
Published as a conference paper at ICLR 2024

SOFT MIXTURE DENOISING: BEYOND THE EXPRES-
SIVE BOTTLENECK OF DIFFUSION MODELS

Yangming Li, Boris van Breugel, Mihaela van der Schaar
Department of Applied Mathematics and Theoretical Physics
University of Cambridge
yl874@cam.ac.uk

ABSTRACT

Because diffusion models have shown impressive performances in a number of
tasks, such as image synthesis, there is a trend in recent works to prove (with
certain assumptions) that these models have strong approximation capabilities. In
this paper, we show that current diffusion models actually have an expressive bot-
tleneck in backward denoising and some assumption made by existing theoretical
guarantees is too strong. Based on this finding, we prove that diffusion models
have unbounded errors in both local and global denoising. In light of our the-
oretical studies, we introduce soft mixture denoising (SMD), an expressive and
efficient model for backward denoising. SMD not only permits diffusion models
to well approximate any Gaussian mixture distributions in theory, but also is sim-
ple and efficient for implementation. Our experiments on multiple image datasets
show that SMD significantly improves different types of diffusion models (e.g.,
DDPM), espeically in the situation of few backward iterations.

1 INTRODUCTION

Diffusion models (DMs) (Sohl-Dickstein et al., 2015) have become highly popular generative mod-
els for their impressive performance in many research domains—including high-resolution image
synthesis (Dhariwal & Nichol, 2021), natural language generation (Li et al., 2022), speech process-
ing (Kong et al., 2021), and medical image analysis (Pinaya et al., 2022).

Current strong approximator theorems. To explain the effectiveness of diffusion models, re-
cent work (Lee et al., 2022a;b; Chen et al., 2023) provided theoretical guarantees (with certain
assumptions) to show that diffusion models can approximate a rich family of data distributions with
arbitrarily small errors. For example, Chen et al. (2023) proved that the generated samples from dif-
fusion models converge (in distribution) to the real data under ideal conditions. Since it is generally
intractable to analyze the non-convex optimization of neural networks, a potential weakness of these
works is that they all supposed bounded score estimation errors, which means the prediction errors
of denoising functions (i.e., reparameterized score functions) are bounded.

Our limited approximation theorems. In this work, we take a first step towards the opposite
direction: Instead of explaining why diffusion models are highly effective, we show that their ap-
proximation capabilities are in fact limited and the assumption of bounded score estimation errors
(made by existing theoretical guarantees) is too strong.

In particular, we show that current diffusion models suffer from an expressive bottleneck—the
Gaussian parameterization of backward probability pθpxt´1 | xtq is not expressive enough to fit the
(possibly multimodal) posterior probability qpxt´1 | xtq. Following this, we prove that diffusion
models have arbitrarily large denoising errors for approximating some common data distributions
qpx0q (e.g., Gaussian mixture), which indicates that some assumption of prior works—bounded
score estimation errors—is too strong, which undermines their theoretical guarantees. Lastly and
importantly, we prove that diffusion models will have an arbitrarily large error in matching the
learnable backward process pθpx0:T q with the predefined forward process qpx0:T q, even though
matching these is the very optimization objective of current diffusion models (Ho et al., 2020; Song
et al., 2021b). This finding indicates that diffusion models might fail to fit complex data distributions.
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(a) Baseline: vanilla LDM; FID: 11.29. (b) Our model: LDM w/ SMD; FID: 6.85.

Figure 1: SMD improves quality and reduces the number of backward iterations. Results for
CelebA-HQ 256 ˆ 256 with only 100 backward iterations, for LDM with and without SDM. SDM
achieves better realism and FID. Achieving the same FID with vanilla LDM would require 8ˆ more
steps (see Fig. 3). Note that SMD differs from fast samplers (e.g., DDIM (Song et al., 2021a)
and DPM (Lu et al., 2022)): while those methods focus on deterministic sampling and numerical
stability, SMD improves the expressiveness of diffusion models.

Our method: Soft Mixture Denoising (SMD). In light of our theoretical findings, we propose Soft
Mixture Denoising (SMD), which aims to represent the hidden mixture components of the posterior
probability with a continuous relaxation. We prove that SMD permits diffusion models to accurately
approximate any Gaussian mixture distributions. For efficiency, we reparameterize SMD and derive
an upper bound of the negative log-likelihood for optimization. All in all, this provides a new
backward denoising paradigm to the diffusion models that improves expressiveness and permits few
backward iterations, yet retains tractability.

Contributions. In summary, our contributions are threefold:

1. In terms of theory, we find that current diffusion models suffer from an expressive bottle-
neck. We prove that the models have unbounded errors in both local and global denoising,
demonstrating that the assumption of bounded score estimation errors made by current
theoretical guarantees is too strong;

2. In terms of methodology, we introduce SMD, an expressive backward denoising model.
Not only does SMD permit the diffusion models to accurately fit Gaussian mixture distri-
butions, but it is also simple and efficient to implement;

3. In terms of experiments, we show that SMD significantly improves the generation qual-
ity of different diffusion models (DDPM (Ho et al., 2020), DDIM (Song et al., 2021a),
ADM (Dhariwal & Nichol, 2021), and LDM (Rombach et al., 2022)), especially for few
backward iterations—see Fig. 1 for a preview. Since SMD lets diffusion models achieve
competitive performances at a smaller number of denoising steps, it can speed up sampling
and reduce the cost of existing models.

2 BACKGROUND: DISCRETE-TIME DIFFUSION MODELS

In this section, we briefly review the mainstream architecture of diffusion models in discrete time
(e.g., DDPM (Ho et al., 2020)). The notations and terminologies introduced below are necessary
preparations for diving into subsequent sections.
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A diffusion model typically consists of two Markov chains of T steps. One of them is the forward
process—also known as the diffusion process—which incrementally adds Gaussian noises to the
real sample x0 P RD, D P N, giving a chain of variables x1:T “ rx1,x2, ¨ ¨ ¨ ,xT s:

qpx1:T | x0q “

T
ź

t“1

qpxt | xt´1q, qpxt | xt´1q “ N pxt;
a

1 ´ βtxt´1, βtIq, (1)

where N denotes a Gaussian distribution, I represents an identity matrix, and βt, 1 ď t ď T are a
predefined variance schedule. By properly defining the variance schedule, the last variable xT will
approximately follow a normal Gaussian distribution.

The second part of diffusion models is the backward (or reverse) process. Specifically speaking,
the process first draws an initial sample xT from a standard Gaussian ppxT q “ N p0, Iq and then
gradually denoises it into a sequence of variables xT´1:0 “ rxT´1,xT´2, ¨ ¨ ¨ ,x0s:

pθpxT :0q “ ppxT q

1
ź

t“T

pθpxt´1 | xtq, pθpxt´1 | xtq “ N pxt´1;µθpxt, tq, σtIq, (2)

where σtI is a predefined covariance matrix and µθ is a learnable module with the parameter θ to
predict the mean vector. Ideally, the learnable backward probability pθpxt´1 | xtq is equal to the
inverse forward probability qpxt´1 | xtq at every iteration t P r1, T s such that the backward process
is just a reverse version of the forward process.

Since the exact negative log-likelihood Er´ log pθpx0qs is computationally intractable, common
practices adopt its upper bound L as the loss function

Ex0„qpx0qr´ log pθpx0qs ď EqrDKLrqpxT | x0q, ppxT qss
looooooooooooooooomooooooooooooooooon

LT

`Eqr´ log pθpx0 | x1qs
loooooooooooomoooooooooooon

L0

`
ÿ

1ătďT

EqrDKLrqpxt´1 | xt,x0q, pθpxt´1 | xtqss
looooooooooooooooooooooooomooooooooooooooooooooooooon

Lt´1

“ L,
(3)

where DKL denotes the KL divergence. Every term of this loss has an analytic form so that it is
computationally optimizable. Ho et al. (2020) further applied some reparameterization tricks to the
loss L for reducing its variance. As a result, the module µθ is reparameterized as

µθpxt, tq “
1

?
αt

´

xt ´
βt

?
1 ´ sαt

ϵθpxt, tq
¯

, (4)

where αt “ 1´βt, sαt “
śt

t1“1 αt1 , and ϵθ is parameterized by neural networks. Under this popular
scheme, the loss L is finally simplified as

L “

T
ÿ

t“1

Ex0„qpx0q,ϵ„N p0,Iq

”

}ϵ ´ ϵθp
?

sαtx0 `
?
1 ´ sαtϵ, tq}2

ı

, (5)

where the denoising function ϵθ is tasked to fit Gaussian nosie ϵ.

3 THEORY: DMS SUFFER FROM AN EXPRESSIVE BOTTLENECK

In this section, we first show that the Gaussian denoising paradigm leads to an expressive bottleneck
for diffusion models to fit multimodal data distribution qpx0q. Then, we properly define two errors
Mt, E that measure the approximation capability of general diffusion models and prove that they
can both be unbounded for current models.

3.1 LIMITED GAUSSIAN DENOISING

The core of diffusion models is to let the learnable backward probability pθpxt´1 | xtq at every
iteration t fit the posterior forward probability qpxt´1 | xtq. From Eq. (2), we see that the learnable
probability is configured as a simple Gaussian N pxt´1;µθpxt, tq, σtIq. While this setup is analyt-
ically tractable and computationally efficient, our proposition below shows that its approximation
goal qpxt´1 | xtq might be much more complex.
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Proposition 3.1 (Non-Gaussian Inverse Probability). For the diffusion process defined in Eq. (1),
suppose that the real data follow a Gaussian mixture: qpx0q “

řK
k“1 wkN px0;µk,Σkq, which

consists of K Gaussian components with mixture weight wk, mean vector µk, and covariance matrix
Σk, then the posterior forward probability qpxt´1 | xtq at every iteration t P r1, T s is another
mixture of Gaussian distributions:

qpxt´1 | xtq “

K
ÿ

k“1

w1
kN pxt´1;µ

1
k,Σ

1
kq, (6)

where w1
k,µ

1
k depend on both variable xt and µt.

Remark 3.1. The Gaussian mixture in theory is a universal approximator of smooth probability
densities (Dalal & Hall, 1983; Goodfellow et al., 2016). Therefore, this proposition implies that the
posterior forward probability qpxt´1 | xtq can be arbitrarily complex.

Proof. The proof to this proposition is fully provided in Appendix B.

While diffusion models perform well in practice, we can infer from above that the Gaussian de-
noising paradigm pθpxt´1 | xtq “ N pxt´1;µθpxt, tq, σtIq causes a bottleneck for the backward
probability to fit the potentially multimodal distribution qpxt´1 | xtq. Importantly, this problem is
not rare since real-world data distributions are commonly non-Gaussian and multimodal. For exam-
ple, classes in a typical image dataset are likely to form separate modes, and possibly even multiple
modes per class (e.g. different dog breeds).

Takeaway: The posterior forward probability qpxt´1 | xtq can be arbitrarily complex for the
Gaussian backward probability pθpxt´1 | xtq “ N pxt´1;µθpxt, tq, σtIq to approximate. We
call this problem the expressive bottleneck of diffusion models.

3.2 DENOISING AND APPROXIMATION ERRORS

To quantify the impact of this expressive bottleneck, we define two error measures in terms of local
and global denoising errors, i.e., the discrepancy between forward process qpx0:T q and backward
process pθpx0:T q.

Derivation of the local denoising error. Considering the form of loss term Lt´1 in Eq. (3), we
apply the KL divergence to estimate the approximation error of every learnable backward probability
pθpxt´1 | xtq, t P r1, T s to its reference qpxt´1 | xtq as DKLrqpxt´1 | xtq, pθpxt´1 | xtqs. In
Appendix A, we prove that the single-step backward model pθpxt´1 | xtq is optimized towards
qpxt´1 | xtq for training with loss L. Since the error depends on variable xt, we normalize it with
density qpxtq into ErDKLr¨ss “

ş

xt
qpxtqDKLr¨sdxt. Importantly, we take the infimum of this error

over the parameter space Θ as infθPΘp
ş

xt
qpxtqDKLrqp¨q, pθp¨qsdxtq, which means neural networks

are globally optimized. In light of the above derivation, we have the below definition.
Definition 3.1 (Local Denoising Error). For every learnable backward probability pθpxt´1 |

xtq, 1 ď t ď T in a diffusion model, its error of best approximation (i.e., parameter θ is glob-
ally optimized) to the reference qpxt´1 | xtq is defined as

Mt “ inf
θPΘ

´

Ext„qpxtqrDKLrqpxt´1 | xtq, pθpxt´1 | xtqss

¯

“ inf
θPΘ

´

ż

xt

qpxtq
loomoon

Density Weight

DKLrqpxt´1 | xtq, pθpxt´1 | xtqs
loooooooooooooooooooomoooooooooooooooooooon

Denoising Error w.r.t. the Input xt

dxt

¯

,
(7)

where space Θ represents the set of all possible parameters. Note that the inequality Mt ě 0 always
holds because KL divergence is non-negative.

Significance of the global denoising error. Current practices (Ho et al., 2020) expect the backward
process pθpx0:T q to exactly match the forward process qpx0:T q such that their marginals at iteration
0 are equal: qpx0q “ pθpx0q. For example, Song et al. (2021b) directly configured the backward
process as the reverse-time diffusion equation. Hence, we have the following error definition to
measure the global denoising capability of diffusion models.
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Definition 3.2 (Global Denoising Error). The discrepancy between learnable backward process
pθpx0:T q and predefined forward process qpx0:T q is estimated as

E “ inf
θPΘ

´

DKLrqpx0:T q, pθpx0:T qs

¯

, (8)

where again E ě 0 always holds since KL divergence is non-negative.

3.3 LIMITED APPROXIMATION THEOREMS

In this part, we prove that the above defined errors are unbounded for current diffusion models.1

Theorem 3.1 (Uniformly Unbounded Denoising Error). For the diffusion process defined in Eq. (1)
and the Gaussian denoising process defined in Eq. (2), there exists a continuous data distribution
qpx0q (more specifically, Gaussian mixture) such that Mt is uniformly unbounded—given any real
number N P R, the inequality Mt ą N holds for every denoising iteration t P r1, T s.

Proof. We provide a complete proof to this theorem in Appendix C.

The above theorem not only implies that current diffusion models fail to fit some multimodal data
distribution qpxtq because of their limited expressiveness in local denoising, but also indicates that
the assumption of bounded score estimation errors (i.e., bounded denoising errors) is too strong.
Consequently, this undermines existing theoretical guarantees (Lee et al., 2022a; Chen et al., 2023)
that aim to prove that diffusion models are universal approximates.

Takeaway: The denoising error Mt of current diffusion models can be arbitrarily large at every
denoising step t P r1, T s. Thus, the assumption of bounded score estimation errors made by
existing theoretical guarantees is too strong.

Based on Theorem 3.1 and Proposition 3.1, we finally show that the global denoising error E of
current diffusion models is also unbounded.

Theorem 3.2 (Unbounded Approximation Error). For the forward and backward processes respec-
tively defined in Eq. (1) and Eq. (2), given any real number N P R, there exists a continuous data
distribution qpx0q (specifically, Gaussian mixture) such that E ą N .

Proof. A complete proof to this theorem is offered in Appendix D.

Since the negative likelihood Er´ log pθpx0qs is computationally feasible, current practices (e.g.,
DDPM (Ho et al., 2020) and SGM (Song et al., 2021b)) optimize the diffusion models by matching
the backward process pθpx0:T q with the forward process qpx0:T q. This theorem indicates that this
optimization scheme will fail for some complex data distribution qpx0q.

Why diffusion models already perform well in practice. The above theorem may bring unease—
how can this be true when diffusion models are considered highly-realistic data generators? The key
lies in the number of denoising steps. As indicated in Eq. (29), the more steps are used, the more
the backward probability, Eq. (2), is centered around a single mode, hence the more the simple
Gaussian assumption holds (Sohl-Dickstein et al., 2015). As a result, we will see in Sec. 5.3 that our
own method, which makes no Gaussian posterior assumption, improves quality especially for few
backward iterations.

Takeaway: Standard diffusion models (e.g. DDPM) with simple Gaussian denoising poorly
approximate some multimodal distributions (e.g. Gaussian mixture). This is problematic, as
these distributions are very common in practice.

1It is also worth noting that these errors already overestimate the performances of diffusion models, since
their definitions involve an infimum operation infθPΘ.
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4 METHOD: SOFT MIXTURE DENOISING

Our theoretical studies showed how current diffusion models have limited expressiveness to approx-
imate multimodal data distributions. To solve this problem, we propose soft mixture denoising
(SMD), a tractable relaxation of a Gaussian mixture model for modelling the denoising posterior.

4.1 MAIN THEORY

Our theoretical analysis highlight an expressive bottleneck of current diffusion models due to its
Gaussian denoising assumption. Based on Proposition 3.1, an obvious way to address this problem
is to directly model the backward probability pθpxt´1 | xtq as a Gaussian mixture. For example, we
could model:

pmixture
θ pxt´1 | xtq “

K
ÿ

k“1

zθkpxt, tqN pxt´1;µθkpxt, tq,Σθkpxt, tqq, (9)

where θ “
ŤK

k“1 θk, the number of Gaussian components K is a hyperparameter, and where weight
zkt p¨q, mean µk

θk
p¨q, and covariance Σk

θk
p¨q are learnable and determine each of the mixture compo-

nents. While the mixture model might be complex enough for backward denoising, it is not practical
for two reasons: 1) it is often intractable to determine the number of components K from observed
data; 2) mixture models are notoriously hard to optimize. Actually, Jin et al. (2016) proved that a
Gaussian mixture model might be optimized into an arbitrarily bad local optimum.

Soft mixture denoising. To efficiently improve the expressiveness of diffusion models, we in-
troduce soft mixture denoising (SMD) pSMD

sθ
pxt´1 | xtq, a soft version of the mixture model

pmixture
θ p¨q, which avoids specifying the number of mixture components K and permits effective

optimization. Specifically, we define a continuous latent variable zt, as an alternative to mixture
weight zkt , that represents the potential mixture structure of posterior distribution qpxt´1 | xtq.
Under this scheme, we model the learnable backward probability as

pSMD
sθ p¨q “

ż

pSMD
sθ pxt´1, zt | xtqdzt “

ż

pSMD
sθ pzt | xtqp

SMD
sθ pxt´1 | xt, ztqdzt, (10)

where sθ denotes the set of all learnable parameters. We model p
sθpxt´1 | xt, ztq as a learnable

multivariate Gaussian and expect that different values of the latent variable zt will correspond to
differently parameterized Gaussians:

pSMD
sθ pxt´1 | xt, ztq “ N

`

xt´1;µθ
Ť

fϕpzt,tq

`

xt, t
˘

,Σθ
Ť

fϕpzt,tq

`

xt, t
˘˘

, (11)

where θ Ă sθ is a set of vanilla learnable parameters and fϕpzt, tq is another collection of parameters
computed from a neural network fϕ with learnable parameters ϕ Ă sθ. Both θ and fϕpzt, tq constitute
the parameter set of mean and covariance functions µ‚,Σ‚ for computations, but only θ and ϕ will
be optimized. This type of design is similar to the hypernetwork (Ha et al., 2017; Krueger et al.,
2018). For implementation, we follow Eq. (2) to constrain the covariance matrix Σ‚ to the form σtI
and parameterize mean µ‚pxt, tq similar to Eq. (4):

µθ
Ť

fϕpzt,tqpxt, tq “
1

?
αt

´

xt ´
βt

?
1 ´ sαt

ϵθ
Ť

fϕpzt,tq

`

xt, t
˘

¯

, (12)

where ϵ‚ is a neural network. For image data, we build it as a U-Net (Ronneberger et al., 2015) (i.e.,
θ) with several extra layers that are computed from fϕpzt, tq.

For the mixture component p
sθpzt | xtq, we parameterize it with a neural network such that it

can be an arbitrarily complex distribution and adds great flexibility into the backward probability
pSMD

sθ
pxt´1 | xtq. For implementation, we adopt a mapping gξ : pη,xt, tq ÞÑ zt, ξ Ă sθ with

η
i.i.d.
„ N p0, Iq, which converts a standard Gaussian into a non-Gaussian distribution.

Theoretical guarantee. We prove that SMD pSMD
sθ

pxt´1 | xtq improves the expressiveness of
diffusion models—resolving the limitations highlighted in Theorems 3.1 and 3.2.
Theorem 4.1 (Expressive Soft Mixture Denoising). For the diffusion process defined in Eq. (1), sup-
pose soft mixture model pSMD

sθ
pxt´1 | xtq is applied for backward denoising and data distribution

qpx0q is a Gaussian mixture, then both Mt “ 0,@t P r1, T s and E “ 0 hold.
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Algorithm 1 Training
1: repeat
2: x0 „ qpx0q

3: t „ Ut1, T u, ϵ „ N p0, Iq

4: xt “
?

sαtx0 `
?
1 ´ sαtϵ

5: η „ N p0, Iq

6: Latent variable sampling: zt “ gξpη,xt, tq

7: Param. for computation: pθ “ θ
Ť

fϕpzt, tq

8: Param. to optimize: sθ “ θ
Ť

ϕ
Ť

ξ

9: Update sθ w.r.t. ∇
sθ}ϵ ´ ϵ

pθ pxt, tq}
2

10: until converged

Algorithm 2 Sampling

1: xT „ ppxT q “ N p0, Iq

2: for t “ T, . . . , 1 do
3: ϵ „ N p0, Iq if t ą 1, else ϵ “ 0

4: η „ N p0, Iq

5: Latent variable sampling: zt “ gξpη,xt, tq

6: Param. for computation: pθ “ θ
Ť

fϕpzt, tq

7: xt´1 “ 1?
αt

´

xt ´
1´αt?
1´ sαt

ϵ
pθ pxt, tq

¯

` σtϵ

8: end for
9: return x0

Proof. The proof to this theorem is fully provided in Appendix E.

Remark 4.1. The Gaussian mixture is a universal approximator for continuous probability distri-
butions (Dalal & Hall, 1983). Therefore, this theorem implies that our proposed SMD permits the
diffusion models to well approximate arbitrarily complex data distributions.

Takeaway: Soft mixture denoising (SMD) parameterizes the backward probability as a con-
tinuously relaxed Gaussian mixture, which potentially permits the diffusion models to well
approximate any continuous data distribution.

4.2 EFFICIENT OPTIMIZATION AND SAMPLING

While Theorem 4.1 shows that SMDs are highly expressive, it assumes the neural networks are
globally optimized. Plus, the latent variable in SMD introduces more complexity to the computation
and analysis of diffusion models. To fully exploit the potential of SMD, we thus need efficient
optimization and sampling algorithms.

Loss function. The negative log-likelihood for a diffusion model with the backward probability
pSMD

sθ
pxt´1 | xtq of a latent variable model is formally defined as

Eqr´ ln pSMD
sθ px0qs “ Ex0„qpx0q

”

´ ln
´

ż

x1:T

ppxT q

1
ź

t“T

pSMD
sθ pxt´1 | xtqdx1:T

¯ı

. (13)

Like vanilla diffusion models, this log-likelihood term is also computationally infeasible. In the
following, we derive its upper bound for optimization.

Proposition 4.1 (Upper Bound of Negative Log-likelihood). Suppose the diffusion process is defined
as Eq. (1) and the soft mixture model pSMD

sθ
pxt´1 | xtq is applied for backward denoising, then an

upper bound of the expected negative log-likelihood Eqr´ ln pSMD
sθ

px0qs is

LSMD “ C `

T
ÿ

t“1

Eη,ϵ,x0

”

Γt

›

›ϵ ´ ϵθ
Ť

fϕpgξp¨q,tq

`?
sαtx0 `

?
1 ´ sαtϵ, t

˘
›

›

2
ı

, (14)

where gξp¨q “ gξpη,
?

sαtx0 `
?
1 ´ sαtϵ, tq, C is a constant that does not involve any learnable

parameter sθ “ θ
Ť

ϕ
Ť

ξ, x0 „ qpx0q, η, ϵ are two independent variables drawn from standard
Gaussians, and Γt “ β2

t {p2σtαtp1 ´ sαtqq.

Proof. The detailed derivation to get the upper bound LSMD is in Appendix F.

Compared with the loss function of vanilla diffusion models, Eq. (5), our upper bound mainly differs
in the hypernetwork fϕ to parameterize the denoising function ϵ‚ and an expectation operation Eη .
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Figure 2: Visualising the expressive bottleneck of standard diffusion models. Experimental
results on synthetic dataset with 7 ˆ 7 Gaussians (right), for DDPM with T “ 1000. Even though
DDPM has converged, we observe that the modes are not easily distinguishable. On the other hand,
SMD converges much faster and results in distinguishable modes.

Table 1: SMD consistently improves generation quality. FID score of different models across
common image datasets and resolutions. We use T “ 1000 for all models.

Dataset / Model DDPM DDPM w/ SMD ADM ADM w/ SMD
CIFAR-10 (32 ˆ 32) 3.78 3.13 2.98 2.55

LSUN-Conference (64 ˆ 64) 4.15 3.52 3.85 3.29
LSUN-Church (64 ˆ 64) 3.65 3.17 3.41 2.98
CelebA-HQ (128 ˆ 128) 6.78 6.35 6.45 6.02

The former is computed by neural networks and the latter is approximated by Monte Carlo sampling,
which both add minor computational costs.

Training and Inference. The SMD training and sampling procedures are respectively shown in
Algorithms 1 and 2, with blue highlighting differences with vanilla diffusion. For the training pro-
cedure, we follow common practices of (Ho et al., 2020; Dhariwal & Nichol, 2021), and (1) apply
Monte Carlo sampling to handle iterated expectations Eη,ϵ,x0 in Eq. (14), and (2) reweigh loss term
}ϵ´ϵ‚pxt, tq}2 by ignoring coefficient Γt. One can also sample more noises (e.g., η) in one training
step to trade run-time efficiency for approximation accuracy. The source code of this work is pub-
licly available at a personal repository: https://github.com/louisli321/smd, and our lab repository:
https://github.com/vanderschaarlab/smd.

5 EXPERIMENTS

Let us verify how SMD improves the quality and speed of existing diffusion models. First, we use
a toy example to visualise that existing diffusion models struggle to learn multivariate Gaussians,
whereas SMD does not. Subsequently, we show how SMD significantly improves the FID score
across different types of diffusion models (e.g., DDPM, ADM (Dhariwal & Nichol, 2021), LDM)
and datasets. Then, we demonstrate how SMD significantly improves performance at low num-
ber of inference steps. This enables reducing the number of inference steps, thereby speeding up
generation and reducing computational costs. Lastly, we show how quality can be improved even
further by sampling more than one η for loss estimation at training time, which further improves the
performance but causes an extra time cost.

5.1 VISUALISING THE EXPRESSIVE BOTTLENECK

From Proposition 3.1 and Theorems 3.2, 3.1 it follows that vanilla diffusion models would strug-
gle with learning a Gaussian Mixture model, whereas Theorem 4.1 proves SMD does not. Let us
visualise this difference using a simple toy experiment. In Figure 2 we plot the learnt distribution
of DDPM over the training process, with and without SMD. We observe that DDPM with SMD
converges much faster, and provides a more accurate distribution at time of convergence.
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5.2 SMD IMPROVES IMAGE QUALITY

We select three of the most common diffusion models and four image datasets to show how our
proposed SMD quantitatively improves diffusion models. Baselines include DDPM Ho et al.
(2020), ADM (Dhariwal & Nichol, 2021), and Latent Diffusion Model (LDM) (Pinaya et al., 2022).
Datasets include CIFAR-10 (Krizhevsky et al., 2009), LSUN-Conference, LSUN-Church (Yu et al.,
2015), and CelebA-HQ (Liu et al., 2015). For all models, we set the backward iterations T as 1000
and generate 10000 images for computing FID scores.

Table 2: SMD improves LDM generation quality. FID
score of latent diffusion with and without SMD on high-
resolution image datasets (T “ 1000).

Dataset / Model LDM LDM w/ SMD
LSUN-Church (256 ˆ 256) 5.86 5.21

CelebA-HQ (256 ˆ 256) 6.13 5.48

In Table 1, we show how the pro-
posed SMD significantly improves
both DDPM and ADM on all
datasets, for a range of resolu-
tions. For example, SDM outper-
forms DDPM by 15.14% on LSUN-
Church and ADM by 16.86%. Sec-
ond, in Table 2 we include results for
high-resolution image datasets, see
Fig. 1 for example images (T “ 100). Here we employed LDM as baseline to reduce memory
footprint, where we use a pretrained and frozen VAE. We observe that SMD improves FID scores
significantly. These results strongly indicate how SMD is effective in improving the performance
for different baseline diffusion models.

5.3 SMD IMPROVES INFERENCE SPEED

Figure 3: SMD reduces
the number of sampling
steps. Latent DDIM and
DDPM for different iterations
on CelebA-HQ (256 ˆ 256).

Intuitively, for few denoising iterations the distribution qpxt´1 |

xtq is more of a mixture, which leads to the backward probability
pθpxt´1 | xtq—a simple Gaussian—being a worse approximation.
Based on Theorems 3.2 and 4.1, we anticipate that our models will
be more robust to this effect than vanilla diffusion models.

The solid blue and red curves in Fig. 3 respectively show how the
F1 scores of vanilla LDM and LDM w/ SMD change with respect
to increasing backward iterations. We can see that our proposed
SMD improves the LDM much more at fewer backward iterations
(e.g., T “ 200). We also include LDM with DDIM (Song et al.,
2021a), a popular fast sampler. We see that the advantage of SDM
is consistent across samplers.

5.4 SAMPLING MULTIPLE η: QUALITY-COST TRADE-OFF

In Algorithm 1, we only sample one η at a time for maintaining
high computational efficiency. We can sample multiple η to estimate the loss better. Figure 4 shows
how the training time of one training step and FID score of DDPM with SMD changes as a function
of the number of η samples. While the time cost linearly goes up with the increasing sampling times,
FID monotonically decreases (6.5% for 5 samples).

6 FUTURE WORK

Figure 4: SMD quality is
further improved by sam-
pling multiple η, see Alg. 1
on LSUN-Conference (64 ˆ

64) for DDPM w/ SMD.

We have proven that there exists an expressive bottleneck in pop-
ular diffusion models. Since multimodal distributions are so com-
mon, this limitation does matter across domains (e.g., tabular, im-
ages, text). Our proposed SMD, as a general method for expressive
backward denoising, solves this problem. Regardless of network
architectures, SMD can be extended to other tasks, including text-
to-image translation, video generation, and speech synthesis. Be-
cause SMD provides better quality for fewer steps, we also hope it
will become a standard part of diffusion libraries, speeding up both
training and inference.
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A SIGNIFICANCE OF THE LOCAL ERROR Mt

In this part, we show that the backward model pθpt ´ 1 | tq, t P r1, T s is optimized towards the
inverse probability qpt ´ 1 | tq in terms of the loss function L as defined in Eq. (3).

Proposition A.1. For a perfectly optimized reverse process tpθpt ´ 1 | tqutPr1,T s (as defined in
Eq. (2)) that minimizes the loss function L (as defined in Eq. (3)), equality pθpt´1 | tq “ qpt´1 | tq
holds for every denoising iteration t P r1, T s.

Proof. Following DDPM (Ho et al., 2020) and SGM (Song & Ermon, 2019; Song et al., 2020;
Karras et al., 2022), the loss function L can be formulated as

L “ Ex0:T „qpx0:T q

”

´ ln
pθpx0:T q

qpx1:T | x0q

ı

“ DKLrqpx0:T q, pθpx0:T qs ´ Ex0„qpx0qrln qpx0qs. (15)

Note that the second expectation term Er¨s is a constant and the first KL-divergence term DKLr¨s

reaches its minimum 0 when pθpx0:T q equals qpx0:T q. Therefore, for a perfectly optimized diffusion
model, we have pθpx0:T q “ qpx0:T q. Then, for every iteration t P r1, T s, we get

pθpxt´1,xtq “

ż

pθpx0:T qdx0:t´2dxt`1:T “

ż

qpx0:T qdx0:t´2dxt`1:T “ qpxt´1,xtq. (16)

Similarly, we also have the following equality:

pθpxtq “

ż

pθpx0:T qdx0:t´1dxt`1:T “

ż

qpx0:T qdx0:t´1dxt`1:T “ qpxtq. (17)

Based on the above two equations, we finally derive

pθpxt´1 | xtq “
pθpxt´1,xtq

pθpxtq
“

qpxt´1,xtq

qpxtq
“ qpxt´1 | xtq, (18)

which proves the proposition.

The above conclusion indicates that the definition of local denoising error Mt is proper for its use:
quantifying the performance of backward module pθpt ´ 1 | tq.

B PROOF OF PROPOSITION 3.1

By repeatedly applying basic operations (e.g., chain rule) of probability theory to conditional distri-
bution of backward variable qpxt´1 | xtq, we have

qpxt´1 | xtq “
qpxt,xt´1q

qpxtq
“

qpxt | xt´1qqpxt´1q

qpxtq
“

qpxt | xt´1q

qpxtq

ż

x0

qpxt´1,x0qdx0

“
1

qpxtq
qpxt | xt´1q

ż

x0

qpxt´1 | x0qqpx0qdx0

. (19)

Based on Eq. (1) and qpxt | x0q “ N pxt;
?

sαtx0, p1 ´ sαtqIq, from (Ho et al., 2020), posterior
probability qpxt´1 | xtq can be expressed as

qpxt´1 | xtq “
N pxt;

?
1 ´ βtxt´1, βtIq

qpxtq

ż

x0

N pxt´1;
a

sαt´1x0, p1 ´ sαt´1qIqqpx0qdx0. (20)

Note that for a multivariate Gaussian, the following holds:

N px;λµ,Σq “ p2πq´ D
2 |Σ|´

1
2 exp

´

´
1

2
px ´ λµqTΣ´1px ´ λµq

¯

“
1

λD
p2πq´ D

2

ˇ

ˇ

ˇ

Σ

λ2

ˇ

ˇ

ˇ

´ 1
2

exp
´

´
1

2

`

µ ´
x

λ

˘T ` Σ

λ2

˘´1`

µ ´
x

λ

˘

¯

“ p1{λqDN pµ;x{λ,Σ{λ2q

, (21)
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where λ P R`, µ denotes a vector with dimension D, and Σ is a positive semi-definite matrix.
Fromt that, and βt “ 1 ´ αt, the following identities follow:

$

’

’

&

’

’

%

N pxt;
a

1 ´ βtxt´1, βtIq “ α
´ D

2
t N

´

xt´1;
xt

?
αt

,
1 ´ αt

αt
I
¯

N pxt´1;
a

sαt´1x0, p1 ´ sαt´1qIq “ psαt´1q´ D
2 N

´

x0;
xt´1

?
sαt´1

,
1 ´ sαt´1

sαt´1
I
¯

. (22)

Therefore, we can refomulate Eq. (20) as

qp¨q “
pαtsαt´1q´ D

2

qpxtq
N

´

xt´1;
xt

?
αt

,
1 ´ αt

αt
I
¯

ż

x0

N
´

x0;
xt´1

?
sαt´1

,
1 ´ sαt´1

sαt´1
I
¯

qpx0qdx0. (23)

Now, we let qpx0q be a mixture of Gaussians qpx0q “
řK

k“1 wkN px0;µk,Σkq, where K is the
number of Gaussian components, wk P r0, 1s,

ř

k wk “ 1, and vector µk and matrix Σk respec-
tively denote the mean and covariance of component k.

For the the mixture of Gaussians distribution qpx0q and by exchanging the operation order of sum-
mation

řK
k“1 and integral

ş

x0
, we have

qpxt´1 | xtq “

K
ÿ

k“1

”wkpαtsαt´1q´ D
2

qpxtq
N

´

xt´1;
xt

?
αt

,
1 ´ αt

αt
I
¯

˚

ż

x0

N
´

x0;
xt´1

?
sαt´1

,
1 ´ sαt´1

sαt´1
I
¯

N
´

x0;µk,Σk

¯

dx0

ı

.

(24)

A nice property of Gaussian distributions is that the product of two multivariate Gaussians also
follows a Gaussian distribution (Ahrendt, 2005). Formally, we have

N px;µ1,Σ1qN px;µ2,Σ2q “ N pµ2;µ1,Σ1 ` Σ2q

˚ N px; pΣ´1
1 ` Σ´1

2 q´1pΣ´1
1 µ1 ` Σ´1

2 µ2q, pΣ´1
1 ` Σ´1

2 q´1q
, (25)

where µ1,µ2 are vectors of the same dimension and Σ1,Σ2 are positive-definite matrices. There-
fore, the integral part

ş

x0
in Eq. (24) can be computed as

ż

x0

N
´

x0;
xt´1

?
sαt´1

,
1 ´ sαt´1

sαt´1
I
¯

N
´

x0;µk,Σk

¯

dx0

“ N
´

µk;
xt´1

?
sαt´1

,
1 ´ sαt´1

sαt´1
I ` Σk

¯

˚

ż

x0

N px0; ¨, ¨qdx0

“ psαt´1q´ D
2 N pxt´1;

a

sαt´1µk, p1 ´ sαt´1qI ` sαt´1Σkq ˚ 1

, (26)

where the last equation is derived by Eq. (21). With this result, we have

qpxt´1 | xtq “

K
ÿ

k“1

”wkα
´ D

2
t

qpxtq
N

´

¨

¯

N
´

xt´1;
a

sαt´1µk, p1 ´ sαt´1qI ` sαt´1Σk

¯ı

, (27)

By applying Eq. (25) and Eq. (21), and sαt´1αt “ sαt, the product of two Gaussian distributions in
the above equality can be reformulated as

N
´

xt´1;
xt

?
αt

,
1 ´ αt

αt
I
¯

˚ N
´

xt´1;
a

sαt´1µk, p1 ´ sαt´1qI ` sαt´1Σk

¯

“ α
D
2
t N

´

xt;
?

sαtµk, p1 ´ sαtqI ` sαtΣk

¯

˚ N
´

xt´1; pI ` Λ´1
k q´1 xt

?
αt

` pI ` Λkq´1
a

sαt´1µk,
1 ´ αt

αt
pI ` Λ´1

k q´1
¯

, (28)
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where matrix Λk “ pαt ´ sαtq{p1 ´ αtqI ` sαt{p1 ´ αtqΣk. With this result, we have
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

qpxt´1 | xtq “

K
ÿ

k“1

w1
kN pxt´1;µ

1
k,Σ

1
kq

w1
k “

wk

qpxtq
N pxt;

?
sαtµk, p1 ´ sαtqI ` sαtΣkq

µ1
k “ pI ` Λ´1

k q´1 xt
?
αt

` pI ` Λkq´1
a

sαt´1µk

Σ1
k “

1 ´ αt

αt
pI ` Λ´1

k q´1

, (29)

where
řK

k“1 w
1
k “ 1. To conclude, from this equality it follows that posterior probability ppxt´1 |

xtq is also a mixture of Gaussians. Therefore, our proposition holds.

C PROOF OF THEOREM 3.1

Let us rewrite metric Mt as

Mt “ inf
θPΘ

´

ż

xt

qpxtq
`

ż

xt´1

qpxt´1 | xtq ln
qpxt´1 | xtq

pθpxt´1 | xtq
dxt´1

˘

dxt

¯

“ inf
θPΘ

´

ż

xt

qpxtq
`

´ Hrqpxt´1 | xtqs ` DCErqpxt´1 | xtq, pθpxt´1 | xtqs
˘

dxt

¯

, (30)

where Hr¨s is information entropy (Shannon, 2001):

Hrqpxt´1 | xtqs “ ´

ż

xt´1

qpxt´1 | xtq ln qpxt´1 | xtqdxt´1, (31)

and DCEr¨s denotes the cross-entropy (De Boer et al., 2005):

DCErqpxt´1 | xtq, pθpxt´1 | xtqs “ ´

ż

xt´1

qpxt´1 | xtq ln pθpxt´1 | xtqdxt´1. (32)

Note that the entropy term Hr¨s does not involve parameter θ and can be regarded as a normalization
term for adjusting the minimum of DKLr¨s to 0.

Our goal is to analyze error metric Mt defined in Eq. (7). Regarding its decomposition derived
in Eq. (30), we first focus on cross-entropy DCErqpxt´1 | xtq, pθpxt´1 | xtqs. Suppose qpx0q

follows a Gaussian mixture, then qpxt´1 | xtq is also such a distribution as formulated in Eq. (29).
Therefore, we can expand the above cross entropy DCE as

DCEr¨s “ ´

ż

xt´1

qpxt´1 | xtq ln pθpxt´1 | xtqdxt´1

“ ´

ż

xt´1

´

K
ÿ

k“1

w1
kN pxt´1;µ

1
k,Σ

1
kq

¯

ln pθpxt´1 | xtqdxt´1

“

K
ÿ

k“1

w1
kDCErN pxt´1;µ

1
k,Σ

1
kq, pθpxt´1 | xtqs

“

K
ÿ

k“1

w1
kDKLrN pxt´1;µ

1
k,Σ

1
kq, pθpxt´1 | xtqs `

K
ÿ

k“1

w1
kHrN pxt´1;µ

1
k,Σ

1
kqs

. (33)

Suppose we set Σk “ δkI, δk ą 0, then we have
$

’

’

&

’

’

%

µ1
k “

´1 ` pδk ´ 1qsαt´1

1 ` pδk ´ 1qsαt

¯

?
αtxt `

p1 ´ αtq
?

sαt´1

1 ` pδk ´ 1qsαt
µk

Σ1
k “

´1 ` pδk ´ 1qsαt´1

1 ` pδk ´ 1qsαt

¯

p1 ´ αtqI

. (34)
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With this equation, we can simplify entropy sum
řK

k“1 w
1
kHr¨s as

K
ÿ

k“1

w1
kHrN pxt´1;µ

1
k,Σ

1
kq “

K
ÿ

k“1

w1
k

2
ln |2πeΣ1

k| “
D

2
lnp2πeq `

K
ÿ

k“1

w1
k

2
ln |Σ1

k|. (35)

Term DKLr¨s is in fact the KL divergence between two multivariate Gaussians, N pxt´1;µ
1
k,Σ

1
kq

and N pxt´1;µθpxt, tq, σtIq, which has an analytic form (Zhang et al., 2021):

DKLr¨s “
1

2

´

ln
|σtI|

|Σ1
k|

´ D `
1

σt
}µ1

k ´ µθpxt, tq}2 ` TrtpσtIq
´1Σ1

ku

¯

“
1

2

´

D lnσt ´ ln |Σ1
k| ´ D

¯

`
1

2σt
}µ1

k ´ µθpxt, tq}2 `
1 ´ αt

2σt

1 ` pδk ´ 1qsαt´1

1 ` pδk ´ 1qsαt
D

. (36)

With the above two equalities and the fact that sαt´1 ą sαt because αt ă 1, we reduce term
DCErqpxt´1 | xtq, pθpxt´1 | xtqs as

DCEr¨s ą
1

2σt

K
ÿ

k“1

w1
k}µ1

k ´ µθpxt, tq}2 `
D

2
lnp2πσtq `

1 ´ αt

2σt
D. (37)

Since entropy Hrqpxt´1 | xtqs does not involve model parameter θ, the variation of error metric Mt

is from cross-entropy DCEr¨s, more specifically, sum
řK

k“1. Let’s focus on how this term contributes
to error metric Mt as formulated in Eq. (7):

ICE “

ż

xt

qpxq

K
ÿ

k“1

w1
k}µ1

k ´ µθpxt, tq}2dxt “

K
ÿ

k“1

´

ż

xt

w1
kqpxq}µ1

k ´ µθpxt, tq}2dxt

¯

. (38)

Considering that Eq. (29) and Σk has been set as δkI, we have

ICE “

K
ÿ

k“1

´

ż

xt

wkN
´

xt;
?

sαtµk, p1 ` pδk ´ 1qsαtqI
¯

›

›

›
µ1

k ´ µθpxt, tq
›

›

›

2

dxt

¯

“

ż

xt

N p¨q

´

K
ÿ

k“1

wk

›

›

›

´

p1 ´ αtq
?

sαt´1

1 ` pδk ´ 1qsαt

¯

µk ´

´

µθpxt, tq ´

´

¨

¯

?
αtxt

¯
›

›

›

2¯

dxt

. (39)

Sum
řK

k“1 wk} ¨ }2 is essentially a problem called weighted least squares (Rousseeuw & Leroy,
2005) for model µθpxt, tq ´ p¨q

?
αtxt, which achieves a minimum error when the model is

řK
k“1 wkp¨qµk. For convenience, we suppose

řK
k“1 wkµk{p1 ` pδk ´ 1qsαtq “ 0 and we have

ICE ě

´

ż

xt

N p¨qdxt

¯´

K
ÿ

k“1

wk

›

›

›

´

¨

¯

µk

›

›

›

2¯

“ p1 ´ αtq
2

sαt´1

K
ÿ

k“1

wk

›

›

›

µk

1 ` pδk ´ 1qsαt

›

›

›

2

. (40)

Term Hrqpxt´1 | xtqs is in fact the differential entropy of a Gaussian mixture. Considering our
previous setup and its upper bound provided by (Huber et al., 2008), we have

Hr¨s ď

K
ÿ

k“1

w1
k

´

´ lnw1
k `

1

2
ln

´

p2πeqD
ˇ

ˇ

ˇ

1 ` pδk ´ 1qsαt´1

1 ` pδk ´ 1qsαt
p1 ´ αtqI

ˇ

ˇ

ˇ

¯¯

ă
D

2
ln

´2πe

αt
p1 ´ αtq

¯

´

K
ÿ

k“1

w1
k lnw

1
k ď

D

2
ln

´

2πe
´ 1

αt
´ 1

¯¯

` lnK

, (41)

where the second ineqaulity holds since p1 ` xq{p1 ` xyq ă 1{y,@x P R`, y P p0, 1q and
the last inequality is obtained by regarding term ´

řK
k“1 as the entropy of discrete variables

rw1
1, w

1
2, ¨ ¨ ¨ , w1

Ks. Therefore, its contribution to error metric Mt is

IEnt “

ż

xt

qpxtqp´Hrqpxt´1 | xtqsqdxt ě ´
D

2
ln

´2πe

αt
p1 ´ αtq

¯

´ lnK. (42)

Combining this inequality with Eq. (37) and Eq. (40), we have

Mt ą
p1 ´ αtq

2
sαt´1

2σt

K
ÿ

k“1

wk

›

›

›

µk

1 ` pδk ´ 1qsαt

›

›

›

2

´ lnK `
D

2

´

ln
σtαt

1 ´ αt
`

1 ´ αt

σt
´ 1

¯

. (43)
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with constraint
řK

k“1 wkµk{p1 ` pδk ´ 1qsαtq “ 0. Since wk ą 0, 1 ď k ď K, there exists a group
of non-zero vectors rµ1,µ2, ¨ ¨ ¨ ,µKs satisfying this linear equation, corresponds to a Gaussian
mixture ppx0q. With this result, we can always find another group of solution rλµ1, λµ2, ¨ ¨ ¨ , λµKs

for λ P R, which corresponds to a new mixture of Gaussians. By increasing the value of λ, the first
term of this inequality can be arbitrarily and uniformly large in terms of iteration t.

D PROOF OF THEOREM 3.2

Due to the first-order markov property of the forward and backward processes and the fact qpxT q “

pθpxT q “ N p0, Iq, T Ñ 8, we first have

DKLr¨s “ Ex0:T „qpx0:T q

”

ln
qpx0:T q

pθpx0:T q

ı

“ Eq

”

ln
qpxT q

ś1
t“T qpxt´1 | xtq

pθpxT q
ś1

t“T pθpxt´1 | xtq

ı

“ Eq

”

T
ÿ

t“1

ln
qpxt´1 | xtq

pθpxt´1 | xtq

ı

“

T
ÿ

t“1

Ext

”

DKLrqpxt´1 | xtq, pθpxt´1 | xtqs

ı

, (44)

where the last equality holds because of the following derivation:

Eq

”

ln
qpxt´1 | xtq

pθpxt´1 | xtq

ı

“

ż

x0:T

qpx0:T q ln
qpxt´1 | xtq

pθpxt´1 | xtq
dx0:T

“

ż

xt´1

qpxtq

´

ż

xt

qpxt´1 | xtq ln
qpxt´1 | xtq

pθpxt´1 | xtq
dxt´1

¯

dxt

“ Ext„qpxtq

”

DKLrqpxt´1 | xtq, pθpxt´1 | xtqs

ı

.

(45)

Based on Theorem 3.1, then we can infer that there is a continuous data distribution qpx0q such that
the inequality Mt ą pN ` 1q{T holds for t P r1, T s. For this distribution, we have

DKLr¨s ě

T
ÿ

t“1

inf
´

Ext

”

DKLrqpxt´1 | xtq, pθpxt´1 | xtqs

ı¯

“

T
ÿ

t“1

Mt ą N ` 1. (46)

Finally, we get E “ infpDKLr¨sq ě N ` 1 ą N for the data distribution qpx0q.

E PROOF OF THEOREM 4.1

We split the proof into two parts: one for Mt, t P r1, T s and the other for E .

Zero local denoising errors. For convenience, we denote integral
ş

xt
qpxtqDKLr¨sdxt in the def-

inition of error measure Mt as Mtpsθq. Immediately, we have Mt “ inf
sθP sΘ Mtpsθq. With this

equality, it suffices to prove two assertions: Mtpsθq ě 0,@sθ P Θ and Dsθ P sΘ : Mtpsθq “ 0.

The first assertion is trivially true since KL divergence DKL is always non-negative. For the second
assertion, we introduce two lemmas: 1) The assertion is true for the mixture model pmixture

θ pxt´1 |

xtq; 2) Any mixture model can be represented by its soft version pSMD
sθ

pxt´1 | xtq. If we can prove
the two lemma, it is sufficient to say that the second assertion also holds for SMD.

We prove the first lemma by construction. According to Proposition 3.1, the inverse forward prob-
ability qpxt´1 | xtq is also a Gaussian mixture as formulated in Eq. (29). By selecting a proper
number K, the mixture model pmixture

θ pxt´1 | xtq defined in Eq. (9) will be of the same distribu-
tion family as its reference qpxt´1 | xtq, which only differ in the configuration of different mixture
components. Based on Eq. (29), we can specifically set parameter θ “

Ť

1ďkďK θk as
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

zθkpxt, tq 9 wkN pxt;
?

sαtµk, p1 ´ sαtqI ` sαtΣkq

µθkpxt, tq “ pI ` Λ´1
k q´1 xt

?
αt

` pI ` Λkq´1
a

sαt´1µk

Σθkpxt, tq “
1 ´ αt

αt
pI ` Λ´1

k q´1

Λk “
αt ´ sαt

1 ´ αt
I `

sαt

1 ´ αt
Σk

, (47)
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such that the backward probability pmixture
θ pxt´1 | xtq is the same as its reference qpxt´1 | xtq

and thus DKLrqpxt´1 | xtq, p
mixture
θ pxt´1 | xtqs by definition is 0. In this sense, we also have

Mtpθq “ 0, which exactly proves the first lemma.

We also prove the second lemma by construction. Given any mixture model pmixture
θ pxt´1 | xtq as

defined in Eq. (9), we divide the space RL (where L is the vector dimension of variable zt) into K
disjoint subsets tZt,1,Zt,2, ¨ ¨ ¨ ,Zt,Ku such that:

ż

ztPZt,k

pSMD
sθ pzt | xtqdzt “ zθkpxt, tq, θk “ fϕpzt, tq,@zt P Zt,k, (48)

where k P t1, ...,Ku. The first equality can be true for any continuous density pSMD
sθ

and the second
one can be implemented by a simple step function. By setting θ “ H, we have

pSMD
sθ pxt´1 | xtq “

ż

zt

pSMD
sθ pzt | xtqN pxt´1;µθ,fϕpzt,tqpxt, tq,Σθ,fϕpzt,tqpxt, tqqdzt

“

K
ÿ

k“1

´

ż

ztPZt,k

pSMD
sθ pzt | xtqN

`

xt´1;µfϕp¨qpxt, tq,Σfϕp¨qpxt, tq
¯

dzt
˘

“

K
ÿ

k“1

´

N
`

xt´1;µθkpxt, tq,Σθkpxt, tq
˘

ż

ztPZt,k

pSMD
sθ pzt | xtqdzt

¯

“

K
ÿ

k“1

´

N pxt´1;µθkpxt, tq,Σθkpxt, tqqzθkpxt, tq
¯

“ pmixture
θ pxt´1 | xtq

, (49)

which actually proves the second lemma.

Zero global denoising error. We can see from above that there is always a properly parameterized
backward probability pSMD

sθ
for any Gaussian mixture qpx0q such that qpxt´1 | xtq “ pSMD

sθ
pxt´1 |

xtq,@t P r1, T s. Considering qpxT q “ pSMD
sθ

pxT q, we have

pSMD
sθ pxT´1,xT q “ pSMD

sθ pxT qpSMD
sθ pxT´1 | xT q “ qpxT qqp¨q “ qpxT´1,xT q. (50)

Immediately, we can get qpxT´1q “ pSMD
sθ

pxT´1q since

pSMD
sθ pxT´1q “

ż

xT

pSMD
sθ pxT´1,xT qxT “

ż

xT

qpxT´1,xT qxT “ qpxT´1q. (51)

With the above results, we can further prove that pSMD
sθ

pxT´2,xT´1,xT q “ qpxT´2,xT´1,xT q

and pSMD
sθ

pxT´2q “ qpxT´2q. By iterating this process for the subscript t from T to 1, we will
finally have p

sθpx0:T q “ qpx0:T q such that E “ 0.

F PROOF OF PROPOSITION 4.1

While we have introduced a new family of backward probability pSMD
sθ

pxt´1 | xtq in Eq. (10),
upper bound L “

řT
t“0 Lt defined in Eq. (3) is still valid for deriving the loss function. To avoid

confusion, we add a superscript SMD to new loss terms. An immediate conclusion is that LSMD
T “ 0

because ppxtq by definition is a standard Gaussian and qpxT | x0q also well approximates this
distribution for large T . Therefore, the focus of this proof is on terms of KL divergence LSMD

t´1 , 1 ă

t ď T and negative log-likelihood LSMD
0 .

Based on the fact that qpxt´1 | xt,x0q has a closed-form solution:

qpxt´1 | xt,x0q “ N pxt´1; rµtpxt,x0q, rβtIq, (52)

where mean rµtpxt,x0q and variance rβt are respectively defined as

rµtpxt,x0q “

?
sαt´1βt

1 ´ sαt
x0 `

?
αtp1 ´ sαt´1q

1 ´ sαt
xt, rβt “

1 ´ sαt´1

1 ´ sαt
βt, (53)
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we expand term LSMD
t´1 “ EqrDKLpqpxt´1 | xt,x0q || pSMD

sθ
pxt´1 | xtqqs as

LSMD
t´1 “ Ex0,xt„qpx0qqpxt|x0q

”

ż

xt´1

qpxt´1 | xt,x0q ln
qpxt´1 | xt,x0q

pSMD
sθ

pxt´1 | xtq
dxt´1

ı

“ Eq

”

´ Hrqpxt´1 | xt,x0q

ı

` DCE

”

qpxt´1 | xt,x0q, pSMD
sθ pxt´1 | xtqs

ı

. (54)

Considering our new definition of backward probability pSMD
sθ

pxt´1 | xtq in Eq. (10) and applying
Jensen’s inequality, we can infer

DCEr¨s “ ´Ext´1„qpxt´1|xt,x0q

”

ln

ż

zt

pSMD
sθ pzt | xtqp

SMD
sθ pxt´1 | xt, ztqdzt

ı

“ ´Ext´1„qpxt´1|xt,x0q

”

lnEzt„pSMD
sθ

pzt|xtqrpSMD
sθ pxt´1 | xt, ztqdzts

ı

ď ´Ext´1„qpxt´1|xt,x0q

”

Ezt„pSMD
sθ

pzt|xtqrln pSMD
sθ pxt´1 | xt, ztqdzts

ı

“ Ezt„pSMD
θ pzt|xtq

”

´

ż

xt´1

qpxt´1 | xt,x0q ln pSMD
sθ pxt´1 | xt, ztqdxt´1

ı

“ Ezt„pSMD
sθ

pzt|xtq

”

DCErqpxt´1 | xt,x0q, pSMD
sθ pxt´1 | xt, ztqs

ı

. (55)

Combining the above two equations, we have

LSMD
t´1 ď Eq

”

´ Hrqpxt´1 | xt,x0qs ` Ezt
rDCErqpxt´1 | xt,x0q, pSMD

sθ pxt´1 | xt, ztqss

ı

“ Eq,zt

”

´ Hrqpxt´1 | xt,x0qs ` DCErqpxt´1 | xt,x0q, pSMD
sθ pxt´1 | xt, ztqs

ı

“ Ezt

”

Ex0,xt„qpx0qqpxt|x0qrDKLrqpxt´1 | xt,x0q, pSMD
sθ pxt´1 | xt, ztqss

ı

. (56)

Considering zt “ gφpη,xt, tq and applying the law of the unconscious statistician (LO-
TUS) (Rezende & Mohamed, 2015), we can simplify the above inequality as

LSMD
t´1 ď Eη„N p0,Iq

“

EqrDKLrqpxt´1 | xt,x0q, pSMD
sθ pxt´1 | xt, gξpη,xt, tqss

‰

. (57)

The inner term of expectation Eη„N p0,Iqr¨s is essentially the same as the old definition of LSMD
t in

Eq. (3), except that term p
sθp¨q is additionally conditional on zt. Hence, we follow the procedure of

DDPM Ho et al. (2020) to reduce it. The result is given without proving:
$

’

&

’

%

LSMD
t´1 ď Ct ` Eη,ϵ,x0

” β2
t

2σtαtp1 ´ sαtq
}ϵ ´ ϵθ,fϕp¨qp

?
sαtx0 `

?
1 ´ sαtϵ, tq}2

ı

fϕp¨q “ fϕpgξpη,
?

sαtx0 `
?
1 ´ sαtϵ, tq, tq

, (58)

where Ct is a constant, η, ϵ „ N p0, Iq, and parameters θ, ϕ, ξ are learnable.

For the negative log-likelihood LSMD
0 “ Eqr´ ln pSMD

sθ
px0 | x1qs, we expand it as

LSMD
0 “ Ex0,x1„qpx0qqpx1|x0q

”

´ ln
´

ż

z1

pSMD
sθ pz1 | x1qpSMD

sθ px0 | x1, z1qdz1

¯ı

. (59)

By applying Jensen’s inequality, we have

LSMD
0 ď Ex0,x1

”

´

ż

z1

pSMD
sθ pz1 | x1q ln pSMD

sθ px0 | x1, z1qdz1

ı

“ Ex0,x1

”

Ez1„pSMD
sθ

pz1|x1qr´ ln p
sθpx0 | x1, z1qs

ı

“ C1 ` Ez1„pSMD
sθ

pz1|x1q

”

Ex0,x1

” 1

2σ1
}x0 ´ µθ,fϕpz1,tqpx1, 1q}2

ıı

, (60)

where C1 is a constant that does not involve with the model parameter sθ “ θ
Ť

ϕ
Ť

ξ. Considering
Eq. (1) and Eq. (12), we can convert this inequality into

LSMD
0 ď C1 ` Ez1„pSMD

sθ
pz1|x1q

”

Ex0,ϵ

” β2
1

2σ1α1p1 ´ sα1q
}ϵ ´ ϵθ,fϕpz1,tqpx1, 1q}2

ıı

“ C1 ` Eη,ϵ,x0

” β2
1

2σ1α1p1 ´ sα1q
}ϵ ´ ϵθ,fϕpgξp¨q,tqp

?
sα1x0 `

?
1 ´ sα1ϵ, 1q}2

ı

, (61)

19



Published as a conference paper at ICLR 2024

where η, ϵ „ N p0, Iq, and the second equality is also derived by LOTUS.

Finally, by combining Eq. (58) and Eq. (61), we have

Eqr´ log pSMD
sθ px0qs ď LSMD “

T
ÿ

t“0

LSMD
t

“ C `

T
ÿ

t“1

Eη,ϵ,x0

”

Γt}ϵ ´ ϵθ,fϕp¨qp
?

sαtx0 `
?
1 ´ sαtϵ, tq}2

ı

, (62)

where C “
řT

t“1 Ct and Γt “ β2
t {p2σtαtp1 ´ sαtqq.

G GENERATED SAMPLES

Some images generated by our models (e.g., LDM w/ SMD) are in Fig. 5 and Fig. 6.
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(a) Synthesized images of LSUN Church (b) Synthesized images of LSUN Conference

Figure 5: 64 ˆ 64 images generated by DDPM w/ SMD.

Figure 6: Generated images on CelebA-HQ 128ˆ128 (left) and 256ˆ256 (right). The left samples
are from DDPM w/ SMD and the right ones from LDM w/ SMD.
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