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Abstract. In this paper, we adopt a "pseudo-labeling" approach to
semi-supervised learning based on 50 labeled images and 2000 unlabeled
images. This approach yields a model with 0.7496 mean DSC on the val-
idation set, outperforming the 0.6903 mean DSC of the model with only
50 labeled images.
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1 Introduction

Abdomen organ segmentation has many important clinical applications. Typi-
cally, a large number of labeled data is required to train a accurate segmentation
model. However, manually annotating organs from CT scans is time-consuming
and labor-intensive. This requires us to use appropriate semi-supervised segmen-
tation methods to use unlabeled data, such as disturbance regularization based
on data or model [7] [8] and consistency constraint based on multitask [6].

FLARE22 provides 50 labeled images and 2000 unlabeled images to train
the segmentation model of 13 organs. There are three main difficulties. First,
we need to realize the segmentation of 13 organs. Second, more than 97% of the
training data are unlabeled. Third, we need to balance model performance and
resource consumption.

In order to use unlabeled data as well as labeled data, we adopted a pseudo-
labeling approach to develop a segmentation model drawing on the idea of de-
veloping a classification model in [5]. Specifically, we first trained a model with
labeled data, and then used the model to predict the unlabeled data to give
them pseudo-labels. Finally, we fine-tuned the original model using all labeled
data and partially filtered pseudo-labeled data.

2 Method

2.1 Preprocessing

We use several pre-processing strategies as follows.
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– Cropping strategy
We use the CT scans as the data source to generate the bounding box of
foreground, and then crop only the foreground object of the images.

– Resampling method for anisotropic data
We resample the original data to unify the voxel spacing into [1.0, 1.0, 1.0].

– Intensity normalization method
We normalize the intensity of [−300.0, 300.0] to [0.0, 1.0] and change those
less than −300.0 and those greater than 300.0 to 0.0 and 1.0, respectively.

2.2 Proposed Method

Figure 1 illustrates the applied 3D nnU-Net [4], where a 3D U-Net architecture
is adopted. We use the leaky ReLU function with a negative slope of 0.01 as the
activation function. Our 3D nnU-Net has 14 out channels, corresponding to the
background and 13 organs respectively.

Fig. 1. Our 3D U-Net architecture

Our pseudo-labeling strategy for using unlabeled images is shown in Figure
2. First, we trained a model with the 50 labeled images. Then we used this model
to predict the 2000 unlabeled images to give them pseudo-labels. After that, we
picked out 676 pseudo-labeled images with at least 2000 voxels for each organ
to ensure that each organ of each pseudo-labeled image is present and not too
small, and put them together with the 50 labeled images. At last, we used these
726 images to fine-tune the original model.

We use the sum of Dice loss (after applying a softmax function) and Cross
Entropy Loss as the loss function.

When predicting a single image with the trained segmentation model, we
first resample it to a voxel spacing of [1.0, 1.0, 1.0], as we did during training,
and try to predict. If there is a "CUDA out of memory" error, we resample it to
[2.0, 2.0, 2.0] voxel spacing to reduce the size of the resampled image and thus
reduce the usage of GPU memory.
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Fig. 2. Pseudo-labeling strategy

2.3 Post-processing

During model prediction, we select the label (from 0 to 13) corresponding to the
largest of the 14 outputs for each voxel.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2022 is an extension of the FLARE 2021 [9] with more segmenta-
tion targets and more diverse abdomen CT scans. The dataset is curated from
more than 20 medical groups under the license permission, including MSD [11],
KiTS [2,3], AbdomenCT-1K [10], and TCIA [1]. The training set includes 50 la-
belled CT scans with pancreas disease and 2000 unlabelled CT scans with liver,
kidney, spleen, or pancreas diseases. The validation set includes 50 CT scans with
liver, kidney, spleen, or pancreas diseases. The testing set includes 200 CT scans
where 100 cases has liver, kidney, spleen, or pancreas diseases and the other 100
cases has uterine corpus endometrial, urothelial bladder, stomach, sarcomas, or
ovarian diseases. All the CT scans only have image information and the center
information is not available.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve. All measures will be used to compute the
ranking. Moreover, the GPU memory consumption has a 2 GB tolerance.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.
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Table 1. Development environments and requirements.

Windows/Ubuntu version Ubuntu 20.04.4 LTS
CPU Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz
RAM 128G
GPU (number and type) 2 NVIDIA Tesla T4 (16G)
CUDA version 11.6
Programming language Python 3.6
Deep learning framework Pytorch (Torch 1.10.1, torchvision 0.11.2)
Specific dependencies numpy 1.19.5, SimpleITK 2.0.2, monai 0.8.1

Training protocols As described below.
Random flipping strategy (only for initial training stage): each image has a

20% probability of flipping along the x-axis and a 20% probability of flipping
along the y-axis.

Random Gaussian smooth (only for initial training stage): each image has a
10% probability of being Gaussian smoothed with sigma in (0.5, 1.15) for every
spatial dimension.

Random Gaussian noise (only for initial training stage): each image has a
10% probability of being added with Gaussian noise with mean in (0, 0.5) and
standard deviation in (0, 1).

Random intensity change (only for initial training stage): each image has a
10% probability of changing intensity with gamma in (0.5, 2.5).

Random intensity shift (only for initial training stage): each image has a 10%
probability of shifting intensity with offsets in (0, 0.3).

Patch sampling strategy: 2 patches of size [128, 128, 128] are randomly cropped
from each image. The center of each patch has 50% probability in the foreground
and 50% probability in the background.

Optimal model selection criteria: we tried several different training protocols
and selected the model with the highest DSC on the validation set.

Some details of the initial training stage and the fine-tuning stage are shown
in Table 2 and Table 3 respectively.

4 Results and discussion

4.1 Quantitative results on validation set

DSC results on validation set are shown in Table 4. It can be seen from the
table that the generalization ability of the model is indeed improved by using
unlabeled data through the "pseudo-labeling" method.

4.2 Qualitative results on validation set

Two examples of good segmentation are shown in Figure 3 and two examples
of bad segmentation are shown in Figure 4. Visualization is achieved with ITK-
SNAP [12] version 3.8.0.
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Table 2. Training protocols (initial training stage).

Network initialization "he" normal initialization
Batch size 2
Patch size 128×128×128
Total epochs 1600
Optimizer Adam
Initial learning rate (lr) 0.0001
Lr decay schedule initial learning rate×(1− epoch/500)0.9

Training time 77 hours
Loss function the sum of dice loss and cross entropy loss
Number of model parameters 31.42M

Table 3. Training protocols (fine-tuning stage).

Network initialization model after initial training
Batch size 2
Patch size 128×128×128
Total epochs 40
Optimizer Adam
Initial learning rate (lr) 0.00005
Lr decay schedule initial learning rate×(1− epoch/500)0.9

Training time 39 hours
Loss function the sum of dice loss and cross entropy loss
Number of model parameters 31.42M

Table 4. Results on validation set.

Without using unlabeled data Using unlabeled data
Mean DSC 0.6903 0.7496
Liver 0.9312 0.9493
RK 0.7151 0.8098
Spleen 0.8180 0.8962
Pancreas 0.6631 0.7506
Aorta 0.7474 0.7953
IVC 0.7003 0.7692
RAG 0.6792 0.6910
LAG 0.5257 0.5400
Gallbladder 0.6235 0.6543
Esophagus 0.6196 0.6641
Stomach 0.7550 0.8219
Duodenum 0.5261 0.5803
LK 0.6703 0.8225
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From the perspective of organs, the segmentation results of organs with fewer
surrounding organs are better, such as liver and spleen. From the perspective of
images, some potential reasons for the bad-segmentation cases are listed below.

(1) The size of the case is very large, so we have to reduce the size of the
case by resampling to avoid GPU memory overflow.

(2) The case is not clear, distorted, or skewed.
(3) There are rare structures in the case that are not in the training set.

Fig. 3. Good segmentation examples

4.3 Segmentation efficiency results on validation set

Segmentation efficiency results for the 5th validation submission are shown in
Table 5.

Table 5. Results on validation set.

Running time 1538.14 seconds
Maximal GPU Memory 16327MB
Area under GPU memory-time curve 11050890
Area under CPU utilization-time curve 26722.79

The running time is relatively short since we didn’t use any cascaded frame-
work. In the testing phase, we used the "sliding_window_inference" function
of monai to slice the image into several 128×128×128 patches and predict them
separately. This can lead to a large GPU memory consumption when the image
size is large.
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Fig. 4. Bad segmentation examples

4.4 Results on final testing set

DSC and NSD results on final testing set are shown in Table 6.

Table 6. Results on final testing set.

DSC results NSD results
Mean 0.7502 0.7779
Liver 0.9402 0.9005
RK 0.8230 0.7567
Spleen 0.8614 0.8052
Pancreas 0.7151 0.8071
Aorta 0.7971 0.8007
IVC 0.7663 0.7480
RAG 0.7484 0.8588
LAG 0.6396 0.7515
Gallbladder 0.6575 0.6231
Esophagus 0.6249 0.7233
Stomach 0.7860 0.7977
Duodenum 0.5739 0.7628
LK 0.8195 0.7769
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4.5 Limitation and future work

In terms of model accuracy, first, we give pseudo-labels only once for the un-
labeled images at present. In the future, we are going to give pseudo-labels
and fine-tune the model for several times. Second, we used the same rules for
all organs when filtering the pseudo-labeled images. It is more reasonable to use
different rules for different organs. Third, we consider using some post-processing
methods, such as largest connected component extraction, hole filling, open op-
eration and closed operation, which are not used at present.

In terms of segmentation efficiency, we consider changing the value of the
"device" parameter of the "sliding_window_inference" function of monai from
"torch.device(’cuda’)" to "torch.device(’cpu’)" to reduce the GPU memory con-
sumption. In addition, we consider using some optimization methods to improve
the running speed of the model in the future.

5 Conclusion

Using unlabeled data through "pseudo-labeling" method can improve the per-
formance of the model.
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