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Abstract

Self-supervised learning (SSL) is a powerful paradigm for learning from unlabeled
time-series data. However, traditional methods such as masked autoencoders
(MAEs) rely on reconstructing inputs from a fixed, predetermined masking ratio.
Instead of this static design, we propose treating the corruption level as a new degree
of freedom for representation learning. To achieve this, we introduce the Flow-
Guided Neural Operator (FGNO), the first framework to combine operator learning
with flow matching for SSL training. By leveraging Short-Time Fourier Transform
(STFT) to enable computation under different time resolutions, our approach
effectively learns mappings in functional spaces. We extract a rich hierarchy of
features by tapping into different network layers (l) and generative time steps (s)
that apply varying strengths of noise to the input data. This enables the extraction
of versatile, task-specific representations—from low-level patterns to high-level
semantics—all from a single model. We evaluated our model performance on
two different biomedical domains, where our flow-based operator significantly
outperforms established baselines. When applied to a sleep health dataset, it
achieved 16% RMSE improvement over MAE in skin temperature regression,
while showing 1% AUROC gain in classification tasks. On a neural decoding
task for binary speech classification, our approach achieves a significant 20%
AUROC improvement compared to MAE, highlighting its ability to learn powerful,
task-adaptable representations.

1 Introduction

Time-series data are common across domains such as healthcare [1], finance [2], climate and weather
forecasting [3]. Learning useful supervised representations from temporal signals can be challenging
when labels are scarce [4]. Self-supervised learning (SSL) has become a compelling technique,
enabling models to exploit large collections of unlabeled time series data. Prior work adapts ideas
from NLP and computer vision, e.g., BERT-style masked modeling [5, 6] and masked autoencoders
(MAE) [7], as well as contrastive objectives [8]—and has led to increasingly capable time-series
foundation models [9]. However, objectives based on discrete masking ratios or fixed augmentations
can make it difficult to recover features spanning multiple temporal and semantic scales within a
single pretraining recipe/masking ratio.

Generative modeling offers a complementary perspective. Diffusion- and flow-based methods learn
to map simple noise distributions to complex data distributions and are trained with self-supervised
signals (denoising [10] or flow matching [11]). Beyond high-quality data generation, their training
dynamics expose a continuum of corruption levels that acts as a continuous analogue to masking.
Recent studies on images suggest that internal representations taken at different noise levels naturally
organize from low-level textures to high-level semantics, providing an explicit control knob for
multi-scale features [12].
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Figure 1: While Masked Autoencoder (a) reconstructs inputs from compressed latent representations,
Flow Matching (FM), b progressively transforms noisy inputs through continuous flows, generating
intermediate outputs across time steps. In both architecture, time series data is converted to spectro-
gram via STFT. Our FM, instantiated as the FGNO, is pretrained in a self-supervised fashion (d).
The pretrained encoder is probed at different layers and time steps (d), with frozen representations
evaluated on downstream tasks, across different time and layers (e).

Neural operators [13] learn mappings directly in the functional space of signals, offering a natural
framework for time-series modeling where data can be viewed as functions over time [14]. This
approach has achieved state-of-the-art results across various time-series domains, including faster
and more accurate weather forecasts [15] and chaotic time-series prediction [16, 17]. However, FNO-
based [18] networks are not well-suited for time series applications that focus on local segmentation
or classification tasks, as they primarily capture global patterns in the frequency domain. Short-Time
Fourier Transform (STFT) is a widely known approach in signal processing that focuses on local
time-frequency analysis, enabling the extraction of both temporal and spectral features at fine-grained
resolutions that are crucial for many downstream tasks while being resolution invariant.

The combination of neural operators and flow matching creates a natural synergy for continuous-time
modeling, where the functional space perspective of neural operators aligns seamlessly with both
the continuous denoising process of flow matching and the continuous nature of time-series data.
However, it remains underexplored whether these advantages transfer to time-series data at scale and
whether flow matching (FM) can serve as an efficient and effective SSL objective in this setting.

Our approach: We propose the FGNO, a self-supervised framework that pretrains a flow matching
model on time-series data (spectrograms) and then extracts task-specific representations by selecting
both a network layer l and a generative time/noise level s (Fig. 1). We leverage Short-Time Fourier
Transform (STFT) to convert raw 1D signals into time-frequency representations that preserve both
local and global information across multiple resolutions. Our framework has two phases. The first
phase is training/pretraining, where we train an FM model to learn the continuous flow from noise
to data on these spectrograms, and treat intermediate features ϕl,s as a hierarchy of representations.
The second phase is probing for downstream tasks such as classification and regression. where we
freeze the backbone and train a probing head (classifier) on top of ϕl,s. This design turns the noise
level s into a practical, tunable degree of freedom—analogous to a continuous masking ratio—that
allows practitioners to emphasize fine temporal detail (lower s, shallower l) or higher-level semantics
(higher s, deeper l) with a single pretrained model. During inference, we find the best combination of
(l∗, s∗) for the downstream task.

Empirically, we observe that the optimal choice of network layer l and noise level s is task-dependent:
tasks requiring precise local timing benefit from lower noise and earlier layers, whereas tasks relying
on global context prefer higher noise and deeper layers. Selecting (l, s) per task yields consistent
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gains over MAE- and contrastive-style baselines. On DREAMT dataset, our approach improves
AUROC metric by 1% for binary sleep classification and 16% in RMSE for regression compared
to state-of-the-art SSL baselines like MAE [5]. For BrainTree Bank dataset, we achieved a 20%
increase in AUROC against MAE on neural signal decoding where subject is tasked with detecting
speech from movies.

In summary, our contributions are: 1. An SSL framework combining operator learning and flow
matching for time series. We pretrain a single FM model on time–frequency representations of
1D signals and show how to derive a rich, multi-level feature hierarchy by varying the generative
time/noise level s and network layer l. 2. Noise as a gauge to control features. We demonstrate that
s serves as an explicit and practical control over representation granularity, offering a clear advantage
over fixed-ratio masking in MAE-style SSL [5]; practitioners can tune (l, s) to the demands of each
downstream task.

2 Methods

Our FGNO methodology is a two-stage process for self-supervised representation learning based on
the Flow Matching (FM) framework [11]. By operating in the Fourier domain through spectrograms,
FGNO learns mappings in the functional space of signals, and can thus be viewed as a neural operator.

Pre-training We first convert raw 1D time series signals into time-frequency representations using
a Short-Time Fourier Transform (STFT), resulting in spectrograms. A time-dependent Transformer
architecture, uθ(s, g), is then pre-trained on these unlabeled spectrograms. The model is optimized
with the FM objective, which involves learning a conditional vector field that maps a simple noise
distribution to the complex data distribution of the spectrograms. Because this process learns
transformations between functions in Fourier space, it naturally takes on the role of a neural operator.
This self-supervised task forces the network to capture the rich underlying structure of the time series
data across multiple temporal and semantic scales.

Feature Extraction and Probing After pre-training, the weights of the Transformer uθ are frozen
and used as a feature extractor. A key challenge is that the model was trained on noisy inputs,
but downstream tasks begin with clean data. To prevent a distributional shift, for a given clean
spectrogram f and a desired feature extraction time s ∈ [0, 1], we first generate a correctly noisy
sample:

gs = sf + σf
s z, where z ∼ N (0, I). (1)

The feature representation h is then extracted from the activations of an intermediate layer l of the
network after processing this input: h = u

(l)
θ (t, gt). This feature vector is fed into a lightweight

downstream head (e.g., a linear layer), which is the only component trained on labeled data. This de-
sign makes FGNO computationally efficient while enabling systematic probing of (s, l) combinations
to uncover task-optimal representations.

Inference To select the most informative features for each downstream task, we evaluate frozen
representations across layers and noise levels and choose the optimal pair:

(s∗, l∗) = arg min
s∈S,l∈L

Lval(s, l). (2)

3 Experimental Results

3.1 Dataset and Implementation Details

DREAMT Dataset We used the DREAMT dataset [19], which contains synchronized smartwatch
and clinical-grade polysomnography (PSG) data from 100 participants, many with sleep disorders.
A single model was pre-trained on the smartwatch’s Blood Volume Pulse (BVP) and accelerometer
(ACC) signals. This model’s features were then evaluated on held-out participants for two downstream
tasks: a binary sleep/wake classification and a skin temperature regression.
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Figure 2: Performance across model layers and feature extraction times in our self-supervised learning
framework. Left: Sleep classification AUROC (↑). Right: Skin temperature regression RMSE (↓).

BrainTree Bank dataset The BrainTree Bank [20] is a large-scale dataset of intracranial neural
responses from 10 subjects watching Hollywood movies (43 hours total). The dataset includes
extensive linguistic annotations of the movie audio, such as transcripts and word onsets. Using a
held-out set of subjects for probing, we evaluate our model on a speech presence detection task.

3.2 Sleep classification and skin temperature prediction with DREAMT

Performance at different layers and noise-level s As shown in Fig. 2, sleep classification perfor-
mance improves substantially in deeper layers, with layers 3–6 consistently outperforming layers
1–2, and the best AUROC (96.4%) achieved at Layer 3 with low noise (s = 0.89). In contrast,
skin temperature regression also favors deeper layers but achieves its lowest RMSE (0.599◦C) at
moderate noise levels (s ∈ [0.22, 0.56]), highlighting that discrete classification tasks benefit from
clean, abstract representations while continuous regression tasks rely on partially denoised features
that preserve smooth dynamics.
Comparison to baselines Our FGNO approach significantly outperforms baselines in both sleep
classification and skin temperature regression. It achieves improved AUROC compared to an MAE
baseline across the best-performing layers. Our peak score also surpasses the gradient boosting
approach (92.6%) reported in the DREAMT paper [19]. Notably, our model achieved this using only
raw time-series data, whereas the DREAMT baseline required additional clinical metadata (Apnea
Severity score) [19], highlighting the power of our self-supervised approach. For skin temperature
regression, our best RMSE substantially improves upon both the MAE baseline (0.734◦C). The
results highlight that FGNO not only can leverage layers’ depth but also exploits flow time s to extract
the most predictive representations, whereas MAE is limited to selecting layers alone.

3.3 Speech Classification with BrainTreeBank

Figure 3: FGNO’s and MAE’s
performance as a function of
layer depth l.

By optimizing the combination of model layer and feature ex-
traction time s, we observed a clear performance gradient where
our FGNO score improved with both network depth and time,
reaching a maximum of 88.6% AUROC. Fig. 3 reveals that the
optimal score was not achieved at the final layer or time step, but
rather at an intermediate point (layer 4, s ≈ 0.88). This find-
ing demonstrates that the most discriminative features arise from
a specific trade-off in processing depth and time, allowing our
approach to significantly outperform the MAE baseline by identi-
fying the most potent feature representations within the network.

Summary We propose the FGNO framework for time-series
SSL that treats corruption as a continuous variable. A single
pre-trained backbone provides features, while task-specific repre-
sentations are obtained by selecting an optimal layer (l) and noise

level (s). This approach is more flexible than fixed-corruption baselines like MAE and achieves
state-of-the-art results on diverse tasks. Its main limitation is the empirical grid search needed to find
(l, s) for new tasks. Future work will automate this selection and extend FGNO to new modalities.
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Appendix

Training details The pre-trained model is a 6-layer Transformer designed to process the output
of a Short-Time Fourier Transform (STFT). The model’s architecture was specifically configured to
match the STFT output tensor shape: the model’s input dimension of 132 corresponds to the number
of frequency bins, and the sequence length of 21 corresponds to the number of time frames. Other
key hyperparameters include a hidden dimension of 768, 12 attention heads, a feedforward dimension
of 3072, a dropout rate of 0.1, and a learning rate of 0.0001.

Evaluation metrics We evaluated the performance on the two downstream tasks using standard
metrics. For the binary sleep classification task (awake vs. asleep), we used the Area Under the
Receiver Operating Characteristic curve (AUROC). For the skin temperature regression task, we used
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) to
quantify the model’s predictive accuracy.

Layer Number FGNO (Best AUROC % @ Time) MAE AUROC %
1 94.6 @ s=1.00 95.8
2 94.6 @ s=0.89 95.6
3 96.5 @ s=0.89 95.7
4 95.9 @ s=0.67 95.4
5 96.2 @ s=0.78 95.5
6 96.4 @ s=0.89 95.8

Table 1: AUROC (↑) comparison between our model and MAE on DREAMT data for sleep classifi-
cation task

Layer Number FGNO (Best RMSE °C @ Time) MAE RMSE °C
0 0.743 @ s=0.22 0.790
1 0.691 @ s=0.33 0.775
2 0.656 @ s=0.44 0.735
3 0.625 @ s=0.33 0.782
4 0.619 @ s=0.44 0.738
5 0.600 @ s=0.56 0.744

Table 2: Best RMSE (↓) values against MAE for DREAMT on skin temperature regression task

Layer Number FGNO (Best AUROC % @ Time) MAE AUROC %
0 83.3 @ s=0.778 60.7
1 85.8 @ s=0.778 67.2
2 86.4 @ s=0.778 62.7
3 88.3 @ s=0.889 65.5
4 88.6 @ s=0.889 63.5
5 88.3 @ s=0.889 67.2

Table 3: AUROC (↑) comparison at optimal extraction time for BrainTreeBank data in speech
detection task

7


	Introduction
	Methods
	Experimental Results
	Dataset and Implementation Details
	Sleep classification and skin temperature prediction with DREAMT
	Speech Classification with BrainTreeBank


