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Abstract
Diffusion models have emerged as a recent suc-
cessful paradigm for molecular docking. How-
ever, these methods treat the protein either as a
rigid structure, or force the model to fold proteins
from unstructured noise. In this work, we instead
focus on flexible docking, leveraging the unbound
distribution of proteins to model the precise ef-
fect(s) of ligand binding. While Flow Matching
(FM) presents an attractive option for this task,
we show that a naive application of flow match-
ing results in a complex learning task with poor
performance. We thus propose Unbalanced Flow
Matching, a generalization of flow matching that
allows us to tradeoff sample efficiency with ap-
proximation accuracy by relaxing the marginal
constraints. Empirically, we validate our frame-
work on flexible docking, demonstrating strong
improvements in protein conformation prediction
while retaining comparable docking accuracy.

1. Introduction
Molecular docking predicts the binding structure between
proteins and small molecules, a crucial interaction for the
mechanism of action of most drugs. Over the past decades,
significant progress has been made in molecular docking,
initially through classical search techniques (Alhossary
et al., 2015; McNutt et al., 2021) and more recently with
DL-based regression (Stärk et al., 2022) and diffusion mod-
els (Corso et al., 2022). However, these methods primarily
focus on rigid docking, assuming the protein has a fixed
structure. While this assumption is realistic in some scenar-
ios, it severely limits the applicability of these methods.

Existing flexible docking methods have so far failed to
provide satisfactory levels of accuracy. Traditional search-
based methods struggle to account for protein degrees of
freedom due to the significantly increased dimensionality of
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Figure 1. Comparison between the mappings learnt with Flow
Matching (left) and Unbalanced Flow Matching (right).

the search space. Deep learning methods have improved on
this by extending diffusion processes to include the protein
(Qiao et al., 2024; Abramson et al., 2024), but often force
the model to fold proteins from unstructured noise (co-
folding), resulting in structure predictions that are frequently
worse than the inputs. To avoid this issue, it is necessary to
directly map the distribution of unbound protein structures
to those of structures bound to a given ligand.

Flow matching is a recent, generative modelling framework,
capable of learning a transport between arbitrary distribu-
tions. However, its direct application to this problem, where
the two distributions are highly structured, results in a com-
plex learning task, and poor performance. To overcome
these challenges, we propose Unbalanced Flow Matching,
a new framework for learning a transport between distribu-
tions where we relax the marginal constraints of FM and
study a larger class of (partial) maps between the two distri-
butions (intuitive illustration in Figure 1). We demonstrate
theoretically how trading off some sample efficiency, Unbal-
anced FM allows one to define significantly simpler maps
resulting in improved performance.

Empirically, we demonstrate that our new modeling per-
spective, enhances structure prediction quality, especially
for protein conformations. On the PDBBind benchmark, our
approach FLEXDOCK improves the proportion of very ac-
curate protein structure predictions (all-atom RMSD < 1Å)
from 39.8% to 44.1%, while retaining comparable docking
accuracy (ligand RMSD < 2Å). On the PoseBusters bench-
mark dataset, FLEXDOCK outperforms most co-folding
methods, despite only being trained on the PDBBind dataset.
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Figure 2. Overview of our flexible docking pipeline through Unbalanced Flow Matching.

2. Background and Related Work
Flow matching (FM) (Lipman et al., 2022; Albergo et al.,
2023) is a generative modeling paradigm that was intro-
duced as a flexible generalization of diffusion models, and
allows learning a transport between arbitrary distributions
with a simulation-free objective. Given two distributions
q0 and q1, FM provides a way of learning a vector field vt
which induces a continuous normalizing flow ψt(x) that
transports q0 to q1, i.e., q1(x) = [ψ1]#q0(x)), where #
denotes the pushforward operator.

The key idea in FM is defining a conditional flow ψt(x0|x1)
interpolating between x0 ∼ q0 and x1 ∼ q1, and its as-
sociated vector field ut(xt|x1) = d

dtψt(xt|x1). One can
then learn the marginal vector field v̂t(x, t; θ) with a neural
network (v̂t(x, t; θ) ≈ vt(x, t), by regressing against the
conditional vector field with the CFM objective:

LCFM = Et,x0∼q0,x1∼q1 ∥vt(xt; θ)− ut(xt|x1)∥
2 (1)

FM was further generalized by Pooladian et al. (2023) and
Tong et al. (2023) which showed that the sampling distribu-
tion in the CFM objective, which we will refer to as coupling
distribution, does not have to be independent samples from
q0 and q1 and can be an arbitrary joint distribution q(x0, x1)
as long as it satisfies the marginal constraints being q0 and
q1 respectively. This formulation enabled drawing a connec-
tion between FM and optimal transport (OT). When using
OT to define the coupling distribution q, the flows become
straight and the transport cost Eq0(x0) ∥ψ1(x0)− x0∥2 is
the OT cost W 2

2 (q0, q1).

Protein-Ligand Binding. When proteins bind to small
molecules, their structural distribution adjusts to fit the
molecule. Understanding this conformational change is
critical for accurately predicting binding interactions, and
computational methods for this fall into two categories:
co-folding and flexible docking. Co-folding involves
predicting the bound structure of the protein and the ligand

from scratch as a single task. Based on the success of Al-
phaFold 2 (AF2) (Jumper et al., 2021) for protein structure
prediction, a number of methods have extended AF2 for
small-molecule co-folding (Qiao et al., 2024; Bryant et al.,
2023; Krishna et al., 2024; Abramson et al., 2024). While
these have achieved varied success, they typically require
large amounts of training data and have slow inference
times. (Wang et al., 2023) adopts a co-folding strategy
based on diffusion processes, but instead of the Euclidean
space, the diffusion processes are defined on the backbone
torsion angles of the protein, and the product space of
rotations, translations and torsions for the ligand.

Protein Conformational Changes and Flexible Docking.
Flexible docking assumes access to unbound structures of
proteins (known as apo) and predicts how these will change
upon ligand binding (producing holo-structures). Since the
conformational change is usually small and localized due
to the molecule’s size and energetic impact, this approach
has been preferred for protein-ligand structure prediction,
making it suitable for large-scale screening pipelines.

Traditional search-based docking methods define a scoring
function and search the space of possible poses (through
rigid movement and torsion angle changes of the ligand)
to find the minimum of the scoring function (Alhossary
et al., 2015; McNutt et al., 2021). These methods can
typically, incorporate protein flexibility by adding torsion
angles of the sidechains in the pocket to the search space.
However, due to the increased dimensionality and the
protein’s flexibility beyond the sidechains, traditional
methods struggle to find optimal joint poses.

Recently, a number of deep learning methods have been
proposed that leverage the flexibility of proteins in molec-
ular docking. DIFFDOCK-POCKET (Plainer et al., 2023)
and RE-DOCK (Huang et al., 2024) use diffusion and diffu-
sion bridge models to model the flexibility in protein pocket
sidechains in addition to ligand flexibility. DYNAMICBIND
(Lu et al., 2024), the closest related work to ours, incorpo-
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rates backbone flexibility, with hardcoded noise perturbation
rules that interpolate from apo residue frames to holo residue
frames. While the operate in the blind docking setting, they
do not directly model the atomic positions, leaving limited
utility for downstream applications such as binding affinity
calculation. (Somnath et al., 2023) explicitly predicts the
conformational changes between apo and holo states of pro-
teins using diffusion Schrödinger Bridges, by treating the
apo and holo states as paired data. While they account for
the constraint that minibatch-OT maps cannot be computed
as in Pooladian et al. (2023), directly interpolating between
conformational states suffer from the same complex learn-
ing task as we outlined in Section 3.2. Furthermore, their
method was not evaluated on the flexible docking task.

3. Unbalanced Flow Matching
In this section, we first explain, using the specific example of
the flexible docking task, the issue with existing approaches
and the motivation for the development of a new technique
for learning a transport between two distributions. Then,
Section 3.2 introduces Unbalanced Flow Matching, Section
3.3 provides a theoretical formalization of the efficiency vs
approximation tradeoff, and Section 3.4 discusses the choice
of coupling distribution and its link to Unbalanced OT.

3.1. Motivation and Overview

The main motivation for flexible docking over co-folding is
to leverage the unbound distribution of proteins and focus ex-
clusively on modeling the precise effects of ligand binding.
Our goal, therefore, is to define the task in such a way that
the model only needs to learn these small adjustments, rather
than refolding the protein entirely. Diffusion modeling ap-
proaches for this task (Qiao et al., 2024; Abramson et al.,
2024) force the model to largely refold the protein’s struc-
ture because approximating the prior distribution from holo-
structures (sampled during training) to that of apo-structures
(sampled during inference) requires large noise levels.

Flow matching offers the compelling alternative of sim-
ply using the distribution of apo-structures as the initial q0
and building a flow to the distribution of holo-structures
q1. However, this has two critical issues that arise when
looking at the specific task. Firstly, because X-ray crystal-
lography is the main source of bound conformations, for
most complexes in our training data we have a single holo-
structure. This prevents us from using minibatch-OT based
flow matching techniques (Pooladian et al., 2023), leading
to a large expected length of conditional flows.

Secondly, even if one bypasses the issue of single samples
from the bound structures during training through expensive
methods like NMR or extended molecular dynamics, the
OT cost will likely remain very high. In fact, although the

different conformational states of the protein do not change
significantly upon ligand binding, their relative weights are
often notably altered. Specifically, the protein typically re-
duces its entropy upon binding, as only a subset of the apo
conformations allow for ligand binding (with minor induced
fit). This common scenario results in a transport between
apo and holo distributions that, even in the optimal setting
(as represented in Figure 1.a), requires the model to move
the protein between conformations, leading to large condi-
tional and marginal flows. As discussed in Pooladian et al.
(2023) and Benton et al. (2023), these large flows can result
in a complex learning task and significant approximation
errors. In lieu of these issues, we develop the Unbalanced
Flow Matching framework.

Table 1. Flow Matching (FM) vs Unbalanced Flow Matching
(FM). PDBBind docking performance with a small model (4M)

Method Ligand RMSD
% < 2Å↑ % < 5Å↑

FLEXDOCK (FM) (10) 2.6 38.9
FLEXDOCK (UFM) (10) 10.6 53.1

3.2. Unbalanced Flow Matching

In the generalized Flow Matching formulation presented by
Pooladian et al. (2023) the coupling distribution q(x0,x1)
is constrained to have the marginals of each variable being,
respectively, q0 and q1. This condition is key to guarantee
that the pushforward of q0 under the optimal flow is a q1 i.e.
that we can sample I.I.D. q1 by sampling q0 and transporting
the particle through the flow. However, for many structured
distributions, this condition also causes the resulting map-
pings to be complex and have a high expected length (Figure
1.a). Benton et al. (2023) demonstrated how this complex-
ity in learning the vector field of the flow translated into a
mismatch between the true and learned distributions.

Unbalanced Flow Matching relaxes this constraint to obtain
significantly shorter and simpler flows (See Table 1). By not
imposing any hard constraints on the coupling q, we aim to
keep the expected mapping cost between pairs (x0,x1) ∼ q
low making the learning task easier. The objective function,
in Euclidean space, remains:

LUFM = Et,(x0,x1)∼q ∥vt(xt; θ)− ut(xt|x1)∥2 (2)

However, with arbitrary coupling distributions q, even if the
vector field is learned perfectly its pushforward of q0 will no
longer correspond to q1. To obtain unbiased samples from
q1 we will have to use techniques like rejection sampling to
reweight the generated samples by their relative likelihood
under q0 and q1 vs the marginals of q, which we indicate
with qx0

and qx1
. In the following sections, we formalize

and analyze the tradeoff between sample efficiency and
sample quality that arises when using Unbalanced FM and
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Figure 3. Relationship between the different distributions intro-
duced in the theoretical analysis.

discuss how to choose a coupling distribution q that obtains
a balance on the optimal Pareto frontier.

3.3. Efficiency vs Approximation Tradeoff

Let ψ1(·; q) be the optimal flow from the Unbalanced FM
objective with couplings q and ψ̂1(·; q, θ) its approxima-
tion we are able to learn. FM guarantees us that qx1 =

[ψ1(·|q)]#qx0
and let q̂x1

= [ψ̂1(·|q, θ)]#qx0
. A summary

of all the defined distributions and their relationship is pro-
vided in Figure 3.

The definition of Unbalanced FM as a method to bridge
two distributions q0 and q1 leads us to analyze the trade-
off between the approximation error when learning the
flow, formalized as W 2

2 (qx1 , q̂x1), and the sample efficiency
ESS∗(q) that derives from having to perform rejection sam-
pling to bridge the gaps between q0 and qx0

and between qx1

and q1. Simple mappings will result in low approximation
errors but potentially lower efficiency, and vice versa.

The tradeoff in the choice of optimal coupling q∗ can be
expressed as a joint objective:

q∗ = min
q

α W 2
2 (q̂x1

, qx1
)− β logESS∗(q) (3)

Maximizing sample efficiency, setting α << β, recovers
flow matching, while minimizing allowed approximation er-
rors, setting α >> β, translates into pure rejection sampling.
Below we provide bounds for each of the two components
that will lead us to better understand the class of optimal
coupling distributions.

Approximation error Using Theorem 1 from Benton
et al. (2023) we can show (proof in Appendix A.1) that
the approximation error for a given coupling distribution q,
W 2

2 (q̂x1
, qx1

), is bounded by the expected transport cost of
the coupling q:
Proposition 1. Under appropriate assumptions, we have:

W 2
2 (q̂x1 , qx1) ≤ E(x0,x1)∼q∥x0 − x1∥2 · L2. (4)

where L is the exponential of an integral over t on the bound
of the Lipschitz constant of the learned vector field.

Sample efficiency We can measure the sample efficiency
of the model when transporting samples from q0 to unbiased
samples of q1 via the effective sample size ESS∗(q), i.e. the
reciprocal of how many samples from q0 it takes using the
ideal flow ψ1(·, q) to generate an unbiased sample from q1.
In Proposition 2 (derivation in Appendix A.2), we demon-
strate this sample efficiency is bounded by the similarity
between the q0 and q1 and the respective marginals of q:
Proposition 2. The effective sample size, ESS∗, for sam-
pling q1 when having access to samples of q0 and a perfectly
trained flow with coupling distribution q is bounded by:

ESS∗(q) ≥ exp [−D2(q0|qx0
)−D2(qx1

|q1)] (5)

where D2 is the Rényi Divergence of order 2.

3.4. Choosing the coupling

An obvious choice of couplings are those derived from Un-
balanced Optimal Transport. Unbalanced OT relaxes the
mass conservation constraint of optimal transport allowing
to trade it off with reductions in mapping costs. In partic-
ular, the static unbalanced OT problem looks for coupling
distributions q that optimally balance the expected mapping
cost and the preservation of the marginals via the objective
(Séjourné et al., 2023):

UOT(q0, q1) ≜ min
q

E(x0,x1)∼q[C(x0,x1)]+

+Dφ0(qx0 |q0) +Dφ1(qx1 |q1)
(6)

where C is the matching cost and Dφ0 and Dφ1 are φ-
divergences.

Using Propositions 1 and 2, we can show that the optimiza-
tion from Eq. 3 is upper bounded by:

α W 2
2 (q̂x1

, qx1
)− β logESS∗(q) ≤ β D2(q0|qx0

)+

+α L2 E(x0,x1)∼q∥x0 − x1∥2+
+β D2(qx1 |q1)

(7)

therefore, choosing q via static unbalanced OT directly pro-
vides an upper bound for the efficiency vs approximation
tradeoff cost.

In practice in many domains like docking, one cannot obtain
many samples from each distribution, ruling out complete
optimal transport coupling calculations, and therefore we
also consider a simpler family of couplings that can be ob-
tained with rejection sampling from individual independent
samples from q0 and q1 but still maintains a bound on the
transport cost: q(x0,x1) ∝ q0(x0)q1(x1)IC(x0,x1)≤ϵ for
some predefined non-negative ϵ.

4. Flexible Docking
In the flexible docking task, our goal is to learn the joint
distribution over the bound structures (equivalently, poses
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thereof) of a protein-ligand complex given the distribution
over the unbound structures. In many drug discovery ap-
plications, protein pocket locations are often known. We
thus focus on the pocket-based flexible docking task, but
emphasize that all components of our framework equiva-
lently translate to the blind docking setting as well (when
the protein pocket is unknown).

Ligand and protein poses can be regarded as elements of
R3nl and R3np , where nl and np are the number of atoms
in the ligand and protein. However, during docking, ligand
flexibility is largely concentrated in the torsion angles at
rotatable bonds (Corso et al., 2022), while for proteins, the
flexibility lies in the backbone frames (Jumper et al., 2021)
and sidechain torsion angles. Motivated by the success of
Intrinsic Diffusion Models (Corso, 2023) in similar domains,
we reduce the space of ligand and protein poses by defining
our generative model over these degrees of freedom.

While our couplings q are defined based on costs c in the
Euclidean space, we posit that also implies equivalent cou-
plings qP between distributions on the product space P that
largely governs docking flexibility.

4.1. Docking over Manifold Degrees of Freedom

For the distribution over ligand poses, we largely follow
DIFFDOCK (Corso et al., 2022), learning a diffusion
model over the product space of rotations, translations, and
torsions, P = SO(3)×R3 ×Tml . The key difference from
DIFFDOCK is that our model accepts as input (for a diffu-
sion time t), an intermediate protein structure governed by
the choice of flow (see below) rather than a rigid structure.

To model conformational changes in protein structures
upon docking, we employ our Unbalanced Flow Matching
framework. The prior q0 is defined as the distribution of
computationally generated unbound structures (Lin et al.,
2022), while the target distribution q1 is defined over the
crystallized bound structures. For both distributions, we
only have access to samples thereof. For a protein with
n residues and mp sidechain torsion angles, we define
the flow over the product space SE(3)n × SO(2)mp ,
where the SE(3) frame for each residue corresponds to a
roto-translation around the Cα atom, and the hypertorus
Tmp over sidechain torsions. Designing a unbalanced FM
objective then amounts to choosing a coupling q(x0,x1),
a conditional probability path pt(x|x0,x1), (x0,x1) ∼ q,
and the associated conditional vector field ut(x|x0,x1).

Choice of coupling q. A key requirement for q is to be
able to sample pairs during training. Because we typically
only have access to one sample for the distribution over
bound structures (the crystal structure in PDB, typically
unique), we cannot define q via Unbalanced OT. Therefore,
we approximate the optimal coupling with the distribution
q(x0,x1) ∝ q0(x0)q1(x1)Ic(x0,x1)<cdock , where c(x0,x1)

is defined as the aligned RMSD between the Cα positions
of the residues in the pocket and the neighborhood, and cdock
is an empirically chosen cutoff to balance sample efficiency
and mapping complexity. We can sample from q by taking
individual independent samples from q0 and q1 and rejecting
if c(x0,x1)) ≥ cdock (cdock = 4 in our experiments).

Flow Matching on SE(3) and T. Following the disinte-
gration of measures (Pollard, 2002), every SE(3)-invariant
measure can be broken down into a SO(3)-invariant mea-
sure and a measure proportional to the Lebesgue measure
on R3, allowing us to build flows independently on SO(3)
and R3. Following (Chen & Lipman, 2024), given two
points (x0,x1) ∼ q, the conditional probability path be-
tween x0 and x1 is given by the geodesic between them,
x = expx0

(t logx0
(x1)), and the corresponding conditional

flow is ut(xt|x0,x1) =
logxt

x1

1−t .

For SO(3), the geodesics can be computed efficiently by
using the axis-angle representation (equivalent to log(x1))
and the parallel transport operation (left multiplication with
x0), while exp is simply the matrix exponential. We view
the torus T as the quotient space R/2πZ, thus expx0

(x1) =
(x0+x1) mod 2π (equivalent to wrapping around R), and
logx0

x1 = arctan 2(sin(x1 − x0), cos(x1 − x0)).

4.2. Training and Inference

Manifold Docking. Although the flow and diffusion ob-
jectives for protein and ligand poses are defined on the
respective product spaces, our training and inference pro-
cedures are designed to operate on 3D coordinates directly,
allowing the model to learn better, and generalize to unseen
complexes. (Jing et al., 2022; Corso et al., 2022). For the
torsion angles in the sidechains and the ligand, we apply a
conformer matching procedure (Jing et al., 2022; Plainer
et al., 2023), to avoid a distribution shift (in terms of local
structures), between training and inference.

Confidence Model. The confidence model can be thought
of as reweighting samples from the learned flow q̂x1

in
accordance with the true marginal q1. To collect training
data for the confidence model, we use a smaller version
of mthe anifold docking model to generate 20 poses per
complex, which are then assigned a label based on whether
the predicted ligand and protein pocket poses have RMSDs
below 2Å and 1Å respectively. The confidence model is
then trained with cross entropy loss. During inference, we
generate poses in parallel with our manifold docking model,
which are then scored by the confidence model.

5. Experiments
Data. We train our models on the PDBBind dataset (Liu
et al., 2017), using the time-based split, and validate on
the PDBBind and PoseBusters (Buttenschoen et al., 2024)
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Table 2. Top-1 PDBBind ESMFold Docking Performance. Percentage of predictions with ligand RMSD < 2Å and All-Atom RMSD <
1Å and median RMSDs. In parenthesis, we specify number of sampled poses. For RE-DOCK, values marked with ∗ indicate that we
could not compute those values, and used the closest reported numbers.

Method Ligand RMSD All-Atom RMSD Runtime (s)
Median ↓ % < 2Å↑ Median ↓ % < 1Å ↑

SMINA (rigid) 7.7 6.6 - - 258
SMINA 7.3 3.6 1.7 5.2 1914
GNINA (rigid) 7.5 9.7 - - 260
GNINA 7.2 6.6 1.7 4.5 1575

DIFFDOCK (pocket, rigid) (40) 2.6 37.8 - - 61
DIFFDOCK-POCKET (10) 2.6 41.0 1.4 31.6 17
DIFFDOCK-POCKET (40) 2.6 41.7 1.3 32.1 61
REDOCK (10) 2.5 39.0 1.2 39.8∗ 15
REDOCK (40) 2.4 42.9 1.2 38.4∗ 58

FLEXDOCK (10) 2.6 39.5 1.2 44.1 10
FLEXDOCK (40) 2.5 40.8 1.1 43.9 38

benchmark datasets. We computationally generated struc-
tures from ESMFOLD (Lin et al., 2022) as samples from
the distribution of unbound structures.

Baselines. For PDBBind, we compare FLEXDOCK, with
state-of-the-art search-based methods SMINA and GNINA,
ML-based pocket level docking methods in DIFFDOCK-
POCKET (Plainer et al., 2023) and RE-DOCK (Huang et al.,
2024). On the PoseBusters benchmark dataset, we also
compare against recent publicly available co-folding meth-
ods – ROSETTAFOLD-ALLATOM (Krishna et al., 2024) and
UMOL (Bryant et al., 2023).

Table 3. Top-1 PoseBusters Docking Performance. ∗ assume
knowledge of holo structure. † blind docking. # trained on signifi-
cantly more data from the whole PDB.

Method Ligand RMSD
% < 2Å↑

GOLD∗ 58
VINA∗ 60

DEEPDOCK∗† 20
DIFFDOCK∗† 38
ROSETTAFOLD-ALLATOM†# 42
UMOL 45

FLEXDOCK (10) 46

Metrics. We evaluate the quality of both the predicted
ligand and pocket atom poses. The quality of predicted
structures is measured by the heavy-atom RMSDs to the
ground truth structures. For PoseBusters, we only report
the docking accuracy as measured by % of ligand RMSDs

< 2Å. Additional details regarding the experimental setup,
data and baselines can be found in Appendix D.

Results. On the PDBBind dataset, FLEXDOCK achieves
strong improvements on predicting protein conformations
(All-Atom RMSD < 1Å), while retaining comparable dock-
ing accuracy (ligand RMSD < 2Å) and faster runtimes. On
the PoseBusters dataset, FLEXDOCK achieves better perfor-
mance than many co-folding methods, despite being trained
only on the PDBBind dataset.

6. Conclusion
We propose Unbalanced Flow Matching, a generalization
of Flow Matching that allows us to relax the marginal con-
straints and learn simpler flows. We theoretically analyze
the tradeoffs between sample efficiency and approxima-
tion capabilities these relaxations induce. Empirically, we
validate our framework on flexible docking, with strong
improvements in modelling protein conformational changes,
while retaining comparable docking accuracy.
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A. Propositions
Note: in all derivations and definitions in this section, we
will assume that the distributions we work with are defined
in Euclidean space and have full support.

A.1. Unbalanced FM Approximation Error

Lemma 1. Given X a random vector and c a constant
vector, we have:

E
[
∥X− c∥2

]
≥ ∥E[X]− c∥2

Proof. Expanding the left-hand side:

E
[
∥X− c∥2

]
= E

[
n∑

i=1

(Xi − ci)2
]
=

n∑
i=1

E
[
(Xi − ci)2

]

For any random variable Xi,

E
[
(Xi − ci)2

]
= E

[
(Xi − E[Xi] + E[Xi]− ci)2

]
=E[(Xi−E[Xi])

2+2(Xi−E[Xi])(E[Xi]−ci)+(E[Xi]−ci)
2]

Since E[Xi − E[Xi]] = 0, the middle term vanishes:

= E[(Xi − E[Xi])
2] + (E[Xi]− ci)2

Therefore:

E
[
(Xi − ci)2

]
= Var(Xi) + (E[Xi]− ci)2

Summing over all components:

E
[
∥X− c∥2

]
=

n∑
i=1

Var(Xi) +

n∑
i=1

(E[Xi]− ci)2

=

n∑
i=1

Var(Xi) + ∥E[X]− c∥2

Since Var(Xi) ≥ 0 for each component i, we have our
result.

Assumption 2 (Existence and uniqueness of smooth
flows) For each x ∈ Rd and s ∈ [0, 1] there exist unique
flows (Y x

s,t)t∈[s,1] and (Zx
s,t)t∈[s,1] starting in Y x

s,s = x and
Zx
s,s = x with velocity fields vθ(x, t) and vX(x, t) respec-

tively. Moreover, Y x
s,t and Zx

s,t are continuously differen-
tiable in x, s and t.

Assumption 3 (Regularity of approximate velocity field)
The approximate flow vθ(x, t) is differentiable in both inputs.
Also, for each t ∈ (0, 1) there is a constant Lt such that
vθ(x, t) is Lt-Lipschitz in x.

Proposition 1. Under assumptions 2 and 3 from Benton
et al. (2023) reported above, we have:

W 2
2 (q̂x1

, qx1
) ≤ L2 · E(x0,x1)∼q∥x0 − x1∥2 (8)

where L = exp

[∫ 1

0

Ltdt

]
. (9)

Proof. Let ut(·) and vt(·; θ) be the marginal vector fields
generating ψt and ψ̂t respectively.

Using Theorem 1 from Benton et al. (2023) we have:

W 2
2 (q̂x1 , qx1) ≤ L2

∫ 1

0

Eq[∥ut(Xt)− vt(Xt; θ)∥2]dt

For any xt, we can use Lemma 1 and the knowledge that
ut(xt) = Eq|Xt=xt

ut(xt|x0,x1):

∥ut(xt)−vt(xt; θ)∥2 ≤ Eq|Xt=xt

[
∥ut(xt|x0,x1)− vt(xt; θ)∥2

]
therefore:

W 2
2 (q̂x1 , qx1) ≤ L2

∫ 1

0

Eq[∥ut(xt|X0,X1)−vt(Xt; θ)∥2]dt

the expression inside the square root is our loss function that
we are trying to minimize, therefore, under the assumption
that the zero function is in our functional space, we can say:

W 2
2 (q̂x1 , qx1) ≤ L2

∫ 1

0

Eq[∥ut(xt|X0,X1)∥2]dt

= L2

∫ 1

0

Eq[∥X1 −X0∥2]dt

= L2 · E(x0,x1)∼q∥x0 − x1∥2

A.2. Unbalanced FM Sample Efficiency

Proposition 2. The effective sample size, ESS∗, for sam-
pling q1 when having access to samples of q0 and a perfectly
trained flow with coupling distribution q is bounded by:

ESS∗(q) ≥ exp [−D2(q0|qx0)−D2(qx1 |q1)] (10)

where D2 is the Rényi Divergence of order 2.
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Proof. When comparing pairs of distributions p and q the
(population) effective sample size ESS∗(p, q) is defined as
(Maia Polo & Vicente, 2023):

ESS∗(p, q) := exp[−D2(p|q)]

and it can be considered as the percentage of effective sam-
ples from q one can obtain when taking samples from p.

Similarly, we define ESS∗(q) in our setting as the percent-
age of effective samples from q1 one can obtain from q0
using ψ1. While ψ1 could be directly applied to any dis-
tribution, including q0, it is hard to model its pushforward
analytically. On the other hand, we know that qx1 is the
pushforward of qx0

, therefore we can obtain samples from
q1 by (1) reweighting samples of q0 into samples of qx0

,
(2) transporting samples from qx0

to samples of qx1
and (3)

reweighting samples from qx1
into samples from q1. By

assumption of perfect flow step (2) has perfect efficiency,
however, steps (1) and (3) both may require more than one
sample in expectation to be unbiased. This translates into an
efficiency equal to the product of the two effective sample
sizes:

ESS∗(q) ≥ ESS∗(q0, qx0
) ESS∗(qx1

, q1) =

exp [−D2(q0|qx0)] exp [−D2(qx1 |q1)]

= exp [−D2(q0|qx0
)−D2(qx1

|q1)] .

where the inequality derives from the possibility of the exis-
tence of more effective procedures for this sampling that do
not require passing from samples of qx0

and qx1
.

B. Training and Inference
In this section, we present the training and inference proce-
dures for our manifold docking (Algoritm B, B). We refer
to unbound protein structures as apo structures, and the
bound structures as holo structures. Recall that our goal is
to learn a distribution over holo structures, given the apo
structure and a seed conformation of the ligand. Similar to
(Corso et al., 2022), we are in a setting, where traditional
generative modeling where one has access to multiple sam-
ples from the same data distribution, we only have a single
(x∗,yapo,yholo) per protein-ligand complex. This implies
that the training loop (Algorithm B) now proceeds over dif-
ferent distributions, along with a single sample from that
distribution. This sample is then accepted or rejected de-
pending on the cutoff cdock, thus inducing an unbalanced
coupling and flow.

Pocket Extraction As our focus is on the flexible protein
docking task, we first extract the protein pocket given apo
and holo structures. We define the pocket residues as all

residues in the holo structure that have atleast one heavy
atom within 5Å of any ligand atom. Given these pocket
residues, the pocket center is defined based on the positions
of the Cα atom in the apo structure. To construct the geo-
metric graphs (Appendix D), we also use the residues which
have a Cα atom within 20Å of the pocket center. This addi-
tional buffer is added to improve the model’s robustness to
exact pocket definitions, and also add geometric information
from the pocket neighborhood.

Aligning Apo-Holo Frames A residue frame (Jumper
et al., 2021), is characterized by a tuple (R, t) ∈ SE(3),
where the rotation R is about the origin of the residue, and t
specifies the position of the Cα atom. Before applying the
conformer matching step (explained below) to the protein
sidechains, we align the frames of the apo and holo struc-
tures, by computing the rotation that aligns the N − Cα
vectors of the corresponding residues. The alignment will
not be perfect owing to differences in the bond lengths and
bond angles between the computationally generated and
ground truth structures, but provides the closest modifica-
tion of the apo structure backbone to the holo structure one.

Conformer Matching. For both the ligand and the protein
sidechains, we apply the conformer matching procedures in
(Jing et al., 2022) and (Plainer et al., 2023), where, given
the local structures from computational methods, we find
the closest (in a RMSD sense) structure to the ground truth
by modifying the appropriate torsion angles. The conformer
matching procedure is employed to prevent a distribution
shift between training and inference in the local structures
that are considered rigid in the manifold docking process.
To elaborate, the local structures (such as bond lengths and
bond angles) vary between RDKit (for ligands) and ESM-
Fold (for proteins) generated structures, and their ground
truth counterparts. If we train our models with ground truth
local structures, this would cause a distribution shift at in-
ference time, when we only have access to local structures,
provided by RDKit and ESMFold.

C. Model Architecture
We use message passing networks based on tensor prod-
ucts of irreducible representations (irreps) of SO(3), imple-
mented with the e3nn library.

Graph Construction. We represent structures as geo-
metric heterogenous graphs, with nodes comprising ligand
heavy atoms, receptor residues in the pocket and neighbor-
hood (located at the position of Cα atoms), and the heavy
atoms of the pocket residues. We chose to only model the
heavy atoms of the pocket residues for two reasons - i) this
provides a useful sparsity constraint for computational and
memory efficiency, and ii) typically, most of the conforma-
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Algorithm 1 TRAINING EPOCH: MANIFOLD DOCKING

Input: Training Pairs {(x∗,yapo,yholo)}; RDKit predictions {c}, RMSD cutoff cdock
Input: Pocket radius r; Pocket Buffer b
Input: Cα operator [·]Cα

foreach c,x∗,yapo,yholo do
Let x0 ← argminx RMSD(x∗,x)
ycenter, {i}pocket = EXTRACTPOCKET(yapo,yholo, r, b)
yapo ← RMSDALIGN(yapo,yholo, {i}pocket)
if RMSD(yapo,yholo) > cdock then

continue
else

yFA
apo,∆R

bb ← FRAMEALIGN(yapo,yholo)

yFA,SC
apo ,∆θsc ← SCCONFMATCH(yFA

apo,yholo)
Sample t ∼ U(0, 1)

// Ligand Diffusion
Sample ∆r,∆R,∆θ from diffusion kernels ptr

t (·|0), prot
t (·|0), ptor

t (·|0)
Compute xt by applying (∆r,∆R,∆θ) to x0

// Protein Flow
tsc, tbb

rot, t
bb
tr = COMPUTETIME(t, αsc, αbb

rot, α
bb
tr )

Interpolate ∆rbb
t ← [yapo]Cα · (1− t) +

[
yholo

]
Cα
· t

utr,bb
t (·|z)←

[
yholo

]
Cα
− [yapo]Cα

Interpolate ∆Rbb
t ← exp

(
tbb

rot log(∆R
bb)

)
urot,bb
t (·|z)←

log
∆Rbb

t
(∆Rbb)

1−tbb
rot

Interpolate ∆θsc
t ← exp (tsc log(∆θsc))

usc
t (·|z)←

log∆θsc
t
(∆θsc)

1−tsc

Compute yt by applying
(
∆rbb,∆Rbb,∆θsc

)
to yapo

Predict scores and drifts α, β, γ, δ, ϵ, η ← s(xt,yt, t)

// Ligand Loss
Llig = ∥α−∇ log ptr

t (·|0)∥2 + ∥β −∇ log prot
t (·|0)∥2 + ∥γ −∇ log ptor

t (·|0)∥2

// Protein Loss

Lprot = ∥δ − utr,bb
t (·|z)∥2 + ∥ϵ− urot,bb

t (·|z)∥2 + ∥η − usc
t (·|z)∥2

Apply optimization step on L = Lprot + Llig

end
end
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Algorithm 2 INFERENCE: MANIFOLD DOCKING

Input: RDKit predictions {c}, Apo structure yapo of the protein pocket
Input: Inference Steps N
Sample ΘN ∼ U(SO(2)m), RN ∼ U(SO(3)), rn ∼ N (0, σ2

tr)
Apply ΘN , RN , rn to c to get xN

Set yN ← yapo
∆t← 1/N
for n← N to 1 do
t← n/N
Predict scores and drifts α, β, γ, δ, ϵ, η ← s(xn,yn, t)

// Ligand Updates
∆σ2

tr = σ2
tr(n/N)− σ2

tr((n− 1)/N)
∆σ2

rot = σ2
rot(n/N)− σ2

rot((n− 1)/N)
∆σ2

tor = σ2
tor(n/N)− σ2

tor((n− 1)/N)
Sample ztr, zrot, ztor from N (0, σ2

tr),N (0, σ2
rot),N (0, σ2

tor)
Apply (α, β, γ) to xn to get xn−1

// Protein Updates
∆rbb

n ← δ ·∆t
∆Rbb

n ← ϵ ·∆t
∆θsc

n ← η ·∆t
Apply

(
∆rbb

n ,∆R
bb
t ,∆θ

sc
n

)
to yn to get yn−1

end

tional changes in the protein involve the pocket atoms, and
modelling this explicitly would facilitate downstream appli-
cations such as affinity prediction. We also adopt different
cutoffs depending on the types of nodes being connected,
largely following (Corso et al., 2022):

1. Ligand atoms-ligand atoms, receptor atoms-receptor
atoms, and ligand atom-receptor atom interactions use
a cutoff of 5Å. Covalent bonds between ligand atoms
are explicitly modelled with initial edge embeddings to
reflect the type of bond. For receptor atoms, we limit
the maximum number of neighbors to 12.

2. For receptor residue interactions, we use a distance
cutoff of 15Å, with a maximum neighbor limit of 24.

3. For interactions between ligand atoms and receptor
residues, unlike (Corso et al., 2022), we found using
the dynamic cutoff based on the ligand translation noise
to cause NaNs during training, possibly due to missing
connections. We thus used distance cutoff of 80Å
between ligand atoms and receptor residues.

4. Receptor pocket atoms are also connected to their cor-
responding residues.

Featurization We adopted the same featurization as DIFF-
DOCK, using the residue type and the embeddings with

ESM2 Language model for the residues, the atom type and
other chemical properties for the ligand and receptor atoms.

Manifold Docking We retain the core architecture of
DIFFDOCK (Corso et al., 2022), with the tensor product
convolution based message-passing layers, followed by a
convolution with the center of mass to predict the rotational
and translation scores for the ligand. For the torsion angles
in the ligand and sidechain torsion angles in the protein, we
use the pseudotorque layer from (Jing et al., 2022), adapted
accordingly for the sidechains. To predict the rotation and
translation flows for the residues (which are SE(3) equiv-
ariant), we use a linear layer that transforms the irreps of the
residue embeddings to a single odd and even vector (one for
each flow). As the residues constitute a coarse-grained rep-
resentation of the protein, we sum the odd and even vector
representations to obtain the predictions. The magnitudes
of the predictions are then adjusted with an MLP.

Confidence Model The embedding layers for the confi-
dence model follow the same architecture as for manifold
docking. The aggregated ligand, receptor residue, and re-
ceptor atom embeddings are concatenated, and updated with
an MLP to predict the final confidence (a SE(3) invariant
output).
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D. Experimental Details
Data For training our models, we use the PDBBind
dataset (Liu et al., 2017) whose complexes were extracted
from the PDB. Following (Stärk et al., 2022; Corso et al.,
2022), we adopt the time-based split of PDBBind, where the
17k complexes before 2019 were divided into training and
validation sets, while the 363 complexes after 2019 form the
test set. We download the PDBBind data as it is provided
by EquiBind from https://zenodo.org/record/
6408497. These files are first processed by PDBFixer
from the OpenMM toolbox (Eastman et al., 2017), to replace
non standard residues and add missing atoms. We then
used the PDBFixer processed files to extract the protein
sequence, and predict its structure with ESMFold (Lin et al.,
2022). The ESMFold generated files are also processed by
PDBFixer to add missing atoms such as terminal oxygens,
at the end of a chain. These processed files now consti-
tute our apo structures, while the processed analogues from
PDBBind constitute our holo structures. We further remove
hydrogen atoms while aligning the apo and holo structures.

For inference, we also use the PoseBusters benchmark
dataset (Buttenschoen et al., 2024), a carefully-selected set
of structures from the PDB. PoseBusters consists of crystal
structures released since 2021 (no overlap with the PDBBind
training set), which are subject to several quality control
filters followed by a final sequence-based clustering, result-
ing in 428 complexes. We adopt the same strategies with
PDBFixer for processing the PoseBusters files, followed
by the generation of ESMFold structures.

Metrics To evaluate the generated ligand and protein
pocket poses, we compute the RMSD between the predicted
and ground truth poses after alignment. This alignment
is computed based on the Kabsch alignment between the
atoms in the protein pocket, in the ground truth and pre-
dicted poses. To account for permutation symmetries in the
ligand, we use the symmetry-corrected RMSD of sPyRMSD.
For the ligand, besides the median RMSD, we report the %
of RMSDs below 2Å, which is a commonly adopted metric
for judging the quality of docking predictions (Alhossary
et al., 2015; Hassan et al., 2017; McNutt et al., 2021). For
the protein pocket atoms, besdies the median RMSD, we
report the % of RMSDs below 1Å, where we chose the 1Å
cutoff, typically treated as atomic accuracy.

Training Details For our manifold docking model (75.3
M parameters), we use an exponential moving average of
weights (EMA) during training, which is updated every
optimization step, with a decay factor of 0.999. We train
the model on 4 RTX A6000 GPUs, with a batch size of 4
per GPU. Every 10 epochs, we run inference for 20 steps
with the EMA weights on 500 complexes in the validation
set, and save the model with the largest percentage of ligand

RMSDs < 2Å. The initial learning rate of the model is 0.001,
which is updated with a learning rate scheduler with decay
0.7 if the percentage of complexes with ligand RMSDs <
2Å does not improve over 30 epochs. We train our model
for 600 epochs, after which we did not observe a noticeable
increase in ligand RMSDs < 2Å metric. We use the ADAM
optimizer for all our models.

For the confidence model, we use a smaller version of the
manifold docking model 4 M parameters to generate 20
poses (both ligand and protein) per training complex. For
the ligand, we assign label 1 if the RMSDS between pre-
dicted (after alignment) and ground truth pose is <2Å, while
for protein pocket atoms, we adopt a RMSD cutoff of 1Å.
We train the confidence model for around 100 epochs, and
save the model with the best accuracy. We found the model
predicting only the ligand pose confidence to offer the best
tradeoff between ligand and pocket atom prediction confi-
dence.

Runtimes Similar to other ML docking baselines, we
measure runtimes for the manifold docking and confidence
model. These runtimes are calculated on a single NVIDIA
A100-80GB GPU, with the preprocessing steps entailing
ESM2 embedding generation and RDKit conformer genera-
tion. The geometric graphs are generated on the fly as part
of the model and thus already included in the runtimes.
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