

000 001 FAIR CONFORMAL CLASSIFICATION VIA LEARNING 002 REPRESENTATION-BASED GROUPS 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 Conformal prediction methods provide statistically rigorous marginal coverage
012 guarantees for machine learning models, but such guarantees fail to account for al-
013 gorithmic biases, thereby undermining fairness and trust. This paper introduces a
014 fair conformal inference framework for classification tasks. The proposed method
015 constructs prediction sets that guarantee conditional coverage on adaptively iden-
016 tified subgroups, which can be implicitly defined through nonlinear feature com-
017 binations. By balancing effectiveness and efficiency in producing compact, infor-
018 mative prediction sets and ensuring adaptive equalized coverage across unfairly
019 treated subgroups, our approach paves a practical pathway toward trustworthy ma-
020 chine learning. Extensive experiments on both synthetic and real-world datasets
021 demonstrate the effectiveness of the framework.

024 1 INTRODUCTION

026 The rapid advancement of modern machine learning models, especially deep neural networks, has
027 enabled their deployment in high-stake decision-making situations such as medical diagnoses (Kaur
028 et al., 2020), resume filtering (Deshpande et al., 2020), and financial fraud detection (Kamuang
029 et al., 2024). Despite their strong average performance, real-world deployment raises critical challenges,
030 notably in uncertainty quantification (Guo et al., 2017; Ahmed et al., 2023) and algorithmic fair-
031 ness (Berk et al., 2024; Almasoud & Idowu, 2025).

032 Ensuring reliable decision-making necessitates the development of unbiased uncertainty mea-
033 sures, as even highly accurate models are prone to producing over-confident and erroneous pre-
034 dictions (Ovadia et al., 2019). Conformal prediction (CP, (Vovk et al., 2005; Smith, 2024)) has
035 emerged as a key framework for providing distribution-free, model-agnostic prediction sets with
036 user-specified (marginal) coverage guarantees. These sets provide reliable uncertainty information
037 for decision-makers especially when the set size is small (i.e., with high efficiency).

038 On the other hand, algorithmic biases often manifest as disproportionately poor performance on the
039 subgroup defined by specific feature conditions (e.g., *Race=Black & Gender=Female*), which may
040 arise from imbalanced data distribution or model inherent limitations (Hellman, 2020). These biases
041 underscore the need for algorithmic fairness mechanisms that extend beyond average performance
042 to ensure equitable treatment across all groups (Fabris et al., 2022; Das et al., 2023). However, there
043 may exist tensions between the efficiency of CP and algorithmic fairness, because the former desires
044 a small prediction set, while the latter may necessitate larger sets for equal conditional coverage
045 across all subgroups (Gibbs et al., 2025).

046 Conformal prediction with *equalized coverage* (Romano et al., 2020a) provides a pragmatic ap-
047 proach to the efficiency–fairness trade-off. This approach ensures that the target coverage level
048 (e.g., 90%) is satisfied not only marginally over the entire population, but also conditionally on each
049 protected group of interest. However, acquiring prediction sets with equalized coverage is chal-
050 lenging, as the number of all plausible groups of interest is exponential in the number of features. A
051 straightforward enumeration is practically infeasible both statistically and computationally, es-
052 pecially on multi-dimensional (continuous) features. Indeed, Romano et al. (2020a) only takes each
053 single feature as the condition of groups (e.g., a group defined by *Gender=Female*), which is an
arguably insufficient representation of the entire space of groups.

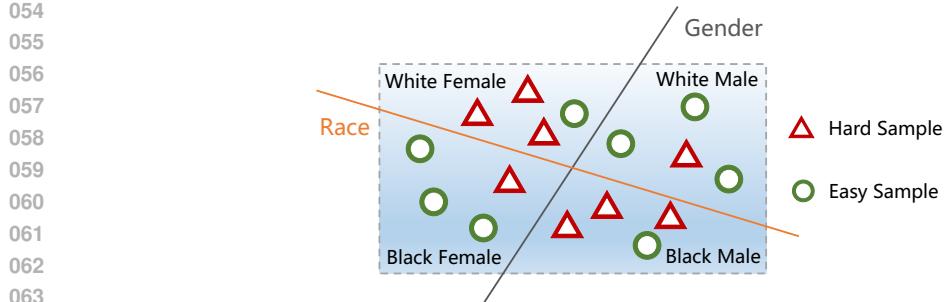


Figure 1: An illustrative example. The group space is divided into four parts by the feature *Race* and *Gender*. Hard samples (red triangles) are unfairly treated by the classifier, and easy samples (green circles) are normally treated. Note that a single feature (either *Race* or *Gender*) cannot discover the unfair subgroups (both have four triangles and four circles). Stronger expressiveness is desirable to capture the unfair subgroup “White Female or Black Male”.

Later, Zhou & Sesia (2024) observe that algorithmic biases often concentrate on a minority of subgroups, and propose adaptively fair conformal prediction (AFCP) to identify these potentially disadvantaged subgroups. In a nutshell, AFCP computes the conditional coverage score for each discrete feature and selects the top- k sensitive features with a greedy strategy (where k is a hyperparameter). However, this group identification method still has limited expressiveness. For example, it cannot capture groups defined by a nonlinear combination of features, such as Exclusive OR (see the subgroup “White Female or Black Male” in Fig. 1). Additionally, AFCP is based on Naïve Bayes, which incurs a high computational cost and restricts its applicability to continuous features.

1.1 OUR CONTRIBUTIONS

In this paper, we propose a new group-fair conformal prediction method, **fair conformal prediction for representation-based groups** (FAREG), which accommodates both group expressiveness and time efficiency. Different from existing work (Romano et al., 2020a; Zhou & Sesia, 2024) which directly extracts groups from the raw input feature X , our approach encodes X into a latent representation Z via a mapping $Z = f(X)$, and learns unfair groups characterized by the low group coverage based on Z . The introduction of Z as a high-level representation of features strengthens the expressiveness of models, allowing a thorough exploration of groups. Meanwhile, we can enhance the interpretability by reconstructing input X from the encoding Z . To this end, we carefully design an encoder-decoder architecture and the optimization objective, based on the principle of variational inference.

In addition, we propose a *nonlinear* version of the conditional coverage metric WSC (Cauchois et al., 2021), namely WSC⁺, aiming to evaluate the conditional coverage of unfairly treated groups more precisely. This allows users to check a conformal procedure and to compare multiple alternative conformal procedures.

The main contributions of this paper are summarized as follows. First, we propose a new conformal prediction method to enhance the expressiveness of unfair group identification. Second, we extend the traditional conditional coverage metric WSC to a nonlinear version WSC⁺ for more accurate evaluation. Comprehensive experiments on both synthetic and real-world datasets confirm the effectiveness and efficiency of our proposed method.

2 PRELIMINARY

For any natural number n , we write $[n] := \{1, \dots, n\}$. We work with the most widely-used version of conformal prediction, i.e., *split* conformal prediction, where we assume a calibration set $\mathcal{D} = \{(X_i, Y_i)\}_{i=1}^N$ of i.i.d. (or simply exchangeable) observations sampled from an (unknown) distribution P_{XY} . In standard classification, $X_i \in \mathcal{X}$ represents the input feature from a feature space $\mathcal{X} \subseteq \mathbb{R}^d$ and $Y_i \in [L]$ is a categorical label. A given classifier \hat{f} is trained (on a training set) to predict the conditional distribution $P(Y|X)$. Furthermore, X_{N+1} is a test instance with an unknown label

108 Y_{N+1} sampled by P_{XY} . CP constructs a prediction set $C(X_{N+1})$ for Y_{N+1} based on \mathcal{D} . The output
 109 $C(X_{N+1})$ guarantees marginal coverage at a user-specified level, i.e.,
 110

$$\mathbb{P}[Y_{N+1} \in C(X_{N+1})] \geq 1 - \alpha,$$

111 where $\alpha \in (0, 1)$ is a predefined miscoverage rate.
 112

113 Typically, CP proceeds in three steps: (1) computing the predefined conformity score $V(x_i, y_i)$ for
 114 each sample $(x_i, y_i) \in \mathcal{D}$ using the predictive results of the classifier \hat{f} ; (2) setting $(1 - \alpha)(1 + 1/N)$ -
 115 quantile score of \mathcal{D} as a threshold $\hat{\eta}$; (3) constructing the prediction set $C_m(X_{N+1}, \mathcal{D}) := \{y \in$
 116 $[K] \mid V(X_i, y) \geq \hat{\eta}\}$, which is used as $C(X_{N+1})$ for X_{N+1} .
 117

118 It can be shown that $C_m(X_{N+1}, \mathcal{D})$ meets the desirable *marginal coverage*. Intuitively, marginal
 119 coverage implies that the prediction set is guaranteed to contain the true label with the *average* $1 - \alpha$
 120 probability over the population. However, this guarantee is deemed to be insufficient, especially
 121 when miscoverage exhibits systematic bias, disproportionately affecting individuals belonging to
 122 groups characterized by certain features.
 123

124 By contrast, *conditional coverage* requires $\mathbb{P}[Y_{N+1} \in C(X_{N+1}) \mid X_{N+1} = x] \geq 1 - \alpha$ for each $x \in \mathcal{X}$.
 125 This is much stronger as it demands correct coverage across all regions of the feature space, not
 126 just on average. However, achieving conditional coverage is impossible without imposing extra
 127 assumptions on the underlying distribution P_{XY} (such as the smoothness of P_{XY} (Cai et al., 2014;
 128 Lei & Wasserman, 2014) and strictly limiting the size of feature space \mathcal{X} (Lee & Barber, 2021)). As
 129 these strong assumptions are often violated, conditional coverage is less meaningful in practice.
 130

131 Equalized coverage (Romano et al., 2020a) represents a pragmatic compromise to ensure validity
 132 across *predefined* sample groups that need to be protected. Given a group $\mathcal{G} \subseteq \mathcal{X}$, it is required that
 133

$$\mathbb{P}[Y_{N+1} \in C(X_{N+1}) \mid X_{N+1} \in \mathcal{G}] \geq 1 - \alpha \quad (1)$$

134 for all \mathcal{G} of interest. In particular, these groups are typically related to some specific features called
 135 sensitive features.
 136

137 However, the requirement for rigorous equalized coverage is localized, as algorithmic biases dispro-
 138portionately affect only a minority of subgroups (Zhou & Sesia, 2024), as mentioned in Seciton 1.
 139 Therefore, AFCP further proposes adaptive equalized coverage based on equalized coverage, for-
 140 malized by
 141

$$\mathbb{P}[Y_{N+1} \in C(X_{N+1}) \mid X_{N+1} \in \hat{\mathcal{G}}] \geq 1 - \alpha, \quad (2)$$

142 where $\hat{\mathcal{G}}$ is adaptively selected corresponding to sensitive features. Eq. 2 indicates that $C(X_{N+1})$ is
 143 well-calibrated for the selected group $\hat{\mathcal{G}}$ defined by these sensitive features.
 144

145 3 METHODOLOGY

146 This section presents FAREG, a learning-based method that adaptively identifies groups affected
 147 by algorithmic bias and adjusts their prediction sets to achieve equalized coverage while preserving
 148 high informativeness.
 149

150 3.1 LEARNING REPRESENTATION-BASED GROUPS

151 **Optimization Objective.** For any feature $x \in \mathcal{X}$, we write its encoding $z = f(x) \in \mathcal{Z}$, where \mathcal{Z} is a
 152 latent representation space. Intuitively, z denotes the latent representations of feature combinations
 153 of x . We introduce a random binary variable S and Z taking values in \mathcal{Z} to formalize the member-
 154 ship of a group. Naturally, we consider a conditional distribution $P(S \mid Z)$ such that the probability
 155 of $x \in \hat{\mathcal{G}}$ for a group $\hat{\mathcal{G}}$ is equal to $\mathbb{P}(S = 1 \mid Z = f(x))$. Our goal is twofold: (1) to learn an encoding
 156 $Z = f(X)$ that is maximally informative about S and X , while (2) Z does not reveal the identity of
 157 any individual i in the sample (e.g., the calibration set).
 158

159 We apply the *deep variational information bottleneck* (Deep VIB) method (Alemi et al., 2017).
 160 Specifically, for two random variables X and Y with the joint pdf (parameterized by θ), $p_\theta(x, y)$,
 161 $I(X, Y; \theta) = \int p_\theta(x, y) \log \frac{p_\theta(x, y)}{p_\theta(x)p_\theta(y)} dx dy$ denotes their mutual information. The optimization
 162 objective can be formalized as
 163

$$\max I(Z, S; \theta) + I(Z, X; \theta) - \beta I(Z, i; \theta),$$

162 where i is a random variable to take any instance from the sample (e.g., in this paper, the calibration
 163 set \mathcal{D}) with a uniform distribution, θ is the model parameter, and β is a weight hyperparameter. (We
 164 abbreviate $I(Z, S), I(Z, X), I(Z, i)$ as I_1, I_2, I_3 for convenience.)

165 By introducing $q_\phi(s|z), q_\varphi(x|z), r(z)$ as the variational approximation to $p_\theta(s|z), p_\theta(x|z), p(z)$ in
 166 respective terms, we perform variational inference and obtain

$$168 \quad I_1 + I_2 - \beta I_3 \geq \int p_\theta(x) p_\theta(s|x) p_\theta(z|x) \log q_\phi(s|z) dx ds dz \\ 169 \\ 170 \quad + \int p_\theta(x) p_\theta(z|x) \log q_\varphi(x|z) dx dz - \frac{\beta}{N} \sum_i \int p_\theta(z|x_i) \log \frac{p_\theta(z|x_i)}{r(z)} dz.$$

172 (The details are given in Appendix A.1.)

174 In practice, we can approximate $p_\theta(x, s) = p_\theta(x)p_\theta(s|x)$ and $p_\theta(x)$ using the empirical distribution
 175 on the observations (e.g., the calibration set \mathcal{D}). As for $p_\theta(z|x)$, the reparameterization
 176 trick (Kingma & Welling, 2013) forces z to conform to a normal distribution which relies on x_i , and
 177 hence its deterministic function can be rewritten as $z = f(x, \epsilon)$ with an (auxiliary) noise variable ϵ .

178 Substituting all of these into the above equation, we obtain the following loss function

$$180 \quad \mathcal{L} = -\frac{1}{N} \sum_{i=1}^N (\mathbb{E}_{\tilde{z} \sim f(x_i, \epsilon)} [\log q_\phi(s_i|\tilde{z}) + \log q_\varphi(x_i|\tilde{z})] - \beta D_{\text{KL}}(p_\theta(z|x_i) \| r(z))) \quad (3)$$

183 Intuitively, the expected log-likelihood $\mathbb{E}_{\tilde{z} \sim f(x_i, \epsilon)} [\log q_\phi(s_i|\tilde{z}) + \log q_\varphi(x_i|\tilde{z})]$ allows the encoding
 184 \tilde{z} to predict s_i and regenerate x_i simultaneously, whereas the Kullback-Leibler (KL) divergence aims
 185 to compress the remaining useless information of \tilde{z} .

186 **Instantiation.** Eq. 3 suggests a natural design of the Encoder-Decoder architecture. In our method,
 187 the stochastic encoder with parameter θ has the form $p_\theta(z|x) = \mathcal{N}(z|f_\mu(x), f_\sigma(x))$, where $f_\mu(x)$
 188 and $f_\sigma(x)$ are two MLP networks to output the mean and variance of a normal distribution. We
 189 set $r(z)$ as a standard normal distribution $\mathcal{N}(0, 1)$ and directly minimize the KL divergence term in
 190 Eq. 3 using the reparameterization trick.

191 We now concentrate on two decoders with parameters ϕ and φ . The instantiation of decoder with
 192 parameter φ is trivial. For the expected log-likelihood $\mathbb{E}_{\tilde{z} \sim f(x_i, \epsilon)} [\log q_\varphi(x_i|\tilde{z})]$ in Eq. 3, we utilize
 193 the standard Mean Squared Error (MSE) as the reconstruction loss (Kingma & Welling, 2013).

195 Decoder with parameter ϕ aims at predicting S , which indicates whether the sample X belongs to
 196 group $\hat{\mathcal{G}}$ or not. Assume a set of observations, e.g., the calibration set $\mathcal{D} = \{(X_i, Y_i)\}_{i=1}^N$. The
 197 distribution $P(S|X)$ can be viewed as a binary classifier h comprising an encoder with parameter
 198 θ and a decoder with the parameter ϕ . The result of h on \mathcal{D} is a vector $\mathbf{s} = [s_1, \dots, s_N] \in \{0, 1\}^N$.
 199 Let $\hat{\mathcal{G}}_{\mathbf{s}} \subseteq \mathcal{D}$ denote the group determined by \mathbf{s} on \mathcal{D} and \mathcal{H} be the family of all plausible h . We
 200 extend an inequality (Cauchois et al., 2021) to measure the deviation between the empirical coverage
 201 probability \mathbb{P}_n on \mathcal{D} and the oracle coverage probability \mathbb{P} .

202 **Proposition 1.** Let the VC-dimension $VC(\mathcal{H}) \leq R$ and $\delta = |\hat{\mathcal{G}}_{\mathbf{s}}|/N$ be the proportion of $\hat{\mathcal{G}}_{\mathbf{s}}$ to the
 203 entire dataset. Then the gap between the empirical coverage probability \mathbb{P}_n on the observations and
 204 the oracle coverage probability \mathbb{P} is upper bounded, i.e., there exists some constant C_1 for all $\tau > 0$

$$206 \quad \sup_{h \in \mathcal{H}} \{|\mathbb{P}_n[Y \in C(X) | X \in \hat{\mathcal{G}}_{\mathbf{s}}] - \mathbb{P}[Y \in C(X) | X \in \hat{\mathcal{G}}_{\mathbf{s}}]|\} \leq C_1 \sqrt{\frac{R \log N + \tau}{\delta N}}$$

208 holds with probability at least $1 - e^{-\tau}$.

210 Proposition 1 (cf. Appendix A.2 for proof) highlights two key directions for reducing the discrepancy
 211 between \mathbb{P}_n and \mathbb{P} . First, a lower VC-dimension $VC(h)$ leads to a more precise estimation \mathbb{P}_n ,
 212 implying that the classifier h should exhibit limited complexity. Second, the selected group must be
 213 sufficiently large to ensure reliable estimation.

214 We maximize the expected log-likelihood $\mathbb{E}_{\tilde{z} \sim f(x_i, \epsilon)} [\log q_\phi(s_i|\tilde{z})]$ in Eq. 3 via minimizing the ex-
 215 pected empirical conditional coverage of the selected group $\hat{\mathcal{G}}$. The group $\hat{\mathcal{G}}$ on \mathcal{D} is determined by

216 a random vector \mathbf{S} , sampled from a joint Bernoulli distribution $B = \prod_{i=1}^N \text{Bernoulli}(q_\phi(S_i = 1 | \tilde{z}))$.
 217 Hence, given \mathcal{D} , we formulate the following optimization problem :

$$219 \quad \min_{\phi} \mathbb{E}_{\mathbf{S} \sim B} [\mathbb{P}_n [Y \in C(X) | X \in \hat{\mathcal{G}}_{\mathbf{S}}]] \quad \text{s.t.} \quad \frac{1}{N} \sum_{i=1}^N q_\phi(S_i = 1 | \tilde{z}) \geq \delta. \quad (4)$$

221 In the above minimization problem, $\delta = |\hat{\mathcal{G}}_{\mathbf{S}}|/N$ denotes the the proportion of the selected group size
 222 to the whole dataset \mathcal{D} , and the decoder with parameter ϕ is a simple logistic regression model of
 223 the form $q_\phi(s | \tilde{z}) = \sigma(s | f_m(\tilde{z}))$, where σ is the sigmoid function and f_m is a MLP network.

224 To solve the constrained optimization problem, we employ the Projected Gradient Descent (PGD),
 225 an iterative optimization algorithm (Madry et al., 2017), to optimize the parameter ϕ . In each training
 226 step, PGD performs a gradient descent update and then projects the new point onto the feasible
 227 set to ensure all constraints are satisfied. Specifically, when the predictive distribution $q_\phi(s | \tilde{z})$
 228 does not meet the constraint $\frac{1}{N} \sum_{i=1}^N q_\phi(S_i = 1 | \tilde{z}) \geq \delta$ after one back propagation process, we
 229 project it back onto the constraint-friendly space. Such a projection is equivalent to an ℓ_2 distance
 230 minimization problem. Let $q_\phi^*(s_1 | \tilde{z}) \geq \dots \geq q_\phi^*(s_N | \tilde{z})$ be the descending order of $\{q_\phi(s_i | \tilde{z})\}_{i=1}^N$,
 231 and the projection results in

$$232 \quad q'_\phi(s_i | \tilde{z}) = \min \left(1, q_\phi(s_i | \tilde{z}) + \frac{\omega}{2} \right), \quad (5)$$

234 where $\omega = (\delta - k - \sum_{i=k+1}^N q_\phi^*(s_i | \tilde{z})) / (N - k) \geq 0$, $k \in [N]$ is the greatest index to satisfy $q_\phi^*(s_k | \tilde{z}) +$
 235 $\omega/2 \geq 1$ and $q_\phi^*(s_{k+1} | \tilde{z}) + \omega/2 < 1$. (The details are given in Appendix A.3.)

237 Overall, we employ the empirical conditional coverage loss \mathcal{L}_{CC} , the reconstruction loss \mathcal{L}_{MSE} , and
 238 the KL divergence loss \mathcal{L}_{KL} to replace the corresponding terms in Eq. 3, resulting in

$$239 \quad \mathcal{L} = \mathcal{L}_{\text{CC}} + \mathcal{L}_{\text{MSE}} - \beta \mathcal{L}_{\text{KL}}. \quad (6)$$

240 3.2 CONSTRUCTING THE ADAPTIVE PREDICTION SETS

242 After selecting the unfair group $\hat{\mathcal{G}}$, we proceed to construct the final prediction set with $\hat{\mathcal{G}}$. First,
 243 a standard conformal prediction set $C_m(X_{N+1}, \mathcal{D})$ is constructed using classic adaptive conformal
 244 prediction. Then, we perform T sampling of the vector \mathbf{s}_t ($t \in [T]$) from the joint Bernoulli dis-
 245 tribution B learned by models in Eq. 4. Each \mathbf{s}_t defines a group $\hat{\mathcal{G}}_{\mathbf{s}_t}$, and such group is used as a
 246 calibration set to build a prediction set $C_m(X_{N+1}, \hat{\mathcal{G}}_{\mathbf{s}_t})$ as mentioned in Section 2. The final predic-
 247 tion set for Y_{N+1} is given by the union of all these sets:

$$249 \quad C(X_{N+1}) = C_m(X_{N+1}, \mathcal{D}) \cup \bigcup_{t=1}^T C_m(X_{N+1}, \hat{\mathcal{G}}_{\mathbf{s}_t}). \quad (7)$$

251 Our approach FAREG is summarized in Algorithm 1. To analyze its time complexity, assume we
 252 have M test instances and the complexity of conducting classic conformal prediction is $\mathcal{O}(N + M)$.
 253 Then, training the model to select groups is $\mathcal{O}(EN(|\theta| + |\phi| + |\varphi|))$, where E is the number of
 254 epochs. For all M test instances, the time of selecting groups and constructing prediction sets is
 255 $\mathcal{O}(TN + TM)$. The overall complexity of our FAREG is $\mathcal{O}(EN(|\theta| + |\phi| + |\varphi|) + T(N + M))$,
 256 which is $\mathcal{O}(N + M)$, disregarding constant multiplicative factors. In contrast, the complexity of
 257 AFCP is $\mathcal{O}(N \log N + NM)$ (Zhou & Sesia, 2024).

258 The following result, proved in Appendix A.4, ensures that the prediction set $C(X_{N+1})$ generated
 259 by FAREG achieves adaptive equalized coverage (Eq. 2) over the selected group set $\{\hat{\mathcal{G}}_{\mathbf{s}_t}\}_{t=1}^T$.

260 **Theorem 1.** *If $\{(X_i, Y_i)\}_{i=1}^{N+1}$ are exchangeable, the prediction set $C(X_{N+1})$ and the selected group
 261 set $\{\hat{\mathcal{G}}_{\mathbf{s}_t}\}_{t=1}^T$ output by Algorithm 1 satisfy the adaptive equalized coverage defined in Eq. 2, and
 262 this guarantee still holds when the selected groups are defined by a more complex combination of
 263 features (e.g., non-linear) compared to AFCP.*

264 4 EXPERIMENTS

265 4.1 EXPERIMENTAL SETUP

266 **Baselines.** We select the classic CP method Marginal (Romano et al., 2020b) for classification,
 267 the initial CP method Partial (Romano et al., 2020a) considering equalized coverage, and the state-

270 **Algorithm 1** The overall framework of FAREG.

271 **Input:** calibration dataset $\mathcal{D} = \{X_i, Y_i\}_{i=1}^N$; test instance with feature X_{N+1} ; list of K sensitive
 272 features; pre-trained classifier \hat{f} ; fixed rule to compute nonconformity scores; level $\alpha \in (0, 1)$;
 273 selected group size proportion δ ; hyperparameter β ; sampling times T ;
 274 **Output:** prediction set $C(X_{N+1})$; selected group set $\{\hat{\mathcal{G}}_{\mathbf{s}_t}\}_{t=1}^T$.

275 1: Construct classic conformal prediction set $C_m(X_{N+1}, \mathcal{D})$ based on the output of \hat{f} ;
 276 2: **for** each batch **do**
 277 3: Calculate KL divergence loss \mathcal{L}_{KL} with reparameterization trick;
 278 4: Sample $\tilde{z} \sim f(x, \epsilon)$;
 279 5: Calculate conditional coverage loss \mathcal{L}_{CC} and reconstruction loss \mathcal{L}_{MSE} using \tilde{z} ;
 280 6: Put all losses together in \mathcal{L} as defined in Eq. 6;
 281 7: Update parameters θ, ϕ and φ via the gradient descent of \mathcal{L} ;
 282 8: **if** $\sum_{i=1}^N q_\phi(S_i = 1 | \tilde{z}) < \delta \cdot N$ **then**
 283 9: Project each $q_\phi(S_i = 1 | \tilde{z})$ to satisfy minimum set constraint using Eq. 5;
 284 10: **end if**
 285 11: **end for**
 286 12: **for** $t \in [T]$ **do**
 287 13: Sample $\mathbf{s}_t \sim B$; $\triangleright B$ is a joint Bernoulli distribution mentioned in Eq. 4
 288 14: Construct $C_m(X_{N+1}, \hat{\mathcal{G}}_{\mathbf{s}_t})$;
 289 15: **end for**
 290 16: Construct prediction set $C(X_{N+1})$ following Eq. 7.

291
 292
 293 of-the-art method AFCP (Zhou & Sesia, 2024) as our baselines. The vanilla version of AFCP is
 294 designed to pick at most one sensitive feature (referred to as AFCP1). We also extend AFCP1 to
 295 select two sensitive features (referred to as AFCP2), given unreal, strong prior knowledge. Note that
 296 in real-world applications, it is typically unknown exactly how many features the unfair group may
 297 correspond to.

298 **Evaluation Metrics.** To evaluate the prediction sets $C(X_{N+1})$ produced by different CP meth-
 299 ods, we use the coverage conditional on a specific group (referred to as Group Coverage), Average
 300 Coverage (viz., marginal coverage), and Average Size (viz., efficiency) as the metrics.

301 Additionally, we propose a new conditional coverage metric, viz., WSC^+ , to capture groups defined
 302 by complicated (nonlinear) feature relationships. Traditional conditional coverage metric (Cauchois
 303 et al., 2021) considers the worst coverage over all slabs containing δ mass on the observations, which
 304 is defined as

305
$$WSC_n(C, \mathbf{v}) := \inf_{a < b} \left\{ \mathbb{P}_n(Y \in C(X) | a \leq \mathbf{v}^T X \leq b) \text{ s.t. } \mathbb{P}_n(a \leq \mathbf{v}^T X \leq b) \geq \delta \right\},$$

306 where $\mathbf{v} \in \mathbb{R}^d$ and $a < b \in \mathbb{R}$.

307 To strengthen the WSC metric, we replace the linear mapping \mathbf{v}^T in the above equation with an
 308 arbitrary non-linear function π , giving rise to WSC^+ , i.e.,

309
$$WSC_n^+(C, \pi) := \inf_{a < b} \left\{ \mathbb{P}_n(Y \in C(X) | a \leq \pi(X) \leq b) \text{ s.t. } \mathbb{P}_n(a \leq \pi(X) \leq b) \geq \delta \right\}. \quad (8)$$

310 Assume a quadratic function $\pi(\mathbf{x}) = \mathbf{x}^T \mathbf{W} \mathbf{x} + \mathbf{v}^T \mathbf{x}$, where $\mathbf{W} \in \mathbb{R}^{d \times d}$ and $\mathbf{v} \in \mathbb{R}^d$. We uniformly
 311 draw 1,000 samples $\pi_j = \{\mathbf{W}_j, \mathbf{v}_j\}$ to compute the worst-slab coverage for each π_j on the test
 312 instances. Following Cauchois et al. (2021), we use the grid search to achieve the optimal a, b
 313 satisfying the desiderata as well. In this case, we have a lower bound for our metric WSC^+ .

314 **Proposition 2.** Let $\pi(\mathbf{x}) = \mathbf{x}^T \mathbf{W} \mathbf{x} + \mathbf{v}^T \mathbf{x}$ be a quadratic function and Π be a parameter space of
 315 π . Then, if C effectively provides conditional coverage at level $1 - \alpha$, we have

316
$$WSC_n^+ = \inf_{\pi \in \Pi} WSC_n^+(C, \pi) \geq 1 - \alpha - \mathcal{O}(1) \sqrt{\frac{\mathcal{O}(d^2) \log N}{\delta N}}. \quad (9)$$

317
 318 The proof is given in Appendix A.5.

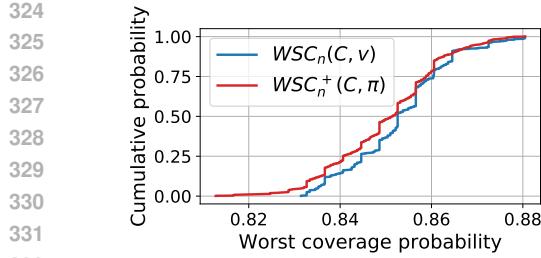


Figure 2: **CDF of Conditional Coverage** Table 1: **The performance of WSC_n and WSC_n^+ metrics ($\delta = 0.5$)**, which plots the respective cumulative probability curves of different worst-slab times, and report the average results (the value in () coverage discovered by $WSC_n(C, v)$ and is the standard deviation). Smaller coverage is better. $WSC_n^+(C, \pi)$ over 1,000 samplings. The red curve is always above the blue curve, indicating that our $WSC_n^+(C, \pi)$ finds more groups with the minimum worst-coverage than $WSC_n(C, v)$.

To demonstrate the advantages of the new metric WSC^+ , we randomly draw the features $X \in [0, 1]^{10}$ from a uniform distribution and create a simple dataset for classification as described in Appendix B.1. Note that we define the group needed to be protected to satisfy $(X[0] \geq 0.1) \oplus (X[1] \geq 0.1) = \text{True}$. We respectively plot the Cumulative Distribution Functions (CDF) of $WSC_n(C, v)$ and $WSC_n^+(C, \pi)$ over 1,000 samples π_j when $\delta = 0.5$ in Fig. 2, and observe that our $WSC_n^+(C, \pi)$ always reveals the groups with the worse coverage than that of $WSC_n(C, v)$, which can be attributed to representational capability of the nonlinear function π in $WSC_n^+(C, \pi)$.

Moreover, we also list the average results of two metrics, WSC_n and WSC_n^+ , as δ increases over 10 repeated experiments in Table 1. Similar to Fig. 2, the minimum worst-slab coverage found by our WSC_n^+ is smaller than that found by WSC_n by up to 9.89%. As δ increases, the condition coverage tends to the marginal coverage (0.9), and the gap between WSC_n and WSC_n^+ narrows, as expected.

Implementations.¹ All the experiments are carried out on NVIDIA GeForce RTX 3090. We repeat each experiment 10 times and report the average to suppress randomness. We set $\delta = 0.5$ for WSC_n^+ by default. More implementation details, such as hyperparameters and training settings, are presented in Appendix B.1.

4.2 SYNTHETIC DATA

We evaluate our method on synthetic data designed to mimic a mental illness diagnosis scenario. The dataset includes six possible labels: Depression, Anxiety Disorders, Bipolar Disorder, Schizophrenia, Anorexia, and Post-Traumatic Stress Disorder (PTSD). Each sample contains four sensitive features—Age Group, Region, Gender, and Color—along with six non-sensitive features independently sampled from a uniform distribution within a value range [0, 1]. The sensitive features are generated as follows: (1) Gender is uniformly drawn from {Female, Male}; (2) Color is uniformly drawn from {Red, Blue}; (3) Age Group is drawn from {Child, Youth, Middle, Elder} with equal probability; (4) Region follows a fixed cyclical sequence: Asia, Europe, Africa, America, Oceania.

We then generate true labels Y for the dataset, where diagnosis is more challenging for a specific subgroup defined by the Exclusive NOR (XNOR) operation (cf. Appendix B.1). Specifically, we assume $X[0]$ is Color, $X[1]$ is Gender, and $X[2]$ is any non-sensitive feature, and define Y based solely on these three attributes. Through the label generation, we have the following subgroup $X[0] \odot X[1] = \text{True}: \text{Color}=\text{Red}(\text{True}) \& \text{Gender}=\text{Female}(\text{True}) \text{ or } \text{Color}=\text{Blue}(\text{False}) \& \text{Gender}=\text{Male}(\text{False})$, simulating a real-world situation that algorithmic biases occur on this subgroup.

Fig. 3 depicts the results of conditional coverage, average coverage (marginal coverage), and average prediction set size (efficiency), respectively. For conditional coverage, Group Coverage is the coverage on the subgroups defined by XNOR operation as mentioned in data construction, and we

METRIC	$\delta = 0.1$	$\delta = 0.2$	$\delta = 0.3$	$\delta = 0.4$	$\delta = 0.5$
WSC_n	0.616 (0.053)	0.748 (0.037)	0.793 (0.025)	0.822 (0.023)	0.842 (0.023)
WSC_n^+	0.582 (0.047)	0.674 (0.048)	0.750 (0.034)	0.800 (0.028)	0.829 (0.024)
IMP.	-5.52%	-9.89%	-5.42%	-2.68%	-1.54%

¹An implementation of our approach can be accessed at the following anonymous link: <https://github.com/Anonymity67543/FaReG>.

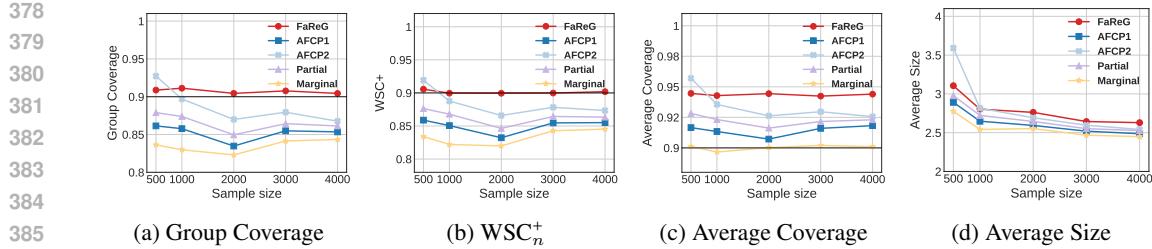


Figure 3: Performance of prediction sets produced by different CP methods on synthetic data w.r.t. the total number of training and calibration data instances. Only our FAREG achieves the ideal conditional coverage (0.9), and meanwhile, does not sacrifice too much information (set sizes) compared to baselines.

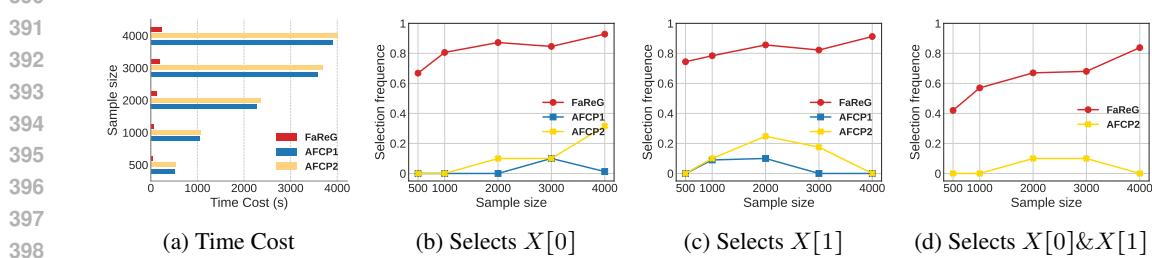


Fig. (a) reports the running time of different CP methods with the increasing total number of training and calibration data instances. Fig. (b)–(d) are the results of the selection frequency of target features $X[0]$ and $X[1]$. As the sample size increases, our method becomes more consistent with target features.

compute WSC_n^+ on four predefined sensitive features. In Fig. 3a and 3b, our FAREG is the only one that always achieves valid coverage (greater than 0.9) for the targeted group with varying sample sizes. Although the conditional coverage of AFCP2 also exceeds 0.9 when the sample size reaches 500, as shown in Fig. 3d, it produces considerably larger prediction sets, which is less informative for decision-making.

In Fig. 4a, we compare the average running time of different CP methods over 10 repeated experiments, and FAREG significantly reduces the time cost, whose time complexity is linear in the number of data instances. This result is consistent with the analysis in Section 3.2.

To determine which features are selected by our method, we analyze the predictive variable S and the reconstructed feature \hat{X} by perturbing the latent representation Z , following the Beta-VAE approach (Higgins et al., 2017). Specifically, we impose a slight perturbation (e.g., ± 0.001) on each dimension of Z and identify the dimension that most influences S . Given this influential dimension and prior knowledge (as in AFCP2) that there are exactly two target features, we compute the change ratios for each dimension of \hat{X} before and after perturbation, and select the two features with the top-2 maximum change ratios.

Figures 4b, 4c, and 4d respectively report the frequency of selecting $X[0]$ or $X[1]$ individually, and that of selecting both $X[0]$ and $X[1]$ simultaneously. The results demonstrate that our approach captures more target features than the baselines, and this advantage becomes more pronounced as the sample size increases.

Additionally, we present the results of parameter sensitivity and group visualization in Appendix B.2 and B.3, respectively.

4.3 NURSERY DATA

We evaluate our FAREG and baseline methods on the publicly available Nursery data (Rajkovic, 1989), originally constructed from a hierarchical decision model developed to rank applications for nursery schools. The dataset comprises 12,960 instances, each described by eight categorical features: Parents' occupation (3 levels, $Parent := \{usual, pretentious, great-pret\}$), Child's nursery (5

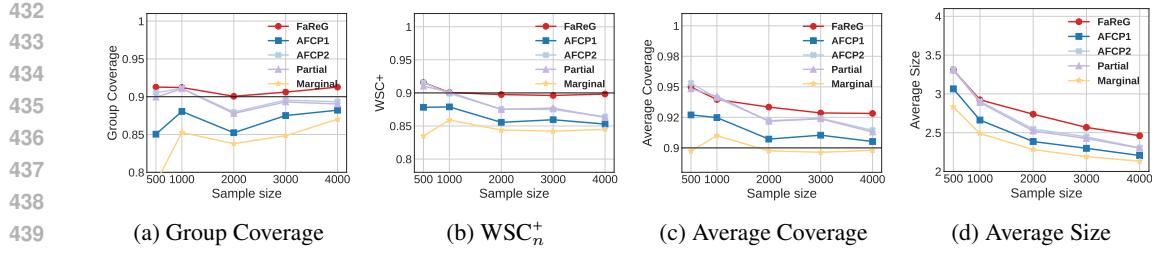


Figure 5: Performance of prediction sets produced by different CP methods on the Nursery data w.r.t. the total number of training and calibration data instances. Only our FAREG achieves the ideal conditional coverage (0.9) and keeps most of the uncertainty information of sets.

levels), Family form (4 levels), Number of children (4 levels), Housing conditions (3 levels), Financial standing (2 levels, $Finance := \{convenient, inconven\}$), Social conditions (3 levels) and Health status (3 levels). The task is to classify applications into one of five priority ranks. We take all features into account (as sensitive features) except Housing conditions.

In data preprocessing, we strictly follow Zhou & Sesia (2024), and consider a group defined by $Parent=usual \ \& \ Finance=inconv$ or $Parent=pretentious \ \& \ Finance=inconv$. To make the issue more interesting and control the degree of algorithmic bias, we corrupt the labels of instances in such a group by adding independent, uniform noise and rounding to the nearest integer (label) as similar as Zhou & Sesia (2024). This perturbation amplifies the intrinsic unpredictability of the group defined before, thereby increasing its vulnerability to algorithmic bias.

Fig. 5 presents the results. Our method consistently achieves the valid coverage under both conditional coverage metrics, i.e., Group Coverage and WSC_n^+ , outperforming all baselines. Partial and AFCP2 perform better than the other CP methods, but FAREG still achieves superior results.

5 RELATED WORK

Conformal Prediction (CP) has seen vigorous development in recent years (Vovk et al., 2005; Smith, 2024). Its applications span diverse domains, from image classification (Sadinle et al., 2019) and object detection (Teng et al., 2023) to large language models (Kumar et al., 2023).

Some CP work, building on the split conformal framework (Papadopoulos et al., 2002; Lei et al., 2018), introduces advanced nonconformity scores to ensure valid marginal coverage on the empirical data distribution. For example, Romano et al. (2019) gives a nonconformity score based on quantile regression, while Romano et al. (2020b) and Angelopoulos et al. (2020) design nonconformity scores for classification. Additionally, Hoff (2023) proposes a nonconformity score to achieve Bayes optimal coverage.

Another line of work has explored various notions of equalized coverage (Romano et al., 2020a) and empirically evaluated the corresponding conformal predictors in real-world applications (Lu et al., 2022). For regression tasks, Wang et al. (2023) guarantees equal coverage rates across more fine-grained groups on continuous features, and Liu et al. (2022) propose to learn a real-valued quantile function with respect to sensitive features. They address a distinct notion of equalized coverage tailored to continuous outcomes. In classification, label-conditional coverage is a common alternative to equalized coverage (Vovk et al., 2003; Löfström et al., 2015; Ding et al., 2023). This work defines the groups to be protected based on the label Y_{N+1} , instead of the features X_{N+1} . Jung et al. (2022) and Gibbs et al. (2025) adopt group-conditional coverage, which is analogous to equalized coverage, to improve prediction sets. Different from the previous work, our approach FAREG can adaptively identify unfairly treated groups without the assumption that such groups are pre-defined. AFCP (Zhou & Sesia, 2024) develops an algorithm to construct CP sets with valid equalized coverage for adaptively selected groups, which establishes the current state-of-the-art for equalized coverage tasks.

486

6 CONCLUSION

488 In this paper, we propose FAREG, a fair conformal prediction method that learns latent groups to
 489 achieve adaptive equalized coverage. By leveraging a variational encoder-decoder to discover sub-
 490 groups with poor coverage in a high-level feature space, our approach captures complex algorithmic
 491 biases that linear methods may neglect. We also propose WSC⁺, a nonlinear metric for evaluat-
 492 ing the conditional coverage of unfair groups more accurately. Extensive experiments confirm that
 493 FAREG efficiently offers stronger fairness guarantees, showing a more expressive and practical path
 494 toward fair, reliable conformal inference.

495 **Limitations.** The enhanced expressivity of representation-based groups may sacrifice model in-
 496 terpretability partially, compared to groups explicitly defined on manifest features. However, the
 497 encoder-decoder structure compensates this shortcoming well via reconstructing the input X , which
 498 is empirically confirmed by Section 4.2 and Appendix B.3.

500

REPRODUCIBILITY STATEMENT

502 To facilitate the reproducibility of our work, we have made our source code publicly available
 503 through a public anonymous repository. All experimental details, including dataset partitions, hy-
 504 perparameter configurations, and model details, are fully documented in Appendix B.1. We are
 505 confident that these materials provide the necessary information to replicate our findings.

507

USAGE OF LLMS

510 Large Language Models (LLMs) were utilized exclusively as writing assistants to enhance the lin-
 511 guistic quality of this manuscript, focusing on improving clarity, grammar, and readability. Their
 512 involvement was strictly limited to this editorial function. LLMs played no role in any substantive
 513 research components, including conceptualization, experimental design, data analysis, interpreta-
 514 tion of results, or scientific content creation. All intellectual contributions, methodological develop-
 515 ments, findings, and conclusions originate solely from the authors.

516

REFERENCES

518 Shams Forruque Ahmed, Md Sakib Bin Alam, Maruf Hassan, Mahtabin Rodela Rozbu, Taoseef Ish-
 519 tiak, Nazifa Rafa, M Mofijur, ABM Shawkat Ali, and Amir H Gandomi. Deep learning modelling
 520 techniques: current progress, applications, advantages, and challenges. *Artificial Intelligence Re-*
 521 *view*, 56(11):13521–13617, 2023.

523 Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational informa-
 524 tion bottleneck. In *International Conference on Learning Representations (ICLR)*, 2017. URL
 525 <https://arxiv.org/abs/1612.00410>. arXiv preprint arXiv:1612.00410, accepted to
 526 ICLR 2017.

527 Ahmed S Almasoud and Jamiu Adekunle Idowu. Algorithmic fairness in predictive policing. *AI*
 528 *and Ethics*, 5(3):2323–2337, 2025.

530 Anastasios Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I Jordan. Uncertainty sets
 531 for image classifiers using conformal prediction. *arXiv preprint arXiv:2009.14193*, 2020.

532 Richard A Berk, Arun Kumar Kuchibhotla, and Eric Tchetgen Tchetgen. Improving fairness in
 533 criminal justice algorithmic risk assessments using optimal transport and conformal prediction
 534 sets. *Sociological Methods & Research*, 53(4):1629–1675, 2024.

536 Stéphane Boucheron, Olivier Bousquet, and Gábor Lugosi. Theory of classification: A survey of
 537 some recent advances. *ESAIM: probability and statistics*, 9:323–375, 2005.

538 T Tony Cai, Mark Low, and Zongming Ma. Adaptive confidence bands for nonparametric regression
 539 functions. *Journal of the American Statistical Association*, 109(507):1054–1070, 2014.

540 Maxime Cauchois, Suyash Gupta, and John C Duchi. Knowing what you know: valid and validated
 541 confidence sets in multiclass and multilabel prediction. *Journal of machine learning research*, 22
 542 (81):1–42, 2021.

543

544 Sanjiv Das, Richard Stanton, and Nancy Wallace. Algorithmic fairness. *Annual Review of Financial
 545 Economics*, 15(1):565–593, 2023.

546 Ketki V Deshpande, Shimei Pan, and James R Foulds. Mitigating demographic bias in ai-based
 547 resume filtering. In *Adjunct publication of the 28th ACM conference on user modeling, adaptation
 548 and personalization*, pp. 268–275, 2020.

549

550 Tiffany Ding, Anastasios Angelopoulos, Stephen Bates, Michael Jordan, and Ryan J Tibshirani.
 551 Class-conditional conformal prediction with many classes. *Advances in neural information pro-
 552 cessing systems*, 36:64555–64576, 2023.

553 Alessandro Fabris, Stefano Messina, Gianmaria Silvello, and Gian Antonio Susto. Algorithmic
 554 fairness datasets: the story so far. *Data Mining and Knowledge Discovery*, 36(6):2074–2152,
 555 2022.

556

557 Isaac Gibbs, John J Cherian, and Emmanuel J Candès. Conformal prediction with conditional guar-
 558 antees. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, pp. qkaf008,
 559 2025.

560 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
 561 networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.

562

563 Deborah Hellman. Measuring algorithmic fairness. *Virginia Law Review*, 106(4):811–866, 2020.

564

565 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
 566 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
 567 constrained variational framework. In *International conference on learning representations*, 2017.

568

569 Peter Hoff. Bayes-optimal prediction with frequentist coverage control. *Bernoulli*, 29(2):901–928,
 570 2023.

571

572 Christopher Jung, Georgy Noarov, Ramya Ramalingam, and Aaron Roth. Batch multivalid confor-
 573 mal prediction. *arXiv preprint arXiv:2209.15145*, 2022.

574

575 Paulin Kamuangu. A review on financial fraud detection using ai and machine learning. *Journal of
 576 Economics, Finance, and Accounting Studies*, 6(1):67, 2024.

577

578 Simarjeet Kaur, Jimmy Singla, Lewis Nkenyereye, Sudan Jha, Deepak Prashar, Gyanendra Prasad
 579 Joshi, Shaker El-Sappagh, Md Saiful Islam, and SM Riazul Islam. Medical diagnostic systems
 580 using artificial intelligence (ai) algorithms: principles and perspectives. *Ieee Access*, 8:228049–
 228069, 2020.

581

582 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint
 583 arXiv:1312.6114*, 2013.

584

585 Bhawesh Kumar, Charlie Lu, Gauri Gupta, Anil Palepu, David Bellamy, Ramesh Raskar, and An-
 586 drew Beam. Conformal prediction with large language models for multi-choice question answer-
 587 ing. *arXiv preprint arXiv:2305.18404*, 2023.

588

589 Yonghoon Lee and Rina Barber. Distribution-free inference for regression: discrete, continuous,
 590 and in between. *Advances in Neural Information Processing Systems*, 34:7448–7459, 2021.

591

592 Jing Lei and Larry Wasserman. Distribution-free prediction bands for non-parametric regression.
 593 *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 76(1):71–96, 2014.

594

595 Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-
 596 free predictive inference for regression. *Journal of the American Statistical Association*, 113
 597 (523):1094–1111, 2018.

594 Meichen Liu, Lei Ding, Dengdeng Yu, Wulong Liu, Linglong Kong, and Bei Jiang. Conformalized
 595 fairness via quantile regression. *Advances in Neural Information Processing Systems*, 35:11561–
 596 11572, 2022.

597 Tuve Löfström, Henrik Boström, Henrik Linusson, and Ulf Johansson. Bias reduction through
 598 conditional conformal prediction. *Intelligent Data Analysis*, 19(6):1355–1375, 2015.

600 Charles Lu, Andréanne Lemay, Ken Chang, Katharina Höbel, and Jayashree Kalpathy-Cramer. Fair
 601 conformal predictors for applications in medical imaging. In *Proceedings of the AAAI conference
 602 on artificial intelligence*, volume 36, pp. 12008–12016, 2022.

603 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 604 Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*,
 605 2017.

606 Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, Sebastian Nowozin, Joshua Dillon, Balaji Lak-
 607 shminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? evaluating predictive
 608 uncertainty under dataset shift. *Advances in neural information processing systems*, 32, 2019.

609 Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive confidence
 610 machines for regression. In *European conference on machine learning*, pp. 345–356. Springer,
 611 2002.

612 Vladislav Rajkovic. Nursery. UCI Machine Learning Repository, 1989. DOI:
 613 <https://doi.org/10.24432/C5P88W>.

614 Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quantile regression. *Ad-
 615 vances in neural information processing systems*, 32, 2019.

616 Yaniv Romano, Rina Foygel Barber, Chiara Sabatti, and Emmanuel Candès. With malice toward
 617 none: Assessing uncertainty via equalized coverage. *Harvard Data Science Review*, 2020a.

618 Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adaptive cover-
 619 age. *Advances in neural information processing systems*, 33:3581–3591, 2020b.

620 Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least ambiguous set-valued classifiers with
 621 bounded error levels. *Journal of the American Statistical Association*, 114(525):223–234, 2019.

622 Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algo-
 623 rithms*. Cambridge university press, 2014.

624 Ralph C Smith. *Uncertainty quantification: theory, implementation, and applications*. SIAM, 2024.

625 Jiaye Teng, Chuan Wen, Dinghuai Zhang, Yoshua Bengio, Yang Gao, and Yang Yuan. Predictive in-
 626 ference with feature conformal prediction. In *The Eleventh International Conference on Learning
 627 Representations*, 2023.

628 Vladimir Vovk, David Lindsay, Ilia Nouretdinov, and Alex Gammerman. Mondrian confidence
 629 machine. *Technical Report*, 2003.

630 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*.
 631 Springer, 2005.

632 Fangxin Wang, Lu Cheng, Ruocheng Guo, Kay Liu, and Philip S Yu. Equal opportunity of coverage
 633 in fair regression. *Advances in Neural Information Processing Systems*, 36:7743–7755, 2023.

634 Yanfei Zhou and Matteo Sesia. Conformal classification with equalized coverage for adaptively
 635 selected groups. *Advances in Neural Information Processing Systems*, 37:108760–108823, 2024.

636

637

638

639

640

641

642

643

644

645

646

647

648 A TECHNICAL PROOFS
649650 A.1 VARIATIONAL INFERENCE
651652 As mentioned in Section 3.1, our optimization objective is as follows,
653

654
$$\max I(Z, S) + I(Z, X) - \beta I(Z, i).$$

655 First of all, we consider $I(Z, S)$ and

656
$$I(Z, S) = \int p_\theta(s, z) \log \frac{p_\theta(s, z)}{p_\theta(s)p_\theta(z)} ds dz = \int p_\theta(s, z) \log \frac{p_\theta(s|z)}{p_\theta(s)} ds dz. \quad (10)$$

657

658 Since the KL divergence between two conditional probability distribution $p_\theta(s|z)$ and $q_\phi(s|z)$ is
659 non-negative, we have
660

661
$$D_{\text{KL}}(p_\theta(s|z) \| q_\phi(s|z)) \geq 0 \Rightarrow \int p_\theta(s, z) \log p_\theta(s|z) ds \geq \int p_\theta(s, z) \log q_\phi(s|z) ds,$$

662

663 where $q_\phi(s|z)$ is a variational approximation to the intractable distribution $p_\theta(s|z)$.
664

665 Plugging the above inequality into Eq. 10, we obtain

666
$$\begin{aligned} I(Z, S) &\geq \int p_\theta(s, z) \log \frac{q_\phi(s|z)}{p_\theta(s)} ds dz \\ 667 &= \int p_\theta(s, z) \log q_\phi(s|z) ds dz + \int p_\theta(s) \log p_\theta(s) ds \\ 668 &\geq \int p_\theta(s, z) \log q_\phi(s|z) ds dz, \end{aligned} \quad (11)$$

669

670 where the second inequality is derived by the non-negativity of entropy.
671672 Since $S \perp\!\!\!\perp Z | X$ holds, we have
673

674
$$p_\theta(s, z) = \int p_\theta(x, s, z) dx = \int p_\theta(x)p_\theta(s|x)p_\theta(z|x) dx.$$

675

676 Hence, we get

677
$$I(Z, S) \geq \int p_\theta(x)p_\theta(s|x)p_\theta(z|x) \log q_\phi(s|z) dx ds dz. \quad (12)$$

678

679 Similar to Eq. 11, we also have
680

681
$$\begin{aligned} I(Z, X) &\geq \int p_\theta(x, z) \log q_\varphi(x|z) dx dz \\ 682 &= \int p_\theta(x)p_\theta(z|x) \log q_\varphi(x|z) dx dz. \end{aligned} \quad (13)$$

683

684 As for $I(Z, i)$, we have
685

686
$$\begin{aligned} I(Z, i) &= \sum_i \int p_\theta(z|i)p_\theta(i) \log \frac{p_\theta(z|i)}{p_\theta(z)} dz \\ 687 &= \frac{1}{N} \sum_i \int p_\theta(z|x_i) \log \frac{p_\theta(z|x_i)}{p_\theta(z)} dz \\ 688 &\leq \frac{1}{N} \sum_i \int p_\theta(z|x_i) \log \frac{p_\theta(z|x_i)}{r(z)} dz, \end{aligned} \quad (14)$$

689

690 where $r(z)$ is a variational approximation to the posterior distribution $p_\theta(z)$. We usually set $r(z)$
691 as a standard normal distribution $\mathcal{N}(0, 1)$ in practice.
692693 Combining Eq. 12 with Eq. 13 and Eq. 14, we obtain
694

695
$$\begin{aligned} I(Z, S) + I(Z, X) - \beta I(Z, i) &\geq \int p_\theta(x)p_\theta(s|x)p_\theta(z|x) \log q_\phi(s|z) dx ds dz \\ 696 &+ \int p_\theta(x)p_\theta(z|x) \log q_\varphi(x|z) dx dz - \frac{\beta}{N} \sum_i \int p_\theta(z|x_i) \log \frac{p_\theta(z|x_i)}{r(z)} dz. \end{aligned}$$

697

With Monte Carlo sampling, we use the empirical dataset on $\{X_i, S_i, Y_i\}_{i=1}^N$ to estimate $p_\theta(x)p_\theta(s|x)$ and $p_\theta(x)$, where S_i is computed by minimizing the conditional coverage of groups defined by $\mathbf{S} = \{s_1, \dots, s_N\}$, i.e., $\mathbb{P}_n[Y_i \in C(X_i) | X_i \in \hat{\mathcal{G}}_S]$ on $\{X_i, S_i, Y_i\}_{i=1}^N$. We leverage the reparameterization trick (Kingma & Welling, 2013) as mentioned in Section 3.1, and finally obtain

$$\mathcal{L} = -\frac{1}{N} \sum_{i=1}^N (\mathbb{E}_{\tilde{z} \sim f(x_i, \epsilon)} [\log q_\phi(s_i | \tilde{z}) + \log q_\varphi(x_i | \tilde{z})] - \beta D_{\text{KL}}(p_\theta(z | x_i) \| r(z))).$$

A.2 PROOF OF PROPOSITION 1

Proof. We first present a technical lemma, where $P_n h = \frac{1}{N} \sum_{i=1}^N h(X_i)$ and $Ph = \int h(x) dP(x)$, given an observed dataset $\{X_i, Y_i\}_{i=1}^N$.

Lemma 1 (Boucheron et al. (2005)). *There exists a numerical constant C_1 such that for any $\tau > 0$,*

$$|P_n h - Ph| \leq C_1 \left[\sqrt{\min\{P_n h, Ph\} \frac{VC(h) \log N + \tau}{N}} + \frac{VC(h) \log N + \tau}{N} \right]$$

holds with probability at least $1 - e^{-\tau}$.

By this Lemma, we have

$$\begin{aligned} & |P_n(Y \in C(X), X \in \hat{\mathcal{G}}_S) - P(Y \in C(X), X \in \hat{\mathcal{G}}_S)| \\ & \leq C_1 \left[\sqrt{\min\{P_n(Y \in C(X), X \in \hat{\mathcal{G}}_S), P(Y \in C(X), X \in \hat{\mathcal{G}}_S)\} \frac{VC(h) \log N + \tau}{N}} + \frac{VC(h) \log N + \tau}{N} \right]. \end{aligned} \quad (15)$$

Similarly, we get

$$\begin{aligned} & |P_n(X \in \hat{\mathcal{G}}_S) - P(X \in \hat{\mathcal{G}}_S)| \\ & \leq C_2 \left[\sqrt{\min\{P_n(X \in \hat{\mathcal{G}}_S), P(X \in \hat{\mathcal{G}}_S)\} \frac{VC(h) \log N + \tau}{N}} + \frac{VC(h) \log N + \tau}{N} \right]. \end{aligned} \quad (16)$$

Then, it remains to show that

$$\begin{aligned} & |P_n(Y \in C(X) | X \in \hat{\mathcal{G}}_S) - P(Y \in C(X) | X \in \hat{\mathcal{G}}_S)| \\ & = \left| \frac{P_n(Y \in C(X), X \in \hat{\mathcal{G}}_S)}{P_n(X \in \hat{\mathcal{G}}_S)} - \frac{P(Y \in C(X), X \in \hat{\mathcal{G}}_S)}{P(X \in \hat{\mathcal{G}}_S)} \right|. \end{aligned}$$

Let $a = P_n(Y \in C(X), X \in \hat{\mathcal{G}}_S)$, $b = P(Y \in C(X), X \in \hat{\mathcal{G}}_S)$, $c = (P_n - P)(X \in \hat{\mathcal{G}}_S)$ and $d = P(X \in \hat{\mathcal{G}}_S)$. We can derive $b \leq d$, and observe that

$$\left| \frac{a}{c+d} - \frac{b}{d} \right| \leq \left| \frac{a}{c+d} - \frac{b-c}{c+d} \right| \leq \frac{|a-b|}{c+d} + \frac{|c|}{c+d}. \quad (17)$$

Substitute Eq. 15 and Eq. 16 into Eq. 17, and use $\delta = P_n(X \in \hat{\mathcal{G}}_S)$, we obtain

$$\begin{aligned} & \left| \frac{P_n(Y \in C(X), X \in \hat{\mathcal{G}}_S)}{P_n(X \in \hat{\mathcal{G}}_S)} - \frac{P(Y \in C(X), X \in \hat{\mathcal{G}}_S)}{P(X \in \hat{\mathcal{G}}_S)} \right| \\ & \leq \frac{|P_n(Y \in C(X), X \in \hat{\mathcal{G}}_S) - P(Y \in C(X), X \in \hat{\mathcal{G}}_S)|}{P_n(X \in \hat{\mathcal{G}}_S)} - \frac{|P_n(X \in \hat{\mathcal{G}}_S) - P(X \in \hat{\mathcal{G}}_S)|}{P_n(X \in \hat{\mathcal{G}}_S)} \\ & \leq C_3 \left[\sqrt{\frac{VC(h) \log N + \tau}{\delta N}} + \frac{VC(h) \log N + \tau}{\delta N} \right], \end{aligned}$$

which completes the proof. \square

756 A.3 OPTIMIZATION PROCESS OF EQ. 5
757758 The projection operation of the PGD algorithm described in Section 3.1 requires solving the follow-
759 ing optimization to minimize the ℓ_2 distance:

760
$$\min_{v_1, \dots, v_n} \sum_{i=1}^N (v_i - u_i)^2 \quad \text{s.t. } \sum_{i=1}^N v_i \geq \delta, \quad v_i \in [0, 1] \quad i = 1, \dots, N, \quad (18)$$

761
762

763 where u_1, \dots, u_N are given and $u_i \in [0, 1]$ holds for each $i \in [N]$.
764765 With the above constraints, we compute the Lagrangian as
766

767
$$\mathcal{L}(v_i; \lambda_i, \mu_i, \omega) = \sum_{i=1}^N (v_i - u_i)^2 + \sum_{i=1}^N \lambda_i (-v_i) + \sum_{i=1}^N \mu_i (v_i - 1) + \omega (\delta - \sum_{i=1}^N v_i),$$

768

769 where $\{\lambda_i\}_{i=1}^N, \{\mu_i\}_{i=1}^N$ and ω are the Lagrange multipliers. Let the partial derivatives vanish, and
770 we have
771

772
$$\frac{\partial \mathcal{L}}{\partial v_i} = 2(v_i - u_i) - \lambda_i + \mu_i - \omega = 0 \Rightarrow 2(v_i - u_i) = \lambda_i - \mu_i + \omega$$

773 For the complementary relaxation conditions, there are four different cases:
774775

- If $v_i = 0$, constraint $v_i \geq 0$ is activated and we have $\lambda_i \geq 0, \mu_i = 0$;
- If $v_i = 1$, constraint $v_i \leq 1$ is activated and we have $\mu_i \geq 0, \lambda_i = 0$;
- If $0 < v_i < 1$, we have $\mu_i = \lambda_i = 0$ and then $v_i = u_i + \omega/2$;
- If $\sum v_i > \delta$, constraint $\sum v_i \geq \delta$ is not activated and then $\omega = 0$; otherwise, $\omega \geq 0$.

776 When $\sum u_i \geq \delta$, we have $v_i = u_i$, which is an optimal solution to the minimization problem in Eq. 18.
777778 When $\sum u_i < \delta$, let $v_i = \min(1, u_i + \omega/2)$, where $\omega \geq 0$ and $\sum_{i=1}^N \min(1, u_i + \omega/2) \geq \delta$. In this case,
779 we resort $\{v_i\}_{i=1}^N$ in descending order, i.e., $v_{(1)} \geq v_{(2)} \geq \dots \geq v_{(N)}$. Let $k \in [N]$ is the greatest index
780 to satisfy $v_{(k)} + \omega/2 \geq 1$ and $v_{(k+1)} + \omega/2 < 1$. Then, constraint $\sum v_i = \delta$ can be written as
781

782
$$k \cdot 1 + \sum_{i=k+1}^N (v_{(i)} + \omega/2) = \delta.$$

783

784 Hence, we obtain
785

786
$$\omega = \frac{2(\delta - k - \sum_{i=k+1}^N v_{(i)})}{N - k}.$$

787

788 In practice, we can compute k and ω via traversing the value of k from maximum N to minimum 1.
789790 A.4 PROOF OF THEOREM 1
791792 *Proof.* When making the similar assumption as Theorem 1 in AFCP (Zhou & Sesia, 2024), for each
793 group $\hat{\mathcal{G}}_s \in \{\hat{\mathcal{G}}_{s_t}\}_{t=1}^T$, we can substitute $X_{N+1} \in \hat{\mathcal{G}}_s$ for $\phi(X_{N+1}, \hat{A}(X_{N+1}))$ and $X_{N+1} \in \hat{\mathcal{G}}_s^o$ for
794 $\phi(X_{N+1}, \hat{A}^o(X_{N+1}))$ as conditions, where $\hat{\mathcal{G}}_s^o$ is an imaginary oracle group. Then, according to
795 Theorem 1 (Zhou & Sesia, 2024), we have
796

797
$$\mathbb{P}[Y_{N+1} \in C(X_{N+1}) \mid X_{N+1} \in \hat{\mathcal{G}}_s] \geq 1 - \alpha.$$

798

801 AFCP assumes that the group selection algorithm can always achieve the oracle group $\hat{\mathcal{G}}_s^o$, which
802 means that the algorithm must have enough expressiveness to include $\hat{\mathcal{G}}_s^o$ into the candidate group
803 space. However, this necessary condition could be violated, as AFCP's candidate group space is
804 limited to linear groups defined by individual features. In contrast, our method, FAREG, employs
805 a more expressive model that extends its candidate group space into the nonlinear realm. Conse-
806 quently, the guarantee for FAREG remains valid for groups defined by complex, nonlinear feature
807 combinations.
808809 Next, we formally analyze the expressiveness of AFCP and our FAREG based on the VC-dimension.
810 As described in Section 1, AFCP computes the group coverage scores for each feature and greedily

810 picks the most sensitive feature with the lowest group coverage score. The essence of such a process
 811 is a decision stump dividing all features into two parts (sensitive or not sensitive) using a threshold,
 812 and thus its VC-dimension is 2. In contrast, based on established theory (Shalev-Shwartz & Ben-
 813 David, 2014), the VC-dimension of FAREG scales with its parameter size M , i.e.,

$$814 \quad \text{VC(AFCP)} = 2, \quad \text{VC(FAREG)} = \mathcal{O}(M).$$

815 Hence, the VC-dimension of our FAREG is typically far larger than that of AFCP, indicating the
 816 stronger expressiveness of our method, i.e., our candidate group space serves as a superset of AFCP's
 817 candidate group space. \square

820 A.5 PROOF OF PROPOSITION 2

822 *Proof.* According to Proposition 1 and the definition of WSC_n^+ (Eq. 8), we obtain

$$824 \quad \sup_{\pi \in \Pi} \{|\text{WSC}_n^+(C, \pi) - \mathbb{P}(Y \in C(X) | a \leq \pi(X) \leq b)|\} \leq \mathcal{O}(1) \sqrt{\frac{\text{VC}(\Pi) \log N}{\delta N}}$$

826 by omitting τ . Then, we eliminate the absolute value as

$$827 \quad -\mathcal{O}(1) \sqrt{\frac{\text{VC}(\pi) \log N}{\delta N}} \leq \text{WSC}_n^+(C, \pi) - \mathbb{P}(Y \in C(X) | a \leq \pi(X) \leq b) \leq \mathcal{O}(1) \sqrt{\frac{\text{VC}(\pi) \log N}{\delta N}},$$

829 which holds for all $\pi \in \Pi$. Hence, if $\mathbb{P}(Y \in C(X) | a \leq \pi(X) \leq b) = 1 - \alpha$, we can observe

$$831 \quad \text{WSC}_n^+(C, \pi) \geq \mathbb{P}(Y \in C(X) | a \leq \pi(X) \leq b) - \mathcal{O}(1) \sqrt{\frac{\text{VC}(\pi) \log N}{\delta N}}$$

833 for any $\pi \in \Pi$.

834 Next, we only need to prove $\mathcal{O}(d^2) \geq \text{VC}(\pi)$. Recall that $\text{VC}(\pi)$ denotes the VC-dimension
 835 of the binary classifier π , and $\pi = \mathbf{x}^T \mathbf{W} \mathbf{x} + \mathbf{v}^T \mathbf{x}$ is a quadratic function, where $\mathbf{W} \in \mathbb{R}^{d \times d}$ and
 836 $\mathbf{v} \in \mathbb{R}^d$. Therefore, the VC-dimension of π is equal to the dimension of its expanded feature space
 837 $\mathcal{M} = d(d+1)/2 + d$, i.e., $\mathcal{O}(d^2)$, which completes the proof. \square

839 B FURTHER EXPERIMENT DETAILS

841 B.1 DATASET CONSTRUCTION AND HYPERPARAMETERS

843 Table 2: Hyperparameters of FAREG.

845 DATASET	846 SYNTHETIC DATA	847 NURSERY DATA
848 MODEL	849 MLP	850 MLP
851 NUMBER OF LAYERS	852 3	853 3
854 HIDDEN DIMENSION	855 [64,32]	856 [64,32]
857 EPOCH	858 2000	859 800
860 BATCH SIZE	861 500	862 500
863 LEARNING RATE	864 0.001	865 0.01
866 β	867 2.0	868 0.1
869 δ	870 0.3	871 0.1
872 T	873 20	874 100

856 For the dataset we use to evaluate two metrics in Section 4.1, only $X[0], X[1]$, and $X[2]$ influence
 857 the label Y and we define the conditional distribution $P(Y | X)$ as

$$858 \quad P(Y | X) = \begin{cases} \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0, 0\right), & \text{if } (X[0] \geq 0.1) \oplus (X[1] \geq 0.1) \text{ and } X[2] < 0.5, \\ \left(0, 0, 0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right), & \text{if } (X[0] \geq 0.1) \oplus (X[1] \geq 0.1) \text{ and } X[2] \geq 0.5, \\ (1, 0, 0, 0, 0, 0), & \text{if not } (X[0] \geq 0.1) \oplus (X[1] \geq 0.1) \text{ and } X[2] < \frac{1}{6}, \\ (0, 1, 0, 0, 0, 0), & \text{if not } (X[0] \geq 0.1) \oplus (X[1] \geq 0.1) \text{ and } \frac{1}{6} \leq X[2] \leq \frac{2}{6}, \\ \vdots \\ (0, 0, 0, 0, 0, 1), & \text{if not } X[0] = (X[0] \geq 0.1) \oplus (X[1] \geq 0.1) \text{ and } \frac{5}{6} \leq X[2] \leq 1. \end{cases}$$

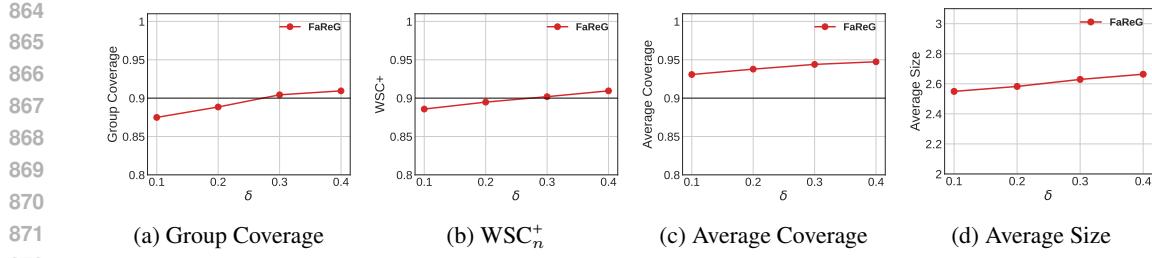


Figure 6: Performance of prediction sets produced by our FAREG on synthetic data w.r.t. the selected group size proportion δ .

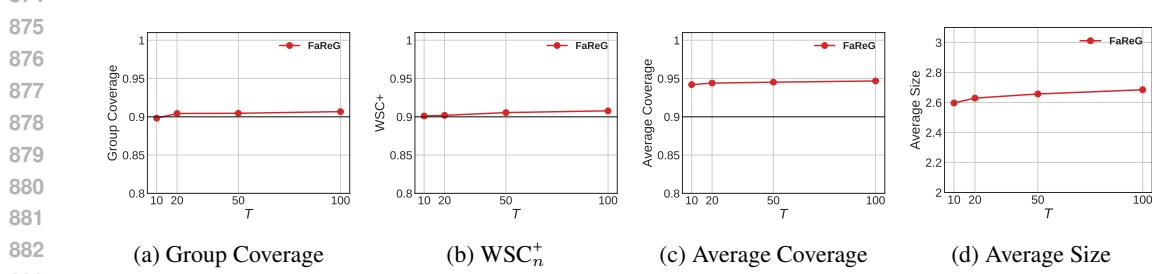


Figure 7: Performance of prediction sets produced by our FAREG on synthetic data w.r.t. the sampling times T .

For the classification models as the input of conformal prediction, we strictly follow the settings in (Zhou & Sesia, 2024) on both synthetic and real-world data. To train FAREG to mine unfair groups, we randomly split the calibration set \mathcal{D} into the training set and validation set with the ratio 5:5. We list the hyperparameters of FAREG in Table 2. Note that we use the same network structure for encoders and decoders, i.e., a simple 3-layer MLP, which is consistent with Proposition 1. Since there are three optimization objectives in Eq. 6, which may conflict with each other to some extent, we divide the training into two stages. At the first stage, we train the encoder with the parameter θ and the decoder with the parameter ϕ by fixing the decoder with the parameter φ in practice, i.e., the first term \mathcal{L}_{CC} and third term \mathcal{L}_{KL} in Eq. 6. Then, we use \mathcal{L}_{MSE} to reconstruct X based on Z at the second stage.

Recall from Section 4.2 that Color is denoted as $X[0]$, Gender is denoted as $X[1]$, and the first standard feature is denoted as $X[2]$. The conditional distribution of $Y | X$ is determined by a simple decision tree, where only $X[0]$, $X[1]$, and $X[2]$ provide valuable predictive information for Y , formulated as follows,

$$P(Y | X) = \begin{cases} \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0, 0\right), & \text{if } X[0] = \text{Red} \text{ and } X[1] = \text{Female} \text{ and } X[2] < 0.5, \\ \left(0, 0, 0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right), & \text{if } X[0] = \text{Red} \text{ and } X[1] = \text{Female} \text{ and } X[2] \geq 0.5, \\ \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0, 0\right), & \text{if } X[0] = \text{Blue} \text{ and } X[1] = \text{Male} \text{ and } X[2] < 0.5, \\ \left(0, 0, 0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right), & \text{if } X[0] = \text{Blue} \text{ and } X[1] = \text{Male} \text{ and } X[2] \geq 0.5, \\ (1, 0, 0, 0, 0, 0), & \text{if } X[0] = \text{Red} \text{ and } X[1] = \text{Male} \text{ and } X[2] < \frac{1}{6}, \\ (0, 1, 0, 0, 0, 0), & \text{if } X[0] = \text{Red} \text{ and } X[1] = \text{Male} \text{ and } \frac{1}{6} \leq X[2] \leq \frac{2}{6}, \\ \vdots & \\ (0, 0, 0, 0, 0, 1), & \text{if } X[0] = \text{Red} \text{ and } X[1] = \text{Male} \text{ and } \frac{5}{6} \leq X[2] \leq 1, \\ (1, 0, 0, 0, 0, 0), & \text{if } X[0] = \text{Blue} \text{ and } X[1] = \text{Female} \text{ and } X[2] < \frac{1}{6}, \\ \vdots & \\ (0, 0, 0, 0, 0, 1), & \text{if } X[0] = \text{Blue} \text{ and } X[1] = \text{Female} \text{ and } \frac{5}{6} \leq X[2] \leq 1. \end{cases}$$

B.2 PARAMETER SENSITIVITY

In this section, we investigate the sensitivity of two key parameters: the selected group size proportion δ and the number of sampling iterations T . The results for δ and T are presented in Fig. 6

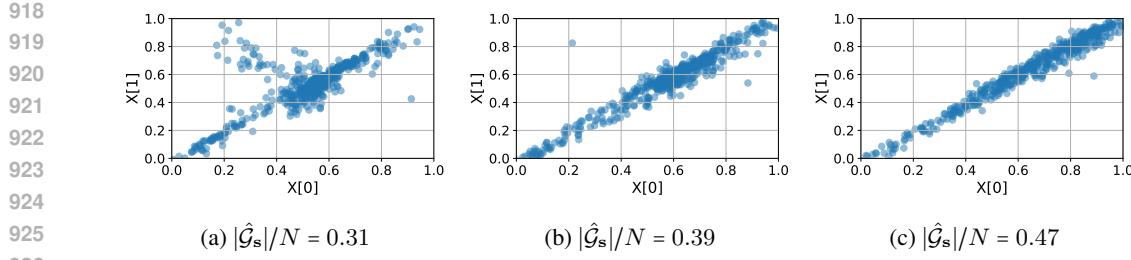


Figure 8: The visualization results of reconstruction \hat{X} when $|\hat{\mathcal{G}}_s|/N$ increases. The latent representation z generally captures an XNOR relationship between $X[0]$ and $X[1]$.

and Fig. 7, respectively. Overall, the metrics Group Coverage and WSC_n^+ show relative insensitivity to the number of sampling iterations T , as illustrated in Fig. 7a and 7b. In contrast, both Group Coverage and WSC_n^+ increase with the proportion δ of the selected group size relative to the entire dataset. This trend empirically provides implicit support for Proposition 1.

B.3 GROUP VISUALIZATION

To analyze how features $X[0]$ and $X[1]$ contribute to group membership in $\hat{\mathcal{G}}_s$, we perturb the encoding z and examine the resulting reconstructions \hat{X} . Taking the sample size of 4000 on the synthetic dataset as an example, we randomly select one run from 10 repeated trials and add perturbations of $+0.003$ and $+0.006$ to the fourth dimension of z , respectively. The reconstructed features \hat{X} are visualized in Fig. 8.

Fig. 8a shows that, without perturbation, the latent representation z generally captures an XNOR relationship between $X[0]$ and $X[1]$, indicating that the encoder effectively filters out irrelevant feature information. After applying perturbations (see Fig. 8b and 8c), the XNOR pattern becomes more pronounced as $|\hat{\mathcal{G}}_s|/N$ increases, revealing a positive correlation between $X[0] \odot X[1]$ and membership in $\hat{\mathcal{G}}_s$. This result strengthens the interpretability of our approach by demonstrating that the representation-based groups reflect meaningful feature interactions.

942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971