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ABSTRACT

Conformal prediction methods provide statistically rigorous marginal coverage
guarantees for machine learning models, but such guarantees fail to account for al-
gorithmic biases, thereby undermining fairness and trust. This paper introduces a
fair conformal inference framework for classification tasks. The proposed method
constructs prediction sets that guarantee conditional coverage on adaptively iden-
tified subgroups, which can be implicitly defined through nonlinear feature com-
binations. By balancing effectiveness and efficiency in producing compact, infor-
mative prediction sets and ensuring adaptive equalized coverage across unfairly
treated subgroups, our approach paves a practical pathway toward trustworthy ma-
chine learning. Extensive experiments on both synthetic and real-world datasets
demonstrate the effectiveness of the framework.

1 INTRODUCTION

The rapid advancement of modern machine learning models, especially deep neural networks, has
enabled their deployment in high-stake decision-making situations such as medical diagnoses (Kaur
et al., 2020), resume filtering (Deshpande et al., 2020), and financial fraud detection (Kamuangu,
2024). Despite their strong average performance, real-world deployment raises critical challenges,
notably in uncertainty quantification (Guo et al., 2017; Ahmed et al., 2023) and algorithmic fair-
ness (Berk et al., 2024; Almasoud & Idowu, 2025).

Ensuring reliable decision-making necessitates the development of unbiased uncertainty mea-
sures, as even highly accurate models are prone to producing over-confident and erroneous pre-
dictions (Ovadia et al., 2019). Conformal prediction (CP, (Vovk et al., 2005; Smith, 2024)) has
emerged as a key framework for providing distribution-free, model-agnostic prediction sets with
user-specified (marginal) coverage guarantees. These sets provide reliable uncertainty information
for decision-makers especially when the set size is small (i.e., with high efficiency).

On the other hand, algorithmic biases often manifest as disproportionately poor performance on the
subgroup defined by specific feature conditions (e.g., Race=Black & Gender=Female), which may
arise from imbalanced data distribution or model inherent limitations (Hellman, 2020). These biases
underscore the need for algorithmic fairness mechanisms that extend beyond average performance
to ensure equitable treatment across all groups (Fabris et al., 2022; Das et al., 2023). However, there
may exist tensions between the efficiency of CP and algorithmic fairness, because the former desires
a small prediction set, while the latter may necessitate larger sets for equal conditional coverage
across all subgroups (Gibbs et al., 2025).

Conformal prediction with equalized coverage (Romano et al., 2020a) provides a pragmatic ap-
proach to the efficiency–fairness trade-off. This approach ensures that the target coverage level
(e.g., 90%) is satisfied not only marginally over the entire population, but also conditionally on each
protected group of interest. However, acquiring prediction sets with equalized coverage is challeng-
ing, as the number of all plausible groups of interest is exponential in the number of features. A
straightforward enumeration is practically infeasible both statistically and computationally, espe-
cially on multi-dimensional (continuous) features. Indeed, Romano et al. (2020a) only takes each
single feature as the condition of groups (e.g., a group defined by Gender=Female), which is an
arguably insufficient representation of the entire space of groups.
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White Female White Male

Black MaleBlack Female
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Figure 1: An illustrative example. The group space is divided into four parts by the feature Race and
Gender. Hard samples (red triangles) are unfairly treated by the classifier, and easy samples (green
circles) are normally treated. Note that a single feature (either Race or Gender) cannot discover the
unfair subgroups (both have four triangles and four circles). Stronger expressiveness is desirable to
capture the unfair subgroup “White Female or Black Male”.

Later, Zhou & Sesia (2024) observe that algorithmic biases often concentrate on a minority of sub-
groups, and propose adaptively fair conformal prediction (AFCP) to identify these potentially disad-
vantaged subgroups. In a nutshell, AFCP computes the conditional coverage score for each discrete
feature and selects the top-k sensitive features with a greedy strategy (where k is a hyperparameter).
However, this group identification method still has limited expressiveness. For example, it cannot
capture groups defined by a nonlinear combination of features, such as Exclusive OR (see the sub-
group “White Female or Black Male” in Fig. 1). Additionally, AFCP is based on Naı̈ve Bayes, which
incurs a high computational cost and restricts its applicability to continuous features.

1.1 OUR CONTRIBUTIONS

In this paper, we propose a new group-fair conformal prediction method, fair conformal prediction
for representation-based groups (FAREG), which accommodates both group expressiveness and
time efficiency. Different from existing work (Romano et al., 2020a; Zhou & Sesia, 2024) which
directly extracts groups from the raw input feature X , our approach encodes X into a latent rep-
resentation Z via a mapping Z = f(X), and learns unfair groups characterized by the low group
coverage based on Z. The introduction of Z as a high-level representation of features strengthens the
expressiveness of models, allowing a thorough exploration of groups. Meanwhile, we can enhance
the interpretability by reconstructing input X from the encoding Z. To this end, we carefully design
an encoder-decoder architecture and the optimization objective, based on the principle of variational
inference.

In addition, we propose a nonlinear version of the conditional coverage metric WSC (Cauchois et al.,
2021), namely WSC+, aiming to evaluate the conditional coverage of unfairly treated groups more
precisely. This allows users to check a conformal procedure and to compare multiple alternative
conformal procedures.

The main contributions of this paper are summarized as follows. First, we propose a new confor-
mal prediction method to enhance the expressiveness of unfair group identification. Second, we
extend the traditional conditional coverage metric WSC to a nonlinear version WSC+ for more ac-
curate evaluation. Comprehensive experiments on both synthetic and real-world datasets confirm
the effectiveness and efficiency of our proposed method.

2 PRELIMINARY

For any natural number n, we write [n] ∶= {1, . . . , n}. We work with the most widely-used ver-
sion of conformal prediction, i.e., split conformal prediction, where we assume a calibration set
D = {(Xi, Yi)}

N
i=1 of i.i.d. (or simply exchangeable) observations sampled from an (unknown) dis-

tribution PXY . In standard classification, Xi ∈ X represents the input feature from a feature space
X ⊆ Rd and Yi ∈ [L] is a categorical label. A given classifier f̂ is trained (on a training set) to predict
the conditional distribution P (Y ∣X). Furthermore, XN+1 is a test instance with an unknown label
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YN+1 sampled by PXY . CP constructs a prediction set C(XN+1) for YN+1 based on D. The output
C(XN+1) guarantees marginal coverage at a user-specified level, i.e.,

P[YN+1 ∈ C(XN+1)] ≥ 1 − α,

where α ∈ (0,1) is a predefined miscoverage rate.

Typically, CP proceeds in three steps: (1) computing the predefined conformity score V (xi, yi) for
each sample (xi, yi) ∈ D using the predictive results of the classifier f̂ ; (2) setting (1−α)(1+1/N)-
quantile score of D as a threshold η̂; (3) constructing the prediction set Cm(XN+1,D) ∶= {y ∈
[K] ∣V (Xi, y) ≥ η̂}, which is used as C(XN+1) for XN+1.

It can be shown that Cm(XN+1,D) meets the desirable marginal coverage. Intuitively, marginal
coverage implies that the prediction set is guaranteed to contain the true label with the average 1−α
probability over the population. However, this guarantee is deemed to be insufficient, especially
when miscoverage exhibits systematic bias, disproportionately affecting individuals belonging to
groups characterized by certain features.

By contrast, conditional coverage requires P[YN+1 ∈ C(XN+1) ∣XN+1 = x] ≥ 1−α for each x ∈ X .
This is much stronger as it demands correct coverage across all regions of the feature space, not
just on average. However, achieving conditional coverage is impossible without imposing extra
assumptions on the underlying distribution PXY (such as the smoothness of PXY (Cai et al., 2014;
Lei & Wasserman, 2014) and strictly limiting the size of feature space X (Lee & Barber, 2021)). As
these strong assumptions are often violated, conditional coverage is less meaningful in practice.

Equalized coverage (Romano et al., 2020a) represents a pragmatic compromise to ensure validity
across predefined sample groups that need to be protected. Given a group G ⊆ X , it is required that

P[YN+1 ∈ C(XN+1) ∣XN+1 ∈ G] ≥ 1 − α (1)
for all G of interest. In particular, these groups are typically related to some specific features called
sensitive features.

However, the requirement for rigorous equalized coverage is localized, as algorithmic biases dispro-
portionately affect only a minority of subgroups (Zhou & Sesia, 2024), as mentioned in Seciton 1.
Therefore, AFCP further proposes adaptive equalized coverage based on equalized coverage, for-
malized by

P[YN+1 ∈ C(XN+1) ∣XN+1 ∈ Ĝ] ≥ 1 − α, (2)
where Ĝ is adaptively selected corresponding to sensitive features. Eq. 2 indicates that C(XN+1) is
well-calibrated for the selected group Ĝ defined by these sensitive features.

3 METHODOLOGY

This section presents FAREG, a learning-based method that adaptively identifies groups affected
by algorithmic bias and adjusts their prediction sets to achieve equalized coverage while preserving
high informativeness.

3.1 LEARNING REPRESENTATION-BASED GROUPS

Optimization Objective. For any feature x ∈ X , we write its encoding z = f(x) ∈ Z , where Z is a
latent representation space. Intuitively, z denotes the latent representations of feature combinations
of x. We introduce a random binary variable S and Z taking values in Z to formalize the member-
ship of a group. Naturally, we consider a conditional distribution P (S ∣Z) such that the probability
of x ∈ Ĝ for a group Ĝ is equal to P(S = 1 ∣Z = f(x)). Our goal is twofold: (1) to learn an encoding
Z = f(X) that is maximally informative about S and X , while (2) Z does not reveal the identity of
any individual i in the sample (e.g., the calibration set).

We apply the deep variational information bottleneck (Deep VIB) method (Alemi et al., 2017).
Specifically, for two random variables X and Y with the joint pdf (parameterized by θ), pθ(x, y),
I(X,Y ; θ) = ∫ pθ(x, y) log

pθ(x,y)
pθ(x)pθ(y) dxdy denotes their mutual information. The optimization

objective can be formalized as
max I(Z,S; θ) + I(Z,X; θ) − βI(Z, i; θ),

3
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where i is a random variable to take any instance from the sample (e.g., in this paper, the calibration
set D) with a uniform distribution, θ is the model parameter, and β is a weight hyperparameter. (We
abbreviate I(Z,S), I(Z,X), I(Z, i) as I1, I2, I3 for convenience.)

By introducing qϕ(s∣z), qφ(x∣z), r(z) as the variational approximation to pθ(s∣z), pθ(x∣z), p(z) in
respective terms, we perform variational inference and obtain

I1 + I2 − βI3 ≥ ∫ pθ(x)pθ(s ∣x)pθ(z ∣x) log qϕ(s ∣ z)dxdsdz

+ ∫ pθ(x)pθ(z ∣x) log qφ(x ∣ z)dxdz −
β

N
∑
i
∫ pθ(z ∣xi) log

pθ(z ∣xi)

r(z)
dz.

(The details are given in Appendix A.1.)

In practice, we can approximate pθ(x, s) = pθ(x)pθ(s∣x) and pθ(x) using the empirical distri-
bution on the observations (e.g., the calibration set D). As for pθ(z∣x), the reparameterization
trick (Kingma & Welling, 2013) forces z to conform to a normal distribution which relies on xi, and
hence its deterministic function can be rewritten as z = f(x, ϵ) with an (auxiliary) noise variable ϵ.

Substituting all of these into the above equation, we obtain the following loss function

L = −
1

N

N

∑
i=1
(Ez̃∼f(xi,ϵ)[log qϕ(si ∣ z̃) + log qφ(xi ∣ z̃)] − βDKL(pθ(z ∣xi)∥r(z))) . (3)

Intuitively, the expected log-likelihood Ez̃∼f(xi,ϵ)[log qϕ(si ∣ z̃)+ log qφ(xi ∣ z̃)] allows the encoding
z̃ to predict si and regenerate xi simultaneously, whereas the Kullback-Leibler (KL) divergence aims
to compress the remaining useless information of z̃.

Instantiation. Eq. 3 suggests a natural design of the Encoder-Decoder architecture. In our method,
the stochastic encoder with parameter θ has the form pθ(z ∣x) = N(z ∣ fµ(x), fσ(x)), where fµ(x)
and fΣ(x) are two MLP networks to output the mean and variance of a normal distribution. We
set r(z) as a standard normal distributionN(0,1) and directly minimize the KL divergence term in
Eq. 3 using the reparameterization trick.

We now concentrate on two decoders with parameters ϕ and φ. The instantiation of decoder with
parameter φ is trivial. For the expected log-likelihood Ez̃∼f(xi,ϵ)[log qφ(xi ∣ z̃)] in Eq. 3, we utilize
the standard Mean Squared Error (MSE) as the reconstruction loss (Kingma & Welling, 2013).

Decoder with parameter ϕ aims at predicting S, which indicates whether the sample X belongs to
group Ĝ or not. Assume a set of observations, e.g., the calibration set D = {(Xi, Yi)}

N
i=1. The

distribution P (S ∣X) can be viewed as a binary classifier h comprising an encoder with parameter
θ and a decoder with the parameter ϕ. The result of h on D is a vector s = [s1, . . . , sN ] ∈ {0,1}N .
Let Ĝs ⊆ D denote the group determined by s on D and H be the family of all plausible h. We
extend an inequality (Cauchois et al., 2021) to measure the deviation between the empirical coverage
probability Pn on D and the oracle coverage probability P.

Proposition 1. Let the VC-dimension V C(H) ≤ R and δ = ∣Ĝs∣/N be the proportion of Ĝs to the
entire dataset. Then the gap between the empirical coverage probability Pn on the observations and
the oracle coverage probability P is upper bounded, i.e., there exists some constant C1 for all τ > 0

sup
h∈H
{∣Pn[Y ∈ C(X) ∣X ∈ Ĝs] − P[Y ∈ C(X) ∣X ∈ Ĝs]∣} ≤ C1

√
R logN + τ

δN

holds with probability at least 1 − e−τ .

Proposition 1 (cf. Appendix A.2 for proof) highlights two key directions for reducing the discrepancy
between Pn and P. First, a lower VC-dimension V C(h) leads to a more precise estimation Pn,
implying that the classifier h should exhibit limited complexity. Second, the selected group must be
sufficiently large to ensure reliable estimation.

We maximize the expected log-likelihood Ez̃∼f(xi,ϵ)[log qϕ(si ∣ z̃)] in Eq. 3 via minimizing the ex-
pected empirical conditional coverage of the selected group Ĝ. The group Ĝ on D is determined by
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a random vector S, sampled from a joint Bernoulli distribution B = ∏
N
i=1Bernoulli(qϕ(Si = 1 ∣ z̃)).

Hence, given D, we formulate the following optimization problem :

min
ϕ

ES∼B[Pn[Y ∈ C(X) ∣X ∈ ĜS]] s.t.
1

N

N

∑
i=1

qϕ(Si = 1 ∣ z̃) ≥ δ. (4)

In the above minimization problem, δ = ∣Ĝs∣/N denotes the the proportion of the selected group size
to the whole dataset D, and the decoder with parameter ϕ is a simple logistic regression model of
the form qϕ(s ∣ z̃) = σ(s ∣ fm(z̃)), where σ is the sigmoid function and fm is a MLP network.

To solve the constrained optimization problem, we employ the Projected Gradient Descent (PGD),
an iterative optimization algorithm (Madry et al., 2017), to optimize the parameter ϕ. In each training
step, PGD performs a gradient descent update and then projects the new point onto the feasible
set to ensure all constraints are satisfied. Specifically, when the predictive distribution qϕ(s ∣ z̃)

does not meet the constraint 1
N ∑

N
i=1 qϕ(Si = 1 ∣ z̃) ≥ δ after one back propagation process, we

project it back onto the constraint-friendly space. Such a projection is equivalent to an ℓ2 distance
minimization problem. Let q∗ϕ(s1 ∣ z̃) ≥ ⋅ ⋅ ⋅ ≥ q

∗
ϕ(sN ∣ z̃) be the descending order of {qϕ(si ∣ z̃)}Ni=1,

and the projection results in

q′ϕ(si ∣ z̃) =min(1, qϕ(si ∣ z̃) +
ω

2
) , (5)

where ω = (δ−k−∑N
i=k+1 q

∗
ϕ(si ∣ z̃))/(N−k) ≥ 0, k ∈ [N] is the greatest index to satisfy q∗ϕ(sk ∣ z̃)+

ω/2 ≥ 1 and q∗ϕ(sk+1 ∣ z̃) + ω/2 < 1. (The details are given in Appendix A.3.)

Overall, we employ the empirical conditional coverage loss LCC, the reconstruction loss LMSE, and
the KL divergence loss LKL to replace the corresponding terms in Eq. 3, resulting in

L = LCC + LMSE − βLKL. (6)

3.2 CONSTRUCTING THE ADAPTIVE PREDICTION SETS

After selecting the unfair group Ĝ, we proceed to construct the final prediction set with Ĝ. First,
a standard conformal prediction set Cm(XN+1,D) is constructed using classic adaptive conformal
prediction. Then, we perform T sampling of the vector st (t ∈ [T ]) from the joint Bernoulli dis-
tribution B learned by models in Eq. 4. Each st defines a group Ĝst , and such group is used as a
calibration set to build a prediction set Cm(XN+1, Ĝst) as mentioned in Section 2. The final predic-
tion set for YN+1 is given by the union of all these sets:

C(XN+1) = Cm(XN+1,D) ∪
T

⋃
t=1

Cm(XN+1, Ĝst). (7)

Our approach FAREG is summarized in Algorithm 1. To analyze its time complexity, assume we
have M test instances and the complexity of conducting classic conformal prediction isO(N +M).
Then, training the model to select groups is O(EN(∣θ∣ + ∣ϕ∣ + ∣φ∣)), where E is the number of
epochs. For all M test instances, the time of selecting groups and constructing prediction sets is
O(TN + TM). The overall complexity of our FAREG is O(EN(∣θ∣ + ∣ϕ∣ + ∣φ∣) + T (N +M)),
which is O(N +M), disregarding constant multiplicative factors. In contrast, the complexity of
AFCP is O(N logN +NM) (Zhou & Sesia, 2024).

The following result, proved in Appendix A.4, ensures that the prediction set C(XN+1) generated
by FAREG achieves adaptive equalized coverage (Eq. 2) over the selected group set {Ĝst}

T
t=1.

Theorem 1. If {(Xi, Yi)}
N+1
i=1 are exchangeable, the prediction set C(XN+1) and the selected group

set {Ĝst}
T
t=1 output by Algorithm 1 satisfy the adaptive equalized coverage defined in Eq. 2, and

this guarantee still holds when the selected groups are defined by a more complex combination of
features (e.g., non-linear) compared to AFCP.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Baselines. We select the classic CP method Marginal (Romano et al., 2020b) for classification,
the initial CP method Partial (Romano et al., 2020a) considering equalized coverage, and the state-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 The overall framework of FAREG.

Input: calibration dataset D = {Xi, Yi}
N
i=1; test instance with feature XN+1; list of K sensitive

features; pre-trained classifier f̂ ; fixed rule to compute nonconformity scores; level α ∈ (0,1);
selected group size proportion δ; hyperparameter β; sampling times T ;

Output: prediction set C(XN+1); selected group set {Ĝst}
T
t=1.

1: Construct classic conformal prediction set Cm(XN+1,D) based on the output of f̂ ;
2: for each batch do
3: Calculate KL divergence loss LKL with reparameterization trick;
4: Sample z̃ ∼ f(x, ϵ);
5: Calculate conditional coverage loss LCC and reconstruction loss LMSE using z̃;
6: Put all losses together in L as defined in Eq. 6;
7: Update parameters θ, ϕ and φ via the gradient descent of L;
8: if ∑N

i=1 qϕ(Si = 1 ∣ z̃) < δ ⋅N then
9: Project each qϕ(Si = 1 ∣ z̃) to satisfy minimum set constraint using Eq. 5;

10: end if
11: end for
12: for t ∈ [T ] do
13: Sample st ∼ B; ▷ B is a joint Bernoulli distribution mentioned in Eq. 4
14: Construct Cm(XN+1, Ĝst);
15: end for
16: Construct prediction set C(XN+1) following Eq. 7.

of-the-art method AFCP (Zhou & Sesia, 2024) as our baselines. The vanilla version of AFCP is
designed to pick at most one sensitive feature (referred to as AFCP1). We also extend AFCP1 to
select two sensitive features (referred to as AFCP2), given unreal, strong prior knowledge. Note that
in real-world applications, it is typically unknown exactly how many features the unfair group may
correspond to.

Evaluation Metrics. To evaluate the prediction sets C(XN+1) produced by different CP meth-
ods, we use the coverage conditional on a specific group (referred to as Group Coverage), Average
Coverage (viz., marginal coverage), and Average Size (viz., efficiency) as the metrics.

Additionally, we propose a new conditional coverage metric, viz., WSC+, to capture groups defined
by complicated (nonlinear) feature relationships. Traditional conditional coverage metric (Cauchois
et al., 2021) considers the worst coverage over all slabs containing δ mass on the observations, which
is defined as

WSCn(C,v) ∶= inf
a<b
{Pn(Y ∈ C(X) ∣a ≤ v

TX ≤ b) s.t. Pn(a ≤ v
TX ≤ b) ≥ δ} ,

where v ∈ Rd and a < b ∈ R.

To strengthen the WSC metric, we replace the linear mapping vT in the above equation with an
arbitrary non-linear function π, giving rise to WSC+, i.e.,

WSC+n(C,π) ∶= inf
a<b
{Pn(Y ∈ C(X) ∣a ≤ π(X) ≤ b) s.t. Pn(a ≤ π(X) ≤ b) ≥ δ} . (8)

Assume a quadratic function π(x) = xTWx + vTx, where W ∈ Rd×d and v ∈ Rd. We uniformly
draw 1,000 samples πj = {Wj ,vj} to compute the worst-slab coverage for each πj on the test
instances. Following Cauchois et al. (2021), we use the grid search to achieve the optimal a, b
satisfying the desiderata as well. In this case, we have a lower bound for our metric WSC+.

Proposition 2. Let π(x) = xTWx + vTx be a quadratic function and Π be a parameter space of
π. Then, if C effectively provides conditional coverage at level 1 − α, we have

WSC+n = inf
π∈Π

WSC+n(C,π) ≥ 1 − α −O(1)

√
O(d2) logN

δN
. (9)

The proof is given in Appendix A.5.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.82 0.84 0.86 0.88
Worst coverage probability

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y

WSCn(C, v)
WSC +

n (C, )

Figure 2: CDF of Conditional Coverage
(δ = 0.5), which plots the respective cumula-
tive probability curves of different worst-slab
coverage discovered by WSCn(C,v) and
WSC+n(C,π) over 1,000 samplings. The red
curve is always above the blue curve, indicat-
ing that our WSC+n(C,π) finds more groups
with the poor coverage than WSCn(C,v).

METRIC δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.5

WSCn
0.616 0.748 0.793 0.822 0.842

(0.053) (0.037) (0.025) (0.023) (0.023)

WSC+n
0.582 0.674 0.750 0.800 0.829

(0.047) (0.048) (0.034) (0.028) (0.024)

IMP. -5.52% -9.89% -5.42% -2.68% -1.54%

Table 1: The performance of WSCn and WSC+n met-
rics w.s.t. different δ. We repeat the experiment 10
times, and report the average results (the value in ()
is the standard deviation). Smaller coverage is better.
Our metric WSC+n performs better than WSCn by up
to 9.89% to mine the group with the minimum worst-
slab coverage (defined in Eq. 9).

To demonstrate the advantages of the new metric WSC+, we randomly draw the features X ∈ [0,1]10
from a uniform distribution and create a simple dataset for classification as described in Ap-
pendix B.1. Note that we define the group needed to be protected to satisfy (X[0] ≥ 0.1)⊕(X[1] ≥
0.1) = True. We respectively plot the Cumulative Distribution Functions (CDF) of WSCn(C, v)
and WSC+n(C,π) over 1,000 samples πj when δ = 0.5 in Fig. 2, and observe that our WSC+n(C,π)
always reveals the groups with the worse coverage than that of WSCn(C, v), which can be attributed
to representational capability of the nonlinear function π in WSC+n(C,π).

Moreover, we also list the average results of two metrics, WSCn and WSC+n, as δ increases over 10
repeated experiments in Table 1. Similar to Fig. 2, the minimum worst-slab coverage found by our
WSC+n is smaller than that found by WSCn by up to 9.89%. As δ increases, the condition coverage
tends to the marginal coverage (0.9), and the gap between WSCn and WSC+n narrows, as expected.

Implementations.1 All the experiments are carried out on NVIDIA GeForce RTX 3090. We re-
peat each experiment 10 times and report the average to suppress randomness. We set δ = 0.5 for
WSC+n by default. More implementation details, such as hyperparameters and training settings, are
presented in Appendix B.1.

4.2 SYNTHETIC DATA

We evaluate our method on synthetic data designed to mimic a mental illness diagnosis scenario. The
dataset includes six possible labels: Depression, Anxiety Disorders, Bipolar Disorder, Schizophre-
nia, Anorexia, and Post-Traumatic Stress Disorder (PTSD). Each sample contains four sensitive
features—Age Group, Region, Gender, and Color—along with six non-sensitive features indepen-
dently sampled from a uniform distribution within a value range [0,1]. The sensitive features are
generated as follows: (1) Gender is uniformly drawn from {Female, Male }; (2) Color is uniformly
drawn from {Red, Blue}; (3) Age Group is drawn from {Child, Youth, Middle, Elder} with equal
probability; (4) Region follows a fixed cyclical sequence: Asia, Europe, Africa, America, Oceania.

We then generate true labels Y for the dataset, where diagnosis is more challenging for a specific
subgroup defined by the Exclusive NOR (XNOR) operation (cf. Appendix B.1). Specifically, we
assume X[0] is Color, X[1] is Gender, and X[2] is any non-sensitive feature, and define Y based
solely on these three attributes. Through the label generation, we have the following subgroup
X[0] ⊙X[1] = True: Color=Red (True) & Gender=Female (True) or Color=Blue (False) & Gen-
der=Male (False), simulating a real-world situation that algorithmic biases occur on this subgroup.

Fig. 3 depicts the results of conditional coverage, average coverage (marginal coverage), and aver-
age prediction set size (efficiency), respectively. For conditional coverage, Group Coverage is the
coverage on the subgroups defined by XNOR operation as mentioned in data construction, and we

1An implementation of our approach can be accessed at the following anonymous link:
https://github.com/Anonymity67543/FaReG.
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Figure 3: Performance of prediction sets produced by different CP methods on synthetic data w.r.t.
the total number of training and calibration data instances. Only our FAREG achieves the ideal
conditional coverage (0.9), and meanwhile, does not sacrifice too much information (set sizes) com-
pared to baselines.
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Figure 4: Fig. (a) reports the running time of different CP methods with the increasing total number
of training and calibration data instances. Fig. (b)–(d) are the results of the selection frequency of
target features X[0] and X[1]. As the sample size increases, our method becomes more consistent
with target features.

compute WSC+n on four predefined sensitive features. In Fig. 3a and 3b, our FAREG is the only one
that always achieves valid coverage (greater than 0.9) for the targeted group with varying sample
sizes. Although the conditional coverage of AFCP2 also exceeds 0.9 when the sample size reaches
500, as shown in Fig. 3d, it produces considerably larger prediction sets, which is less informative
for decision-making.

In Fig. 4a, we compare the average running time of different CP methods over 10 repeated ex-
periments, and FAREG significantly reduces the time cost, whose time complexity is linear in the
number of data instances. This result is consistent with the analysis in Section 3.2.

To determine which features are selected by our method, we analyze the predictive variable S and
the reconstructed feature X̂ by perturbing the latent representation Z, following the Beta-VAE ap-
proach (Higgins et al., 2017). Specifically, we impose a slight perturbation (e.g., ±0.001) on each
dimension of Z and identify the dimension that most influences S. Given this influential dimension
and prior knowledge (as in AFCP2) that there are exactly two target features, we compute the change
ratios for each dimension of X̂ before and after perturbation, and select the two features with the
top-2 maximum change ratios.

Figures 4b, 4c, and 4d respectively report the frequency of selecting X[0] or X[1] individually, and
that of selecting both X[0] and X[1] simultaneously. The results demonstrate that our approach
captures more target features than the baselines, and this advantage becomes more pronounced as
the sample size increases.

Additionally, we present the results of parameter sensitivity and group visualization in Appendix B.2
and B.3, respectively.

4.3 NURSERY DATA

We evaluate our FAREG and baseline methods on the publicly available Nursery data (Rajkovic,
1989), originally constructed from a hierarchical decision model developed to rank applications for
nursery schools. The dataset comprises 12,960 instances, each described by eight categorical fea-
tures: Parents’ occupation (3 levels, Parent:={usual, pretentious, great-pret}), Child’s nursery (5

8
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Figure 5: Performance of prediction sets produced by different CP methods on the Nursery data
w.r.t. the total number of training and calibration data instances. Only our FAREG achieves the
ideal conditional coverage (0.9) and keeps most of the uncertainty information of sets.

levels), Family form (4 levels), Number of children (4 levels), Housing conditions (3 levels), Fi-
nancial standing (2 levels, Finance:={convenient, inconv}), Social conditions (3 levels) and Health
status (3 levels). The task is to classify applications into one of five priority ranks. We take all
features into account (as sensitive features) except Housing conditions.

In data preprocessing, we strictly follow Zhou & Sesia (2024), and consider a group defined
by Parent=usual & Finance=inconv or Parent=pretentious & Finance=inconv. To make the issue
more interesting and control the degree of algorithmic bias, we corrupt the labels of instances in
such a group by adding independent, uniform noise and rounding to the nearest integer (label) as
similar as Zhou & Sesia (2024). This perturbation amplifies the intrinsic unpredictability of the
group defined before, thereby increasing its vulnerability to algorithmic bias.

Fig. 5 presents the results. Our method consistently achieves the valid coverage under both condi-
tional coverage metrics, i.e., Group Coverage and WSC+n, outperforming all baselines. Partial and
AFCP2 perform better than the other CP methods, but FAREG still achieves superior results.

5 RELATED WORK

Conformal Prediction (CP) has seen vigorous development in recent years (Vovk et al., 2005; Smith,
2024). Its applications span diverse domains, from image classification (Sadinle et al., 2019) and
object detection (Teng et al., 2023) to large language models (Kumar et al., 2023).

Some CP work, building on the split conformal framework (Papadopoulos et al., 2002; Lei et al.,
2018), introduces advanced nonconformity scores to ensure valid marginal coverage on the empir-
ical data distribution. For example, Romano et al. (2019) gives a nonconformity score based on
quantile regression, while Romano et al. (2020b) and Angelopoulos et al. (2020) design nonconfor-
mity scores for classification. Additionally, Hoff (2023) proposes a nonconformity score to achieve
Bayes optimal coverage.

Another line of work has explored various notions of equalized coverage (Romano et al., 2020a)
and empirically evaluated the corresponding conformal predictors in real-world applications (Lu
et al., 2022). For regression tasks, Wang et al. (2023) guarantees equal coverage rates across more
fine-grained groups on continuous features, and Liu et al. (2022) propose to learn a real-valued
quantile function with respect to sensitive features. They address a distinct notion of equalized
coverage tailored to continuous outcomes. In classification, label-conditional coverage is a common
alternative to equalized coverage (Vovk et al., 2003; Löfström et al., 2015; Ding et al., 2023). This
work defines the groups to be protected based on the label YN+1, instead of the features XN+1.
Jung et al. (2022) and Gibbs et al. (2025) adopt group-conditional coverage, which is analogous
to equalized coverage, to improve prediction sets. Different from the previous work, our approach
FAREG can adaptively identify unfairly treated groups without the assumption that such groups are
pre-defined. AFCP (Zhou & Sesia, 2024) develops an algorithm to construct CP sets with valid
equalized coverage for adaptively selected groups, which establishes the current state-of-the-art for
equalized coverage tasks.
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6 CONCLUSION

In this paper, we propose FAREG, a fair conformal prediction method that learns latent groups to
achieve adaptive equalized coverage. By leveraging a variational encoder-decoder to discover sub-
groups with poor coverage in a high-level feature space, our approach captures complex algorithmic
biases that linear methods may neglect. We also propose WSC+, a nonlinear metric for evaluat-
ing the conditional coverage of unfair groups more accurately. Extensive experiments confirm that
FAREG efficiently offers stronger fairness guarantees, showing a more expressive and practical path
toward fair, reliable conformal inference.

Limitations. The enhanced expressivity of representation-based groups may sacrifice model in-
terpretability partially, compared to groups explicitly defined on manifest features. However, the
encoder-decoder structure compensates this shortcoming well via reconstructing the input X , which
is empirically confirmed by Section 4.2 and Appendix B.3.

REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our work, we have made our source code publicly available
through a public anonymous repository. All experimental details, including dataset partitions, hy-
perparameter configurations, and model details, are fully documented in Appendix B.1. We are
confident that these materials provide the necessary information to replicate our findings.

USAGE OF LLMS

Large Language Models (LLMs) were utilized exclusively as writing assistants to enhance the lin-
guistic quality of this manuscript, focusing on improving clarity, grammar, and readability. Their
involvement was strictly limited to this editorial function. LLMs played no role in any substantive
research components, including conceptualization, experimental design, data analysis, interpreta-
tion of results, or scientific content creation. All intellectual contributions, methodological develop-
ments, findings, and conclusions originate solely from the authors.
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A TECHNICAL PROOFS

A.1 VARIATIONAL INFERENCE

As mentioned in Section 3.1, our optimization objective is as follows,

max I(Z,S) + I(Z,X) − βI(Z, i).

First of all, we consider I(Z,S) and

I(Z,S) = ∫ pθ(s, z) log
pθ(s, z)

pθ(s)pθ(z)
dsdz = ∫ pθ(s, z) log

pθ(s ∣ z)

pθ(s)
dsdz. (10)

Since the KL divergence between two conditional probability distribution pθ(s ∣ z) and qϕ(s ∣ z) is
non-negative, we have

DKL(pθ(s ∣ z)∥qϕ(s ∣ z)) ≥ 0⇒ ∫ pθ(s, z) log pθ(s ∣ z)ds ≥ ∫ pθ(s, z) log qϕ(s ∣ z)ds,

where qϕ(s ∣ z) is a variational approximation to the intractable distribution pθ(s ∣ z).

Plugging the above inequality into Eq. 10, we obtain

I(Z,S) ≥ ∫ pθ(s, z) log
qϕ(s ∣ z)

pθ(s)
dsdz

= ∫ pθ(s, z) log qϕ(s ∣ z)dsdz + ∫ pθ(s) log pθ(s)ds

≥ ∫ pθ(s, z) log qϕ(s ∣ z)dsdz,

(11)

where the second inequality is derived by the non-negativity of entropy.

Since S á Z ∣X holds, we have

pθ(s, z) = ∫ pθ(x, s, z)dx = ∫ pθ(x)pθ(s ∣x)pθ(z ∣x)dx.

Hence, we get
I(Z,S) ≥ ∫ pθ(x)pθ(s ∣x)pθ(z ∣x) log qϕ(s ∣ z)dxdsdz. (12)

Similar to Eq. 11, we also have

I(Z,X) ≥ ∫ pθ(x, z) log qφ(x ∣ z)dxdz

= ∫ pθ(x)pθ(z ∣x) log qφ(x ∣ z)dxdz.
(13)

As for I(Z, i), we have

I(Z, i) = ∑
i
∫ pθ(z ∣ i)pθ(i) log

pθ(z ∣ i)

pθ(z)
dz

=
1

N
∑
i
∫ pθ(z ∣xi) log

pθ(z ∣xi)

pθ(z)
dz

≤
1

N
∑
i
∫ pθ(z ∣xi) log

pθ(z ∣xi)

r(z)
dz,

(14)

where r(z) is a variational approximation to the posterior distribution pθ(z). We usually set r(z)
as a standard normal distribution N(0,1) in practice.

Combining Eq. 12 with Eq. 13 and Eq. 14, we obtain

I(Z,S) + I(Z,X) − βI(Z, i) ≥ ∫ pθ(x)pθ(s ∣x)pθ(z ∣x) log qϕ(s ∣ z) dxdsdz

+ ∫ pθ(x)pθ(z ∣x) log qφ(x ∣ z) dxdz −
β

N
∑
i
∫ pθ(z ∣xi) log

pθ(z ∣xi)

r(z)
dz.
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With Monte Carlo sampling, we use the empirical dataset on {Xi, Si, Yi}
N
i=1 to estimate

pθ(x)pθ(s ∣x) and pθ(x), where Si is computed by minimizing the conditional coverage of groups
defined by S = {s1, . . . , sN}, i.e., Pn[Yi ∈ C(Xi) ∣Xi ∈ ĜS] on {Xi, Si, Yi}

N
i=1. We leverage the

reparameterization trick (Kingma & Welling, 2013) as mentioned in Section 3.1, and finally obtain

L = −
1

N

N

∑
i=1
(Ez̃∼f(xi,ϵ)[log qϕ(si ∣ z̃) + log qφ(xi ∣ z̃)] − βDKL(pθ(z ∣xi)∥r(z))) .

A.2 PROOF OF PROPOSITION 1

Proof. We first present a technical lemma, where Pnh =
1
N ∑

N
i=1 h(Xi) and Ph = ∫ h(x)dP (x),

given an observed dataset {Xi, Yi}
N
i=1.

Lemma 1 (Boucheron et al. (2005)). There exists a numerical constant C1 such that for any τ > 0,

∣Pnh − Ph∣ ≤ C1

⎡
⎢
⎢
⎢
⎢
⎣

√

min{Pnh,Ph}
V C(h) logN + τ

N
+
V C(h) logN + τ

N

⎤
⎥
⎥
⎥
⎥
⎦

holds with probability at least 1 − e−τ .

By this Lemma, we have

∣Pn(Y ∈ C(X),X ∈ Ĝs) − P (Y ∈ C(X),X ∈ Ĝs)∣ (15)

≤ C1 [

√

min{Pn(Y ∈ C(X),X ∈ Ĝs), P (Y ∈ C(X),X ∈ Ĝs)}
V C(h) logN+τ

N
+

V C(h) logN+τ
N

] .

Similarly, we get

∣Pn(X ∈ Ĝs) − P (X ∈ Ĝs)∣ (16)

≤ C2 [

√

min{Pn(X ∈ Ĝs), P (X ∈ Ĝs)}
V C(h) logN+τ

N
+

V C(h) logN+τ
N

] .

Then, it remains to show that

∣Pn(Y ∈ C(X) ∣X ∈ Ĝs) − P (Y ∈ C(X) ∣X ∈ Ĝs)∣

= ∣
Pn(Y ∈ C(X),X ∈ Ĝs)

Pn(X ∈ Ĝs)
−
P (Y ∈ C(X),X ∈ Ĝs)

P (X ∈ Ĝs)
∣ .

Let a = Pn(Y ∈ C(X),X ∈ Ĝs), b = P (Y ∈ C(X),X ∈ Ĝs), c = (Pn − P )(X ∈ Ĝs) and d = P (X ∈

Ĝs). We can derive b ≤ d, and observe that

∣
a

c + d
−
b

d
∣ ≤ ∣

a

c + d
−
b − c

c + d
∣ ≤
∣a − b∣

c + d
+
∣c∣

c + d
. (17)

Substitute Eq. 15 and Eq. 16 into Eq. 17, and use δ = Pn(X ∈ Ĝs), we obtain

∣
Pn(Y ∈ C(X),X ∈ Ĝs)

Pn(X ∈ Ĝs)
−
P (Y ∈ C(X),X ∈ Ĝs)

P (X ∈ Ĝs)
∣

≤
∣Pn(Y ∈ C(X),X ∈ Ĝs) − P (Y ∈ C(X),X ∈ Ĝs)∣

Pn(X ∈ Ĝs)
−
∣Pn(X ∈ Ĝs) − P (X ∈ Ĝs)∣

Pn(X ∈ Ĝs)

≤ C3

⎡
⎢
⎢
⎢
⎢
⎣

√
V C(h) logN + τ

δN
+
V C(h) logN + τ

δN

⎤
⎥
⎥
⎥
⎥
⎦

,

which completes the proof.

14
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A.3 OPTIMIZATION PROCESS OF EQ. 5

The projection operation of the PGD algorithm described in Section 3.1 requires solving the follow-
ing optimization to minimize the ℓ2 distance:

min
v1,...,vn

N

∑
i=1
(vi − ui)

2 s.t.
N

∑
i=1

vi ≥ δ, vi ∈ [0,1] i = 1, . . . ,N, (18)

where u1, . . . , uN are given and ui ∈ [0,1] holds for each i ∈ [N].

With the above constraints, we compute the Lagrangian as

L(vi;λi, µi, ω) =
N

∑
i=1
(vi − ui)

2
+

N

∑
i=1

λi(−vi) +
N

∑
i=1

µi(vi − 1) + ω(δ −
N

∑
i=1

vi),

where {λi}
N
i=1,{µi}

N
i=1 and ω are the Lagrange multipliers. Let the partial derivatives vanish, and

we have
∂L

∂vi
= 2(vi − ui) − λi + µi − ω = 0⇒ 2(vi − ui) = λi − µi + ω

For the complementary relaxation conditions, there are four different cases:

• If vi = 0, constraint vi ≥ 0 is activated and we have λi ≥ 0, µi = 0;
• If vi = 1, constraint vi ≤ 1 is activated and we have µi ≥ 0, λi = 0;
• If 0 < vi < 1, we have µi = λi = 0 and then vi = ui + ω/2;
• If ∑ vi > δ, constraint ∑ vi ≥ δ is not activated and then ω = 0; otherwise, ω ≥ 0.

When∑ui ≥ δ, we have vi = ui, which is an optimal solution to the minimization problem in Eq. 18.

When ∑ui < δ, let vi =min(1, ui + ω/2), where ω ≥ 0 and ∑N
i=1min(1, ui + ω/2) ≥ δ. In this case,

we resort {vi}Ni=1 in descending order, i.e., v(1) ≥ v(2) ≥ ⋅ ⋅ ⋅ ≥ v(N). Let k ∈ [N] is the greatest index
to satisfy v(k) + ω/2 ≥ 1 and v(k+1) + ω/2 < 1. Then, constraint ∑ vi = δ can be written as

k ⋅ 1 +
N

∑
i=k+1

(v(i) + ω/2) = δ.

Hence, we obtain

ω =
2(δ − k −∑

N
i=k+1 v(i))

N − k
.

In practice, we can compute k and ω via traversing the value of k from maximum N to minimum 1.

A.4 PROOF OF THEOREM 1

Proof. When making the similar assumption as Theorem 1 in AFCP (Zhou & Sesia, 2024), for each
group Ĝs ∈ {Ĝst}

T
t=1, we can substitute XN+1 ∈ Ĝs for ϕ(XN+1, Â(XN+1)) and XN+1 ∈ Ĝ

o
s for

ϕ(XN+1, Â
o(XN+1)) as conditions, where Ĝos is an imaginary oracle group. Then, according to

Theorem 1 (Zhou & Sesia, 2024), we have

P[YN+1 ∈ C(XN+1) ∣XN+1 ∈ Ĝs] ≥ 1 − α.

AFCP assumes that the group selection algorithm can always achieve the oracle group Ĝos , which
means that the algorithm must have enough expressiveness to include Ĝos into the candidate group
space. However, this necessary condition could be violated, as AFCP’s candidate group space is
limited to linear groups defined by individual features. In contrast, our method, FAREG, employs
a more expressive model that extends its candidate group space into the nonlinear realm. Conse-
quently, the guarantee for FAREG remains valid for groups defined by complex, nonlinear feature
combinations.

Next, we formally analyze the expressiveness of AFCP and our FAREG based on the VC-dimension.
As described in Section 1, AFCP computes the group coverage scores for each feature and greedily
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picks the most sensitive feature with the lowest group coverage score. The essence of such a process
is a decision stump dividing all features into two parts (sensitive or not sensitive) using a threshold,
and thus its VC-dimension is 2. In contrast, based on established theory (Shalev-Shwartz & Ben-
David, 2014), the VC-dimension of FAREG scales with its parameter size M , i.e.,

VC(AFCP) = 2, VC(FAREG) = O(M).
Hence, the VC-dimension of our FAREG is typically far larger than that of AFCP, indicating the
stronger expressiveness of our method, i.e., our candidate group space serves as a superset of AFCP’s
candidate group space.

A.5 PROOF OF PROPOSITION 2

Proof. According to Proposition 1 and the definition of WSC+n (Eq. 8), we obtain

sup
π∈Π
{∣WSC+n(C,π) − P(Y ∈ C(X) ∣a ≤ π(X) ≤ b)∣} ≤ O(1)

√
V C(Π) logN

δN
by omitting τ . Then, we eliminate the absolute value as

−O(1)

√
V C(π) logN

δN
≤WSC+n(C,π) − P(Y ∈ C(X) ∣a ≤ π(X) ≤ b) ≤ O(1)

√
V C(π) logN

δN
,

which holds for all π ∈ Π. Hence, if P(Y ∈ C(X) ∣a ≤ π(X) ≤ b) = 1 − α, we can observe

WSC+n(C,π) ≥ P(Y ∈ C(X) ∣a ≤ π(X) ≤ b) − O(1)
√

V C(π) logN

δN
for any π ∈ Π.

Next, we only need to prove O(d2) ≥ V C(π). Recall that V C(π) denotes the VC-dimension
of the binary classifier π, and π = xTWx + vTx is a quadratic function, where W ∈ Rd×d and
v ∈ Rd. Therefore, the VC-dimension of π is equal to the dimension of its expanded feature space
M= d(d + 1)/2 + d, i.e., O(d2), which completes the proof.

B FURTHER EXPERIMENT DETAILS

B.1 DATASET CONSTRUCTION AND HYPERPARAMETERS

Table 2: Hyperparameters of FAREG.

DATASET SYNTHETIC DATA NURSERY DATA

MODEL MLP MLP
NUMBER OF LAYERS 3 3
HIDDEN DIMENSION [64,32] [64,32]
EPOCH 2000 800
BATCH SIZE 500 500
LEARNING RATE 0.001 0.01
β 2.0 0.1
δ 0.3 0.1
T 20 100

For the dataset we use to evaluate two metrics in Section 4.1, only X[0],X[1], and X[2] influence
the label Y and we define the conditional distribution P (Y ∣X) as

P (Y ∣X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 1
3
, 1
3
, 1
3
,0,0,0) , if (X[0] ≥ 0.1) ⊕ (X[1] ≥ 0.1) and X[2] < 0.5,

(0,0,0, 1
3
, 1
3
, 1
3
) , if (X[0] ≥ 0.1) ⊕ (X[1] ≥ 0.1) and X[2] ≥ 0.5,

(1,0,0,0,0,0) , if not (X[0] ≥ 0.1) ⊕ (X[1] ≥ 0.1) and X[2] < 1
6
,

(0,1,0,0,0,0) , if not (X[0] ≥ 0.1) ⊕ (X[1] ≥ 0.1) and 1
6
≤X[2] ≤ 2

6
,

⋮

(0,0,0,0,0,1) , if not X[0] = (X[0] ≥ 0.1) ⊕ (X[1] ≥ 0.1) and 5
6
≤X[2] ≤ 1.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.1 0.2 0.3 0.40.8

0.85

0.9

0.95

1

G
ro

up
 C

ov
er

ag
e

FaReG

(a) Group Coverage

0.1 0.2 0.3 0.40.8

0.85

0.9

0.95

1

W
S

C
+

FaReG

(b) WSC+n

0.1 0.2 0.3 0.40.8

0.85

0.9

0.95

1

A
ve

ra
ge

 C
ov

er
ag

e

FaReG

(c) Average Coverage

0.1 0.2 0.3 0.42

2.2

2.4

2.6

2.8

3

A
ve

ra
ge

 S
iz

e

FaReG

(d) Average Size

Figure 6: Performance of prediction sets produced by our FAREG on synthetic data w.r.t. the
selected group size proportion δ.
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Figure 7: Performance of prediction sets produced by our FAREG on synthetic data w.r.t. the
sampling times T .

For the classification models as the input of conformal prediction, we strictly follow the settings
in (Zhou & Sesia, 2024) on both synthetic and real-world data. To train FAREG to mine unfair
groups, we randomly split the calibration set D into the training set and validation set with the ratio
5:5. We list the hyperparameters of FAREG in Table 2. Note that we use the same network structure
for encoders and decoders, i.e., a simple 3-layer MLP, which is consistent with Proposition 1. Since
there are three optimization objectives in Eq. 6, which may conflict with each other to some extent,
we divide the training into two stages. At the first stage, we train the encoder with the parameter θ
and the decoder with the parameter ϕ by fixing the decoder with the parameter φ in practice, i.e.,
the first term LCC and third term LKL in Eq. 6. Then, we use LMSE to reconstruct X based on Z
at the second stage.

Recall from Section 4.2 that Color is denoted as X[0], Gender is denoted as X[1], and the first
standard feature is denoted as X[2]. The conditional distribution of Y ∣X is determined by a simple
decision tree, where only X[0], X[1], and X[2] provide valuable predictive information for Y ,
formulated as follows,

P (Y ∣X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 1
3
, 1
3
, 1
3
,0,0,0) , if X[0] = Red and X[1] = Female and X[2] < 0.5,

(0,0,0, 1
3
, 1
3
, 1
3
) , if X[0] = Red and X[1] = Female and X[2] ≥ 0.5,

( 1
3
, 1
3
, 1
3
,0,0,0) , if X[0] = Blue and X[1] =Male and X[2] < 0.5,

(0,0,0, 1
3
, 1
3
, 1
3
) , if X[0] = Blue and X[1] =Male and X[2] ≥ 0.5,

(1,0,0,0,0,0) , if X[0] = Red and X[1] =Male and X[2] < 1
6
,

(0,1,0,0,0,0) , if X[0] = Red and X[1] =Male and 1
6
≤X[2] ≤ 2

6
,

⋮

(0,0,0,0,0,1) , if X[0] = Red and X[1] =Male and 5
6
≤X[2] ≤ 1,

(1,0,0,0,0,0) , if X[0] = Blue and X[1] = Female and X[2] < 1
6
,

⋮

(0,0,0,0,0,1) , if X[0] = Blue and X[1] = Female and 5
6
≤X[2] ≤ 1.

B.2 PARAMETER SENSITIVITY

In this section, we investigate the sensitivity of two key parameters: the selected group size pro-
portion δ and the number of sampling iterations T . The results for δ and T are presented in Fig. 6
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Figure 8: The visualization results of reconstruction X̂ when ∣Ĝs∣/N increases. The latent represen-
tation z generally captures an XNOR relationship between X[0] and X[1].

and Fig. 7, respectively. Overall, the metrics Group Coverage and WSC+n show relative insensitivity
to the number of sampling iterations T , as illustrated in Fig. 7a and 7b. In contrast, both Group
Coverage and WSC+n increase with the proportion δ of the selected group size relative to the entire
dataset. This trend empirically provides implicit support for Proposition 1.

B.3 GROUP VISUALIZATION

To analyze how features X[0] and X[1] contribute to group membership in Ĝs, we perturb the
encoding z and examine the resulting reconstructions X̂ . Taking the sample size of 4000 on the
synthetic dataset as an example, we randomly select one run from 10 repeated trials and add pertur-
bations of +0.003 and +0.006 to the fourth dimension of z, respectively. The reconstructed features
X̂ are visualized in Fig. 8.

Fig. 8a shows that, without perturbation, the latent representation z generally captures an XNOR
relationship between X[0] and X[1], indicating that the encoder effectively filters out irrelevant
feature information. After applying perturbations (see Fig. 8b and 8c), the XNOR pattern becomes
more pronounced as ∣Ĝs∣/N increases, revealing a positive correlation between X[0] ⊙X[1] and
membership in Ĝs. This result strengthens the interpretability of our approach by demonstrating that
the representation-based groups reflect meaningful feature interactions.
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