

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MOCA-VIDEO: MOTION-AWARE CONCEPT ALIGNMENT FOR CONSISTENT VIDEO EDITING

Anonymous authors

Paper under double-blind review

ABSTRACT

We present MoCA-Video, a training-free framework for semantic mixing in videos. Operating in the latent space of a frozen video diffusion model, MoCA-Video utilizes class-agnostic segmentation with diagonal denoising scheduler to localize and track the target object across frames. To ensure temporal stability under semantic shifts, we introduce momentum-based correction to approximate novel hybrid distributions beyond trained data distribution, alongside a light gamma residual module that smooths out visual artifacts. We evaluate model’s performance using SSIM, LPIPS, and a proposed metric, CASS, which quantifies semantic alignment between reference and output. Extensive evaluation demonstrates that our model consistently outperforms both training-free and trained baselines, achieving superior semantic mixing and temporal coherence without retraining. Results establish that structured manipulation of diffusion noise trajectories enables controllable and high-quality video editing under semantic shifts.

1 INTRODUCTION

Diffusion models Ho et al. (2020); Rombach et al. (2021) have revolutionized image synthesis and enabled controllable video generation. Video Diffusion Models Ho et al. (2022) introduced coherent frame synthesis, while subsequent works Singer et al. (2022); Chen et al. (2024); Wan et al. (2025); Kong et al. (2024); Chen et al. (2023) enhanced visual quality and temporal coherence. These advances have spawned diverse applications including image-to-video animation Xing et al. (2023); Guo et al. (2024), subject-driven editing Ku et al. (2024), and affordance insertion Kulal et al. (2023).

However, current video generation approaches remain fundamentally constrained by existing training data distributions, limiting their ability to create novel hybrid entities that combine characteristics from multiple semantic categories. This limitation becomes particularly evident in video *semantic mixing*, which is the task of composing hybrid visual entities in video by selectively blending semantic concepts from multiple source inputs, e.g., creating a “cat-astronaut” by fusing feline features with space suit elements. The goal is to generate coherent and consistent hybrid objects that preserve key structural properties while adopting complementary semantics across temporal domains.

While semantic mixing has been explored in static images through MagicMix Liew et al. (2022) and FreeBlend Zhou et al. (2025), extending this capability to videos presents unique challenges. Existing video editing methods rely primarily on frame-by-frame operations or global style transfers, failing to achieve fine-grained, region-specific semantic mixing. Prompt-based and auxiliary-based strategies, in particular, often blur the distinction between local and global features, making it difficult to isolate their effects. To tackle the challenge, we introduce MoCA-Video (Motion-Aware Concept Alignment in Video), a training-free framework that addresses this challenge through structured manipulation of latent noise trajectories. Given an input video and reference image, it injects reference image semantic features into the video, producing temporally consistent hybrid entities that transcend the limitations of existing diffusion model training distributions. (see Section 3)

We compare MoCA-Video against current baselines both quantitatively and qualitatively. Quantitatively, we employ SSIM Wang et al. (2004), LPIPS(I/T) Zhang et al. (2018) and a newly introduced metric CASS (Conceptual Alignment Shift Score) based on CLIP Radford et al. (2021), and its normalized variant that compensates for inherent task difficulty biases. Qualitatively, we demonstrate visual results on dataset derived from FreeBlend and extended by DAVIS entities, showing more visually compelling and temporally coherent semantic mixes than prior methods (see Section 4)

Figure 1: MoCA-Video enables diverse semantic mixing across object categories. Given a reference image and an input video along with global and local prompts, the method outputs semantically mixed videos that blend concepts from both the image and video inputs, e.g., surfer with kayak.

Our contributions are summarized as follows:

MoCA-Video Framework. We introduce the first training-free framework for video semantic mixing via latent noise manipulation. The framework adopts IoU-based object tracking, momentum-corrected denoising approximation and gamma residual stabilization for semantic mixing.

Task-specific metrics. We propose CASS and relCASS, CLIP-based metrics for semantic mixing evaluation, providing robust assessment across intra-class and inter-class blending scenarios.

Experimental validation. Extensive benchmarking on training-free (FreeBlend, RAVE) and pre-trained methods (AnimateDiffV2V, TokenFlow (PnP, SDEdit)) indicates that MoCA-Video achieves superior performance across visual fidelity, temporal coherence, and semantic alignment.

2 RELATED WORK

2.1 SEMANTIC MIXING AND VIDEO CONCEPT COMBINATION

Semantic mixing, first introduced in the image domain through MagicMix and later improved by FreeBlend, focusing on blending disparate concepts into coherent, novel objects. These methods exploit the denoising dynamics of diffusion models to factorize layout and content or apply staged latent interpolation for more stable blending. However, both approaches are limited to static images and overlook temporal consistency. MagicEdit extends semantic editing into video by injecting prompt-driven features at specific diffusion stages. While it maintains motion to some degree, it lacks spatial control, and explicit fusion of image-based semantics. Our work fills these gaps with a training-free framework MoCA-Video that combines image conditioning, latent-space mask tracking and motion correction to deliver semantical blendings that remains coherent across time.

2.2 IDENTITY-PRESERVED VIDEO GENERATION

One similar track of creative video generation is identity-preserved text-to-video generation (IPT2V), focusing on retaining a reference subject’s appearance while generating new motion. ID-Animator He et al. (2024) enables a zero-shot face-driven videos but often overfits to the input image. ConsisIDYuan et al. (2024) and EchoVideoWei et al. (2025) further enhances face detail but limited to human identities. In contrast to IPT2V, video semantic mixing focus on combine the reference subject into existing video subject rather than preserving a single identity at specific region.

2.3 VIDEO INPAINTING

Video inpainting methods extend region specific filling to the temporal domain, typically relying on optical flow, feature correspondences, or domain priors to maintain frame-to-frame consistency. DIVEHuang et al. (2024) uses DINO features and LoRA-based identity registration for subject-driven edits, and ObjectMateWinter et al. (2024) builds an Object Recurrence Prior to train on large supervised composition. TokenFlowGeyer et al. (2023) propagates self-attention tokens via nearest neighbor matching to enforce smooth transitions, while RAVEKara et al. (2023) shuffles

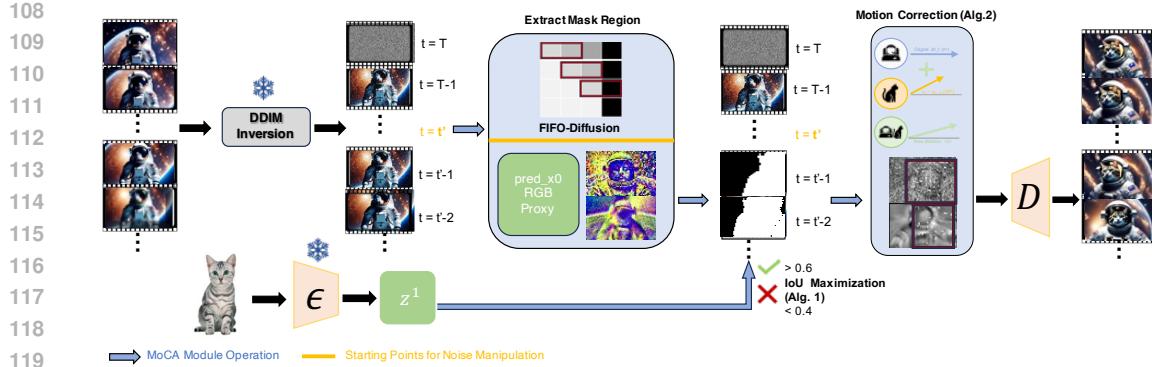


Figure 2: MoCA-Video pipeline. Given a base video (astronaut) and reference image (cat), we recover the latent trajectory via DDIM inversion. At selected timesteps, we segment the target object with GroundedSAM2 using RGB proxy of predicted clean image, and track masks via IoU-maximization. Reference features are injected into masked regions, followed by momentum correction to approximate the denoising of manipulated data distribution and gamma noise stabilization.

latent and condition grids during denoising to maintain consistency upon unshuffling. Compare to video inpainting, MoCA-Video operates on region specific edits; however, instead of replacing the whole segmented area, it preserves the original features and blends them with new semantic content.

3 METHODOLOGY

MoCA-Video enables semantic mixing in videos by seamlessly blending features from a reference image into a target object within base video, while preserving global scene layout and motion consistency from the original video. Built upon a frozen text-to-video diffusion model VideoCrafter2, which is initialized from Stable Diffusion 2.1, our approach introduce a structured video editing pipeline that manipulates the latent noise trajectory rather than performing frame-by-frame edits.

Given a generated video and a reference image, the method first recovers the base video’s latent trajectory via DDIM inversion. At chosen steps when the target object has emerged but remains semantically flexible, we employ Grounded-SAM2 to estimate soft masks on predicted clean frame (x_0), localizing the target object using an IoU-based maximization algorithm 1. These masks define a “fusion zone”, within which reference features are injected into the latent representation. To maintain temporal coherence, MoCA-Video adopts the diagonal denoising scheduler of FIFODiffusion Kim et al. (2024), enabling consecutive frame updates to share semantic information effectively.

Beyond this backbone, two lightweight mechanisms are used to enhance and stabilize the blending process: (i) momentum correction, which approximates denoising trajectories perturbed by semantic shifts; and (ii) a gamma residual noise module that smooths out flicker and local artifacts by injecting calibrated low-scale residual noise; making MoCA-Video excels in quality hybrid entity appearance.

3.1 LATENT SPACE TRACKING

At the core of MoCA-Video lies the ability to blend object semantics directly within the latent space of the diffusion model. To enable localized feature injection, we first identify and track the target object across the video latents. Let \mathbf{X} denote the sequence of noisy latent representations obtained via DDIM inversion. For target object identification, we decode the predicted clean image x_0 from the latent at chosen timesteps using it as a proxy RGB frame for segmentation. Despite residual noise, x_0 preserves sufficient semantic structure, particularly at later timesteps, enabling reliable object detection. We apply a class-agnostic segmentation model (Grounded-SAM2) to this decoded frame, yielding a binary mask m_0 in pixel space. This mask is then mapped back into latent space serving as an auxiliary condition to define the subregion x_m that corresponds to the target object.

To propagate the masked region across temporal frames, we adopt an IoU-based tracking strategy using overlap maximization Danelljan et al. (2019) (See Alg. 1). This design is essential for two critical reasons: (1) segmentation operating on noisy intermediate representations, where object boundaries

162 are ambiguous, would impose additional difficulties; (2) as denoising advances and edited objects
 163 become visually sharper, segmentation becomes increasingly challenging under ongoing semantic
 164 mixing procedures. Maintaining consistent mask propagation therefore crucial to prevent spatial
 165 drift and ensure manipulated fusion regions remain stably tracked across the entire denoising steps.

166 For each timestep t , the current segmentation mask m_t is predicted and compared with the pre-
 167 vious mask m_{t-1} . If the IoU exceeds a predefined threshold τ , we updates the mask with the
 168 new prediction; otherwise, we retain the previous mask. This produces a sequence of masks
 169 $\mathbf{X}^m = \{x_0^m, x_1^m, \dots, x_{t-1}^m\}$ that stably track the target region from timestep t' to the final step.
 170

171 The resulting mask sequence serves as an auxiliary spatial gate that guides the denoising process,
 172 restricting feature injection to the target regions while maintaining the integrity of the surround-
 173 ing representation. At timestep t , this gating is realized by combining the base latent x_t with the
 174 conditioned latent x_t^{cond} encoded from the reference image through the autoencoder:

$$175 \quad x_t^{\text{mix}} = x_t \cdot (1 - x_t^m) + \lambda \cdot x_t^{\text{cond}} \cdot x_t^m$$

176 Here, x_t^{mix} represents the fused latent, where the mask x_t^m defines a soft fusion zone rather than
 177 strict boundaries. This design enables MoCA-Video to tolerate segmentation imperfections, as
 178 feature mixing occurs within denoising process, where the DDIM scheduler inherently smooths
 179 out minor mask errors and outperforms precise pixel-space replacement, which often introduces
 180 visible artifacts when masks are imprecise. Importantly, feature injection intensity ($\lambda = \frac{t}{1000}$) is
 181 not uniform across timesteps. Peak injection happens around t' , when the object has emerged but
 182 remains semantically editable, then gradually decreases as denoising progresses so that the original
 183 video features will not be overwritten by reference image. This adaptive weighting ensures that
 184 major semantic blending occurs during the optimal window automatically. Algorithm 1 implements
 185 this tracking process.

186 3.2 ADAPTIVE MOTION CORRECTION WITH MOMENTUM

187 While latent tracking ensures consistent spatial localization of the target object, it does not guarantee
 188 that the blended appearance evolves smoothly across time. Without additional constraints, feature
 189 injection will cause abrupt changes or motion-induced artifacts that break temporal coherence and
 190 visual fidelity. To tackle this, we introduce a momentum-corrected DDIM denoising algorithm 2 that
 191 approximates the denoising trajectory under semantic shifts due to limited training data distribution.
 192

193 **Momentum-Corrected DDIM.** Recall that the standard DDIM update Song et al. (2022) pre-
 194 dicted clean image $\hat{x}_0^{(\text{DDIM})}$ at timestep t and updates the latent x_{t-1} using a directional term dir_t
 195 derived from the noise estimate:

$$196 \quad x_{t-1} = \underbrace{\sqrt{\alpha_{t-1}} \left(\frac{x_t - \sqrt{1 - \alpha_t} \epsilon_{\theta}^{(t)}(x_t)}{\sqrt{\alpha_t}} \right)}_{\hat{x}_0^{(\text{DDIM})}} + \underbrace{\sqrt{1 - \alpha_{t-1} - \sigma_t^2} \epsilon_{\theta}^{(t)}(x_t)}_{\text{dir}_t} + \sigma_t \epsilon_t.$$

202 In MoCA-Video, we augment this process with a momentum term v_t that accumulates residual
 203 changes across timesteps to stabilize the denoising trajectories perturbed by semantic injection:
 204

$$205 \quad \hat{x}_0^{(\text{corr})} = \hat{x}_0^{(\text{DDIM})} + \kappa_t v_t, \quad v_t = \beta v_{t-1} + (1 - \beta) g_t$$

207 , where $g_t = x_t - x_{t-1} + \lambda \text{dir}_t$ models the deviation introduced by semantic feature injection,
 208 β controls momentum decay, and κ_t gradually decreases with t to prevent over-correction at later
 209 denoising stages when fine details are being refined. The term $x_t - x_{t-1}$ functions as a geometric
 210 correction to the standard DDIM directional vector dir_t . As semantic injection brings positional dif-
 211 ference, leading to a new directional component that deviates from the original denoising trajectory.
 212 When combined with λ , dir_t , the resulting update g_t points toward a novel trajectory that approx-
 213 imates the hybrid distribution enabling the generation of semantically blended entities such as an
 214 astronaut with cat features or a corgi-shaped coffee machine. It actively reorients the denoising pro-
 215 cess toward data distributions that lie outside the training manifold of the base diffusion model. This
 216 geometrically-guided heuristic enables MoCA-Video to navigate toward previously unseen semantic
 217 combinations while maintaining the structural coherence of the underlying diffusion dynamics.

216

217

Algorithm 1 Tracking by Overlap Maximization

218

Require: Sequence of latents $\{x_0, x_1, \dots, x_t\}$

219

Require: Initial Object mask $m_0 \leftarrow SEG(x_0)$

220

Require: Set value for τ

221

1: **for** $t = 1$ to $t' - 1$ **do**

222

2: $m \leftarrow SEG(x_t)$

223

3: $iou \leftarrow \text{IoU}(m, m_{t-1})$

224

4: **if** $iou > \tau$ **then**

225

5: $m_t \leftarrow m$

226

6: **else**

227

7: $m_t \leftarrow m_{t-1}$ {Retain previous mask to
228 avoid drift}

229

8: **end if**

230

9: **end for**

231

232

Gamma Residual Noise. To further stabilize the denoising trajectory, we inject a small γ -scaled noise term at each step:

233

$$x_t^{\text{final}} = x_t^{\text{mix}} + \gamma \cdot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I),$$

234

where γ controls the residual strength. This gamma residual mechanism serves as a lightweight regularizer that damps unstable fluctuations introduced by semantic injection and momentum correction, mitigating inter-frame flicker artifacts. In conjunction with momentum correction, the regularization ensures that semantic blending transformation evolves smoothly across temporal sequences.

235

236

4 EXPERIMENTS

237

238

To the best of our knowledge, MoCA-Video is the first framework that systematically addresses the problem of *video entity blending*. Given the absence of existing benchmark for this task, we construct an evaluation dataset tailored for assessing entity-level semantic blending performance.

239

240

4.1 ENTITY BLENDING DATASET

241

242

Our dataset builds upon the broad super-categories introduced in the CTIB dataset Zhou et al. (2025), *i.e.* Transports, Animals, Common Objects, and Nature, which have been validated as comprehensive coverage of the most salient real-world concepts. To further enhance object diversity, we incorporate annotated classes from the DAVIS-16 video segmentation dataset Perazzi et al. (2016). This integration proves particularly valuable as DAVIS-16 was specifically curated to minimize semantic overlap between annotated objects, ensuring that target entities cannot be trivially identified through class labels alone and requiring more sophisticated semantic understanding for successful blending. We organize the DAVIS-16 into 16 additional subcategories under super-category. Using this taxonomy, we design evaluation pairs spanning both intra-category combinations (e.g., cow and sheep) and inter-category pairs with substantial semantic distance (e.g., astronaut and cat). This systematic approach as shown in Fig. 3 yields 100 unique entity pairs for comprehensive benchmarking of our proposed framework’s performance.

243

244

Tab 1 shows that each dataset entry consists of: (1) a source prompt; (2) a base video generated from the source prompt; (3) a reference image; (4) a scalar blending strength that controls the intensity of feature injection from reference into the video. When reference images are unavailable, we generate it using Stable Diffusion 2.1. The blending strength, λ , determines the degree of feature transfer, where higher values impose stronger feature injection from the reference image and vice versa.

245

246

4.2 EVALUATION

247

248

We propose evaluating *video entity blending* approaches along three complementary axes: (i) structural consistency, (ii) temporal coherence, and (iii) semantic integration quality.

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Algorithm 2 Momentum-Corrected Denoising**Require:** $\{x_0, x_1, \dots, x_t\}, \text{dir}_t, \beta, \lambda, \kappa_0, T$ 1: Initialize $v_t \leftarrow 0$ 2: **for** $t = T, \dots, 1$ **do**

$$3: \hat{x}_0^{(\text{DDIM})} \leftarrow \frac{x_t - \sqrt{1 - \alpha_t} \epsilon_{\theta}^{(t)}(x_t)}{\sqrt{\alpha_t}}$$

$$4: x_{t-1}^{(\text{DDIM})} \leftarrow \sqrt{\alpha_{t-1}} \hat{x}_0^{(\text{DDIM})} + \text{dir}_t + \sigma_t \epsilon_t$$

$$5: g_t \leftarrow x_t - x_{t-1}^{(\text{DDIM})} + \lambda \text{dir}_t$$

$$6: v_t \leftarrow \beta v_{t-1} + (1 - \beta) g_t$$

$$7: \hat{x}_0^{(\text{corr})} \leftarrow \hat{x}_0^{(\text{DDIM})} + \kappa_0 \left(1 - \frac{t}{T}\right) v_t$$

$$8: x_{t-1} \leftarrow \sqrt{\alpha_{t-1}} \hat{x}_0^{(\text{corr})} + \text{dir}_t + \sigma_t \epsilon_t$$

9: **end for**10: **Return** $\{x_{t-1}\}_{t=1}^T$

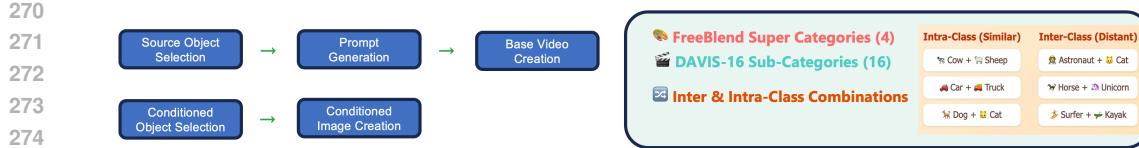


Figure 3: Source and conditioned objects are paired through prompt generation, base video creation, and conditioned image creation. We design intra-category and inter-category blends using FreeBlend super-categories and DAVIS-16 sub-categories. The pipeline is extensible, allowing new super- and sub-categories for custom datasets.

Table 1: **Dataset Examples:** Source Prompts, Targeted Objects, Conditioned Prompt, and Conditioning Strength.

Source Prompt	Object	Conditioned Prompt	λ
A cute teddy bear with soft brown fur and a red bow tie	Teddy	the condition is a hamster	2.0
A blooming rose garden in full color under morning sunlight	Rose	the condition is lavender	1.5
A colorful tropical fish swimming in a coral reef	Fish	the condition is a dolphin	1.2

For fidelity and smoothness, we adopt widely used perceptual metrics. SSIM and LPIPS-I to measure frame-level similarity between the generated and base videos. LPIPS-T computes perceptual differences between adjacent frames to quantify temporal smoothness and stability.

While these metrics effectively capture appearance quality and motion consistency, they do not directly assess the quality of semantic blending operations. To this end, we propose the CASS (Conceptual Alignment Shift Score) metric, a novel CLIP-based metric for quantifying semantic integration in video entity blending. CASS measures how the semantic alignment of a video shifts before and after blending, relative to both the original text prompt and the conditioned image.

Formally, let V_{orig} denote the original video, V_{fused} the fused video, and I_{cond} the reference image. We denote by $E(\cdot)$ the CLIP visual encoder and by $L(\cdot)$ the CLIP text encoder. We compute:

$$\begin{aligned} \text{CLIP-T}_{\text{orig}} &= \text{sim}(E(V_{\text{orig}}), L_{\text{orig}}) & \text{CLIP-I}_{\text{orig}} &= \text{sim}(E(V_{\text{orig}}), E(I_{\text{cond}})) \\ \text{CLIP-T}_{\text{fused}} &= \text{sim}(E(V_{\text{fused}}), L_{\text{orig}}) & \text{CLIP-I}_{\text{fused}} &= \text{sim}(E(V_{\text{fused}}), E(I_{\text{cond}})) \end{aligned}$$

In a quality semantic mixing outcome: the original video aligns strongly with the text prompt, but weakly with the reference image. After blending, these roles reverse, CLIP-T decreases as the model moves away from the prompt, while CLIP-I increases as features from the reference image are integrated. Hence, we design CASS to capture this complementary shift:

$$\text{CASS} = (\text{CLIP-I}_{\text{fused}} - \text{CLIP-I}_{\text{orig}}) - (\text{CLIP-T}_{\text{fused}} - \text{CLIP-T}_{\text{orig}})$$

For varying difficulties, we further compute the relative relCASS. As intra-category blends represent easier cases where the base video already shares semantic similarity with the reference image, while inter-category blends are more challenging since the baseline similarity is low. By normalizing each shift relative to its original alignment score, relCASS provides a non-biased evaluation of framework performance regardless of the underlying blend difficulties. A higher CASS and relCASS values signify better semantic mixing toward the reference image while remains original features.

$$\begin{aligned} \text{rel_CLIP-I} &= \frac{\text{CLIP-I}_{\text{fused}} - \text{CLIP-I}_{\text{orig}}}{\text{CLIP-I}_{\text{orig}}}, & \text{rel_CLIP-T} &= \frac{\text{CLIP-T}_{\text{fused}} - \text{CLIP-T}_{\text{orig}}}{\text{CLIP-T}_{\text{orig}}} \\ \text{relCASS} &= \text{rel_CLIP-I} - \text{rel_CLIP-T}. \end{aligned}$$

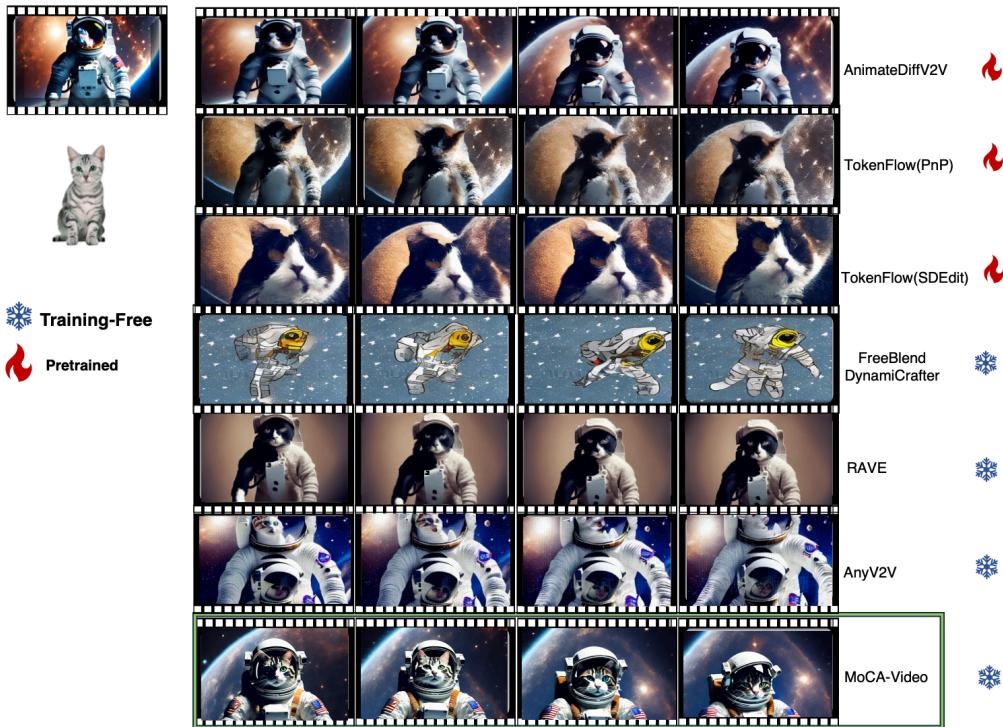
4.3 BASELINE COMPARISONS

We compare MoCA-Video against both training-free and pretrained video diffusion models.

Training-free methods We evaluate (i) FreeBlend, originally designed for image semantic mixing, which we adapt by applying frame edits and subsequently animated into video sequences for fair comparison; and (ii) RAVE, which directly extends reference-image guidance to video editing.

324 **Table 2: Quantitative comparison.** Training-free methods capture injected semantics but over-
 325 overwhelm original content. Pretrained methods preserve structure and motion but suppress semantic
 326 injection. MoCA-Video achieves best balance across visual, temporal and task-specific score

328 Method	SSIM \uparrow	LPIPS-I \uparrow	LPIPS-T \downarrow	CASS \uparrow	reCASS \uparrow
329 Pretrained					
330 AnimateDiffV2V	0.74	0.19	0.01	0.68	0.57
331 TokenFlow PnP	0.93	0.02	0.01	2.87	0.07
332 TokenFlow SDEdit	0.27	0.82	0.15	1.98	0.02
333 Training-free					
334 FreeBlend + Dynamicrafter	0.34	0.62	0.16	1.47	0.37
335 RAVE	0.61	0.37	0.04	<u>3.80</u>	0.13
336 AnyV2V	0.69	0.17	<u>0.02</u>	2.31	0.42
337 MoCA-Video (ours)	0.35	<u>0.67</u>	0.11	4.93	1.23



364 **Figure 4: Visual comparison MoCA-Video achieves coherent fusion with stable semantics and**
 365 **smooth motion. While others either harm visual fidelity or present weak semantic mixing.**

366 **Pretrained methods** We include (i) AnimateDiffV2V, which generates edited sequences conditioned
 367 on the source prompt and prioritize smooth motion dynamics; and (ii) TokenFlow under two
 368 configurations: PnP through self-attention map consistency and SDEdit via partial denoising.

370 Table 2 reveals that pretrained methods excel at preserving spatial fidelity and motion smoothness
 371 but consistently fail to achieve meaningful semantic integration. AnimateDiffV2V presents the highest
 372 SSIM (0.74) and smoothest temporal transition (LPIPS-T = 0.01), but virtually no semantic trans-
 373 formation (CASS = 0.68). TokenFlow PnP enforces structure preservation with negligible semantic
 374 transformation and SDEdit introduces visual artifacts yielding a lower semantic alignment score.

375 Training-free methods demonstrates stronger edits but with significant trade-off. FreeBlend ex-
 376 tended by DynamiCrafter shows moderate semantic mixing (CASS = 1.47) accompanied by sub-
 377 stantial temporal inconsistency, while RAVE achieves stronger semantic transfer (CASS = 3.80) but
 with substantial loss of the fine-grained detail information from the original object’s features.

Figure 5: **Visual ablation study.** Visualization shows that without IoU tracking, object drift; without motion correction, causes frame misalignment; and without gamma noise brings edge flicker.

MoCA-Video achieves the most effective semantic blending performance (CASS = 4.93 improve averagely $rel. \Delta = 56\%$, relCASS = 1.23, with average of $rel. \Delta = 81\%$ improvement, which indicates MoCA-Video perform better across multiple difficulty level of prompts) while maintaining competitive perceptual quality (SSIM = 0.35 decreased by $rel. \Delta = -35\%$, but LPIPS-I = 0.67 increased by $rel. \Delta = 40\%$) and minimal temporal artifacts (LPIPS-T = 0.11 $rel. \Delta = -32\%$). These results demonstrate MoCA-Video’s unique capability for semantic integration, with minimal and tolerable trade-off on structural fidelity, and temporal coherence, establishing a comprehensive benchmark across both training-free and pretrained methodologies for video semantic mixing.

4.4 ABLATION STUDIES

We conduct comprehensive ablation studies to validate the necessity of each component in MoCA-Video across three critical dimensions: (i) core architectural modules, (ii) robustness to mask quality, and (iii) generalization beyond curated prompts.

4.4.1 CORE MODULE ANALYSIS

We systematically ablate three key components: overlap maximization for mask tracking, momentum motion correction, and gamma residual stabilization. Table 3 reveals that IoU-based overlap maximization contributes most significantly to performance, with its removal causing substantial degradation in spatial fidelity (SSIM: $rel. \Delta = -20\%$) and semantic alignment (CASS: $rel. \Delta = -33\%$). Motion correction proves critical for temporal stability, with its absence increasing jitter substantially (LPIPS-T: $rel. \Delta = -39\%$). By reorienting denoising trajectories toward hybrid distributions introduced by semantic injection, this mechanism stabilizes temporal evolution and ensures blended objects maintain coherence across frames. Finally, removing gamma residual noise leads to edge flickering and fine-detail instability despite preserving global structure. Figure 5 provides visual confirmation that each component addresses distinct failure modes in semantic video mixing.

Table 3: Ablation results for MoCA-Video components. IoU-based overlap maximization has the largest impact on spatial fidelity and semantic alignment. Motion correction reduces temporal jitter and misalignment. Gamma residual noise smooths out edge flicker and boundary dimness.

Method Variant	SSIM \uparrow	LPIPS-I \uparrow	LPIPS-T \downarrow	CASS \uparrow	relCASS \uparrow
Full MoCA-Video	0.35	0.67	0.11	4.93	1.23
w/o Overlap Maximization (IoU)	0.28	0.63	0.20	2.90	0.75
w/o Motion Correction	0.30	0.65	0.18	3.10	0.80
w/o Gamma Residual Noise	0.32	0.66	0.15	4.20	1.10

432 Table 4: Mask robustness. Imperfect mask region doesn’t harm significantly on semantic mixing.
433

Method	SSIM \uparrow	LPIPS-I \uparrow	LPIPS-T \downarrow	CASS \uparrow	relCASS \uparrow
GroundDINO (BBox, lower boundary)	0.52	0.69	0.16	2.69	0.13
GroundedSAM2 (Ours)	0.35	0.67	0.11	4.93	1.23

437
438 4.4.2 ROBUSTNESS TO IMPERFECT SEGMENTATION
439440 Since MoCA-Video relies on inference-time segmentation masks, we evaluate robustness under
441 suboptimal conditions. Table 4 compares performance using region specific GroundedSAM2 masks
442 against coarse bounding boxes from GroundingDINO. Even with imprecise supervision, MoCA-
443 Video maintains superior semantic mixing performance compared to all baselines, demonstrating
444 that latent-space diffusion manipulation exhibits inherent tolerance to segmentation imperfections.
445446 4.4.3 GENERALIZATION BEYOND CURATED DATA
447448 To assess scalability of the curated dataset, we extend evaluation beyond the curated dataset by
449 incorporating multi-object scenes and additional object categories following our dataset construction
450 pipeline. Table 5 shows that performance degrades modestly on complex scenes (CASS: *rel.* $\Delta =$
451 **24%**), yet semantic mixing remains robust even with multiple distracting objects. This validates that
452 our framework generalizes effectively, enabling researchers to construct custom datasets using the
453 same taxonomic approach while maintaining consistent performance across diverse scenarios.
454455 These ablation results collectively demonstrate that MoCA-Video’s design choices are well-
456 motivated and functioned, with each component targeted at specific challenges in video semantic
457 mixing while maintaining robustness across varying conditions and scene complexities.
458459 Table 5: Prompt robustness. Multiple objects in the video do not significantly harm performance,
460 achieving comparable scores to the baseline model, proving the extensibility of the prompt dataset.
461

Setting	SSIM \uparrow	LPIPS-I \uparrow	LPIPS-T \downarrow	CASS \uparrow	relCASS \uparrow
Multi-object prompts	0.45	0.65	0.12	3.74	0.08
Original dataset	0.35	0.67	0.11	4.93	1.23

463
464 5 CONCLUSION
465466 We presented MoCA-Video, the first training-free framework for video semantic mixing. Operating
467 through structured manipulation of latent noise trajectories, our method integrates (1) IoU-based
468 overlap maximization for consistent object tracking; (2) momentum-corrected denoising for ap-
469 proximating novel hybrid distributions; and (3) gamma residual noise stabilization for fine-grained
470 temporal smoothness. Extensive experiments show that MoCA-Video outperforms both training-
471 free and pretrained methods, achieving stronger semantic blending without compromising motion or
472 visual quality, while demonstrating tolerance to imperfect masking and dataset extensibility. MoCA-
473 Video establishes structured noise-space manipulation as a promising paradigm for controllable
474 video synthesis that transcends the limitations of existing diffusion model training distributions.
475476 **Reproducibility Statement** We have taken several steps to ensure the reproducibility of our work.
477 The experimental setup, including model architectures, training hyperparameter, and dataset pre-
478 processing, is described in detail in Sections 3 and 4. Additional implementation details, and hyper-
479 parameter settings are provided in the Appendix ???. To further facilitate reproducibility, we include
480 a link to the source code and instructions for running the experiments in Appendix ???. Together,
481 these resources are intended to make it straightforward for researchers to replicate our results and
482 build upon our method.
483484 **Ethics Statement** This work does not involve human subjects, personally identifiable information,
485 or sensitive data. All datasets used are publicly available and employed in accordance with
486 their respective licenses. The proposed methodology is intended solely for academic research and
487 poses no foreseeable risks of misuse, harmful applications, or ethical concerns beyond standard con-
488

486 siderations in machine learning research. We have adhered to the ICLR Code of Ethics throughout
487 the preparation and submission of this work.
488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541542 Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
543 Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models, 2024.544 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
545 Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart- α : Fast training of diffusion transformer
546 for photorealistic text-to-image synthesis, 2023. URL <https://arxiv.org/abs/2310.00426>.547
548 Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg. Atom: Accurate
549 tracking by overlap maximization, 2019. URL <https://arxiv.org/abs/1811.07628>.550 Michal Geyer, Omer Bar-Tal, Shai Bagon, and Tali Dekel. Tokenflow: Consistent diffusion features
551 for consistent video editing. *arXiv preprint arXiv:2307.10373*, 2023.552 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
553 Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image dif-
554 fusion models without specific tuning. *International Conference on Learning Representations*,
555 2024.556 Xuanhua He, Quande Liu, Shengju Qian, Xin Wang, Tao Hu, Ke Cao, Keyu Yan, and Jie Zhang.
557 Id-animator: Zero-shot identity-preserving human video generation, 2024. URL <https://arxiv.org/abs/2404.15275>.558 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
559 <https://arxiv.org/abs/2006.11239>.560 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
561 Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–
562 8646, 2022.563 Yi Huang, Wei Xiong, He Zhang, Chaoqi Chen, Jianzhuang Liu, Mingfu Yan, and Shifeng Chen.
564 Dive: Taming dino for subject-driven video editing, 2024. URL <https://arxiv.org/abs/2412.03347>.565 Ozgur Kara, Bariscan Kurtkaya, Hidir Yesiltepe, James M. Rehg, and Pinar Yanardag. Rave: Ran-
566 domized noise shuffling for fast and consistent video editing with diffusion models, 2023. URL
567 <https://arxiv.org/abs/2312.04524>.568 Jihwan Kim, Junoh Kang, Jinyoung Choi, and Bohyung Han. Fifo-diffusion: Generating infinite
569 videos from text without training. In *NeurIPS*, 2024.570 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
571 Bo Wu, Jianwei Zhang, et al. Hunyuanyvideo: A systematic framework for large video generative
572 models. *arXiv preprint arXiv:2412.03603*, 2024.573 Max Ku, Cong Wei, Weiming Ren, Harry Yang, and Wenhui Chen. Anyv2v: A tuning-free frame-
574 work for any video-to-video editing tasks, 2024. URL <https://arxiv.org/abs/2403.14468>.575 Sumith Kulal, Tim Brooks, Alex Aiken, Jiajun Wu, Jimei Yang, Jingwan Lu, Alexei A. Efros, and
576 Krishna Kumar Singh. Putting people in their place: Affordance-aware human insertion into
577 scenes. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR)*, 2023.578 Jun Hao Liew, Hanshu Yan, Daquan Zhou, and Jiashi Feng. Magicmix: Semantic mixing with
579 diffusion models. *arXiv preprint arXiv:2210.16056*, 2022.580 F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-Hornung. A
581 benchmark dataset and evaluation methodology for video object segmentation. In *Computer Vi-
582 sion and Pattern Recognition*, 2016.

594 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
595 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
596 Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
597 <https://arxiv.org/abs/2103.00020>.

598 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
599 resolution image synthesis with latent diffusion models, 2021.

600 Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
601 Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video:
602 Text-to-video generation without text-video data, 2022. URL <https://arxiv.org/abs/2209.14792>.

603 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL
604 <https://arxiv.org/abs/2010.02502>.

605 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
606 Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
607 Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
608 Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
609 Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
610 Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
611 Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
612 Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
613 Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
614 *arXiv preprint arXiv:2503.20314*, 2025.

615 Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error
616 visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–612, 2004.
617 doi: 10.1109/TIP.2003.819861.

618 Jiangchuan Wei, Shiyue Yan, Wenfeng Lin, Boyuan Liu, Renjie Chen, and Mingyu Guo. Echovideo:
619 Identity-preserving human video generation by multimodal feature fusion, 2025. URL <https://arxiv.org/abs/2501.13452>.

620 Daniel Winter, Asaf Shul, Matan Cohen, Dana Berman, Yael Pritch, Alex Rav-Acha, and Yedid
621 Hoshen. Objectmate: A recurrence prior for object insertion and subject-driven generation, 2024.
622 URL <https://arxiv.org/abs/2412.08645>.

623 Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen, Xintao Wang, Tien-Tsin Wong, and Ying
624 Shan. Dynamicrafter: Animating open-domain images with video diffusion priors. 2023.

625 Shenghai Yuan, Jinfa Huang, Xianyi He, Yunyuan Ge, Yujun Shi, Liuhan Chen, Jiebo Luo, and
626 Li Yuan. Identity-preserving text-to-video generation by frequency decomposition, 2024. URL
627 <https://arxiv.org/abs/2411.17440>.

628 Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
629 effectiveness of deep features as a perceptual metric, 2018. URL <https://arxiv.org/abs/1801.03924>.

630 Yufan Zhou, Haoyu Shen, and Huan Wang. Freeblend: Advancing concept blending with staged
631 feedback-driven interpolation diffusion. *arXiv preprint arXiv:2502.05606*, 2025.

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647