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Abstract
In this work we present a method for unsupervised
learning of audio representations, focused on the
task of singing voice separation. We build upon
a previously proposed method for learning repre-
sentations of time-domain music signals with a re-
parameterized denoising autoencoder, extending
it by using the family of Sinkhorn distances with
entropic regularization. We evaluate our method
on the freely available MUSDB18 dataset of pro-
fessionally produced music recordings, and our
results show that Sinkhorn distances with small
strength of entropic regularization are marginally
improving the performance of informed singing
voice separation. By increasing the strength of
the entropic regularization, the learned representa-
tions of the mixture signal consists of almost per-
fectly additive and distinctly structured sources.

1. Introduction
Music source separation aims at the estimation of the in-
dividual music sources of an observed mixture signal. To
that aim, supervised deep learning (DL) based approaches
are shown to yield remarkable results (Hennequin et al.,
2019; Défossez et al., 2019; Stöter et al., 2019; Samuel
et al., 2020). Although different types of sources can be
estimated from a music mixture, a specific task of music
source separation that has received a lot of attention in rele-
vant research communities is the separation of the singing
voice, or singing voice source separation (Rafii et al., 2018).

State-of-the-art approaches in DL-based music and singing
voice source separation have considered using both pre-
computed and learned signal representations. The ap-
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proaches that utilize pre-computed signal representations,
have extensively employed the short-time Fourier transform
(STFT) (Hennequin et al., 2019; Stöter et al., 2019; Drossos
et al., 2018; Mimilakis et al., 2018). On the other hand,
learned representations are commonly used in end-to-end
models and are jointly learned with the parameters of the
rest of the model.

In both of the previous approaches, the learning of the rep-
resentations is based on objectives that assess the recon-
struction of the signals of the target sources (Défossez et al.,
2019; Samuel et al., 2020). In many cases, the approaches
based on end-to-end models do not yield better performance
than approaches using representations computed using the
STFT (Défossez et al., 2019; Samuel et al., 2020; Tzinis
et al., 2020). Furthermore, the learned representations ob-
tained by approaches utilizing end-to-end models are not
easily nor intuitively interpreted, compared to the typical
STFT representation that utilizes pre-computed signal rep-
resentations. In order to bridge the gap of separation perfor-
mance and interpretability between end-to-end-based and
STFT-based approaches, recent studies focus on representa-
tion learning (Tzinis et al., 2020; Mimilakis et al., 2020).

In (Tzinis et al., 2020) is presented a sound source sep-
aration method, focused on representation learning. An
encoder gets as an input the signals of the sources and their
corresponding mixture, and outputs latent representations
of the signals of each source and the mixture. Then, using
these latent representations, the method calculates and ap-
plies source dependent masks to the latent representation of
mixture. The result of the application of masks is given as an
input to the decoder, which outputs an estimation of the sig-
nal of each source. The encoder and the decoder are jointly
optimized to minimize the reconstruction error between the
ground truth and estimated signals of each source. However,
using reconstruction objectives for the separation of only
specific sources could severely restrict the representation
learning capabilities of encoder-decoder methods (Vincent,
2011). In (Mimilakis et al., 2020) it is proposed to learn
representations for singing voice separation in an unsuper-
vised way using a re-parameterized denoising autoencoder
(DAE) (Vincent et al., 2010). The re-parameterization re-
places the decoding basis functions by amplitude-modulated
cosine functions whose parameters are learned with the rest
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of the DAE. This results into an interpretable representation
of the singing voice signal that conveys amplitude informa-
tion for modulated sinusoidal bases. The re-parametization
is similar to Sinc-Networks (Ravanelli & Bengio, 2018) that
use sinc functions for encoding speech signals. The parame-
ters of the denoising autoencoder employed in (Mimilakis
et al., 2020) are optimized using two objectives. The first
objective is to minimize the reconstruction error between
the clean and the reconstructed signal voice signal, and the
second objective enforces the smoothness of the mixture
signal’s representation.

In this work we focus on unsupervised representation learn-
ing and we aim at learning representations of music signals
that can offer enhanced interpretability combined with im-
proved source separation performance. We build on the
work presented in (Mimilakis et al., 2020) and we extend
it by using the Sinkhorn distances with entropic regulariza-
tion (Cuturi, 2013) as a representation specific objective.
Our contribution is to experimentally show that Sinkhorn
distances with entropic regularization can assist in learn-
ing representations in which the sources can be efficiently
separated and the representations of sources are distinctly
structured and additive.
Notation
Bold lowercase letters, e.g., “x”, denote vectors and bold
uppercase letters, e.g. “X”, denote matrices. The l-th el-
ement of a vector is denoted as x[l]. Similarly, accessing
elements from matrices is denoted as X[l,l′].

2. Proposed method
Our method follows the one presented in (Mimilakis et al.,
2020) and employs an encoder E(·) and a decoder D(·).
The input to our method is a music signal, x ∈ RN , with
N time-domain samples. The output of the method is the
learned non-negative representation of x, A ∈ RC×T≥0 , with
T templates of C features. The C features can be viewed
as analogous to the frequency bins and the T templates
as the analogous to the time-frames in a time-frequency
representation. A is computed by the encoder E(·), and is
interpreted as the magnitude information for a real-valued,
sinusoidal-based model, employed by the decoder D(·).

To optimizeE(·), we employ the decoderD(·) and a dataset
of monaural (single channel) recordings of singing voice,
xv ∈ RN , and accompanying musical instruments. Using
xv we create two synthetic signals. The first synthetic signal,
x̃m ∈ RN , is the result of an additive corruption process,
where the accompanying musical instruments such as drums,
guitars, synthesizers, and bass (i.e. a generic multi-modal
distribution-based noise) are added to xv. The second syn-
thetic signal, x̃v ∈ RN , is also the result of a corruption
process, where Gaussian noise is added to xv, independently
of the amplitude of xv.

Figure 1. Overview of our proposed method for representation
learning.

During the optimization process (i.e. training), the encoder
E(·) computes two non-negative representations Am, Av ∈
RC×T≥0 using the two above mentioned synthetic signals, x̃m
and x̃v, respectively. Av is used as input to D(·), and D(·)
outputs an approximation of the clean singing voice signal
xv, x̂v. Am is solely used to calculate an extra loss that
will allow E(·) to learn information regarding the additive
multi-modal noise (Mimilakis et al., 2020). An illustration
of the training procedure in Figure 1. After the optimization
process, E(·) can take as an input any musical signal x,
and will output the representation of x, A. The benefit
is that A has good interpretability attributes, e.g. is non-
negative, has structured spectrogram representation, and can
be effectively used in the downstream task of singing voice
separation.

2.1. Encoder

The encoderE(·) consists of two one-dimensional (1D) con-
volutions with strides. The first 1D convolution uses a stride
S and a set of C number of kernels, kc ∈ RL where L is
the temporal length of each k. The first convolution takes
as inputs the signals x̃m and x̃v, and outputs the learned
latent representations H̃m ∈ RC×T≥0 and H̃v ∈ RC×T≥0 , re-
spectively, using

H̃?[c,t] =

L−1∑
l=0

x̃?[St+l]kc[l], (1)

where “?” refers to either “m” or “v” for brevity, and t ∈
[0, . . . , T − 1]. Appropriate zero-padding is applied to x̃?,
so that T = dN/Se, where d·e is the ceiling function. Each
H̃? is used as an input to the second 1D convolution, which
uses another set of C kernels, K′c′ ∈ RL′×C , where c′ =
[1, . . . , C], with a temporal length L′ that is L′ << L. The
output of the second convolution is H? ∈ RC×T , and is
performed with a dilation factor of φ and a unit stride, as

H?[c′,t] =

C−1∑
c=0

L′−1∑
l′=0

H̃?[c,t+φl′]K
′

c′ [l′,c]. (2)

Then, each H? is used in a residual connection, followed
by the application of the rectified linear unit (ReLU) func-
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tion (Nair & Hinton, 2010), as

A? = ReLU(H? + H̃?). (3)

This is performed in order to enforce smooth and non-
negative representations. The smoothness and the non-
negativity are attributes that can enhance interpretabil-
ity and are useful for the separation of audio and music
sources (Smaragdis & Venkataramani, 2017). To further
enforce the smooth representations under realistic corrup-
tion processes, in (Mimilakis et al., 2020) it is proposed
to minimize the (anisotropic) total-variation denoising cost
function, LTV (Rudin et al., 1992), of the representation Am.
LTV is computed as

LTV(Am) =
1

CT

(C−1∑
c=1

T−1∑
t=0

|Am[c,t] −Am[c−1,t]|

+

T−1∑
t=1

C−1∑
c=0

|Am[c,t] −Am[c,t−1]|
)

. (4)

Practically, LTV penalizes E(·) by the norm of the first or-
der difference across the time-frames T and templates C,
promoting slow time varying representations and grouping
of the template activity. The previously mentioned represen-
tation attributes are formed from domain knowledge that is
based on the STFT.

According to (Arjovsky et al., 2017)(Theorem 2) the total-
variation distance, in our particular case the sum of absolute
differences employed in Eq.(4), is not a suitable cost func-
tion for data distributions supported by low-dimensional
manifolds. Instead, optimal transportation distances are suit-
able. We hypothesize that the singing voice, the mixture
signals, and their corresponding representations can be de-
scribed by low-dimensional manifolds, and we propose to
replace LTV by Sinkhorn distances, LSK. This is because
LSK allow an efficient computation of optimal transportation
cost (Cuturi, 2013). More specifically, we use

LSK(Am) = 〈Pλ, ψ(Am)〉 , (5)

where 〈·, ·〉 is the Frobenious dot-product and ψ : RC×T≥0 7→
RT×T≥0 is a function that computes the cost matrix M ∈
RT×T≥0 of pair-wise distances, defined as

ψ(Am) := Mt ,t′ =
(C−1∑
c=0

(|Am[c,t]−Am[c,t′]|)p
)1/p

, (6)

for p = 1 and t, t′ ∈ [0, . . . , T − 1]. Only for, and prior
to, the computation of the M, Am is normalized so that the
sum of the features at each time-frame t sum up to unity.
Furthermore, Pλ ∈ RT×T≥0 is the transportation plan that is
computed by solving the minimization problem

Pλ = argmin
P∈U(r,c)

〈P, ψ(Am)〉 −
1

λ
H(P) , (7)

where H(·) denotes the entropy function and λ > 0 is a
scalar the controls the strength of the entropic regularization.
U(r, c) is the set of non-negative matrices of size T × T
whose rows and columns sum up to r and c, respectively,
where r = c = 1. For solving the minimization problem
of Eq.(7) we employ the algorithm presented in (Cuturi,
2013) that is based on the Sinkhorn iterative matrix scaling
operator (Sinkhorn, 1967).

2.2. Decoder

The decoder D(·) takes as an input the representation Av
and yields an approximation of the clean singing voice sig-
nal xv, denoted by x̂v ∈ RN . Specifically, D(·) models
the clean singing voice as a sum of C modulated sinusoidal
components that overlap in RN . The components are com-
puted using an 1D transposed convolutions with S strides
and another set of C number of kernels, wc ∈ RL, as

x̂v[St+l] =η +

C−1∑
c=0

Av[c,t]wc[l], where (8)

η =

{
0, if t = 0

x̂v[S(t−1)+l], otherwise
. (9)

As can be seen from Eq (9), η is is a past sample contained
in x̂v, that is used for the overlap-add process. Regarding
the kernels wc of the decoder, in (Mimilakis et al., 2020) is
proposed their re-parameterization as

wc[l] = cos(2πf2c l + ρc) bc[l] , (10)

where cos(·) is the cosine function, and l = [0, . . . , L− 1]
is the time index. The parameters that are joinlty learnt with
the parameters of the DAE are the sampling-rate-normalized
carrier frequency fc, the phase ρc (in radians), and the mod-
ulating signal bc ∈ RL. The direct access to natural quanti-
ties like the above, significantly boosts the interpretability
of the representation learning method. Additionally, wc can
be sorted according to the carrier frequency fc, promoting
intuitive representations.

After the reconstruction of x̂v, the negative signal-to-noise
ratio (neg-SNR) (Kavalerov et al., 2019), is computed as

Lneg-SNR(xv, x̂v) = −10 log10
( ||xv||22
||xv − x̂v||22

)
, (11)

where || · ||2 is the `2 vector norm, and the negative sign is
used to cast the logarithmic SNR as a minimization objec-
tive. Then, the overall overall minimization objective for
E(·) and D(·) is computed using LTV as

LA = Lneg-SNR + ωLTV, (12)

or using LSK as

LB = Lneg-SNR + ωLSK, (13)
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where ω is a scalar that weights the impact of the represen-
tation objective (either LTV or LSK) in the learning signal
for E(·).

3. Experimental Procedure
3.1. Dataset

For training and testing the representation learning method
we use the freely available MUSDB18 dataset (Rafii et al.,
2017). The dataset consists of 150 two-channel profession-
ally produced multi-tracks, i.e, the stereophonic signals of
bass, drums, singing voice, and other music instruments,
that comprise a music mixture. Every signal is sampled
at 44100 Hz. The multi-tracks are split into training (100
multi-tracks) and testing (50 multi-tracks) subsets.

3.2. Training

During training we sample a set of four multi-tracks from
which we use the vocals and the other music instrument
sources, collectively forming the accompaniment source.
The accompaniment source is computed by adding the bass,
drums, and other music instrument sources. Then, each
sampled multi-track is down-mixed to a single channel and
is partitioned into overlapping segments ofN = 44100 sam-
ples. The overlap is 22050 samples. We randomly shuffle
the segments for each source and corrupt the singing voice
signal using the shuffled segments of the accompaniment
source. For the corruption by additive Gaussian noise, the
standard deviation of the noise is set to 1e− 4.

For optimizing the parameters of the representation learn-
ing method, with respect to the minimization of Eq.(12) or
Eq.(13), we use the adam algorithm (Kingma & Ba, 2015),
with a batch of 8 segments and a learning rate of 1e− 4. To
compute the Sinkhorn distance(s), we average within the
batch, all the cost matrices M computed using Eq.(6) and
each Am contained in the batch.

3.3. Evaluation

For evaluating the usefulness of the representation that is
learned by our method, we use the rest of the 50 tracks. Each
track is down-mixed and partitioned into non-overlapping
segments of N = 44100 samples (1 second length). Shuf-
fling and random mixing is not performed at this stage. How-
ever, silent segments of the singing voice are discarded. The
representation is evaluated with respect to the three follow-
ing criteria: i) reconstruction error of the proposed method
to encode and decode the clean singing voice signal using
the previously described methodology, ii) reconstruction er-
ror of the separated singing voice signal by binary masking,
and iii) additivity of the representation. The first two criteria
are objectively measured with respect to the clean singing

voice signal xv using the scale-invariant signal-to-distortion
ratio (SI-SDR) (Roux et al., 2019). Details regarding the
computation of SI-SDR and the separation by binary mask-
ing are given in the supplementary material. Binary masking
is used because it is an indicator of how disjoint (i.e. non-
overlapping) two sources are, given a representation (more
information exists in the supplementary material). We as-
sess the additivity of the sources by computing the measure

A(xm,xv,xac) = 1− ||E(xm)− E(xv)− E(xac)||1
||E(xm)||1 + ε

,

(14)
where || · ||1 is the L1 matrix norm, ε = 1e− 24 is a small
term for ensuring numerical stability, and xac is the time-
domain signal of the accompaniment music source that is
computed by mixing the multi-tracks available in the testing
subset. High values of A(·) indicate that the representation
of the mixture signal consists of non-negative and additive
sources (i.e. higher A(·) is better). The attribute of additiv-
ity is important for the computation of optimal separation
masks (Liutkus & Badeau, 2015), and in the unsupervised
exploitation of music sources’ structure (Smaragdis et al.,
2006; Huang et al., 2012).

4. Results & Discussion
Table 1 contains the average and standard deviation values of
the additivity measure A(·), the SI-SDR for the reconstruc-
tion and the separation objective performance in dB, and
the values of the hyper-parameters ω and λ. The results in
Table 1 are discussed according to the SI-SDR value (higher
is better), because SI-SDR is the reconstruction objective.

Table 1. Results from objectively evaluating the learned represen-
tations. Boldfaced values denote best obtained performance.

Objective ω λ SI-SDR (dB) SI-SDR-BM (dB) A(·)

LA

0.5 N/A 31.49 (±2.98) 4.43 (±4.98) 0.76 (±0.10)
1.0 N/A 31.39 (±3.16) 4.66 (±4.92) 0.76 (±0.10)
1.5 N/A 31.01 (±3.13) 4.97 (±4.93) 0.75 (±0.10)
2.0 N/A 30.96 (±2.98) 4.65 (±4.90) 0.76 (±0.10)
4.0 N/A 31.40 (±2.83) 5.06 (±4.97) 0.76 (±0.10)

LB

1.0 0.1 31.28(±2.98) 5.40(±5.31) 0.76(±0.09)
1.0 0.5 31.61(±3.38) 5.63(±5.29) 0.77(±0.09)
1.0 1.0 31.29(±3.25) 4.33(±5.28) 0.86(±0.08)
1.0 1.5 29.98(±3.48) 0.06 (±6.43) 0.89(±0.08)
1.0 2.0 31.13(±3.66) -0.02(±6.44) 0.89(±0.08)

There are two observable trends in Table 1. The first trend
is that when using LB , small values of λ marginally im-
prove the SI-SDR, compared to the best SI-SDR when using
LA (i.e. ω = 0.5 and SI-SDR=31.49). Specifically, for
λ = 0.5 and when using LB , we obtain an improvement
of 0.12 dB and 1.20 dB for SI-SDR and SI-SDR-BM, re-
spectively, compared to the case of using LA and ω = 0.5.
Additionally, with the same λ = 0.5 for LB , we obtain an
improvement of 0.57 dB SI-SDR-BM, compared to the best
SI-SDR-BM with LA (i.e. with ω = 4.0). This trend shows
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Figure 2. Learned representations for the mixture (left), the singing voice (middle), and the accompaniment (right) signals using the E(·)
optimized with LB for LSK : ω = 4.0, λ = 1.5

that when using Sinkhorn distances as an objective (i.e. LB)
and small entropic regularization weight (i.e. small values
of λ), there is a marginal improvement of the reconstruction
performance for the singing voice (measured with SI-SDR-
BM), but also the learned representations yield better results
for singing voice separation (measured with SI-SDR).

The second trend observed in Table 1 is that when using
LB and λ > 1, specifically for λ ∈ [1.5, 2.0], the SI-SDR
for binary masking drops by more than 5 dB, compared
to λ = 0.5. This indicates that the separation by binary
masking fails, suggesting that the singing voice and accom-
paniment are completely overlapping in the representation
of the mixture Am. That is expected since entropy expresses
the uncertainty about the representation of the mixture sig-
nal. This means that during training, all the elements in
the feature space of the representation are equally probable
to be active when the mixture signal is encoded. However,
that uncertainty comes with an observed effect that is the
sources become additive in the learned representation.

To further investigate the effect of entropic regularization
with respect to the additivity metric, we keep the best
λ = 1.5 from Table1, and examine the impact of the weight
ω on LB . The corresponding results compared to the STFT,
that is the most commonly employed representation for mu-
sic source separation, are given in Table 2. The results
from Table 2 suggest that by increasing the weight ω that
affects the strength of the representation objective in the
learning signal, the learned mixture representations, for
ω = 4.0, consist of two almost additive representations, i.e.,
the singing voice and the accompaniment representations.
Furthermore, nearly all representations computed using the
Sinkhorn distances and the entropic regularization, outper-
form the STFT with respect to the objective measure of
additivity in an unsupervised fashion.

Table 2. Objective evaluation of the additivity of the learned repre-
sentations.

Objective ω λ A(·)

LB

1.0 1.5 0.89 (±0.08)
1.5 1.5 0.90 (±0.07)
2.0 1.5 0.92 (±0.07)
4.0 1.5 0.93(±0.06)

STFT N/A N/A 0.86 (±0.06)

To qualitatively assess the representations for the extreme
case observed in Table 2, Fig. 2 illustrates learned represen-
tations for the mixture, singing voice, and the accompani-
ment signal. The signals were acquired from a single multi-
track segment contained in the testing sub-set of MUSDB18.
The representations are computed using the optimized en-
coder with the LB objective. As it can be clearly observed
from Fig. 2 higher than 0.5 entropic regularization enables
the learning of representations that for particular sources
such as the accompaniment, exhibit distinct structure, i.e.,
vertical activity (activity with respect to C). Furthermore,
the representation of the singing voice is characterized by
horizontal activity, i.e., a few components C are active and
smoothly vary in time. We believe that the distinct structure
of the music sources, observed in Fig.2, could be useful for
unsupervised separation and/or enhancement methods such
as the deep audio prior (Michelashvili & Wolf, 2019) and
the harmonic convolution(s) model (Zhang et al., 2020).

5. Conclusions
In this work we proposed the usage of entropic regular-
ized Sinkhorn distances as a cost objective for unsupervised
learning of interpretable music signal representations. We
experimentally showed that Sinkhron distances can be use-
ful for the problem of learning representations for singing
voice separation. Particularly, the learned representations
allow the separation of singing voice by masking for small
values of entropic regularization, improving a previously
proposed unsupervised approach. Nonetheless, higher val-
ues of entropic regularization lead to learning representa-
tions of sources that are distinctly structured and are almost
additive; attributes that are useful in music source separation.
The source code is based on the Pytorch framework (Paszke
et al., 2019) and is freely available online1.
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Supplementary Material
Computation of Sinkhorn Distances

The entropy for the regularization of Eq.(7) is computed as

H(P) = −
T−1∑
t,t′=0

P[t,t′] log(P[t,t′])

For solving Eq.(7) with the Sinkhorn iterative matrix scaling
algorithm and entropic regularization we used the Algorithm
1 presented in (Cuturi, 2013). We set the total number
of iterations to 1e3 per each batch, and the termination
threshold to 1e− 5.

The normalization of Am prior to the computation of the
Sinkhorn distances is based on:

A∗m[c,t] =
Am[c,t]∑

c
(Am[c,t] +

1
C )

Hyper-parameter Selection

Convolutional Networks

For training, the total number of iterations throughout the
whole training sub-set is set to 10. The selection is based on
the experimental procedure presented in (Mimilakis et al.,
2020), suggesting that any improvements towards the mini-
mization of the overall cost function do not take place after
the 10-th iteration.

The hyper-parameters for the convolution kernels are based
on the best performing combination that has been previously
presented in (Mimilakis et al., 2020) and are: number of
kernels for the convolutional encoder C ′ = C = 800, stride
size used in the first convolutional operator and the decoder
S = 256, length of each kernel in the first convolution and
in the decoder L = 2048, length of the second convolution
L′ = 5, and the dilation factor of the second convolution
φ = 10.

Audio Signals & Transforms

In the evaluation and for the comparison with the STFT,
the STFT uses a window size of 2048 samples, an analy-
sis step-size of 256 samples and the Hamming windowing
function. The window-size and the step-size were selected
according to the closest match of the hyper-parameters in
the convolutions (stride, and kernel length).

The removal of silent segments is based on the following:

lxv = 10log10(||xv||22 + ε)

{
xv : active, if lxv ≥ −10
xv : silent, otherwise.

Initialization

The kernels in the first convolutions are randomly initialized
with values drawn from a uniform distribution. The bounds
of the uniform distribution are (−

√
3
C ,
√

3
C ), following the

initialization strategy presented in (He et al., 2015). For the
decoder, the phase values ρc are initialized to zero, and all
the elements of the modulating vectors bc are initialized to

1
C+L . The initialization of the normalized frequencies fc is
inspired by (Ravanelli & Bengio, 2018) and is performed by
first computing the center frequencies of the Mel scale fMel
between fHz ∈ [30, . . . , 22050] Hz, over C = 800 number
of steps, using

fMel = 2595 log10(1 +
fHz

700
)

and then the initial fc value is computed as

fc =
700 10fMel/2595 − 1

44100

Separation by Binary Masking

We conduct singing voice separation by masking because
masking is an important operation in audio and music source
separation, and has been extensively used by DL-based
approaches and also representation learning (Tzinis et al.,
2020). The focus is given on informed separation, i.e.,
masks are computed by an oracle method using the infor-
mation for all the mixture’s sources from the dataset. This
is done in order to estimate the least-upper-bound perfor-
mance of singing voice separation for a learned represen-
tation. This alleviates the biases on the prior information
that music source separation approaches have. Examples
of biases include the source’s structure and existing neural
architectures engineered for the STFT. Finally, binary mask-
ing is used because it is an indicator of how disjoint (less
overlap) two sources are given a representation.

The binary mask is computed by encoding three signals.
The first signal is the mixture xm, the second signal is the
accompaniment source xac, and the singing voice signal xv.
Using the trained encoderE(·) the representations Am, Aac,
and Av are computed for xm, xac, and xv, respectively. The
mask Gv ∈ RC×T is computed as

Gv = g(Av � Aac) ,

where “�” is the element-wise division and g(·) is defined
as

g(x) =

{
1, if x ≥ 0.5

0, otherwise
.

The approximation of the singing voice time-domain signal
x̂v using binary masking is computed using

x̂v = D(Am �Gv) ,

where “�” is the element-wise (Hadamard) product.
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Computation of SI-SDR

The scale-invariant signal-to-distortion ratio in dB is com-
puted for each segment, as

SI-SDR(xv, x̂v) = 10 log10
( ||αxv||22
||αxv − x̂v||22

)
, for

α =
x̃Tv xv

||xv||22
. (15)

Higher SI-SDR values indicate better reconstruction or sep-
aration performance.

Additional Results

In Figure 3 we demonstrate additional results from the objec-
tive evaluation of the learned representations using LB that
consists of the Sinkhorn distances. Particularly, Figure 3
contains error plots for a greater range of entropic regulariza-
tion weights λ ∈ [0.1, 0.5, 1.0, 1.3, 1.5, 2.0, 5.0, 10.0] and
for ω = 1.0. In addition to this, we have included results for
p = 1 and p = 2, where p > 0 is used in the computation
of the cost matrix M used by the Sinkhorn distances.

From Figure 3 two main observations are highlighted. The
first observation is that the computation of the cost matrix M
for p = 2 leads to marginally sub-optimal results, for nearly
all λ values and metrics, compared to p = 1. Specifically,
the reconstruction performance of p = 1 is outperforming
p = 2 by 1 dB, on average across λ values. Also, p = 1
outperforms by 0.6 dB, on average, p = 2 for the separation
by masking performance. For the additivity metric, p = 2
marginally outperforms p = 1 for a negligible difference of
3e−3. For these reasons the main results of our work focus
on p = 1.

The second observation is that for λ > 2 the observed sep-
aration performance dip and additivity performance peak
in the area of λ ∈ [1.3, 1.5, 2.0] disappears, and the exam-
ined method performs similarly to the values of low entropy,
according to the examined metrics. This contradicts our ex-
pectations for the effect of entropic regularization. Our only
explanation to this behavior is that for values λ > 2 the ex-
ponential function used in the computation of the Sinkhorn
distances and applied initially to M yields saturated values
that bias the overall minimization, in an unexpected way,
that requires a closer inspection.

In similar vein, for the LA that uses the total-variation de-
noising cost the full results complimenting Table1 are illus-
trated in Figure 4.

To justify the selection of the particular λ = 1.5 hyper-
parameter for computing LB in Table 2, Figure 6 illustrates
the evaluation results for neighbouring λ ∈ [1.3, 2.0] com-
pared to λ = 1.5, where similar behavior is observed. As
it can be observed from Figure6 the performance of all the
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Figure 3. Performance evaluation of the learned representations by
LB that uses the Sinkhorn distances. (top-left) Reconstruction of
singing voice in SI-SDR, (top-right) oracle separation performance
in SI-SDR, and (bottom) additivity objective measure. Horizontal
and vertical lines denote the average and the standard deviation of
the performance, respectively.
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Figure 4. LA using total variation denoising (LTV) for various val-
ues of ω. Left reconstruction of singing voice in SI-SDR, middle
oracle separation performance in SI-SDR, and right additivity ob-
jective measure

representations is nearly identical, with a negligible per-
formance boost observed for of λ = 1.5 (orange line), on
average across the values of ω.

Finally, in Figure 5 we provide additional illustrations of the
representations obtained using either LA or LB , for a ran-
dom multi-track segment. For LB we focus on two extreme
cases of separation and additivity performance observed
from Tables1 and 2. In particular, we illustrate representa-
tions obtained for entropy values λ = 1.5 and for λ = 0.5,
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(a) Learned representations for the mixture (left), the singing voice (middle), and the accompaniment (right) signals using the E(·)
optimized with LA for: LTV : ω = 4.0

(b) Learned representations for the mixture (left), the singing voice (middle), and the accompaniment (right) signals using the E(·)
optimized with LB for: LSK : ω = 1.0, λ = 0.5

(c) Learned representations for the mixture (left), the singing voice (middle), and the accompaniment (right) signals using the E(·)
optimized with LB for LSK : ω = 4.0, λ = 1.5

Figure 5. An illustration of the learned representations of a single multi-track segment, using three optimized encoders E .

1.0 1.5 2.0 4.0
ω

20
22
24
26
28
30
32
34
36

SI
-S
DR

 (d
B)

B for λ=1.3
B for λ=1.5
B for λ=2.0

1.0 1.5 2.0 4.0
ω

−2
0

−1
5

−1
0
−5

0

5
10
15

SI
-S
DR

 (d
B)

B for λ=1.3
B for λ=1.5
B for λ=2.0

1.0 1.5 2.0 4.0
ω

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0


(⋅)

B for λ=1.3
B for λ=1.5
B for λ=2.0

Figure 6. Performance evaluation of the learned representations
by LB using three entropic regularization λ. (top-left) Recon-
struction of singing voice in SI-SDR, (top-right) oracle separation
performance in SI-SDR, and (bottom) additivity objective measure.
Horizontal and vertical lines denote the average and the standard
deviation of the performance, respectively.

that resulted in the best performance of additivity and mask-
ing, respectively. For comparison, we also display learned
representations for LA for ω = 4.0, in which the best sepa-
ration performance for LA was observed in Table 1.

By observing Figure 5 it can be seen that the usage of
LA (employing the total-variation denoising cost) leads to
smooth representations. However, qualitatively the repre-
sentation of the mixture and the sources seem somewhat
blurry, without distinct structure between the sources. Con-
sequently, representations learned using LA might impose
difficulties for source separation methods. On the other hand
the employment of LB with the Sinkhorn distances and for
λ = 0.5, leads to learned representations that at least for
the singing voice signal a prominent structure of horizon-
tal activity is observed. The interesting part comes when
the entropy regularization weight is increase to λ = 1.5,
where now the accompaniment source is distinguished by
prominent vertical activity.
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