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Abstract

Learning disentangled representations of objects in an image is a prerequisite for
the robust compositional generalization in human intelligence. While progress has
been made in learning such object-centric representations (OCRL), these methods
rely on strong architectural priors which hinder scalability. In this work, we ex-
plore a more scalable approach for OCRL. Namely, we propose to use a general
purpose architecture for OCRL and add inductive biases to the model via addi-
tional regularizers. To formulate suitable regularizers, we take inspiration from
recent theoretical results in Brady et al. [6] which put forth two properties a model
should satisfy to provably disentangle objects. We show that these properties can
be scalably enforced using a VAE loss and a novel loss on the attention weights
of a Transformer. We incorporate these regularizers into a general purpose Trans-
former autoencoder and attain competitive and often superior performance to ex-
isting methods in OCRL with stronger architectural priors.

1 Introduction

A core feature of human cognition is the ability to recompose known concepts to generalize far
beyond direct experience [10, 11, 14, 25]. For example, humans can make sense of an image of
a “penguin in a desert” by composing the concepts of “penguin” and “desert” to understand this
novel combination. Such compositional generalization is non-trivial and requires first learning an
internal model of different concepts in the world, e.g., “penguin”, “desert”. This implies learning
a separate internal representation of each concept from sensory observations. In machine learning,
this is commonly referred to as learning disentangled representations of concepts [4, 15, 39].

Recently, several works have shown remarkable empirical success in learning to disentangle [23, 33]
and compose [7, 31, 32, 35, 36] visual concepts in images on web-scale data. These works rely on
explicit supervision via segmentation masks or natural language descriptions of each concept. No-
tably, however, many species in human’s evolutionary lineage disentangle concepts in sensory data
without using such explicit supervision [3, 27, 43]. This suggest the existence of a self-supervised
coding mechanism for disentanglement and compositional generalization, which is still lacking from
current large-scale machine learning models, and is the focus of our work.

A key challenge for achieving disentanglement without explicit supervision is that it requires incor-
porating appropriate inductive biases [28]. Recently, significant progress has been made in formu-
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lating suitable inductive biases for object-centric representation learning (OCRL) [5, 8, 13, 22, 29,
37, 38, 40, 41, 50]. Currently, however, scaling these OCRL methods to many practical problems of
interest remains challenging. This is because these methods typically rely on inductive bias in the
form of strong architectural priors. These priors enable disentanglement, but often hinder scalability.

In this work, we explore an alternative, more scalable approach for OCRL. Specifically, we propose
to use a more general architecture for OCRL and add inductive biases to the model via additional
regularizers. To formulate suitable regularizers, we take inspiration from recent theoretical results
in Brady et al. [6]. These results showed that models which enforce two properties, (i) invertibility
and (ii) compositionality, will provably learn disentangled representations of objects. We use a VAE
loss [21] to enforce (i), and make the observation that a Transformer [45] offers an efficient means
to scalably enforce (ii) via an inexpensive regularizer for a cross-attention mechanism. We then
incorporate these two regularizers into a general purpose Transformer-based autoencoder.

We test this model’s ability to disentangle objects on a Sprites dataset [47] and CLEVR6 [19]. We
find that the model reliably learns disentangled representations of objects, improving performance
over an unregularized Transformer. Furthermore, we find that this regularized Transformer generally
achieves superior performance to existing OCRL models with more explicit object-centric priors
such as Slot Attention [29] and Spatial Broadcast Decoders [48].

2 Background

Theory in Brady et al. [6].

Recent theoretical work in [6] showed how object-centric representations can be provably disentan-
gled without supervision. These results assume a latent variable model for object-centric data where
each object is represented by disjoint groups or slots of latents zBk

s.t. z = (zB1
, ...,zBK

) ∈ Rdz .
These latents are rendered to an observation x by a generator f : Rdz → X ⊂ Rdx which is
assumed to satisfy two properties called irreducibility and compositionality. Informally, irreducibil-
ity states that pixels belonging to the same object share information, while compositionality states
that each image pixel is locally a function of at most one latent slot, i.e., the Jacobian of f has a
block-structure. More formally, for compositionality:
Definition 2.1 (Compositionality). A function f : Rdz → X ⊂ Rdx satisfies compositionality if

∂fn

∂zBk

(z) ̸= 0 =⇒ ∂fn

∂zBj

(z) = 0, for any k, j ∈ [K], k ̸= j and any n ∈ [dx]. (2.1)

If f satisfies these assumptions, Brady et al. [6] showed that a model f̂ : Rdz → Rdx that is (i)
invertible from Rdz to X and also (ii) satisfies compositionality (Defn. 2.1), will learn a disentangled
representation of objects. While providing these theoretical results, Brady et al. [6] did not show
how (i) and (ii) can be implemented in a scalable manner. We explore this in § 3.

Prior Work in OCRL. Prior works in OCRL typically rely on architectural priors to learn object-
centric representations [13, 29, 40, 41]. While such priors promote disentanglement, they are often
too restrictive. For example, Spatial Broadcast Decoders [48] decode slots separately and only
allow for weak interaction through a softmax function, which prevents modelling real-world data
where objects exhibit more complex interactions [41]. While some works have shown success in
disentangling objects using more powerful Transformer decoders [37, 41, 42], they rely on encoders
that use Slot Attention [29] as an architectural component, which differs from current large-scale
models, typically based on Transformers [1]. In contrast, we explore the more flexible approach of
starting with a very general Transformer-based model and regularizing it towards a more constrained
model.

3 Method

We now explore how the theoretical criteria (i) invertibility and (ii) compositionality outlined in § 2
can be enforced by a model in a scalable manner.

(i) Invertibility. Our theory requires invertibility between Xsupp ⊆ Rdx and Ẑsupp ⊆ Z = Rdz . For
most settings of interest, the observed dimension dx exceeds the ground-truth latent dimension dz .
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Figure 1: (A) Sprites Normalized slot-wise Jacobians for an unregularized (α = 0, β = 0) and a regularized
(α > 0, β > 0) Transformer and a Spatial Broadcast Decoder (SBD). The unregularized model encodes objects
across multiple slots, while the regularized model matches the disentanglement of the SBD. (B) CLEVR6 Slot-
wise Jacobians for a regularized Transformer and a SBD on objects in CLEVR6 which interact via reflections.
As can be seen in reconstructions and Jacobians, the regularized Transformer models reflections, while mostly
removing unnecessary interactions, while the SBD fails to model reflections due to its restricted architecture.

Thus, we generally cannot use models which are invertible by construction such as normalizing
flows [30]. An alternative is to use an autoencoder in which f̂−1 and f̂ are parameterized separately
by an encoder ĝ : Rdx → Rdẑ and a decoder f̂ : Rdẑ → Rdx , which are trained to invert each other
(on Ẑsupp and Xsupp) by minimizing a reconstruction loss Lrec := E∥x − f̂(ĝ(x))∥2. Minimizing
Lrec alone, however, does not suffice unless the inferred latent dimension dẑ equals the ground-truth
dz . Yet, in practice dz is unknown. Moreover, choosing dẑ > dz is important for scalability [37].
A viable alternative is thus to employ a soft constraint where dẑ > dz , but the model is encouraged
to encode x using minimal latent dimensions. To achieve this, we leverage the well known VAE
loss [21], which couples Lrec with a KL-divergence loss LKL between a factorized posterior q(ẑ|x)
and prior distribution p(ẑ), i.e., LKL :=

∑
i∈[dẑ ]

DKL (q(ẑi|x)∥p(ẑi)). This loss encourages each ẑi
to be insensitive to changes in x such that unnecessary dimensions should contain no information
about x [34].

Transformers for Enforcing (ii) Compositionality. We make the observation that the Transformer
architecture [45] provides an efficient means to approximately regularize interactions. In a Trans-
former, slots are only permitted to interact via an attention mechanism. We will focus on a cross-
attention mechanism, which maps a latent ẑ to an output x̂l (e.g., a pixel) via:

K = WK [ẑB1 · · · ẑBK
], V = W V [ẑB1 · · · ẑBK

], Q = WQ[o1 · · · odx ], (3.1)

Al,k =
exp

(
Q⊤

:,lK:,k

)∑
i∈[K] exp

(
Q⊤

:,lK:,i

) , x̄l = Al,:V
⊤, x̂l = ψ(x̄l) . (3.2)

In Eq. (3.1), all slots are assumed to have equal size, and key K:,k and value V:,k vectors are com-
puted for each slot k∈ [K]. Query vectors are computed for output dimensions l ∈ [dx] (e.g., pixel
coordinates) and each l is assigned a fixed vector ol. In Eq. (3.2), queries and keys are used to com-
pute attention weights Al,k. These weights determine the slots pixel l “attends” to when generating
pixel token x̄l, which is mapped to a pixel x̂l by nonlinear functionψ; see Appx. A for further details.

Within cross-attention, interactions across slots occur if the query vector for a pixel l attends to
multiple slots, i.e., if Al,k is non-zero for more than one k. Conversely, if Al,k is non-zero for only
one k, then, intuitively, no interactions should occur. This intuition can be corroborated formally by
computing the Jacobian of cross-attention w.r.t. each slot (see Appx. A.1). Thus, we can encourage
a model to satisfy compositionality by regularizing A towards having only one non-zero entry for
each row Al,:. To this end, we propose to minimize the sum of all pairwise products Al,jAl,k,
where j ̸= k (see Fig. 2). This quantity is non-negative and will only be zero when each row of
A has exactly one non-zero entry. This resembles the compositional contrast of Brady et al. [6],
but computed on A, which can be efficiently optimized, as opposed to the Jacobian of f̂ which is
intractable to optimize. We refer to this regularizer as Lcomp, see Eq. (A.9).

Model. Combining these different objectives leads us to the following weighted three-part-loss:

Ldisent(f̂ , ĝ,x) = Lrec + αLcomp + βLKL. (3.3)
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Table 1: Empirical Results. We show the mean ± std. dev. for J-ARI and JIS (in %) over 3 seeds for different
choices of encoders and decoders and weights of the loss terms in Eq. (3.3) on Sprites and CLEVR6.

Model Sprites CLEVR6

Encoder Decoder Loss J-ARI (↑) JIS (↑) J-ARI (↑) JIS (↑)

Slot Attention Spatial-Broadcast α = 0, β = 0 89.2± 1.2 91.4± 0.6 97.0± 0.1 95.3± 0.6
Slot Attention Transformer α = 0, β = 0 90.1± 1.2 73.6± 1.2 95.4± 0.8 63.1± 0.8
Transformer Transformer α = 0, β = 0 80.5± 3.4 57.0± 6.5 92.7± 2.7 54.8± 2.9
Transformer Transformer α > 0, β = 0 82.8± 2.9 73.8± 3.3 79.2± 10.4 51.6± 4.8
Transformer Transformer α = 0, β > 0 92.6± 1.6 92.8± 0.7 96.6± 0.3 80.3± 0.3
Transformer Transformer α > 0, β > 0 (Ours) 93.6± 0.5 95.0± 1.7 96.5± 0.3 83.8± 1.0

We apply this loss to a flexible Transformer-based autoencoder, similar to the models of Jabri et al.
[17], Jaegle et al. [18], Sajjadi et al. [38]. For the encoder ĝ, we first map data x to features using
the CNN of Locatello et al. [29]. These features are processed by a Transformer, which has both
self- and cross-attention at every layer, yielding a representation ẑ. Our decoder f̂ then maps ẑ to
an output x̂ using a cross-attention Transformer regularized with Lcomp, see Appx. C for details.

4 Experiments

We now test the ability of our attention-regularized Transformer-VAE (§ 3) to learn object-centric
representations. We discuss experimental details below (though see Appx. C for additional details).

Data. We consider two multi-object datasets in our experiments. The first, which we refer to
as Sprites [6, 47, 49], consist of images with 2–4 objects set against a black background. The
second is the CLEVR6 dataset [19], consisting of images with 2–6 objects. In Sprites, objects
do not have reflections and rarely occlude such that slots have essentially have no interaction. In
CLEVR6, however, objects can cast shadows and reflect upon each other, introducing more complex
interactions.

Metrics. A common metric for object disentanglement is the Adjusted-Rand Index [ARI; 16]. The
ARI measures the similarity between the set of pixels encoded by a model slot, and the set of
ground-truth pixels for a given object in a scene, yielding an optimal score if each slot corresponds
to exactly one object. To assign a pixel to a unique model slot, prior works typically choose the
slot with the largest attention score (from, e.g., Slot Attention) for that pixel [40]. However, us-
ing attention scores can make model comparisons challenging and is also somewhat unprincipled
(see Appx. C.2). We thus consider an alternative and compute the ARI using the Jacobian of a de-
coder (J-ARI). Specifically, we assign a pixel l to the slot with the largest L1 norm for the slot-wise
Jacobian DBk

f̂l(ẑ) (see Fig. 1 for a visualization of these Jacobians).

While J-ARI indicates which slots are most responsible for encoding each object, it does not indicate
if additional slots affect the same object, i.e., ∥DBk

f̂l(ẑ)∥1 ̸= 0 for more than one k. To measure
this, we also introduce the Jacobian Interaction Score (JIS). JIS is computed by taking the maximum
of ∥DBk

f̂l(ẑ)∥1 across slots after normalization, averaged over all pixels. If each pixel is affected by
only one slot, JIS is 1. For datasets where objects essentially do not interact like Sprites, JIS should
be close to 1, whereas for CLEVR6, it should be as high as possible while maintaining invertibility.

4.1 Results

Ldisent Enables Object Disentanglement. In Tab. 1, we compare the J-ARI and JIS of our regu-
larized Transformer-based model (α > 0, β > 0) trained with Ldisent (Eq. (3.3)) to the same model
trained without regularization (α=0, β=0), i.e., with only Lrec. On Sprites, the regularized model
achieves notably higher scores for both J-ARI and JIS. This is corroborated by visualizing the slot-
wise Jacobians in Fig. 1A, where we see the regularized model cleanly disentangles objects, whereas
the unregularized model often encodes objects across multiple slots. Similarly, on CLEVR6, the reg-
ularized model achieves superior disentanglement, as indicated by the higher values for both metrics.

Comparison to Existing Object-Centric Autoencoders. In Tab. 1, we also compare our model
to existing models using encoders with Slot Attention and Spatial Broadcast Decoders (SBDs).
On Sprites, our model achieves higher J-ARI and JIS than these models, despite using a weaker
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architectural prior. On CLEVR6, our model outperforms Slot Attention with a Transformer decoder
in terms of J-ARI and JIS. Models using a SBD, however, achieve a higher and nearly perfect JIS,
i.e., the learned slots essentially never affect the same pixel. In Fig 1B, we see this comes at the cost
of SBDs failing to model reflections between objects, while our model captures this interaction. This
highlights that regularizing a flexible architecture with Ldisent can enable a better balance between
restricting interactions and model expressivity.

Ablation Over Losses. Lastly, in Tab. 1, we ablate the impact of the regularizers in Ldisent.
Training without LKL (α>0, β=0) can in some cases give improvements in J-ARI and JIS over an
unregularized model (α=0, β=0). However, across datasets this loss yields worse disentanglement
than Ldisent (α> 0, β > 0). This highlights that penalizing latent capacity via LKL is important for
object disentanglement. Training without Lcomp (α= 0, β > 0) generally yields a drop across both
metrics compared to Ldisent, though on CLEVR6 this loss achieves a comparable J-ARI. We found
that training with LKL can, in some cases, implicitly minimize Lcomp, explaining this result (Fig. 3).
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Appendices
A Transformers for Compositionality

Each layer of a Transformer [45] consist of two main components: an MLP sub-layer and an atten-
tion mechanism. Notably, in the MLP sub-layer, MLPs are applied separately to each slot or pixel
query and their outputs are then concatenated. Further, additional layer normalization operations [2]
are typically used in Transformers but are also separately applied to each slot or pixel query. Thus,
the only opportunity for interaction between slots in a Transformer occurs through the attention
mechanism. Our focus in this work is on the cross-attention mechanism, opposed to the alternative
self-attention. As noted in § 3, cross-attention takes the form:

K = WK [ẑBk
]k∈[K], V = W V [ẑBk

]k∈[K], Q = WQ[od]d∈[dx], (A.1)

Ad,k =
exp

(
Q⊤

:,dK:,k

)
∑

l∈[K] exp
(
Q⊤

:,dK:,l

) , x̄d = Ad,:V
⊤, x̂d = ψ(x̄d) . (A.2)

where K:,k,V:,k ∈ Rdq , WK ,W V ∈ Rdq×|Bk| for query dimension dq . Further, od ∈ Rdo , Q:,l ∈
Rdq , WQ ∈ Rdq×do , where do is the dimension of a pixel coordinate vector, and ψ : Rdq → R.

Additional Details. In Eq. (A.2), we do not include the scaling factor d−
1
2

q for Ad,k, that is typically
used as it does not affect our arguments below. We do, however, include it in our experiments.
Further, when x is an RGB image, x̂d will not be a scalar but will instead be a vector in R3 since
each pixel has 3 color channels. Additionally, in our experiments, multi-head attention is used.
In this case, slot keys and values and pixel queries are partitioned into h sub-vectors. Eqs. (A.1)
and (A.2) are then applied separately to each resulting sub-latent, and the resulting outputs are
concatenated. When using multiple layers of cross-attention, as we do in our experiments, ψ is only
applied at the last layer and vectors ol for a subsequent layer are defined as the vectors x̄d from
the prior layer. Eqs. (A.1) and (A.2) is then repeated. We discuss how these additional caveats are
dealt with empirically when implementing Lcomp below in Appx. A.2, however, they do not affect
our formal argument regarding regularizing interactions in Appx. A.1.

A.1 Jacobian of Cross-Attention Mechanism

Our goal is to show that if Ad,k in equation is 0, then partial derivative of Eqs. (A.1) and (A.2) w.r.t
slot ẑBk

, i.e, ∂x̂d

∂ẑBk
will also be zero. This would then imply that if Ad,: is non-zero for at most

one slot k for every d ∈ [dx], and every ẑ ∈ Ẑsupp, then the model is compositional in the sense
of Defn. 2.1, since all such derivative products ∂x̂d

∂ẑBk

∂x̂d

∂ẑBl
for l ̸= k are zero. To this end, we are

interested in computing the derivative:

∂x̂d
∂(ẑBm)r

= ∂iψ(x̄)
∂(x̄d)i
∂(ẑBm)r

(A.3)

where we here and from now on use the convention that we sum over every index that appears only
on one side. To evaluate this we decompose the terms

(x̄d)i = Ad,kVi,k = Ad,kW
V
i,j(ẑBk

)j . (A.4)

We set Md,: = o⊤
d (W

Q)⊤WK so that

Q⊤
:,dK:,k = Md,i(ẑBk

)i. (A.5)

This implies that

∂

∂(ẑBm
)i

exp(Q⊤
:,dK:,k) = Md,iδkm exp(Q⊤

:,dK:,k) (A.6)
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where δ is the Kronecker-Delta (and here no summation over k or d is done). This implies using the
product rule and the chain rule that

∂Ad,k

∂(ẑBm
)i

= Md,iδk,mAd,k −Md,iAd,kAd,m. (A.7)

Plugging this together we get

∂x̂d
∂(ẑBm

)r
= ∂iψ(x̄)

∂(x̄d)i
∂(ẑBm

)r

= Ad,mW V
i,r∂iψ(x̄) + ∂iψ(x̄)W

V
i,j(ẑBk

)j
∂Ad,k

∂(ẑBm
)r

= Ad,mW V
i,r∂iψ(x̄) + ∂iψ(x̄)W

V
i,j(ẑBk

)j(Md,rδk,mAd,k −Md,rAd,kAd,m)

= Ad,m∂iψ(x̄)(W
V
i,r +W V

i,j(ẑBm
)jMd,r)− ∂iψ(x̄)W

V
i,j(ẑBk

)jMd,rAd,kAd,m

(A.8)

From this, we can see that if Ad,m = 0, then the partial derivative ∂x̂d

∂ẑBm
, will indeed be zero as

Ad,m scales both terms in the last line of Eq. (A.8).

A.2 Compositionality Regularizer

Based on Appx. A.1, we propose to regularize for compositionality in a Transformer by minimizing
the sum of all pairwise products Al,jAl,k, where j ̸= k. More specifically, we minimize the
following loss:

Lcomp := E
∑
l∈[dx]

∑
j∈[K]

K∑
k=j+1

Al,j(ẑ)Al,k(ẑ) (A.9)

where Al,k(ẑ) is used to indicate the input dependence of attention weights on latents ẑ. Lcomp is a
non-negative quantity which will be zero if and only if a matrix has at most one non-zero for each
row [6].

Figure 2: PyTorch code to compute Lcomp.

Code to compute Lcomp for a batch of attention
matrices can be seen in Fig. 2. We note that
when using multiple attention heads, we first
sum the attention matrices over all heads to en-
sure consistent pixel assignments across differ-
ent heads. When using multiple layers, we also
sum the attention matrices over each layer, for
the same reason. Lcomp is then computed on the
resulting attention matrix.

Computational Efficiency. We note that regularizing with Lcomp adds minimal additional compu-
tational overhead since attention weights are already computed at each forward pass through the
model, and, moreover can be easily optimized using gradient descent. This is in contrast to Brady
et al. [6] which required computing the Jacobian of the decoder f̂ at each forward pass and then opti-
mizing it using gradient descent. This results in second-order optimization which is computationally
intractable for high-dimensional data such as images [6].

B Extended Discussion

VAE Losses in Object-Centric Models. Prior work in Wang et al. [46] also apply a VAE loss to an
unsupervised object-centric learning setting. However, while we minimize LKL directly on inferred
slots in ẑ given by our Transformer encoder, Wang et al. [46] minimize LKL on an intermediate
representation which is then further processed to yield ẑ. Furthermore, the focus of Wang et al. [46]
is on scene generation an not penalizing the capacity of ẑ. Additionally, Kori et al. [24] explore
a loss for object-centric learning resembling a VAE loss, though their aim is to enforce a certain
probabilistic structure on ẑ implied by their theoretical disentanglement result, opposed to penalize
latent capacity.
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Relation Between a Transformer Regularized with Lcomp and Prior Works. Goyal et al. [12]
proposed RIMs which is a Transformer-style architecture aimed at enforcing a “modular” structure.
Contrary to our work, Goyal et al. [12] do not regularize for modularity, but posit that it may emerge
from “competition” induced by an attention mechanism. Similarly, Lamb et al. [26] propose an
alternative Transformer architecture aimed at enforcing modularity, which also tries to enforce com-
petition using a mechanism similar to Goyal et al. [12]. More recently, Vani et al. [44] proposed a
Transformer component aimed at yielding disentanglement by processing a Transformer embedding
into different slots using separate attention heads for each slot. While these works are similar to
ours in that they aim to learn disentangled representations of concepts using a Transformer-style
architecture, they are based on architectural changes to a Transformer, whereas we use a standard
cross-attention Transformer decoder and regularize it explicitly towards having a modular structure
using Lcomp.

C Experimental Details

C.1 Data, Model, and Training Details

Data. The Sprites dataset used in § 4 was generated using the Spriteworld renderer [47] and consist
of 100,000 images of size 64×64×3 each with between 2 and 4 objects. The CLEVR6 dataset [19,
29] consist of 53,483 images of size 128× 128× 3 each with between 2 and 6 objects. For Sprites,
we use 5,000 images for validation, 5,000 for testing, and the rest for training, while for CLEVR6,
we use 2,000 images for validation and 2,000 for testing.

Encoders. All models use encoders which first process images using the same CNN of Locatello
et al. [29]. When using a Transformer encoder, these CNN features are fed to a 5 layer Transformer
which uses both self- and cross-attention with 4 attention heads. When using a Slot Attention en-
coder, we use 3 Slot Attention iterations, and use the improved implicit differentiation proposed
in Chang et al. [9]. Both the Transformer and Slot Attention encoders use learned query vectors
opposed to randomly sample queries. On Sprites, all models use 5 slots, each with 32 dimensions,
while on CLEVR6, all models use 7 slots, each with 64 dimensions. When using a VAE loss, this
slot dimension doubles since we must model the mean and variance of each latent dimension.

Decoders. When using a Spatial Broadcast decoder [48], we use the same architecture as [29] across
all experiments, using a channel dimension of 32 for both datasets. When using a Transformer
decoder, we first upscale slots to 516 dimensions by processing them separately using a 2 layer
MLP, with a hidden dimension of 2064. We then apply a 2 layer cross-attention Transformer to
these features which uses 12 attention heads. To obtain the vectors ol in Eq. (3.1), we apply a 2D
positional encoding to each pixel coordinate. This vector is then mapped by a 2 layer MLP with
a hidden dimension of 360 to yield ol, which has dimension 180. The function ψ in Eq. (3.2) is
implemented by a 3 layer MLP with a hidden dimension of 180, which outputs a 3 dimensional
pixel x̂l for each pixel l. We additionally note that this architecture does not rely on auto-regressive
masking as in Singh et al. [41].

Training Details. We train all models on Spriteworld across 3 random seeds using batches of 64
for 500,000 iterations. For CLEVR6, we use batches of 32 and train for 400,000 iterations. In all
cases, we use the Adam optimizer [20] with a learning rate of 5× 10−4 which we warm-up for the
first 30,000 training iterations and then decay by a factor of 10 throughout training. When training
with βLKL and αLcomp, we use hyperparameter weights of 0.05, which we found to work well
across both datasets. We found much larger values could lead to training instability and, in some
cases, insufficient optimization of Lrec, while smaller values often led to insufficient optimization of
the regularizers. We warm-up the value of α for the first 30,000 training iterations. Additionally,
when training with α or β, we drop the value of the learning rate after 30,000 training iterations to
1 × 10−4, which improved training stability. Lastly, on Sprites, we weight Lrec by a factor of 5,
when training with α or β.

C.2 Metrics and Evaluation

Computing ARI with Attention Scores. To compute the Adjusted Rand Index (ARI), each pixel
must first be assigned to a unique model slot. To this end, prior works typically choose the slot
with the largest attention score from either Slot Attention or the alpha mask of a Spatial Broadcast
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decoder [29, 40]. This approach can be problematic since the attention scores used are model-
dependent, making a direct comparison of ARI across models challenging. Further, the relation-
ship between attention scores and the pixels encoded in a model slot is somewhat indirect. As
noted in § 4, we consider an alternative and compute the ARI using the Jacobian of a decoder
(J-ARI). Specifically, we assign a pixel l to the slot with the largest L1 norm for the slot-wise Ja-
cobian DBk

f̂l(ẑ). This can be done for any autoencoder and provides a more principled metric for
object disentanglement since a decoder’s Jacobian directly describes the pixels each slot encodes
(assuming f̂ , ĝ invert each other).

Evaluation. We select models for testing which had the highest average values for J-ARI and JIS
(each of which take values from 0 to 1) on the validation set. These models were then evaluated on
the test set yielding the scores reported in Tab. 1.

C.3 Additional Figures

Figure 3: Analysis of Lcomp when using a VAE loss. We plot Lcomp for the first 400,000 training
iterations for a Transformer autoencoder trained without regularization (α = 0, β = 0) and with a
VAE loss which does not explicitly optimize Lcomp, (α=0, β=0.05). We find on Sprites (left) and
CLEVR6 (right), the VAE loss achieves much lower Lcomp than the unregularized model. This pro-
vides an explanation for the solid object-disentanglement often achieved by the VAE loss in Tab. 1
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