; Wang et al., 2025b). More recent ap-
proaches introduce heterogeneous parallelism and dynamic reconfiguration, as in FlexSP (Wang
et al., 2025c), HotSPa (Ge et al., 2024), Hydraulis (Li et al., 2024), ByteScale (Ge et al., 2025),
and WLB-LLM (Wang et al., 2025d), which adjust parallelism configuration across DP(Data Paral-
lel) ranks depending on sequence characteristics. Although effective for load balance of large-scale
pretraining, these approaches typically operate at coarse sequence-level granularity, employing dif-
ferent parallelism configurations across sequence buckets or gradient steps. These methods rely on
a large batch size that requires gradient accumulation, providing opportunities for load balancing.

3 RL TRAINING OF VLMS

Existing loading balancing works mainly focus on LLM pretraining. They usually involve sequence
reordering and grouping (also known as bucketing). However, these methods have limitations when
applied to RL training, especially for VLMs.

3.1 CHALLENGES OF VLM RL TRAINING

The RL training of VLMs presents unique challenges due to the extreme variations in sequence
lengths and computational requirements arising from different data modalities, such as text, images,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

32K

16K 16K

4K

Bucketing

h0

×4 (Capacity: 32K)

heads

Proposed
Method

h1

Attn Comp.

h0

h2

h3

h

64K

Attn Comp.

h0

16K

16K

16K

16K

Bucketing: OOM
(64K > Capacity)

h0

h2

Imbalance

h1

h2

h3

SP=2

SP=1

Seq Packing

Imbalance

Balanced

❌ ❌

✔ ✔ Balanced

Proposed
Method

(a) Shorter sequence

HeteroDP=
Bucketing.

HeteroDP.

(b) Longer sequence

Figure 2: Motivation of Hybrid Sharding. Left: Distribution of token counts in typical video-text
(NExTQA (Xiao et al., 2021)) and image-text (Geo3K(Lu et al., 2021)) datasets, showing extreme
variation in sequence lengths. Middle: An imbalance with shorter sequences, where conventional
bucketing and Heterogeneous DP (e.g. FlexSP (Wang et al., 2025c)) lead to load imbalance. Right.
For longer sequences, bucketing can cause out-of-memory (OOM) errors and further imbalance,
while our approach enables fine-grained sharding and balanced attention computation across GPUs.

and videos, and model heterogeneity. For example, in a single training batch, we may have image-
text sequences of a few hundred tokens, long reasoning sequences with thousands of tokens, and
long video sequences of tens of thousands of tokens. Firstly, due to the variations in the number of
visual tokens, the vision tower can have significantly different computational requirements across
different samples. In Figure 2, we show the distribution of two typical video-text and image-text
datasets. We observe that video data contains far more tokens than typical multi-image samples and
varies significantly. Secondly, the backbone LLM also faces extreme variations in sequence lengths,
leading to a significant imbalance in both memory and compute workloads across different samples.
Besides, unlike text data, multimodal data contains pixel data of videos and images, which requires
a huge amount of space. Existing RL frameworks like veRL use a central controller to preprocess,
store, and transfer multimodal data, leading to both high latency and pressure on CPU memory.

Sequence Bucketing and Packing. Some works (Team et al., 2025b;c; Wang et al., 2025b; Team
et al., 2025d) employ a bucketing algorithm that iteratively traverses the sequences in descending
order of their lengths and assigns each sequence to the bucket with the least computation load. In
each GPU, the sequences in the same bucket are packed together and padded to the GPU’s token
capacity. The parallelism configuration is fixed for all buckets. This method is simple and efficient,
as it only requires a single pass through the sequences and does not involve modifying either the
parallelism configuration or the training algorithm. However, in this method, on single longest
sequence can easily lead to the worst case, as shown in Figure 2(middle). In this example, we
have 11 sequences (1×32K, 2×16K, and 8×8K) and four GPUs. No sequence surpasses the GPU
capacity, so we can simply use data parallelism (e.g., FSDP (FSD, 2023)) with a bucketing algorithm
to balance the workload. No matter how we bucket the sequences, one GPU will always get the
longest sequence (32K), leading to 4× slowdown. This problem can be extended to more general
3D/4D parallelism, as they employ a homogeneous parallelism configuration for all DP ranks.

3.2 UNDERSTANDING THE ISSUE OF EXISTING LOADING BALANCING METHODS

Existing methods fall short in the RL regime for three reasons: (a) Small-batch RL leaves little
split-batch freedom. With only a handful of sequences per step, sequence-level bucketing/packing
(sort-by-length, pack-to-capacity with fixed parallelism) cannot hide outliers; the step time is dom-
inated by the longest sequence (e.g., 1×32K, 2×16K, 8×8K on 4 GPUs inevitably yields a 32K
straggler and ∼4× slowdown; Fig. 2(Middle)). Moreover, attention compute scales as O(L2) while
activation memory is O(L), so no single per-sequence placement can simultaneously equalize com-
pute and memory across GPUs, leading to both padding waste and stragglers. (b) Heterogeneous
DP across buckets (e.g., FlexSP (Wang et al., 2025c), HotSPa (Ge et al., 2024), Hydraulis (Li et al.,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2024), ByteScale (Ge et al., 2025), relies on gradient accumulation and step-wise reconfiguration.
In RL, frequent rollout–update alternation and small batches make re-sharding, extra synchroniza-
tion, and optimizer-state movement non-trivial overheads. When sequence/context parallelism is
enabled, many short sequences pay redundant all-to-all communication; choosing a single SP/CP
degree per bucket mismatches mixed-length samples and reintroduces imbalance. (c) Multimodal-
ity introduces heterogeneity. Vision-tower cost scales roughly with the number of images/frames,
not text tokens; bucketing by text length alone ignores visual workload, so mixing videos and im-
ages within a bucket yields highly skewed per-GPU compute/memory even if token counts look
balanced. These limitations motivate a granularity finer for better and more universal load balancing
(see Sec. 4).

4 FLEXRL

FlexRL is designed to accelerate the end-to-end reinforcement learning pipeline for Large Mul-
timodal Models (VLMs). A typical VLM RL training loop, such as PPO, consists of three main
phases: (1) Inference Phase, where the actor/reward model performs forward computation on the
generated trajectories; (2) Data Preparation Phase, where experiences are sampled and prepro-
cessed for training, often bottlenecked by I/O and CPU processing for large media data; and (3)
Update Phase, where the policy and value models are trained on the collected trajectories. that
these sequences should fill all GPUs memory for the purpose of maximizing utilization.

4.1 PRELIMINARIES: SEQUENCE PARTITIONING FOR LOAD BALANCING

To address the load imbalance caused by highly skewed sequence lengths, a foundational strategy
is to partition original sequences into smaller, more manageable units. By creating smaller, equal-
sized chunks, we establish uniform computational and memory footprints, which provides a crucial
opportunity for effective load balancing.

A prominent technique that implements this principle is Ulysses Sequence Parallelism (Jacobs et al.,
2023). While Ulysses was originally proposed to enable the training of exceptionally long sequences
that would otherwise exceed single-GPU memory, we observe that its underlying partitioning mech-
anism can be repurposed as a powerful tool for load balancing. This shifts the perspective on se-
quence parallelism: instead of scaling sequence length, it becomes a flexible strategy for balancing
workloads of varied-length sequences, such as the one depicted in Figure 2(Middle), which actually
doesn’t necessarily require sequence parallelism.

In the Ulysses approach, a sequence x of length L is split along the sequence dimension across
N devices. Each device i ∈ {0, . . . , N − 1} receives an equal-sized chunk xi of length L/N .
During the forward pass of a layer, each device computes its local Query (Qi), Key (Ki), and Value
(Vi) tensors from its chunk xi. To compute the full attention scores, the Ki and Vi tensors must
be shared among all N devices. This is achieved via an all-to-all communication operation.
After the all-to-all, each device possesses the complete Key and Value tensors for a subset
of attention heads, allowing it to compute its shard of the attention output. Another all-to-all
operation is then performed to gather the output, which is then passed to the subsequent layers.

4.2 HYBRID SEQUENCE SHARDING FOR WORKLOAD BALANCING

Strawman Solution: Greedy Sharding. When moving from a single sequence to a batch, it is
evident that we can achieve perfect load balancing by sharding every sequence to all GPUs. While
theoretically leading to an equal distribution of computation and memory, this strategy is impractical
as it presents two significant drawbacks. First, Ulysses’ scalability is capped by the number of
attention heads, limiting the degree of parallelism. Second, it incurs substantial communication
overhead. While the computational complexity for a batch of packed sequences is approximately
O(

∑
L2
i), the communication volume is proportional to the total sequence length, leading to an

increased communication-to-computation ratio and a higher GPU idle ratio.

Our Solution: Hybrid Sharding. As shown in Figure 2(Middle), a more effective strategy is to
adopt a hybrid strategy by assigning a tailored sharding degree to each sequence. Firstly, this ap-
proach can resolve the redundant communication issue while maintaining a near-optimal load bal-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Training Step with FlexRL.

1: Input: Global batch of sequences Sglobal = {s1, s2, . . . , sB}
2: Phase 1: Decision (on the single controller)
3: Determine an assignment map M by solving the per-sequence parallelism optimization prob-

lem.
4: for each sequence si ∈ Sglobal do
5: (Ni, Gi)←M [si] ▷Ni is SP size, Gi is the device group for si. Utilizing a tailored

bucketing algorithm for efficiency.
6: Phase 2: Dynamic Execution (on all ranks in parallel)
7: for rank k ∈ {0, . . . ,world size− 1} in parallel do do
8: Initialize local packed sequence xlocal

k ← ∅. Pack the sequences with the same Ni into
sequence group SGj .

9: Perform all2all1 of SG0. ▷Overlapping communication
10: for each sequence group SGj do
11: Let j be the local rank of device k within process group Gi.
12: Launch all2all1 of SGj + 1. ▷Overlap Communication
13: Launch all2all2 of SGj .
14: lossk ← ComputeLoss
15: lossk.backward()
16: Synchronize gradients and update model parameters.

ancing. Secondly, both the all-to-all communications and attention computations of different
sequences are independent, providing opportunities for communication computation overlapping.

Key Challenges. However, this hybrid approach introduces two significant implementation chal-
lenges. Firstly, the search space is prohibitively large. Finding an optimal configuration requires
solving a two-level combinatorial problem: (a) Sharding Degree Selection, which involves choosing
a sharding degree for each of the B sequences, creating a search space that grows exponentially with
batch size B. (b) Device Group Placement requires assigning a concrete GPU group to each sharded
sequence. This is a constrained task analogous to an NP-hard bin-packing problem, as placements
for different sequences are coupled and must collectively satisfy per-GPU resource limits. Secondly,
the resulting configuration poses a complex scheduling challenge. The solution to the placement
problem is a heterogeneous plan where sequences are processed by different and potentially overlap-
ping device groups. This breaks the conventional SPMD (Single Program, Multiple Data) paradigm.
Since all-to-all operations are collective and require synchronization, a naive implementation
that serializes the communication for each group would introduce significant GPU idle time (bub-
bles), diminishing the benefits of hybrid sharding. Therefore, a sophisticated scheduling mechanism
is required to manage these diverse computation and communication patterns efficiently.

4.3 SOLVING THE HYBRID SHARDING CHALLENGE

Structured device grouping and decoupled assignment. We adopt a simple yet restrictive device-
grouping scheme that jointly shrinks the search space and eases scheduling. Concretely, we partition
GPUs into disjoint device groups such that: (i) each group size is a power of two, (ii) groups are
preferentially formed within a single node to maximize locality, and (iii) groups of different sizes
never overlap (a GPU participates in at most one group across all sizes). On 8 GPUs, for example, 2-
way groups are uniquely determined as [0,1], [2,3], [4,5], [6,7]. These constraints essentially induce
a unique partition, drastically curbing combinatorics and simplifying downstream orchestration. To
further lower complexity, we decouple grouping from placement: we first instantiate all admissi-
ble device groups, then shard sequences and assign them to groups using a lightweight bucketing
heuristic that packs by sharding degree and estimated cost while meeting per-GPU memory limits
and balancing both compute and memory across groups.

Deadlock-free overlapped execution. On each GPU, we schedule the communication and com-
putation of assigned sequences to maximize overlap (Fig. 3). For sequences with sharding degree
> 1, we process them in descending sharding degree; sequences with the same degree communicate
within independent process groups, and this global descending-order discipline eliminates deadlocks

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0
1

2

3

For each sequence

RANK

all2all1 all2all2 attn comp Before Overlap
attn all2all1 attn all2all2 all2all1 attn all2all2 attn

After Overlap
attn

all2all1
attn

all2all2 all2all1
attn

all2all2
attn

Stream 1:
Stream 0: Time Saved

Time

Figure 3: Sliced sequence computation pattern of hybrid sharding and communication overlapping
strategies.

and busy waiting. Unsharded sequences (degree = 1) are executed first, so their compute overlaps
with the first issued communication, which comes from the largest-degree shard, thereby maximiz-
ing overlap. We further pipeline communication across sequences: within a sequence the depen-
dency is all2all1 → compute → all2all2; since sequences are independent, we prelaunch
the next sequence’s all2all1 as soon as the current sequence enters compute, overlapping the
next sequence’s communication with the current sequence’s computation.

Vision Tower Balancing. Unlike LLM backbone, the vision tower’s workload is inherently par-
allelizable at the sequence length level. For multi-image inputs, vision encoders typically process
images independently by stacking them along the batch dimension. Techniques like dynamic resolu-
tion may further tile high-resolution images into smaller, independent images (Wang et al., 2025b).
For video inputs, frames are sampled and processed with intra-frame attention, making computation
independent across frames. Consequently, both the computational and memory costs of the vision
tower scale near-linearly with the number of images or frames. We leverage this property by dis-
tributing images and video frames evenly across available GPUs, thereby balancing both compute
and memory loads.

4.4 SOLVING THE DATALOADING BOTTLENECK

Implementing Hybrid Sharding requires solving a two-level optimization problem and scheduling
the resulting heterogeneous plan.

In frameworks like veRL that employ a hybrid-controller architecture, a single controller is respon-
sible for data loading. This encounters a bottleneck with large data modalities like videos. As the
batch size increases to scale up distributed training, the master node’s memory becomes a limit-
ing factor, leading to potential CPU out-of-memory. Furthermore, the preprocessing of large video
files, which includes decoding and frame sampling, is computationally intensive and exacerbates the
bottleneck.

Decentralized Data Pipeline. To address this, we design a distributed dataloader and only trans-
fer lightweight metadata of multimodal data through the single controller. At initialization, a
lightweight Proxy Dataloader is launched on the master node, and a Local Dataloader is instantiated
on each worker node. Both hold only the dataset’s metadata, consuming minimal memory. When a
batch is requested, the Proxy Dataloader partitions the global batch into shards and distributes these
data-loading tasks to the Local Dataloaders. Each Local Dataloader then independently performs
the heavy preprocessing tasks—such as decoding, frame sampling, and data augmentation—on its
assigned data shard. This distributes both memory and computational loads across the cluster. Once
complete, the Local Dataloaders send the metadata of other multimodal data and materialized data
of text tensors to the Proxy Dataloader. Then, the scheduler on the single controller operates on the
metadata to determine the optimal data placement across GPUs for vision tower balancing. Finally,
the single controller transfer of the metadata of multimodal data to their designated GPUs. Each
GPU fetches the desired data on the fly from the corresponding node for load balancing

This design ensures that the master node’s memory is only used for the lightweight text tensor and
metadata of visual data, while the expensive preprocessing is parallelized and the memory bottleneck
is alleviated, significantly improving data throughput and scalability.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Model and dataset configurations used in our evaluation. In the short video setting, we set
max frame per sample to 128; In the long video setting, we set it to 512.

Model ViT Layers Hidden Size Attention Heads KV Heads FSDP Dataset
7B 600M 36 4096 32 8 8 Short/Long Video

32B 600M 64 5120 64 8 16 Short/Long Video

ours
(short video)

verl
(short video)

ours
(long video)

verl
(long video)

0

1000

2000

3000

4000

5000

6000

7000

To
ke

n
/ G

PU
 /

Se
co

nd

7B Model

ours
(short video)

verl
(short video)

ours
(long video)

verl
(long video)

0

1000

2000

3000

4000

5000

To
ke

n
/ G

PU
 /

Se
co

nd

32B Model

compute_log_prob ref_log_prob update_actor

Figure 4: Comparison of token/GPU/second across different datasets, models, and methods.

5 EVALUATION

5.1 EVALUATION SETUP

Implementation. We implement FlexRL in Python on top of veRL (Sheng et al., 2025) and
RAY (Moritz et al., 2018) framework, leveraging their distributed computing capabilities for scal-
able deployment. The core system components are built using PyTorch (Paszke et al., 2019) for
tensor operations and automatic differentiation, while communication primitives are implemented
using NCCL (ncc, 2023) for efficient GPU-to-GPU communication. Our implementation consists
of approximately 8K lines of Python code.

Testbed. We evaluate our system on a high-performance computing cluster comprising 128 NVIDIA
H800 GPUs distributed across 16 nodes. Each node is equipped with 8 H800 GPUs (80GB HBM3
memory each) interconnected via high-bandwidth 900GB/s NVLink fabric. Inter-node connectivity
is a 3200Gb/s RoCEv2 RDMA network.

Models and Datasets. As shown in Table 1, we evaluate FlexRL on two Qwen-2.5-VL-like VLM
variants (7B, 32B) that share the same 600M vision tower using different FSDP sizes. All models
are trained on a unified mixture of short-video, long-video, and image-only datasets, represent-
ing different real-world scenarios. The 7B model follows Mimo-VL(Team et al., 2025a), because
Qwen-2.5-VL-7B uses 28 attention heads, which is unfriendly to head-level sharding in the attention
components.

We compare the following methods: (1) veRL+Bucketing: The original veRL system without any
optimization for short videos.; (2) veRL+DS Ulysses: veRL with sequence parallelism for long
videos, sp size = 8; (3) FlexRL: automatically decides the sharding degree and computation pat-
tern of each sequence for workload balancing.

5.2 MAIN RESULTS

We present the training throughput of our methods and baselines in Figure 4. The results clearly
demonstrate that FlexRL consistently and significantly outperforms the veRL baseline across all
evaluated scenarios, including both 7B and 32B models on short and long video datasets.

The most substantial gains are observed in the forward computation phases. As shown by the
ref log prob bars, our system dramatically accelerates the forward pass, achieving a speedup of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10 12 14
Training Steps

0

1

2

3

4

5

6

7

8

Ba
la

nc
e

Ra
tio

veRL(Bucketing)
FlexRL

CPU Memory Latency

1500 GB

900 s

124 GB

3 s

veRL
FlexRL(Decentralized)

Figure 5: Left: Balance ratio of the attention computation across all GPUs. A high balance ratio
indicates severe load imbalance, while 1.0 means perfect load balancing. Right: CPU memory
usage on master node and model inputs transfer latency comparison.

up to 3x compared to veRL. This highlights the efficiency of our workload balancing and sharding
strategy in inference-heavy computations.

While the end-to-end training throughput is ultimately bottlenecked by the training phase,
FlexRL still delivers a remarkable overall performance improvement. By optimizing the entire
pipeline, our system boosts the total training throughput by up to 4.2x, with the peak acceleration
observed for the 32B model on the long video dataset. These results validate the effectiveness of our
proposed optimizations in enhancing the training efficiency of large-scale video language models.

Workload Balance Study. We further conduct experiments to show how our methods balance the
workload. For 7B model with short videos, we record the theoretical computation of the attention
components of all sequences in each training step. Then, we calculate the balance ratio of each GPU
by dividing the total computation of all sequences in the GPU by the average value of all GPUs. The
result is shown in Figure 5. Our result demonstrates that our method achieves good load balance
through the training steps, while the bucketing algorithm leads to at most 7.5× imbalance.

6 CONCLUSION AND DISCUSSION

In this work, we present FlexRL, a holistic system that addresses the unique system-level challenges
of reinforcement learning for large Vision-Language Models. By systematically analyzing the bot-
tlenecks across the RL pipeline, we identify critical inefficiencies in both data loading and workload
balancing that hinder scalability and hardware utilization. FlexRL introduces a decentralized data
pipeline to eliminate I/O and memory bottlenecks on the controller, and a novel hybrid sequence
sharding mechanism to achieve fine-grained, sub-sequence level load balancing across GPUs. Our
efficient scheduling algorithm and dynamic execution engine further maximize overlap between
computation and communication, ensuring high throughput even under extreme data heterogeneity.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Pytorch fullyshardeddataparallel. https://pytorch.org/docs/stable/fsdp, 2023.

Nccl. https://developer.nvidia.com/nccl, 2023.

Yukang Chen, Fuzhao Xue, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian
Tang, Shang Yang, Zhijian Liu, Yihui He, Hongxu Yin, Pavlo Molchanov, Jan Kautz, Linxi Fan,
Yuke Zhu, Yao Lu, and Song Han. LongVILA: Scaling long-context visual language models
for long videos. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=wCXAlfvCy6.

Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
Mei, Jiashu Wang, Tongkai Yang, Binhang Yuan, and Yi Wu. Areal: A large-scale asynchronous
reinforcement learning system for language reasoning, 2025. URL https://arxiv.org/
abs/2505.24298.

Hao Ge, Fangcheng Fu, Haoyang Li, Xuanyu Wang, Sheng Lin, Yujie Wang, Xiaonan Nie, Hailin
Zhang, Xupeng Miao, and Bin Cui. Enabling parallelism hot switching for efficient training
of large language models. In Proceedings of the ACM SIGOPS 30th Symposium on Oper-
ating Systems Principles, SOSP ’24, pp. 178–194, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400712517. doi: 10.1145/3694715.3695969. URL
https://doi.org/10.1145/3694715.3695969.

Hao Ge, Junda Feng, Qi Huang, Fangcheng Fu, Xiaonan Nie, Lei Zuo, Haibin Lin, Bin Cui, and
Xin Liu. Bytescale: Communication-efficient scaling of llm training with a 2048k context length
on 16384 gpus. In Proceedings of the ACM SIGCOMM 2025 Conference, SIGCOMM ’25, pp.
963–978. ACM, August 2025. doi: 10.1145/3718958.3754352. URL http://dx.doi.org/
10.1145/3718958.3754352.

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Openrlhf: An
easy-to-use, scalable and high-performance rlhf framework. arXiv preprint arXiv:2405.11143,
2024.

Jun Huang, Zhen Zhang, Shuai Zheng, Feng Qin, and Yida Wang. DISTMM: Accelerating dis-
tributed multimodal model training. In 21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24), pp. 1157–1171, Santa Clara, CA, April 2024. USENIX As-
sociation. ISBN 978-1-939133-39-7. URL https://www.usenix.org/conference/
nsdi24/presentation/huang.

Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Shuaiwen Leon Song,
Samyam Rajbhandari, and Yuxiong He. Deepspeed ulysses: System optimizations for enabling
training of extreme long sequence transformer models, 2023. URL https://arxiv.org/
abs/2309.14509.

Haoyang Li, Fangcheng Fu, Sheng Lin, Hao Ge, Xuanyu Wang, Jiawen Niu, Jie Jiang, and Bin
Cui. Demystifying workload imbalances in large transformer model training over variable-length
sequences, 2024. URL https://arxiv.org/abs/2412.07894.

Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang, and Song-Chun Zhu.
Inter-gps: Interpretable geometry problem solving with formal language and symbolic reasoning.
In The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguis-
tics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP
2021), 2021.

Qianli Ma, Yaowei Zheng, Zhelun Shi, Zhongkai Zhao, Bin Jia, Ziyue Huang, Zhiqi Lin, Youjie
Li, Jiacheng Yang, Yanghua Peng, et al. Veomni: Scaling any modality model training with
model-centric distributed recipe zoo. arXiv preprint arXiv:2508.02317, 2025.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica. Ray: A distributed
framework for emerging AI applications. In 13th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’18, pp. 561–577. USENIX Association, 2018.

10

https://pytorch.org/docs/stable/fsdp
https://developer.nvidia.com/nccl
https://openreview.net/forum?id=wCXAlfvCy6
https://arxiv.org/abs/2505.24298
https://arxiv.org/abs/2505.24298
https://doi.org/10.1145/3694715.3695969
http://dx.doi.org/10.1145/3718958.3754352
http://dx.doi.org/10.1145/3718958.3754352
https://www.usenix.org/conference/nsdi24/presentation/huang
https://www.usenix.org/conference/nsdi24/presentation/huang
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2412.07894

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, volume 32 of NeurIPS
’19. Curran Associates, Inc., 2019.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, EuroSys ’25, pp. 1279–1297, New
York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400711961. doi: 10.
1145/3689031.3696075. URL https://doi.org/10.1145/3689031.3696075.

Core Team, Zihao Yue, Zhenru Lin, Yifan Song, Weikun Wang, Shuhuai Ren, Shuhao Gu, Shicheng
Li, Peidian Li, Liang Zhao, Lei Li, Kainan Bao, Hao Tian, Hailin Zhang, Gang Wang, Dawei
Zhu, Cici, Chenhong He, Bowen Ye, Bowen Shen, Zihan Zhang, Zihan Jiang, Zhixian Zheng,
Zhichao Song, Zhenbo Luo, Yue Yu, Yudong Wang, Yuanyuan Tian, Yu Tu, Yihan Yan, Yi Huang,
Xu Wang, Xinzhe Xu, Xingchen Song, Xing Zhang, Xing Yong, Xin Zhang, Xiangwei Deng,
Wenyu Yang, Wenhan Ma, Weiwei Lv, Weiji Zhuang, Wei Liu, Sirui Deng, Shuo Liu, Shimao
Chen, Shihua Yu, Shaohui Liu, Shande Wang, Rui Ma, Qiantong Wang, Peng Wang, Nuo Chen,
Menghang Zhu, Kangyang Zhou, Kang Zhou, Kai Fang, Jun Shi, Jinhao Dong, Jiebao Xiao,
Jiaming Xu, Huaqiu Liu, Hongshen Xu, Heng Qu, Haochen Zhao, Hanglong Lv, Guoan Wang,
Duo Zhang, Dong Zhang, Di Zhang, Chong Ma, Chang Liu, Can Cai, and Bingquan Xia. Mimo-vl
technical report, 2025a. URL https://arxiv.org/abs/2506.03569.

Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
Zhang, Chenzhuang Du, Chu Wei, Congcong Wang, Dehao Zhang, Dikang Du, Dongliang Wang,
Enming Yuan, Enzhe Lu, Fang Li, Flood Sung, Guangda Wei, Guokun Lai, Han Zhu, Hao Ding,
Hao Hu, Hao Yang, Hao Zhang, Haoning Wu, Haotian Yao, Haoyu Lu, Heng Wang, Hongcheng
Gao, Huabin Zheng, Jiaming Li, Jianlin Su, Jianzhou Wang, Jiaqi Deng, Jiezhong Qiu, Jin Xie,
Jinhong Wang, Jingyuan Liu, Junjie Yan, Kun Ouyang, Liang Chen, Lin Sui, Longhui Yu, Meng-
fan Dong, Mengnan Dong, Nuo Xu, Pengyu Cheng, Qizheng Gu, Runjie Zhou, Shaowei Liu,
Sihan Cao, Tao Yu, Tianhui Song, Tongtong Bai, Wei Song, Weiran He, Weixiao Huang, Weixin
Xu, Xiaokun Yuan, Xingcheng Yao, Xingzhe Wu, Xinhao Li, Xinxing Zu, Xinyu Zhou, Xinyuan
Wang, Y. Charles, Yan Zhong, Yang Li, Yangyang Hu, Yanru Chen, Yejie Wang, Yibo Liu, Yibo
Miao, Yidao Qin, Yimin Chen, Yiping Bao, Yiqin Wang, Yongsheng Kang, Yuanxin Liu, Yuhao
Dong, Yulun Du, Yuxin Wu, Yuzhi Wang, Yuzi Yan, Zaida Zhou, Zhaowei Li, Zhejun Jiang,
Zheng Zhang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Zijia Zhao, Ziwei Chen, and Zongyu Lin.
Kimi-vl technical report, 2025b. URL https://arxiv.org/abs/2504.07491.

Kwai Keye Team, Biao Yang, Bin Wen, Changyi Liu, Chenglong Chu, Chengru Song, Chongling
Rao, Chuan Yi, Da Li, Dunju Zang, Fan Yang, Guorui Zhou, Hao Peng, Haojie Ding, Jiaming
Huang, Jiangxia Cao, Jiankang Chen, Jingyun Hua, Jin Ouyang, Kaibing Chen, Kaiyu Jiang,
Kaiyu Tang, Kun Gai, Shengnan Zhang, Siyang Mao, Sui Huang, Tianke Zhang, Tingting Gao,
Wei Chen, Wei Yuan, Xiangyu Wu, Xiao Hu, Xingyu Lu, Yang Zhou, Yi-Fan Zhang, Yiping Yang,
Yulong Chen, Zhenhua Wu, Zhenyu Li, Zhixin Ling, Ziming Li, Dehua Ma, Di Xu, Haixuan
Gao, Hang Li, Jiawei Guo, Jing Wang, Lejian Ren, Muhao Wei, Qianqian Wang, Qigen Hu,
Shiyao Wang, Tao Yu, Xinchen Luo, Yan Li, Yiming Liang, Yuhang Hu, Zeyi Lu, Zhuoran Yang,
and Zixing Zhang. Kwai keye-vl technical report, 2025c. URL https://arxiv.org/abs/
2507.01949.

MiroMind Foundation Model Team and MiroMind AI Infra Team. Mirorl: An mcp-first reinforce-
ment learning framework for deep research agent. https://github.com/MiroMindAI/
MiroRL, 2025.

V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale
Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng,
Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi,
Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali
Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong,
Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong,

11

https://doi.org/10.1145/3689031.3696075
https://arxiv.org/abs/2506.03569
https://arxiv.org/abs/2504.07491
https://arxiv.org/abs/2507.01949
https://arxiv.org/abs/2507.01949
https://github.com/MiroMindAI/MiroRL
https://github.com/MiroMindAI/MiroRL

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei
Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu,
Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan
An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li,
Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du,
Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and Jie
Tang. Glm-4.5v and glm-4.1v-thinking: Towards versatile multimodal reasoning with scalable
reinforcement learning, 2025d. URL https://arxiv.org/abs/2507.01006.

Weixun Wang, Shaopan Xiong, Gengru Chen, Wei Gao, Sheng Guo, Yancheng He, Ju Huang,
Jiaheng Liu, Zhendong Li, Xiaoyang Li, Zichen Liu, Haizhou Zhao, Dakai An, Lunxi Cao,
Qiyang Cao, Wanxi Deng, Feilei Du, Yiliang Gu, Jiahe Li, Xiang Li, Mingjie Liu, Yijia Luo,
Zihe Liu, Yadao Wang, Pei Wang, Tianyuan Wu, Yanan Wu, Yuheng Zhao, Shuaibing Zhao,
Jin Yang, Siran Yang, Yingshui Tan, Huimin Yi, Yuchi Xu, Yujin Yuan, Xingyao Zhang, Lin
Qu, Wenbo Su, Wei Wang, Jiamang Wang, and Bo Zheng. Reinforcement learning opti-
mization for large-scale learning: An efficient and user-friendly scaling library, 2025a. URL
https://arxiv.org/abs/2506.06122.

Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang
Liu, Linglin Jing, Shenglong Ye, Jie Shao, Zhaokai Wang, Zhe Chen, Hongjie Zhang, Ganlin
Yang, Haomin Wang, Qi Wei, Jinhui Yin, Wenhao Li, Erfei Cui, Guanzhou Chen, Zichen Ding,
Changyao Tian, Zhenyu Wu, Jingjing Xie, Zehao Li, Bowen Yang, Yuchen Duan, Xuehui Wang,
Zhi Hou, Haoran Hao, Tianyi Zhang, Songze Li, Xiangyu Zhao, Haodong Duan, Nianchen Deng,
Bin Fu, Yinan He, Yi Wang, Conghui He, Botian Shi, Junjun He, Yingtong Xiong, Han Lv, Lijun
Wu, Wenqi Shao, Kaipeng Zhang, Huipeng Deng, Biqing Qi, Jiaye Ge, Qipeng Guo, Wenwei
Zhang, Songyang Zhang, Maosong Cao, Junyao Lin, Kexian Tang, Jianfei Gao, Haian Huang,
Yuzhe Gu, Chengqi Lyu, Huanze Tang, Rui Wang, Haijun Lv, Wanli Ouyang, Limin Wang, Min
Dou, Xizhou Zhu, Tong Lu, Dahua Lin, Jifeng Dai, Weijie Su, Bowen Zhou, Kai Chen, Yu Qiao,
Wenhai Wang, and Gen Luo. Internvl3.5: Advancing open-source multimodal models in versatil-
ity, reasoning, and efficiency, 2025b. URL https://arxiv.org/abs/2508.18265.

Yujie Wang, Shiju Wang, Shenhan Zhu, Fangcheng Fu, Xinyi Liu, Xuefeng Xiao, Huixia Li, Ji-
ashi Li, Faming Wu, and Bin Cui. Flexsp: Accelerating large language model training via flex-
ible sequence parallelism. In Proceedings of the 30th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, Volume 2, ASPLOS
’25, pp. 421–436, New York, NY, USA, 2025c. Association for Computing Machinery. ISBN
9798400710797. doi: 10.1145/3676641.3715998. URL https://doi.org/10.1145/
3676641.3715998.

Zheng Wang, Anna Cai, Xinfeng Xie, Zaifeng Pan, Yue Guan, Weiwei Chu, Jie Wang, Shikai Li,
Jianyu Huang, Chris Cai, Yuchen Hao, and Yufei Ding. Wlb-llm: Workload-balanced 4d paral-
lelism for large language model training, 2025d. URL https://arxiv.org/abs/2503.
17924.

Zhixin Wang, Tianyi Zhou, Liming Liu, Ao Li, Jiarui Hu, Dian Yang, Yinhui Lu, Jinlong Hou,
Siyuan Feng, Yuan Cheng, and Yuan Qi. Distflow: A fully distributed rl framework for scalable
and efficient llm post-training, 2025e. URL https://arxiv.org/abs/2507.13833.

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa:next phase of question-
answering to explaining temporal actions, 2021. URL https://arxiv.org/abs/2105.
08276.

Zili Zhang, Yinmin Zhong, Yimin Jiang, Hanpeng Hu, Jianjian Sun, Zheng Ge, Yibo Zhu, Daxin
Jiang, and Xin Jin. Disttrain: Addressing model and data heterogeneity with disaggregated
training for multimodal large language models. In Proceedings of the ACM SIGCOMM 2025
Conference, SIGCOMM ’25, pp. 24–38, New York, NY, USA, 2025. Association for Com-
puting Machinery. ISBN 9798400715242. doi: 10.1145/3718958.3750472. URL https:
//doi.org/10.1145/3718958.3750472.

Yinmin Zhong, Zili Zhang, Xiaoniu Song, Hanpeng Hu, Chao Jin, Bingyang Wu, Nuo Chen, Yukun
Chen, Yu Zhou, Changyi Wan, Hongyu Zhou, Yimin Jiang, Yibo Zhu, and Daxin Jiang. Streamrl:

12

https://arxiv.org/abs/2507.01006
https://arxiv.org/abs/2506.06122
https://arxiv.org/abs/2508.18265
https://doi.org/10.1145/3676641.3715998
https://doi.org/10.1145/3676641.3715998
https://arxiv.org/abs/2503.17924
https://arxiv.org/abs/2503.17924
https://arxiv.org/abs/2507.13833
https://arxiv.org/abs/2105.08276
https://arxiv.org/abs/2105.08276
https://doi.org/10.1145/3718958.3750472
https://doi.org/10.1145/3718958.3750472

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Scalable, heterogeneous, and elastic rl for llms with disaggregated stream generation, 2025. URL
https://arxiv.org/abs/2504.15930.

13

https://arxiv.org/abs/2504.15930

	Introduction
	Related Work
	RL Training Frameworks
	VLM Training Frameworks
	Loading Balancing for Large Model Training

	RL Training of VLMs
	Challenges of VLM RL Training
	Understanding the Issue of Existing Loading Balancing Methods

	FlexRL
	Preliminaries: Sequence Partitioning for Load Balancing
	Hybrid Sequence Sharding for Workload Balancing
	Solving the Hybrid Sharding Challenge
	Solving the Dataloading Bottleneck

	Evaluation
	Evaluation Setup
	Main Results

	Conclusion And Discussion

