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Abstract

Most modern learning problems are over-parameterized, where the number of learnable parameters
is much greater than the number of training data points. In this over-parameterized regime, the
training loss typically has infinitely many global optima that completely interpolate the data with
varying generalization performance. The particular global optimum we converge to depends on
the implicit bias of the optimization algorithm. The question we address in this paper is, “What is
the implicit bias that leads to the best generalization performance?". To find the optimal implicit
bias, we provide a precise asymptotic analysis of the generalization performance of interpolators
obtained from minimizing convex functions/potentials for over-parameterized linear regression with
non-isotropic Gaussian data. In particular, we obtain a tight lower bound on the best generalization
error possible among this class of interpolators in terms of the over-parameterization ratio, the
variance of the noise in the labels, the eigenspectrum of the data covariance, and the underlying
distribution of the parameter to be estimated. Finally, we find the optimal convex implicit bias that
achieves this lower bound under certain sufficient conditions involving the log-concavity of the
distribution of a Gaussian convolved with the prior of the true underlying parameter.

1. Introduction

Classical statistical learning theory primarily focuses on problems in data-rich regimes, where
the number of data points is significantly greater than the number of unknown parameters to be
learned/estimated. In contrast, most modern learning problems like deep learning are typically highly
overparameterized, i.e., the problem dimension 7 is much greater than the number of training data
points m. Due to this over-parameterization, these models possess the capacity to completely fit any
set of training data (even possibly random) [59]. Despite this overfitting, these models surprisingly
generalize well on unseen data, and this so-called double descent phenomenon was observed, for
example, in [10, 39]. In this so-called interpolating regime [37] of over-parameterized models, there
generally exist (infinitely) many global optima of weights that interpolate the data with varying
generalization properties. The particular convergent global optima are dependent on the implicit bias
of the optimizer used in training. Due to the empirical success of stochastic gradient descent (SGD)
and its variants, the implicit bias solution of SGD, which is the minimum {5 interpolator, has been a
subject of great interest for linear models [7, 39, 43]. A generalization of SGD is stochastic mirror
descent (SMD) [41], which generalizes the implicit bias to an arbitrary convex potential [25, 26, 50],
as shown below
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where the minimum ¢5-norm solution is a special case. The recent works of [31, 40, 57, 60] provide
a statistical analysis of low-norm interpolators in the highly overparameterized regime. We provide a
more in-depth discussion on related works in the Appendix.

Contributions: In this work, (i) we characterize the precise asymptotic limit of the generalization
error of interpolators obtained through (1) for separable ¥; see Theorem 1 in the proportional regime
similar to [27, 39] where the number of data points scales at a proportional rate to problem dimension.
We show that the value of this limit is obtained as a solution of a system of two nonlinear equations
with two unknowns. (ii) We establish a tight lower bound on the achievable generalization error for a
broad class of interpolators obtained through (1), and computing this lower bound involves solving a
scalar non-linear equation; see Theorem 2. We also provide a slightly weaker but simplified version
of this lower bound for isotropic data, and we show that this bound is indeed tight when the true
underlying parameter has a Gaussian density (Corollary 3). (iii) Under certain conditions, we provide
a construction of the optimal convex potential, whose asymptotic limit of the generalization error
matches the lower bounds, indeed confirming that the lower bounds are tight (Theorem 4). We also
describe the special case when SGD or the minimum ¢;-norm interpolator is optimal (Corollary 6).

2. Problem Setup

We consider the problem of linear regression in the over-parameterized regime. We model the data
{z;,yi}", be generated from an additive noisy linear model:

yi=xl B 42z for i=1,---,m )

where labels/outputs y; € R are a linear function of the covariate vectors «; € R" perturbed by
unknown noise z; € R. Here, 8* € R" is the true unknown model/weights to be estimated through
learning. The goal of the learner is to come up with an estimate B that minimizes the population
risk/generalization error

r(B) == E;z((5 — &7 B)?] 3)

or equivalently the excess risk 7(3) — r(3*). Here, the expectation is over an independent realization
of the (7, ), which are related by (2). In the overparameterized regime n > m, the minimizer
obtained from linear regression on the dataset is not unique, and the goal of this work is to study the
dependence of the generalization error on the structure of the underlying signal 3*, covariates, and
the choice of global optima from the interpolating subspace. To this end, we assume the following in
our analysis.

Assumption 1 (High-dimensional asymptotics) Throughout this paper, we consider the asymptotic
proportional limit where both m,n — oo at a fixed ratio § = m/n, where 0 < 6 < 1.

Assumption 2 (Gaussian features and noise) Given the feature covariance X the data/feature vec-
1 j.i.d. . . i.i.d. .
tors x; = X2g; where g; "< N(0, %In) i € [m] and the noise z; "<" N'(0,0?), i € [m].

Assumption 3 (True parameter and eigen-spectrum distribution) We consider a fixed diagonal co-
variance ¥ and unknown signal parameter (3* such that the pair {¥; ;, B} of the eigen-values
and the coordinates of the true underlying signal parameter are sampled i.i.d. from {A%, B} with
distribution Py p. Additionally, we assume that the marginal distribution Pg has a finite, non-zero
second moment and A is a strictly positive, with bounded support.
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Under these assumptions, the generalization error in (3) simplifies to the following limit.

% . 1 A * 3 *
r(B) = lim —(B-pB")"E(8-8")+ 0" )
n—oo N
We denote X := (x1, @2, -+, T,)T € R™*™", label vector y := (y1,y2,  ,¥Ym)’ € R™ and
z = (21,22, - ,2zm)T € R™. We assume that the data and noise satisfy the conditions in

Assumption 2 and that 3 is fixed. Performing empirical risk minimization (ERM) on the dataset in
the overparameterized regime leads to interpolation, and we denote the subspace of global optima
as B := {B : y = XB}. The global optimum we converge to is given by the implicit bias of the
algorithm, and in this work, we consider separable convex potentials, i.e. W(3) := >_"" | ¥;(53;)
which satisfy lim| g, ¥(8) = oo. Further, we consider the general case of 9;(.) = (., % ;)
where the learner has access to the diagonal entries of 3. For cases where 3 is unknown to the
learner, one can simply take U(3) := >, ¢(8;). Our analysis is general enough to cover both
these cases. Under these assumptions, (1) can be reformulated as

Bi=argmin» 9(3,%;;) st y=Xp. (5)

BER™ i

This formulation includes the minimum /5 norm interpolator as a special case when ¥(3) = ||3||3.
When X is diagonal, we can also pick ¥(3) = (8 — 8*)TX(8 — 8*) which recovers the theoretical
optimal interpolator shown in [39], although this is not achievable since 3* is unknown to the learner.

3. Main Results

We first characterize the precise asymptotic of problem (5) in terms of the solution to a system of
non-linear equations (6). Next, we leverage this system of equations to drive tight lower bounds on
the generalization error and provide the construction of the optimal convex potential that achieves
these bounds.

3.1. System of Non-Linear Equations

For a given overparameterization ratio 0 < ¢ < 1 and noise variance o>

system of non-linear equations in o, u

, we have the following

H o «o
E|=M, (B H; —u(l -6 6
Mo ] =) (6
E <1M’ (B+ ——H; —~ ))2 21— gy - 2 (6b)
ATl VoA u/SA2 a a?

Here, the expectation is over the random variables B, H, and A, where A, B as defined in Assumption
3 denote the distribution of the eigenspectrum and the underlying signal, respectively, and H is a
standard Gaussian.
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3.2. Precise Asymptotics

Theorem 1 (Generalization error) Let Assumptions 1, 2, and 3 hold and B be the solution of (5). if
we assume that v, uy, are the unique solutions to (6), then in the asymptotic limit n, m — oo, °* —
0, we have that

r(B) EiR ozi. 7

The statements in Theorem 1 hold for a general class of separable convex potentials in (5). In the
special cases of £1 and {5 potentials, our analysis recovers many of the results from [15, 27, 35]. The
details of the proof are given in Appendix E.

3.3. Fundamental Limits

In this section, we study the fundamental limits on the generalization error of interpolators obtained
through (5). To be precise, we consider the following class of convex potentials defined below

Cy = {\II | U (B) = Zzp(ﬂi,Ei’i) st (., %) is convex Vi € [n]} . (8)

i=1

Therefore C,;, contains a much broader class of separable convex functions that can have a dependence
on the eigenspectrum of the data source, which is assumed to be known a priori. We provide a lower
bound on the generalization error, which is valid for every potential in C,. Additionally, under certain
conditions, we show that this lower bound is tight by constructing the optimal convex potential,
which achieves this bound.

Theorem 2 (Lower bound on ai ) Let Assumptions 1,2, and 3 hold. Define the random variable
Vo =B+ ﬁH where H ~ N(0,1) and B, A as defined in Assumption 2 and 3. Let o be the

unique solution of the following non-linear equation
9 S0 5(1-19)

S T A N(A) ®

where I (V,,) is the weighted Fisher information of V,, defined as

EVQ(Va|A)>2

Ia(V,) :=E [( A (10)

’

P ; o . .
where y, (v|A) := % is the conditional score function of Vi,. Then for every ¥ € Cy, with a?p

as the asymptotic limit of the generalization error as in (7), we have ai > ol

The proof of Theorem 2 is deferred to Appendix F, and it also involves showing the existence
of a unique solution to the non-linear equation (9). The weighted Fisher information (10) can be
computed more generally, even when Pp is not a differentiable potential, since adding a Gaussian
smoothens out the density. Next, we provide a slightly weaker lower bound which avoids solving a
non-linear equation like (9) in the special case of isotropic data, i.e, 3 = I,.
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Corollary 3 Let Assumptions 1,2 and 3 hold and o, be defined as the solution to (9), if A = 1

almost surely then
2
2 o 1-96
> — 11
=15 1B (b
whenever, the Fisher information Z(B) is well defined. The inequality becomes an equality if and
only if B is a Gaussian.

The proof of corollary 3 is found in Appendix F and involves the application of Stam’s inequality for
Fisher information to Z(V,, ), which makes it possible to solve (9) analytically.

Looking at (11) closely, the first term 1”—_25 represents the theoretical lower bound on the general-
ization error for all possible interpolating solutions [39] and it shows that overfitting the noise can
benign when 6 < 1 i.e in the highly over-parameterized regime. The second term Zl(;Bﬁs) ends up being
equal to the Bayes risk when B is Gaussian, and the variance of the noise is zero. Therefore (11) can
be interpreted as the sum of the error from overfitting the noise and the error of the best possible
estimator in the absence of noise. Contrary to the first term, Il(;B‘S is minimized when ¢ approaches 1,
i.e., we have an equal number of equations and unknowns to fully recover the underlying unknown
parameter. So there is an inherent tension between the two terms, and increasing ¢, although recovers
more of the signal, amplifies the noise due to overfitting.

Next, we will argue that these lower bounds obtained from Theorem 2 and Corollary 3 are indeed

tight by constructing optimal convex potentials that achieve these lower bounds.

3.4. Optimal implicit Bias

Theorem 4 (Optimal V) Let Assumptions 1, 2, and 3 hold and o, be defined as the solution to (9).
Consider the following function 1, : R*> — R

201 _ 8) — 52
az(1—9) 50)7 (12)

1/}*(1}, )\) = _Mlog(PVa* (v|A) (U; (5(1 — 5))\2

if Py, (v|\) is log-concave in v and we define V.. (B) = Y1 | ¥.(Bi, Xi;), then
1. ¥, (B) €Cy

2. «y is a solution to the system of equations (6) obtained using V* (v, \) and is therefore the
optimal convex implicit bias.

Theorem 4 provides a construction of the optimal potential (12) that satisfies the system of
equations (6). When W, obtained using (12) belongs to Cy, then the ozfp* obtained from (6) denotes
the asymptotic limit of the generalization error of ¥, and by Theorem 4, we have that a?p* =a?,
thereby achieving the lower bound. The proof of this deferred to Appendix F and involves verifying
that the construction in (12) satisfies the system of equations (6) and characterizing the sufficient

conditions for the convexity of ¥,.

Remark 5 The log-concavity of Py, (v|\) must be verified on a case-by-case basis by first solving
for a.. A sufficient condition that always ensures log-concavity of Py, (v|\) is by letting Pg be a
log-concave density since convolving a Gaussian density with Pp preserves its log-concavity. Even
when Pg is not log-concave, it is possible that if o, obtained from solving (9) is greater than a
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certain threshold value, it smoothens out Pg enough such that the resulting Py, (v|\) is log-concave.
This, in turn, characterizes a region of § and o2, where the optimal convex potential is achievable
and the lower bound is tight.

We’ll observe in numerically in Section A, where we consider the cases when Pp is sparse-Gaussian
and Rademacher both of which are not even differentiable but the optimal potential construction
obtained from Theorem 4 is indeed convex for the values of § and o2 chosen. Next, we look at the
special case when the underlying parameter density Pp is a Gaussian density.

Corollary 6 (U, for Gaussian B) Let Assumptions 1, 2, and 3 hold and B ~ N (0,1), then the
optimal implicit bias is given as

2 -1
v.(8) = gTx? <1”_51 + z) %12, (13)

Corollary 6 comes from the direct application of Theorem 4 while ignoring the constant terms in
the potential since they don’t affect the outcome of the optimization. In fact, we observe that (13)
is quadratic, which is convex, and therefore, it achieves the lower bound o2 on the generalization
error. If % > A, which happens either when the noise variance o2 is large or we are slightly
over-parameterized, i.e., § approaches 1, then the optimal potential ¥, (3) ~ 37 £3. In the other
case, when % < A, the optimal potential is ¥, (3)  ||3||3. In the special case when . is isotropic
or when the variance of the noise o2 = 0, the optimal convex potential is exactly the Euclidean norm
squared, the implicit bias of SGD.

Remark 7 (Comparison with [44]) Although we consider a bigger class of interpolators in (8), the
set of interpolators considered in [44] is not completely inclusive in our class. The key difference is
that our optimal convex potential construction doesn’t depend on the observed labels data X ,y. In
contrast, the optimal linear response interpolator considered in [44] involves a quadratic potential
that can depend on Xy, and this dependence makes analysis quite difficult outside of the quadratic
case. This seems to be a subtle difference, and we, in fact, see similar qualitative trends as discussed
under Corollary 6.

4. Conclusion

This work provides a precise asymptotic analysis of the generalization performance of interpolators
for linear models obtained as a minimization of a convex potential, which is characterized by the
implicit bias of the optimization algorithm. Additionally, we also derive the fundamental lower
bounds on the achievable generalization error of interpolators obtained from the minimization of
convex potentials and characterize the optimal convex potential that achieves these bounds. Additional
numerical simulations of the derived results can be found in Appendix A. Extending these results
to non-asymptotic settings and characterizing the optimal implicit bias in this setting are important
future directions. It would also be interesting to generalize these results to non-linear models and
even study the role of implicit bias in classification problems.
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Appendix A. Numerical Simulations
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Figure 1: Comparison of excess risk of different interpolators (a) when Pg has a 0.3-sparse Gaussian
density and A = 1 a.s (b) when Pp has a Rademacher density and A = 1 a.s (¢) when
Pp has a Gaussian density and A2 takes the value 4 with probability 0.3 and 0.1 with
probability 0.7.

In this section, we provide numerical simulations of the results derived in section 3.2 and 3.3
and provide insights on the implications of these results for certain special cases. In particular,
we study the cases when the prior distribution of the underlying signal parameter Pp is a sparse
Gaussian (Figure 1 (a)), Rademacher (Figure 1 (b)) and Gaussian (Figure 1 (c)). Figures 2 (a) and 2
(b) show the structure of the optimal convex potentials when the underlying signal parameter Pp
is a sparse Gaussian and Rademacher, respectively. We normalize the underlying prior signal such
that E[B?] = 1 and define the signal-to-noise ratio (SNR) as % and consider the regimes of low
SNR (0 = 0.7) and high SNR (¢ = 0.3). All the above-mentioned plots evaluate the asymptotic
theoretical limits of the results derived and are obtained from solving a system of nonlinear equations
involving expectations of certain quantities. We use standard packages like Scipy to compute these
expectations using numerical integrals and solve the system of non-linear equations. Additional plots
demonstrating the concentration of non-asymptotics are deferred to the Appendix E.

Sparse Gaussian. In Figure 1 (a), we consider the case when the underlying unknown parameter
B is 0.3-sparse Gaussian, i.e., with probability 0.3 behaves like a Gaussian and is zero otherwise.
We consider isotropic data and B is scaled appropriately such that its variance is one. The y-axis
represents the excess risk of the interpolating solution obtained, and the x-axis sweeps across the
overparameterization ratio 4. In the absence of noise, it’s well known that we get perfect recovery
for the ¢; norm at approximately two times the sparsity of the signal [14], but in the presence of
noise, interpolation can’t recover the signal. In the high SNR regime (o = 0.3), we observe that the
minimum ¢; interpolator does, in fact, outperform the minimum ¢5 interpolator for certain regions
of 4. But in the low SNR regime (o = 0.7), observe that the ¢; interpolator performs significantly
worse than /5, which suggests that imposing structure while interpolating noisy labels can amplify
the noise more than the recovery of the signal. We additionally observe that ¢2 is, in fact, very close
to the optimal performance characterized by the lower bound. Figure 2 (a) shows the structure of the
optimal convex potentials that achieve these lower bounds at § = 0.3 at different SNRs. We see that
the optimal potential behaves like a smoothened version of the ¢;-norm, and as SNR decreases, the
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Figure 2: Comparison of the structure of the optimal convex potentials when (a) Pp has a 0.3-sparse
Gaussian density and A = 1 a.s (b) Pg has a Rademacher density and A = 1 a.s

optimal potential approaches the Euclidean norm squared, supporting our previous observations that
the /2-norm interpolator is, in fact, close to optimal at low SNR.

Rademacher. In Figure 1 (b), we consider Rademacher distributed B, where it take the values
{£1} with equal probability with isotropic Gaussian data. The recovery threshold in the absence
of noise for the ¢,,-norm was shown to be = 0.5 [14]. In the presence of noise, even in the high
SNR regime (¢ = 0.3), we observe that {,,-norm is outperformed by both the minimum ¢ and /3
norm interpolators. In the low SNR regime (¢ = 0.7), this gap in performance only grows wider as
expected. Looking at the structure of the optimal convex potential in Figure 2 (b), we see that for
high SNRs, the optimal potential is much flatter around the origin and increases steeply at around 1
compared to the square and cubic potentials and as we move to the low SNR regime, the optimal
potential smoothens out.

Gaussian. Finally, we consider the Gaussian prior in Figure 1 (c). For isotropic data, we have
established in Corollary 6 that the optimal potential is indeed the minimum ¢-norm interpolator.
So now, we consider non-isotropic data with a bi-level eigen-spectrum where the diagonal entries
of covariance X are set to 4 with probability 0.3 and 0.1 with probability 0.7. In the high SNR
regime (o0 = 0.3), we observe that the minimum ¢»-norm interpolator is quite close to the lower
bound, which is achieved by the optimal potential, which has access to the elements of 3. This is
not surprising since from (13), we observe that for high SNRs, the optimal potential approaches the
Euclidean norm squared. In contrast, for the low SNR regime (o = 0.7), we see a significant gap in
the performance of the minimum ¢, norm interpolator and the optimal achievable interpolator. This
again can be explained from (13), where for low SNRs, we see that the optimal convex potential
U,(B) ~ BTXB. Therefore, having access to the eigen-spectrum of the data source makes the
difference when the noise variance is large.

13
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Appendix B. Related Work

There has been extensive literature studying the precise asymptotics of different convex regularized
estimators for linear models [1, 4, 8, 12-15, 17, 19, 21-23, 27, 28, 30, 33, 36, 38, 45-47, 51, 52, 55,
56, 58]. The convex Gaussian minimax Theorem (CGMT) [52, 55] provides a framework to do this
precise asymptotic analysis in many of these afore-mentioned works and will also be the primary
tool for analysis in our work. Another popular approach used in precise asymptotic analysis is
approximate message passing (AMP) [20, 21], and it is conceivable that results obtained in our work
can also be derived using AMP analysis. In the context of interpolation, under the proportional regime
of Assumption 1 [15, 27] do a precise asymptotic analysis of the minimum ¢2-norm interpolators and
[35] studied the precise asymptotics of the minimum ¢;-norm interpolator for isotropic Gaussian data
using AMP. Our results extend this analysis to general separable convex potentials on non-isotropic
Gaussian data, which include ¢; and ¢5 norms as special cases, and we recover the previous results.

There is a rich body of work on non-asymptotic analysis showing consistent rates of minimum-
norm interpolators [7, 16, 18, 31, 32, 40, 57, 60]. These works typically consider the highly
overparameterized regime, i.e., § < 1, which is a necessary condition for consistency. In contrast,
we consider the proportional regime, where m,n — oo and m/n — §, where consistency is not
possible [39], and therefore a sharp characterization of the asymptotic generalization error is of
interest. The recent works of [31, 40, 57, 60] also use CGMT in their analysis, where Gaussian
comparison lemmas are used to obtain bounds on the risk using uniform convergence arguments.
This approach is different from ours, where CGMT is used directly on the objective (1), which
simplifies the objective to a scalar optimization in the asymptotic limit similar to [15].

In terms of characterizing fundamental limits, [2, 9, 19] were the first works to derive lower
bounds and optimal loss functions for high-dimensional linear regression problems in the absence of
regularization, and therefore, they consider the under-parameterized regime with a unique global
optimum. More recently, [13] studied the fundamental limits of convex regularized linear regression,
where they considered the square loss and derived lower bounds on the prediction error obtained
from an optimally tuned convex regularizer. Similar results on the lower bounds of the prediction
error were also studied for binary classification [53] and for ridge-regularized regression for linear
and binary models in [54]. None of these prior works consider the case of interpolation in over-
parameterized models, and our analysis extends these ideas to derive fundamental lower bounds on
the generalization error of interpolating solutions on linear models obtained from minimizing convex
potentials, improving upon previous results of [3, 44].

Appendix C. Deep Neural Networks

In this section, we discuss the applicability of our results to non-linear models, in particular, deep
networks. Linearity plays a key role throughout our analysis; therefore, our results presented may
not directly translate to general non-linear settings, but in certain regimes, it can be shown that
neural networks are well-approximated by linear models. The neural tangent kernel (NTK) [29]
framework has been one the main tools to theoretically understand the optimization of infinitely wide
neural networks. In this infinite width limit, training using gradient descent becomes equivalent to
optimizing linear functions in the infinite-dimensional Hilbert space defined by the NTK, which is in
line with our problem setting of letting n — oo. Another key assumption we make is the Gaussianity
of the data. Although it is conceivable that due to Gaussian universality, the analysis shown holds
more generally for non-Gaussian data, this remains to be shown. In terms of a practical algorithm
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Figure 3: Generalization performance of ResNet-18 on the CIFAR-10 using different SMD algo-
rithms. [6].

to arrive at these minimum convex interpolators, [6] shows both experimentally and theoretically
the validity of the implicit regularization property of SMD if the initialization is close enough to the
manifold of global minima (something that comes for free in the highly overparameterized case).
The optimal convex potentials derived in this work can be implemented directly using the SMD
update rule if the derivative of the convex potential is invertible, and the separability makes this
implementation efficient. Clearly, the choice of potential plays an important role in determining the
generalization performance, as seen in Figure C; therefore, it should be treated as a hyper-parameter
during optimization. An extensive survey of empirical experiments by varying the choice of potential
on different model architectures and problem domains would be useful in guiding the choice of
potential for a given learning problem.

Appendix D. Useful facts

D.1. Properties of Moreau Envelope

In this section, we provide some properties of Moreau Envelope, which will be used in our analysis
later. These results are mainly borrowed from [49] and also previously used in [53]

Proposition 8 Ler v : R — R be a proper lower semi-continuous convex function.
1. Then limq—so, My(2;a) = ¥(x) and limg— oo My (2; @) = minger ¥ (y).

2. The derivatives of the Moreau Envelope satisfy the following

Mz = B Ly (a:0), (14)
, OMy(x; 1
My o(7;a) = gffa) = —ﬁ(w —proxw(:v;oc))z. (15)

15
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Proposition 9 For o > 0 and a function h, we have that

2 1 2 *
My(z;0) = - = = (”; + cw(w)) (16)

*
where <§ + aw(x)) is the convex conjugate of% + ap(x).

Proposition 10 (Inverse of Moreau envelope)[[2], result 23 in appendix] For o« > 0 and 1) a convex,
lower semi-continuous function such that g(z) = My (x; o), the Moreau envelope can be inverted

so that P(x) = —M_g(z; ).
D.2. Properties of Fisher Information
We now state some standard properties of the Fisher information of location which are used in our

analysis and the additional details of which can be found in [11].

Proposition 11 Let X be a zero mean random variable with a differentiable probability density Px
such that Px (x) > 0, —o0 < x < 0o and the following integral is well-defined

/

I(X):= /_Z de. a7

The Fisher information of location (X ) defined as above satisfies the following properties.
(a) Foranyc € R, Z(cX) = Z(X)/c?
(b) (Cramer-Rao bound) Z(cX) < E[)l(Z]’ with equality if and only if X has a Gaussian.

(c) Let X1, X5 be independent random variables with well-defined Z(X1),Z(X2) and o € [0, 1].
Then it holds that

T(X1 4 X2) < o*Z(X1) + (1 — a)*T(Xy) (18)

(d) (Stam’s inequality)For the two independent random variables X1, Xo defined above, the
following holds

Z(X1) I(X3)

Z(X1) + I(X2)

The inequality is obtained from optimizing the upper bound over « in (c), and the inequality

becomes equality if and only if X1, Xo are independent Gaussians.

I(X1 + Xo) < (19)

Proposition 12 Consider the random variables H ~ N(0,1) and B such that V,, := B + oH
satisfies the conditions in Proposition 11 for o € R~g. Then we have that

(a) limq—s0, a?Z(Vy) — 0

(b) limy—so0 &*Z(Vy) — 1

The proof of the above proposition involves using property (c) of proposition 11, and a similar result
was also shown in [54].
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Appendix E. Precise Asymptotics

In this section, we provide the proof for the precise asymptotics of the interpolating solutions obtained
from (5) and also study the special cases of the minimum ¢, {5, 3 and ¢~,-norm interpolator.

E.1. Proof of Theorem 1

Proof Consider the following problem given in (1)

mgn U(B) subjectto y=Xp (20)
Doing a change of variable w := #E%(,@ — [3*), we the following constrained minimization
problem
min ¥(3* + v/nX~ Y?w) subjectto Gw = z (21)
w

Boundedness of solution Now, we assume that w can be restricted to a large enough bounded
setw € W = {w s.t|wl||2 < By} without changing the optimization problem. This is more of
a technicality required for the application of CGMT. In [15], it was explicitly shown that for the
minimum ¢>-norm interpolator, this assumption is true. Since the value of /,-norms is less than
{o-norm for p > 2, it can be argued that this bounded set construction for /7 is also valid for £,-norms
bigger than ¢/>. But more generally, for separable convex functions, this condition must be verified
on a case-by-case basis. Alternatively, if we assume that o, is bounded, then letting B = 2q;, also
obviates this issue. Taking this into consideration, we now have the following primary optimization
(PO) problem.

d(G) = gglv U(B* + vnXY2w) subjectto Gw = z (22)

Using constrained CGMT formulation [34], the Auxiliary optimization (AO) is given as
#(g,h) = min U(B* + vnEY2w) subjectto |g||v/|w|?+02—hTw—och <0 (23)
we

where g and h are random vector with iid standard Gaussian entries and A is an iid standard Gaussian
scalar. Bringing the constraint into the objective of the AO using Lagrange multiplier v > 0 and
normalizing the constraint with \/n, we get
h
(W7, wn) 1= arg min max (8" +v/n2 ™ w) +u(|lge VoV [[w]? + 0>~ hew - %) (24)

where h, = % and g, := \/%. Interchange min max using [24] since the objective is convex in w

on a compact set W and concave in u. Next, using the square root trick on ||g.|\/||w|? + o2, we

have that ) ) )
e’ w||“+ o
gl VTl + 0 = min 19l TP 07 2s)
acA 2 2c
where A = [0, /02 + B2]. Plugging back into the AO, we get
( ~AO

) ar ) uav/8)|ge||? n uv/60?
w7, Up, Op) = argmax  min
noo e & u>0 weW,acA 2 20

uoh  uVo

\/ﬁ+2a

lw|® — uhlw + ¥(8* + VX~ ?w) (26)
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Using separability of ¥ and appropriate re-scaling, we let ¥(x) = % Yoy (xi, Xi ), and moving
the minimization over w inside the objective, we get

) o Cuan/s . uvéo?  uch
Uy, Oy ) 1= max min —
T g u>0 acA 2 2 \/ﬁ

+ min — Z{“‘f" 2 — wy/nhiw; + (B + VS Pwi, i)}, @7)

(,wAO

Doing a change of variable back to the original weight vector 3 = 3* + \/ﬁE_l/ 2w, we get

uao  uvoo?  wuoch
(827, Un, ) = Arg AR =5 4 =5 =

o1 uV o N "
+min =S {EEEE(B - B — uhiE (8 B7) + (B Ti)} (28)
i=1
where Bg := {3 s.t %(,@ — 3*) € W}. Completing the squares for 3; and identifying the Moreau

Envelope gives us D, («, u) defined as the optimal value of the objective of the optimization defined
below.

5 S0
(Un, ) 1= arg max min ue uvdo < p2

uoch 1 o o
+ - +- My (B + hg;
u>0 aeAd 2 20 /n n ;{ v (B \/gg;f ‘ U\/Szm) 2{ 2
(29)
\C/%LE_ -) is always unique given o, , u,, since proximal is

3A0 _ w1
Here 3,7 = prox,, (8] + \/Saz?/.? hi; o
the solution to a strongly convex optimization. The above optimization is strictly convex in a,
so the saddle point solutions (uy,, a;,) have unique a,. For u,, to be unique, we need to assume

LS AMy(Br + \/531 73 his — \/Sazi i )} is strictly concave with probability approaching 1.

Asymptotic limits We consider, the proportional asymptotic limit n,m — oo, — § < 1. In

- P
this limit, qf‘}h — 0 and we also have that = >~ | Q%hf 2“\0‘[ Next,

* @ (6 P a o
nZ}U@(@ + \/Szl/zhi;u\/gzii)} — E[My(B + \/SAH; u\/SA2)] (30)

. . P o
As a consequence, we have point wise convergence of D, (a,u) — D(a,u) which is the
following scalar optimization problem

ua(l —0)  uvdo?
arg min max D(«, u) := arg min max — +
a€A u>0 acA u>0 2v/6 2

« (0]
H.
VA u/OA2 )
(31)

By [5], since both D,, and D are convex, concave in «, u, the convergence is uniform, and we have
that the objective of converges

E[M¢(B +

h D 2
?(g, )%ggﬁrggg (o, u) (32)

18



OPTIMAL IMPLICIT BIAS IN LINEAR REGRESSION

If E[My, (B + 75 s H: f = )] is strictly concave in u, then D(«, u) is strictly convex and strictly
concave, we have parameter convergence by [42] (Lemma 7.75), therefore

P
(am, un) = (0, u”) = arg minmin D(a, u) (33)

. P .
In the absence of strong concavity of u, we only have the convergence of a,, — «a*. Typically,
distributional convergence requires strict concavity. Generalization error analysis doesn’t.

1(B19) = L(310 _ g TR(310 - ) 1 0% = 61O + 0 = lglad Do, 34

Next, we derive the first-order optimality conditions for the scalar minimax problem.
First-order optimality conditions

OD(a,u)  u(l—9) ’U,\/SO'Z 1 a o«
oo 25 202 f [AM¢’( fAH’qu2)]
1
+m [A Ml/)Q(BJF\f H; \fAQ)] 0 (35

OD(a,u) a(l=0) Voo ! 1 a o
= - + — E[-5My (B + H;
ou 2\/8 20 u2\/g [A2 ¢’2( \/SA u\/gA2

Using properties of Moreau Envelope (Proposition 8), we have

) =0 (36)

a a 1 1 « « 2
H: —E[[ — B H: 37
VA uV/EA2 2 (AMW( +\/3A ’U\/3A2)>] G7

Using the above inequality, we can derive the following optimality conditions

1
MQ//’Q (B +

Bl )=

« «
1. a o« 2 9 Sou?
E[(AMW(B VT U\/SA2>> | = u?(1-0) - =5 (39)

Distributional convergence

Next, to show distributional convergence, we first assume weak convergence of the solution of
the AO, i.e.

Oy D w
BAY — pro — pro ; 40
= ProX, (5 \le/Q un\[Z”) prox, (B + VA uwx/E/\Q) “0)

and we want to show that

AP0 D (67
i — prox,, (B + H; 41
B, proxy{ VA u¢\/3A2) “h
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Define
F(Bn,8",%) Zf Bris BF > i) (42)

where f is any bounded Lipschitz function. Also, define the limit
k= E[f(X(B,A H), B, A%)] 3)

For any fixed € > 0, define the set

N)\»—t

S.=8.(8%.3%) = {w D3 (8 — BY) € Wst|Fo(B,8%,5) — k| > 2} (44)

1
\/>
Consider the following perturbed PO and AO problems
o5 (G) = miél V(B + VX~ V2w) subjectto Gw = oz (45)
WES
and

¢s.(g,h) = mig (B + \/52_1/2117) subjectto | g||\/||w]|? + o2 — h'w—oh <0 (46)
WESe

Using [56] Theorem 6.1(iii), it is sufficient to show existence of constants dg, (536 and n > 0 satisfying
L. ¢s. > ¢+ 3n
2. ¢g,h) < & + n with probability approaching 1.
3. ¢s.(g,h) > ¢s. — n with probability approaching 1.

to prove that w,, ¢ Sc wpa 1.

Condition 2 Choose ¢ = D(a, u,), we have shown that ¢(g, h) Lif ¢. So for any n > 0, we
have that

<5+77>¢>(g,h)>¢_>—?7 7
Condition 3 Let c(w) := ||g||/||w|? + 02 — — oh, clearly c is strictly convex in w. At

the optimum w2, we have that
—AVouc(010) € 8, (8" + VX~ 2wA0) (48)

for A > 0 and also by feasibility, we have c(w AO) = 0; otherwise, we can always move along
the negative gradient of the objective to reduce the objective value of the objective assuming that
Dw ¥ (8* + /nX~/2wA9N\{0} is non-empty, which is true when ¢ has an unique minimizer. Next,
we argue that in the new constrained formulation S, N {w s.t c(w) < 0}, if [|w — W29 > €, then

the value of objective increases. By convexity of objective and optimality of wAO we have that
W(B* + /2™ w) > ¢(g. h) — AVae(, )" (w — @;,) (49)
Case 1 If V,c(09)T (w — w2°) < 0, then objective increases.
Case 2 If V., c(w19)T (w — w/C) > 0, then

c(w) > (W) + Vape(A) T (w — wi9) (50)

20



OPTIMAL IMPLICIT BIAS IN LINEAR REGRESSION

and the inequality is strict due to strict convexity if the constraint function and therefore c¢(w) > 0,
therefore its not feasible. So the feasible option is Case 1 and there exists a constant AV, c(w0,)T (w—
wi9) > q(&) > 0 such that

n

V(B +v/nSw) > ¢(g, h) + q(?) (51

which implies that with probability approaching 1, we have
V(B + VnEPw) > §+q(8) —n (52)
Next, we argue that for small enough 7, we have Condition 1, which is equivalent to showing that
¢+a€)—n—(o+n) =n (53)

Choosing n = @ and ¢s, = ¢ + q(), satisfies the above inequality.

Next, we show ||w — wAC|| > €. By definition, we have
’Fn(ﬁaﬁ*vz)_ﬁ‘ > 2e (54)

We have already shown that
|Fu(BiC, 87 5) — k| < e (55)

By Lipschitzness and Cauchy-Schwarz, we get
|Fo (39,8, %) — F,(8,8". %) < Cllw — 0. (56)
2e S |Fn(ﬁ’16*7 2) - Ii| + |Fn( Arl?o)ﬁ*v E) - Fn(/@’ﬂ*)z)‘
<e+Cllw— u?,‘f}OH

which implies ||w — wAC|| > &

Appendix F. Fundamental limits

F.1. Proof of Theorem 2

Theorem 13 (Lower bound on afp ) Let Assumptions 1,2, and 3 hold. Define the random variable
Vo =B+ ﬁH where H ~ N(0,1) and B, A as defined in assumption 2 and 3. Let o, be the
unique solution of the following non-linear equation

, 00 5(1—4)
R R NUA (57)

where Iy (V,,) is the weighted fisher information of V,, defined as

Ta(Va) = B [(fva(XMA))Q

(38)

’

Py (ola) .. . :
where Ey, (V|A) == % is the conditional score function of V,,. Then for every VU € Cy, with ai

as the asymptotic limit of the generalization error as in (7), we have a?/) > ol
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Proof Recall the system of non-linear equations and let (., ug ) be a solution

H o o
E|— B H; =u(l-94¢ 59
|:AM’¢,1( + \/3/\ 7u\/gA2):| u( ) ( a)

| a o 2
—M,, (B + H;
<A pal VoA u\/SA2))

and let o, be the solution of (57). First, we argue that the solution o, always exists when o > 0.
Consider the function

So2u?

a2

E = u?(1—6) — (59b)

b0 5(1—6)
M) =20 =5 T a2 V)

Therefore, at o, we have h(a,) = 1. Note that h(«) is continuous on R+ and when o > 0, we have
that lim,, _s+ h(a) = oo and limy—yoo h(a) = 1 — & < 1 using the fact that limy—yoo @?Zp (V) =
0 using properties from Proposition 12. Therefore, by the mean value theorem, we can argue that
the existence of a,. To show the uniqueness of o, we need to show that h(«) is monotonically
decreasing. Using properties of Fisher information a?Z(V,,) = Z5(¥>) and one can verify that
IA(%) is monotonically increasing using Proposition 11 (c), as a consequence h(«) is monotonically
decreasing. Now that we have established the existence and uniqueness of «., we next show that a,
is a lower on avy.
Consider the following integral

\/3 aH / o o
TR M, (B + H: -
a [\/SA wal VoA uﬁm)]

\f /// IMya(b+g; ﬁ)pB(b)pG(gp\)pA()\)dbdgd)\ (60)

where G is a conditionally Gaussian random variable pg(.|\) ~ N(0, %) Next, we use the
following using the property of Gaussian density

’ 5)\2
p(91A) = —9-_5pc(9lN) ©1)
Plugging back, we get
-7 // iM/ (b+ L) : (9| \)pB(b)pa(X)dbdgdA (62)
\/5 )\2 ¥l 95 U\/S)\Q bg\g PB PA g

If consider, the following change of variable v = b 4 g, then dv = db and

1 ’ /
-5 ][ Mo — = eI pe( = g)pa(N)dudga) (63)

Integrating g out using Gaussian Integration of parts, one can verify that

/ " pegNps(o — g) = piy (o]A) (64)

—0o0
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Plugging the back, we have

a | a / a 1 ! Py (V]\)
—— —M, (v; ——— v|A A)dvdgd\ = ——E[-M, (v; .
Nz // 2 Mual uV/\2 Py (1A )pa(A)dvdg v Mol ux/3>\2) /\pV(v|()é)5])
Therefore, we have essentially proved the following identity
Vo aH a a a 1 o py (V|
~—E[—— M, (B + H; = ——FE[=M (v; 4 66
o g M B H T L = T M e vy @9
Using Cauchy Schwartz inequality, we have that
1 a Py (V) 1 1. o 9 Py (V|A) Lo
E[-M,, 1(v; . < E[(= v; E 67

2
If we let Zy (V) = E [(EVQ(X“'A)) ] Using the optimality conditions, we can show that the
following inequality holds

u?6(1 — 6)?
o2

So2u?

< <u2(1—5)— & >1A<va> (68)

Note that the inequality is independent of W and is true for every (o, uy) for which the system of
equations is satisfied. Simplifying the above inequality, we get

u? (a?(1 = 0)Za(Va) — 002 Ia(Va) — 6(1 — 6)%) > 0 (69)

One can verify that u > 0 since it’s a Lagrange multiplier of an active constraint. Eliminating
gives the following inequality

(1= 0)ZA (V) — 06*TA (V) — 6(1 = 6)2 >0 (70)
Writing the inequality in terms of h(a), we arrive at
1> h(a) 71

As we have previously established, h(«) is monotonically decreasing and «v, is the unique solution
of h(ay) = 1. Therefore a, is the smallest « that satisfies the above inequality, and since the above
inequality holds for every convex potential ¥ whose optimality conditions are given by (59), we
have that ay > as.

|

F.2. Proof of Corollary 3

Corollary 14 Let Assumptions 1,2 and 3 hold and o, be defined as the solution to (9), if A = 1

almost surely then
2
> —_— 72
P21t (72)
whenever, the Fisher information Z(B) is well defined. The inequality becomes an equality if and
only if B is a Gaussian.

a
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Proof From the previous theorem, we have that

. b0 5(1-96)

= 73
e 1*5+IA(V0¢*) 73
If A = 1a.sand Z(B) is well defined, then
Qs Z(B)
TA(Va,) =I(B+ —£H) < —— > — (74)
* Vo T 1+ 2 1(B)

where the inequality is obtained from Stam’s inequality and is strict when B is a Gaussian. Plugging

back, we have that
o 002 | (1-08)(6 +a2I(B))

> 75
o>+ ) (75)
Re-arranging the terms gives us the desired lower bound
2 1-6
a2>-2 4 -"° (76)

*=1-6 " I(B)

F.3. Proof of Theorem 4

Theorem 15 (Optimal V) Let Assumptions 1, 2, and 3 hold and o, be defined as the solution to (9).
Consider the following function 1, : R*> = R

201 _ Y _ 52
az(1—9) (SJ>, a7

5(1 —0)\2
if Py, (v|A) is log-concave in v and we define V.. (B) = Y | ¥.(Bi, Xi;), then
1. ¥, (B) €Cy

Pu(v, A) 1= =Miog(py,,, (o]1)) (U;

2. «u is a solution to the system of equations (6) obtained using 1* (v, \) and is therefore the
optimal convex implicit bias.

Proof By Proposition 9, we have that

a?(1—0) — 602
- Mlog(Pva*(v\)\)) <U; 5(1—0)A2 )

§(1 —5)\2 <<v2 a?(1—-9)— 602

* 2
a2(1-0) 6o \\2 T 51 o logPVa*(“W) - ) 78)

Showing 1, (v, \) is convex is equivalent to showing ((% + % log Py, (U|)\)) - %)

is convex. First, we will verify that % + % log Py, (v|A) is convex. By definition

2,2 e’}
log Py, (v|A) = 0N + log/ exp (5)\2(2vb — b2)/2af)PB(b)db +c (79)

2
202 e
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for some constant ¢. One can verify the convexity of log [*7_exp (0A?(2vb — b?)/2aZ) Pg(b)db by

2 —0)— 2 . .
double differentiation with respect to v. Therefore, it sufficient if % — % % is convex, which
C . . 2 a2(1-6)—602
is trivially true. Therefore, we have now verified the convexity of % + % log Py, (v|A).

Next, we’ll use the following property of the derivatives of convex conjugates from [48] (Cor.
23.5.1), which says that if f(x) is convex, then

(f) (x) = ()M (x) (80)

Using the property of the derivative of an inverse, we further have that

*\// ]‘
T) = e (81)
SR (IR}
Using the above property, taking double derivative of 1, (v, \) gives us
T, \) = s ( ! - - 1> (82)
1+ cu(log Py, (v|A))"(9(v))

where g(v) := (v + c.(log Py, (9(v)|A))) "1 (v). Since Py, _(v|)) is log-concave by assumption,
(log Py, (v|A\))”(v) < 0 for all v. This implies that ¥/(v,A) > 0, finishing the proof on the
sufficient condition.

Next, we verify optimality conditions (59) to prove that the optimal convex potential is given
by Theorem 4. Let o, be the solution to (57). Now, consider the following candidate for optimal
potential

, 21-6)—d0 Py, ()
- (1 =)\ Py, (v|A)
We now show that o, and u, := %6()1:32 satisfy, the optimality conditions for the above

candidate. Plugging in (59)(b), we get*

1 Ol Qly 2
E|{-M B+ H,;
(A v (B 5y u*ﬁm))

=Za(Va) (84)

2 (aZ(1 —9) — d0%)?

— I (Vo
oz o e 89
So2u?
=u?(1—6) — — (86)

where the second equality is from the definition of u, and the third equality is from (57). Next, we
verify (59)(a)

H , Ol Oy Oy 1 ’ Ol p/‘/(U’)\)
E|=M, (B H; = — B[S My(v; ' 57
A Mea B 5 u*\/EAz) 5 Muav uV/ON? Apv(vM)] &7
Oy
- T, 88
JeTa(0a) (88)
— u(1—0) (89)
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where the first equality is due to the identity (66) and the rest follows from definitions of u, and
ZA (V4. ). Now that we have shown that (83) satisfies optimality conditions, taking anti derivative
of (83) gives My, (v; %) = —log Py, (v|\) which can be inverted to give us the optimal
convex potential whenever the Py, is log-concave by Proposition 10.

|

F.4. Proof Corollary 6

Corollary 16 (V. for Gaussian B) Let Assumptions 1,2 and 3 hold and B ~ N (0, 1), then the
optimal implicit bias is given as

2 -1
v.(8) =T (10—51” + Z> =28 60)

Proof When B ~ N(0, 1), then Py, (v|\) is Gaussian density

U2
Py, (v|A) = coexp <—a2 ) 1)
2(1+ 53%)

where ¢y is a constant independent of v. Note that Py, (v|A) is log-concave, by Theorem 4, we have
that the optimal potential is given as

a?(1—6) — 602
ViV, A) = =Miog(py,_(w]0) (U; S o) ) 92)
Solving the Moreau envelope gives us
)\2 2
Yoo N) = e e (93)

(A2 + 92

Here, c; is independent of v, so we can ignore it. In the vectorized form, U,.(8) = >"7" | ¥« (Bi, X i)
gives the desired result.

02

1-6

-1
0,(8) = %5%1/2 ( I, + 2) »123. (94)
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