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ABSTRACT

Discourse phenomena in existing document-level translation datasets are sparse,
which has been a fundamental obstacle in the development of context-aware ma-
chine translation models. Moreover, most existing document-level corpora and
context-aware machine translation methods rely on an unrealistic assumption on
sentence-level alignments. To mitigate these issues, we first curate a novel dataset
of Chinese-English literature, which consists of 132 books with intricate discourse
structures. Then, we propose a more pragmatic and challenging setting for context-
aware translation, termed chapter-to-chapter (CH2CH) translation, and investigate
the performance of commonly-used machine translation models under this setting.
Furthermore, we introduce a potential approach of finetuning large language mod-
els (LLMs) within the domain of CH2CH literary translation, yielding impressive
improvements over baselines. Through our comprehensive analysis, we unveil that
literary translation under the CH2CH setting is challenging in nature, with respect
to both model learning methods and translation decoding algorithms.

1 INTRODUCTION

Despite the efforts on developing context-aware machine learning systems to meaningfully exploit
inter-sentential information, recent work has investigated the fundamental obstacles in existing
document-level translation datasets and context-aware machine translation models (Jin et al., 2023).
First, existing datasets lack the necessary contextual information and/or discourse phenomena for
meaningful document-level translation (Lupo et al., 2022). Second, existing predominant context-
aware translation methods assume that sentence-level alignments are available during training, which
does not accurately represent real-world translation scenarios (Thai et al., 2022; Jin et al., 2023).

To remedy the issues, recent work has pivoted to literary translation and proposed a more realistic
paragraph-to-paragraph setting, given that literary texts typically contain complex discourse structures
that mandate a document-level frame of reference. Thai et al. (2022) released PAR3, a paragraph-level
translation dataset sourced from recently-published 118 novels in 19 languages (about 6 novels per
language on average). Jin et al. (2023) curated PARA2PARA, a small-scale dataset consisting of
10,545 parallel paragraphs across six novels. However, these datasets are either in small scale or the
reference translations are automatically generated from machine translation systems (e.g. Google
Translate (Wu et al., 2016) and fine-tuned GPT-3 (Brown et al., 2020)). In addition, there still
exist some serious limitations in the paragraph-to-paragraph translation setting, including limited
contextual information and equivocal paragraph splits in literary texts.

Large language models (LLMs) with decoder-only Transformer architectures have demonstrated
outstanding performance as sentence-level translation systems (Vilar et al., 2023; Jiao et al., 2023;
Kocmi & Federmann, 2023; Zhang et al., 2023; Yang et al., 2023). In the aspect of context-aware
translation, recent studies have employed decoder-only LLMs to translate entire paragraphs using
few-shot in-context learning methods, yielding impressive translation quality (Karpinska & Iyyer,
2023). However, how to finetune LLMs to process context-aware translation for literary texts in a
more realistic and challenging scenario remains under-explored.

In this paper, we propose a more pragmatic and challenging setting for context-aware translation,
named chapter-to-chapter (CH2CH), associated with a carefully curated dataset of Chinese-English
literature. The dataset consists of 132 literary books, together with professional translations in
Chinese. Then we investigate the performance of commonly-used machine translation models under
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Figure 1: An example of of CH2CH translation. Sentence Misalignment: Red parts are where a
source sentence is separated into multiple sentences in the corresponding translation; blue parts are
added by translators without a corresponding source segment; violet parts are deleted by translators.

the proposed setting and dataset. In addition, we investigate the efficacy of applying LLMs in
context-aware chapter-to-chapter literary translation and highlight several key challenges that impede
the progress. Our main contributions are outlined as follows:

* We propose a more realistic setting for literary translation: chapter-to-chapter(CH2CH) translation,
wherein a document is translated at the granularity of chapters. To support it, we release a chapter-
aligned Chinese-English dataset (JAM), comprising 4,194 parallel chapters extracted from 132
novels, to catalyze future research endeavors.

* Through comprehensive analysis, we unveil the challenges in chapter-level translation, including
long-context model training and decoding strategies.

» With empirical experiments, we evaluate the performance of recent trending LLMs on the JAM
dataset and propose an effective fine-tuning procedure tailored for LLMs to generate coherent
translations of literary novels.

2  PRELIMINARY BACKGROUND

2.1 CONTEXT-AWARE NEURAL MACHINE TRANSLATION

Sentence-aligned Translation In the sentence-aligned setting of context-aware machine translation,
we assume that the source and target sentences in a parallel document are well-aligned. Formally,
given a document D comprising a set of source sentences X = {x1, x2, ..., €4}, there are the same
number of sentences Y = {y1, Y2, ..., Ya} in the target side, which are aligned with sentences in X
by the indices. The context-aware neural machine translation (NMT) model computes the probability
of translating the source sentence x; conditioned on the context C';, wherein 0 < 7 < d:

N
e
Psenatign (yilzi, Ci, 0) = [ [ Pl 1y~ i, Ci30). ey
j=1
where C; are contextual sentences surrounding x; and/or y;. As illustrated in Figure 1, sentence-
aligned translation does not accurately represent real-world translation scenarios.

Paragraph-to-Paragraph Translation To get rid of the assumption of sentence-level alignments
and leverage richer contextual information, recent work (Thai et al., 2022; Jin et al., 2023) proposed
a paradigm shift towards paragraph-to-paragraph (PARA2PARA) translation to relax the alignment
assumption from sentence-level to paragraph-level. Concretely, a document D contains a set of
aligned parallel paragraphs, X = {X;, X5, ..., X4} and Y = {Y7, Y5, ..., Y;}. Each pair of aligned
paragraphs X; and Y; do not necessarily contain the same number of sentences:
N
Powaorara (Y3 X, 0) = [ POVY 1Y, X330 )

j=1

where Yi<j are all previously translated tokens in a paragraph. However, in literary texts the splits of
paragraphs are equivocal, which limits the application of PARA2PARA to real-world scenario.
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2.2 DATASETS

Most commonly used corpora, including IWSLT-17 (Cettolo et al., 2012), NewsCom (Tiedemann,
2012), Europarl (Koehn, 2005), and OpenSubtitles (Lison et al., 2018) are sourced from news articles
or parliamentary proceedings. Until recently, some document-level parallel corpora of literary texts
have been released. Jiang et al. (2023) curated Bilingual Web Books (BWB), a sentence-aligned
corpus that retains document-level information. BWB contains 9.6 million sentence pairs sourced
from Chinese web novels and their corresponding English translations. However, BWB still follows
the sentence-level alignment constrains. To support PARA2PARA translation, Thai et al. (2022)
introduced PAR3, a paragraph-aligned corpus obtained through both human and automatic translators,
containing multilingual non-English novels and their English translations. Another paragraph-aligned
corpus, introduced by Al Ghussin et al. (2023), consists of parallel paragraphs extracted from
Paracrawl (Baion et al., 2020) using automatic sentence alignments. This corpus includes data
crawled from the Internet spanning various domains.

2.3 TRANSLATION WITH LARGE LANGUAGE MODELS

LLMs are not explicitly trained on parallel data for translation, yet they possess a profound under-
standing of languages and can produce coherent text, serving as a valuable foundation for translation
tasks (Li et al., 2024). Particularly for resource-rich languages, colossal models with decoder-only
architecture, such as GPT-4 (OpenAl et al., 2024), have approached or even exceeded traditional
encoder-decoder models on sentence-level benchmarks and can generate more coherent and human-
like translations drawing upon their extensive comprehension of both languages (Robinson et al.,
2023; Hendy et al., 2023). Xu et al. (2023a) proposed a two-stage procedure to finetune Llama2-
7b (Touvron et al., 2023) with a small amount of sentence-level parallel data and obtained impressive
improvements over standard sentence-level NMT baselines without LLMs.

3 JAM: CHAPTER-ALIGNED LITERARY TRANSLATION DATASET

3.1 CHAPTER-TO-CHAPTER TRANSLATION

In literary texts, the lengths of paragraphs vary and the splits of paragraphs are equivocal, particularly
when dialogues are involved. For instance, in novels, dialogue lines are often presented as separate
paragraphs, making it challenging to ensure accurate translations without access to the preceding
context. As illustrated by the two examples shown in Table 1, there are instances where multiple
paragraphs from the source side are merged into one paragraph on the target side, and vice versa.

To address this issue, we propose chapter-to-chapter (CH2CH) translation, a pragmatic and challeng-
ing setting, by extending context-aware translation to chapter-level. Comparing to paragraph-level
alignments, chapter-level alignments provide the model with more comprehensive context from both
the source and target texts. This richer context theoretically offers greater potential for improvements
and helps mitigate issues such as tense mismatches, particularly in languages like Chinese that lack
explicit tense markers (Sun et al., 2020).

To conduct experiments and facilitate future research endeavours on CH2CH translation, we curate
a chapter-aligned dataset of English-Chinese literature, named JAM, which comprises 132 English
classic novels alongside professional Chinese translations. In professional literary translation, trans-
lators often leverage contexts to enhance the fluency and readability of the translation. To this end,
translations may not strictly adhere to sentence alignment!, and some typical sentence misalignment
types are listed below, an example is shown in Figure 1 illustrates:

INSERT : new sentence(s) is added by translators and does not have a corresponding source
segment.
DELETE : a source sentence(s) is deleted by translators in translation.

SPLIT : a source sentence is separated into multiple sentences in the corresponding translation.

As such, chapter-to-chapter(CH2CH) translation is challenging in nature, given that chapters typically
are lengthy and contain complex discourse structure. Detailed experimental results and analysis are
provided in Section 5.1.

'In 50 sampled paragraphs from JAM there are 18 paragraphs with sentence mis-alignments.
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Source Target
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Table 1: Examples of paragraph misalignment. Each line represents an individual paragraph in the
original text.

3.2 DATA CONSTRUCTION AND QUALITY CONTROL

We collect 132 bilingual literary books across
different genres from the Internet, and format CHap, #  SENTENCE# WORD #
data by manually correcting chapter-level align- (EN/ZH) (EN/ZH)
ment”. Subsequently, we perform standard data Eliﬁg 3359416 3;2?112; 3‘7‘59-0KK 7976.411\12 ; 3'3651\49 "
cleaning steps (e.g. punctuation normalization) o 257 205K /406K  648.4K /795 3K
and filter the chapter pairs with a sequence

length ratio > 3.0. The refined dataset contains ToraL 4194  4007K/533.6K  8:8M/104M
a total of 4194 aligned chapters. The statistics of .
this dataset are sh%)wn in 'lgable 23, and detailed Table 2: JAM Corpus Statistics.

corpus information is in Appendix A.l. The dataset is split into train, valid, and test sets. We
randomly select 16 books as the test set. The remaining corpus of 3937 chapters from 116 books was
then split into an 90% training set and a 10% validation set.

4 EXPERIMENTAL SETUP
4.1 BASELINES

To examine the inherent capacity of the model in the translation task, we perform a benchmarking
analysis against two baseline categories:

Encoder-Decoder Architecture We use the Transformer (Vaswani et al., 2017) base version,
which consists of 6 encoder layers, 6 decoder layers, a model dimension of 512, and an FFN hidden
dimension of 2048.

Decoder-only Architecture Compared to the prevalent encoder-decoder architecture, the decoder-
only framework is often simpler in architecture and computationally efficient (Fu et al., 2023). In the
CH2CH translation task, we train the decoder-only model by concatenating each source chapter with
its corresponding target chapter, demarcated by a <SEP> token, and ended with an <EOS> token:

<SRC Chapter> <SEP> <TGT Chapter> <EOS>

The model architecture is shown in Figure 2.

Motivated by Zhang et al. (2018), we experiment with training a baseline model on the JAM dataset
from scratch, as well as incorporating pre-trained baselines. In the pre-trained baselines, the model
is first trained on the sentence-level WMT22 Zh—En dataset (Kocmi et al., 2022), before further
fine-tuning on the JAM dataset.

*We select literary works with chapter breaks, then manually check the alignments of the first and last
paragraphs for each chapter.
3English sentences are split by white space; Chinese sentences are segmented using the Jieba package.


https://github.com/fxsjy/jieba
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Figure 2: Decoder-only architecture.

Zero-shot Evaluation Recent work has showcased Prompt
the proficiency of LLMs in sentence-level translation. | rransiate this from [sre lang] to [tgt lang]:
To further probe the ability of LLMs in translating [sre langl: <src chapter>
. [tgt lang]:
literary, we randomly sample 63 chapters from JAM
test set and conduct a zero-shot evaluation on the sam-
pled instances to compare with the following models: Figure 3: Prompt template for LLMs.

(Team et al., 2022): an encoder-decoder LLM, with 3.3b parameters.
LLAMA2-7B (Touvron et al., 2023): a generative text model with 7b parameters.
ALMA-7B (Xu et al., 2023a): finetuned on 5 language pairs from Llama2-7b for translation.
GPT-4 (OpenAlet al., 2024): a pre-trained large-scale multi-modal model.

Building upon Xu et al. (2023a), we prepend a fixed prompt (Figure 3) to each chapter.

Finetuning We select ALMA-7B to finetune on JAM because of its impressive gains in translation
tasks compared to other LLMs; its fine-tuning process is divided into two phrases: first, ALMA-
7B-Stagel finetuned LLAMA2-7B exclusively on monolingual data; then, the second stage ALMA-
7B-Stage? is subsequently finetuned on parallel data. Specifically, we finetune ALMA-7B-Stagel
on JAM to investigate whether pretraining with sentence-level parallel data is beneficial prior to
fine-tuning on chapter-level data. We use causal language modeling (CLM) loss for finetuning and
restrict loss computation only to the target tokens.

4.2 HANDLING LONG CHAPTERS IN TRAINING AND DECODING

As some chapters exceed the maximal context length of some models, we equally segment those
chapters into chunks, ensuring that each chunk contains less than 2048 tokens in both Zh and En
sides. Data and pre-processing details are in Appendix B.1.

During decoding, we also pack the maximum number of sentences into blocks within 2048 tokens.
The model does not know how many sentences to generate in advance and decoding stops when
<EOS> is predicted. As illustrated in Figure 2, <EOS> in our experiments is used to indicate the end
of translation, not the end of a sentence.

4.3 EVALUATION

For all tasks, we report both sentence-level (e.g., BLEU (Papineni et al., 2002), METEOR (Banerjee
& Lavie, 2005) and COMET (Rei et al., 2020)) and document-level automatic metrics in evaluation.
In particular, we analyze the translation quality of LLMs related to specific discourse phenomena
such as pronoun ellipsis, named entity coreference by BlonDe score (Jiang et al., 2022).

5 EXPERIMENTAL RESULT AND ANALYSIS

5.1 CHAPTER-TO-CHAPTER MACHINE TRANSLATION TASK IS CHALLENGING IN NATURE.

Motivated by Zhang et al. (2018), we experiment with training a baseline model on the JAM dataset
from scratch, as well as incorporating a two-stage training procedure, in which the model is first
trained on the sentence-level WMT22 Zh—En dataset (Kocmi et al., 2022), before further fine-tuning
on the JAM dataset.
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Model WMT JAM BLEU BlonDe COMET
all pron. entity tense d.m.
Encoder-Decoder X 1.87 870 4923 19.22 4230 17.21 0.4128
Decoder-only X 1.09 723 4746 20.77 4040 1654  0.4187
Encoder-Decoder 1438 31.08 89.78 11.36 86.88 81.96 0.6617
Decoder-only 13.35 30.06 84.28 14.59 80.23 76.81 0.6377
ALMA-7B-Stagel X 1570 3346 7428 30.62 70.11 71.72  0.7806
ALMA-7B-Stage2 18.80 3690 81.34 32.72 77.83 76.81 0.8025

Table 3: Automatic metric results on JAM test set. Note here chapters are segmented by maximum
2048 tokens. ALMA-7B-Stagel is only fine-tuned on monolingual data. ALMA-7B-Stage2 fine-tunes
ALMA-7B-Stagel on high-quality parallel data. (X) denotes no fine-tuning on corresponding dataset;
(V) denotes fine-tuning. Bold denotes best performance.

As illustrates in Table 3, Encoder-Decoder and Decoder-only Transformer models trained from
scratch on JAM significantly under-perform the models trained with the 2-stage procedure. The
significant performance gap demonstrates the challenging nature of CH2CH (e.g., 1.87 and 1.09
on BLEU), i.e., the inherent difficulty of training on chapter-level, long-sequence data. Translation
models that trained with the 2-stage procedure to leverage the sentence-level WMT2 2 exhibit a notable
improvement, attesting the difficulty of the CH2CH translation task.

5.2 EFFECTIVE FINE-TUNING AND DECODING STRATEGY

Does sentence-level fine-tuning help? We next investigate the prerequisite of sentence-level fine-
tuning prior to the training on JAM dataset by comparing ALMA-7B-Stagel and ALMA-7B-Stage2
respectively, with the latter has been fine-tuned on sentence-level parallel datasets. Table 3 indicates
that such sentence-level fine-tuning improves BLEU from 15.7 to 18.80 and BlonDe from 33.46
to 36.95, suggesting that fine-tuning at sentence-level contributes positively to the accuracy of
chapter-level literary translation.

In contrast, the improvement on COMET is marginal, possibly attributable to COMET’s focus on
assessing the coherence and fluency of the generated translations. These qualities might already be
sufficiently robust in an LLM.

Repetition Problem in Decoding. Deutsch Non-repetitive Seq | 100
et al. (2023) founds that translation does not de- Repetitive Seq
grade as the sequence becomes longer. However,
according to our results, this is not universally
the case; the effectiveness of translation dimin-
ishes as the context becomes really lengthy. To
investigate the insights, we examine the transla-
tions of JAM test set on the fine-tuned ALMA-
7B-Stage2 model and observe a notable pattern
of undesirable repetitions—either phrases or en-

tire sentences—emerges within the translations. -
600 800 1000 1200 1400 1600 1800 2000

Specifically, 26.4% of the translations within Context Length

our test set exhibit some fqrm of repetition. A§ Figure 4: Repetition distribution.
illustrates in Figure 4, repetition occurs predomi-

nantly located within the first half of the translations (Shown as the red curve). Furthermore, sentences
exceeding 1300 tokens are more likely to generate repetitive words, phrases or sentences*. This
observation is consistent with earlier studies indicating text generation with LLMs often results in
consecutive sentence-level repetitions, attributed to the use of maximization-based decoding algo-
rithms.(Holtzman et al., 2020; Xu et al., 2023b). The detailed analysis by Xu et al. (2022) sheds light
on the underlying causes: these models have an inherent tendency to repeat previous sentences, and
they tend to overestimate the probability of repeated sequences. This repetition problem is particularly
evident in long-context translation, where increasing the chunk length amplifies the risk of the model
falling into repetitive loops.
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*Repetition analysis for all zero-shot generations across various architectures are in Appendix B.4
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Figure 5: Automatic metric results across different decoding strategies. Repetition penalty v = 1
represents pure greedy or beam search w/o penalty; v > 1 denotes near-greedy decoding.
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Figure 6: Left: Effective token counts; Right: Sequence repetition analysis. (Non-)Repetitive
means sequences that staying (non-)repetitive w/ different v; New (non-)repetitive indicates sequences
that newly become (non-)repetitive. No-RP denotes no repetition penalty (7 = 1). Ref. means total
number of tokens in the reference.

Comparison of Decoding Strategies By default, beam search is employed for all models, with
beam size 5. However, upon training certain LLMs on the CH2CH task, we observe sub-optimal
performance with beam search. We investigate the performance of three decoding strategy: greedy,
beam search and near greedy decoding, which introduces repetition penalty -y to discount the scores
of previously generated tokens (Keskar et al., 2019).

Figure 5 presents the effect of applying the penalty ~ to both greedy and beam search decoding
with different beam sizes. For beam search (with beam size = 3 or 5), both BLEU and BlonDe
scores improve significantly. Concretely, with beam size = 5, BLEU and BlonDe increase from
18.80 to 24.20 and from 36.90 to 41.42, respectively. In contrast, the improvements in METEOR
and COMET scores are comparatively smaller, suggesting that the overall translation quality may
not be improving as expected. In addition, for beam search decoding, increasing v keeps improving
translation performance and there are marginal variances across all evaluation metrics once v > 1.5.
For greedy decoding, however, translation quality rapidly declines when v > 1.2.

We then explore the number of effective (i.e., non-repetitive) tokens generated as -y increases (
Figure 6 (left)). We further analyze repetition sentence by sentence by separating test sequences into
four categories: repetitive, non-repetitive, new repetitive, and new non-repetitive to illustrate how
different repetition penalties would fare on the occurrence of repetition (Figure 6 (right)). In general,
less sequences become repetitive as the penalty becomes stronger.

Post-processing To further evaluate the model’s translation ability, we implement post-processing
to eliminate repetitions in the generations. Before evaluation, we employ a sliding window with
a length of 10 words, calculating the hash value of the substring within the window. As we slide
the window, if the hash value of the current substring matches any previously seen hash value, we
compare the actual substrings to confirm the repetition and then trim accordingly’. After cleaning,
the blocks belonging to the same chapter are merged back together for evaluation at the chapter level.

>Most repetitions exhibit a self-reinforcement effect, continuously repeating the same sentences or phrases.
Therefore, once a repetition is detected, we remove all subsequent words.
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Figure 7: Zero-shot performance on JAM data across LLMs. The chapter-level data are segmented
into chunks containing at most 512, 1024, 2048 tokens. ACL = average chapter length in tokens; The
ACL of sampled instances=1850.
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BLEU scores across the four categories Taple 4: BLEU scores across different groups. — de-
before and after post-processing (—). The oteg after post-processing.

division of the four groups is based on the

results of v = 1.7 compared to the case with no repetition penalty applied (y = 1).

As Table 4 shows, the repetition penalty affects the four groups differently: for sequences that
cease to be repetitive after the penalty is applied (New Non-repetitive), increasing ~y consistently
improves translation quality. In contrast, for Non-repetitive sequences which stay non-repetitive
before and after applying the penalty, increasing ~y slightly diminishes performance. It demonstrates
that repetition penalty did not produce more meaningful translations for this group. On the other
hand, applying an appropriate repetition penalty can slightly improve translation effectiveness for
sequences that stay repetitive before and after applying the penalty (Repetitive). It should be noted
that an excessively high penalty may negatively impact performance for sequences that are prone to
repeat. Unsurprisingly, for sequences in New Repetitive which start to be repetitive after applying the
penalty, the translation quality declines rapidly. This leads to a potential direction of future work to
develop advanced decoding algorithms to avoid repetitions in translation.

5.3 How Do LARGE LANGUAGE MODELS PERFORM ON LITERARY TRANSLATION?

In order to evaluate the capacity of LLMs on CH2CH translation, we perform zero-shot evaluation on
the JAM dataset across different models. To further analyze performance variations across different
context lengths, we segment chapters into at most 512, 1024, and 2048 tokens, respectively. The
results are presented in Figure 7.

GPT-4 outperforms all other models across both sentence-level and document-level metrics. Rather,
translation-oriented models, such as NLLB-3.3B and ALMA-7B-Stage2, struggle in the CH2CH
task, i.e., performance drop dramatically especially when the sequence become longer than 1024
tokens. One reason as to why ALMA-7B-Stage2 faces challenges in translating long sentences is that
it has been finetuned exclusively on short parallel sequences. This may impair its capability to handle
long-sequence translation and fully exploit the advantages of chapter-level contextual information to
improve translation quality. However, we observe notable improvements after fine-tuning ALMA-7B
on our chapter-level dataset JAM even in the most challenging setting where the context extends up
to 2048 tokens, as shown in Table 3.
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Despite LLMs such as LLAMA2 being theoretically capable of handling contexts of up to 4096
tokens, their performance in translation tasks over extensive contexts remains subpar. Before delving
into more nuanced improvements in discourse-level translation, it is crucial to enhance the model’s
capacity for high-quality long-context translation.

CH2CH vs. Sentence Translation The high- gg
level objective of CH2CH translation is to lever- sentence [ 512
age more training signals from chapter-level
dataset. To test the effectiveness of this setting,
we conduct an experiment to segment chapters
into sentences for comparison. Concretely, we 40

60

first split each chapter into separated sentences

using the NLTK © package, then execute transla- 20

tion individually on each sentence with ALMA- H

7B. The translated sentences are concatenated 0

back to calculate document-level evaluation met- BLEU BlonDe COMET

rics. Figure 8 indicates that ALMA-7B under

the 512-tokens setting outperforms the sentence-  Figure 8: Zero-shot performance of sentence and
segmented setting across all metrics, attesting  512-token segmentation.

the significance of CH2CH translation.

Decoder-only vs. Encoder-Decoder Architecture Under the zero-shot setting (Figure 7), ALMA-
7B-Stage2 continues to surpass encoder-decoder translation model NLLB-200-3.3B on BLEU
scores. In terms of document-level evaluation metrics, ALMA-7B-Stage2 performs on par with,
or even better than NLLB-200-3.3B on the most BlonDe metrics, e.g., pronnoun and discourse
marker(d.m.). One potential explanation is that the backbone LLM LLAMA2-7B has a better context
understanding and text generating ability. For example, discourse markers, e.g., however, on the
other hand, are crucial for maintaining the coherence and cohesion of text, areas in which LLMs are
trained. Furthermore, NLLB-200-3.3B tends to generate shorter text compared to other models.
One hypothesis is that it is primarily trained on a sentence-aligned dataset, where the source and
target sentences do not differ significantly in length.

After finetuning on JAM, though Encoder-Decoder perform slightly better than Decoder-only model,
yet still under-perform ALMA models on most of the evaluation metrics (Table 3). The above results
demonstrates the effectiveness of decoder-only models in handling complex literary translation.
Particularly noteworthy is the fact that LLMs do not rely heavily on large amounts of parallel data
and are inherently capable of translating long context sequences after finetuning.

6 CONCLUSION

While machine translation demonstrates strong sentence-level performance, it still falls short of
human translation in effectively utilizing long-context information. In our paper, we show that
Chapter-to-Chapter (CH2CH) translation is a viable approach for context-aware NMT, exemplified
by our novel dataset, JAM. Chapter-level data, derived from professional translations, offers richer
context signals and presents a more realistic scenario. Through detailed empirical experiments,
we discover that LLMs are aptly suited for CH2CH translation following a two-step fine-tuning
process: first at the sentence level, then at the chapter level. This procedure equips LLMs with a
robust understanding of context, resulting in translations that are both coherent and context-aware.
Nevertheless, challenges arise at the chapter level, notably the issue of repetition inheriting from
LLMs’ long-context generation, signaling the need for improved long-sequence decoding strategies
in future research.
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APPENDIX: TOWARDS CHAPTER-TO-CHAPTER CONTEXT-AWARE LITERARY
TRANSLATION VIA LARGE LANGUAGE MODELS

A JAM DATASET

A.1 CORPUS INFORMATION

Title Author Year #Chapts ACL (en/zh)
1984 George Orwell 1949 24 5.8K/10.2K
A Tale of Two Cities Charles Dickens 1859 44 4.3K/8.0K
Alice’s Adventures in Wonderland  Lewis Carroll 1865 9 3.1K/5.7K
Ancient Greek Myths / / 58 488.2/862.1
Around the World In Eighty Days  Jules Verne 1872 36 2.6K/5.5K
Black Beauty Anna Sewell 1877 13 1.9K/3.0K
Don Quixote Miguel de Cervantes 1605 125 4.4K/6.9K
Five Weeks in a Balloon Jules Verne 1863 44 3.1K/5.9K
How The Steel Was Tempered Nikolai Ostrovsky 1934 18 11.7K/24.8K
Little Prince Antoine de Saint-Exupéry 1943 28 822.3/1.4K
Little Women Louisa May Alcott 1868 47 5.8K/10.7K
Oliver Twist Charles Dickens 1838 53 4.4K/8.7K
Robinson Crusoe Daniel Defoe 1719 8 20.9K/35.4K
Tess of the d’Urbervilles Thomas Hardy 1891 59 3.7K/7.8K
The Adventures of Tom Sawyer Mark Twain 1876 35 3.1K/5.7K
The Moon and Sixpence William Somerset Maugham 1919 58 1.8K/3.9K
The Mysterious Island Jules Verne 1875 62 4.5K/8.2K
The Time Machine H. G. Wells 1895 13 3.4K/6.2K
Women in Love D. H. Lawrence 1920 27 10.3K/9.5K
Wauthering Heights Emily Bronté 1847 34 5.1K/9.3K

Table 5: Corpus information for 20 sample books. ACL = average chapter length in tokens.

The whole JAM corpus contains world literatures; for a source text to be included in JAM, it must
be (1) a literary work that has a published electronic version with chapter breaks along with (2) its
corresponding human-written, Chinese translations from professional translators available on the
Internet. Books genres include both fiction (e.g., romance, science, adventure, etc) and non-fiction
literature (e.g., biography and self-help).

All books in JAM have entered the public domain with cleared copyright, from the earliest published
in 1817 to the latest in 1949. Table 5 shows 20 sample books from the JAM dataset, in which the
ACL column is obtained by using LlamaTokenizerFast.

B IMPLEMENTATION DETAILS

B.1 DATA

Data for baseline models is encoded and vectorized with byte-pair encoding Sennrich et al. (2016)
using the SentencePiece (Kudo & Richardson, 2018) framework. We use a 32K joint vocabulary
size for Zh—En. Full corpus statistics of WMT22 are in Table 6.

Dataset  Lg. Pair Train Valid Test
WMT22 Zh—En 25134743 2002 2001

Table 6: Sentence counts across WMT?22 datasets.

To segment JAM chapter-level dataset into chunks, we first decide the number of chunks to split
in a chapter by ensuring that each chunk includes no more than 2048 English and Chinese tokens,
then equally segment the chapter into the computed number of chunks. There is no overlap between
chunks, and we keep a sentence a complete unit when we split chapters.
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Model BLEU BlonDe COMET ACL
all pron. entity tense  d.m.
512 tokens
NLLB-200-3.3b  6.90  26.37 63.26 23.96 63.53 61.59  0.7592 870
LLaMA2-7b 10.60 24.49 73.89 17.51 72.70 66.85  0.6990 1551
ALMA-7b 1540 31.82 88.35 19.69 88.22 8230 0.7914 1608
G4 B ZUAl e DI asien Bl s s i L
1024 tokens
NLLB-200-3.3b  3.20  18.32 47.37 17.17 46.15 4429  0.6888 709
LLaMA2-7b 930 20.57 64.09 11.60 66.44 59.74  0.7025 1648
ALMA-7b 7.70  19.82 68.49 13.30 71.00 6249  0.7017 2223
_GrT4 B 2 2 N S N0 SR S 2 ST B R 2 T
2048 tokens
NLLB-200-3.3b  2.50 948 41.62 7.37 50.66 2598  0.5009 1254
LLaMAZ2-7b 6.40 1440 4945 8.63 53.66 39.69  0.6778 1780
ALMA-7b 2.70 9.09 42.27 6.35 4798 27.77 05433 2382
GPT-4 20.70 3935 91.39 41.81 91.39 83.67 0.8359 1765

Table 7: Zero-shot performance on JAM data across LLMs. The chapter-level data are segmented
into chunks containing at most 512, 1024, 2048 tokens. ACL = average chapter length in tokens; The
ACL of sampled instances=1850.

B.2 BASELINE TRANING

We train baseline models (Encoder-decoder and Decoder-only) on the fairseq framework . Fol-
lowing Vaswani et al. (2017); Fernandes et al. (2021), we use the Adam optimizer with 5; = 0.9 and
B2 = 0.98, dropout set to 0.3, an inverse square root learning rate scheduler with an initial value of
10~*, and the warm-up step set to 4000. Here, we only train the Transformer base version, and
the decoder-only model is also derived from the base Transformer base architecture. We keep the
parameter size of both Encoder-decoder and Decoder-only architecture similar for fair comparison.

B.3 LLM TRAINING

All models are trained with 8xA40 GPUs and DeepSpeed+ZeRO3. Following Xu et al. (2023a), we
use Adam optimizer, weight decay set to 0.01, and the warm-upratio set to 0.01, an inverse square
root learning rate scheduler with an initial value of 2 x 1075,

The zero-shot evaluation on JAM dataset across different chunk sizes are shown in Table 7.
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Figure 9: Repetition ratio in the generation results for different input context length
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B.4 REPETITION ANALYSIS ON ZERO-SHOT TRANSLATIONS

As illustrated in Figure 9, repetition is not an issue for sentence-level translation. However, the repeti-
tion ratio significantly increases as the input context length increases from 512 to 1024. Furthermore,
Figure 10 shows that as the input length increases, the repetition start position also occurs earlier.

Input Length Input Length
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1024 1024
z 2048 | & 2048
540 5 40
o] o]
(@) (@)
20 20 |
0 I | 0 I I I I I || = . |
0 200 400 600 800 0.0 0.2 0.4 0.6 0.8

Word index Position within Sentence
Figure 10: Repetition start position across different input lengths. Left: The word index of repetition,
Right: The relative position of repetition.
B.5 POST-PROCESSING ON FINE-TUNE TRANSLATIONS
Post-processing eliminate repeated words and phrases in generated translations. Table 8 shows

a comprehensive automatic metric comparison between translations with post-processing versus.
without post-processing.

Model WMT JAM Post-processing BLEU BlonDe COMET

all pron. entity tense d.m.

15770 3346 7428 30.62 70.11 71.72  0.7806
18.80 3690 81.34 3272 77.83 76.81 0.8025
21.6  39.54 8643 3543 8452 8298  0.7986
239 4273 90.69 38.41 89.02 8495 0.8106

ALMA-7B-Stagel
ALMA-7B-Stage2
ALMA-7B-Stagel
ALMA-7B-Stage2

WX WX
NENENEN
ANENEORY

Table 8: Automatic metric result of ALMA-7B translations on JAM, with versus without post
repetition removal processing. Bold denotes best performance.
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