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Abstract

Different from traditional tedious CPU-GPU-based training algorithms using1

gradient descent methods, the software-FPGA co-designed learning algorithm2

is created to quickly solve a system of linear equations to directly calculate3

optimal values of hyperparameters of the green granular neural network (GGNN).4

To reduce both CO2 emissions and energy consumption effectively, a novel5

green granular convolutional neural network (GGCNN) is developed by using6

a new classifier that uses GGNNs as building blocks with new fast software-7

FPGA co-designed learning. Initial simulation results indicates that the FPGA8

equation solver code ran faster than the Python equation solver code. Therefore,9

implementing the GGCNN with software-FPGA co-designed learning is feasible.10

In the future, The GGCNN will be evaluated by comparing with a convolutional11

neural network (CNN) with the traditional software-CPU-GPU-based learning in12

terms of speeds, model sizes, accuracy, CO2 emissions and energy consumption13

by using popular datasets. New algorithms will be created to divide the inputs14

to different input groups that will be used to build different small-size GGNNs15

to solve the curse of dimensionality.16

1 Introduction17

In recent years, deep neural networks such as a Convolutional Neural Network (CNN) have been18

effectively used in different applications. However, a major problem is that traditional tedious19

CPU-GPU-based training algorithms using gradient descent methods take huge amount of training20

time, generate much CO2 emissions and waste a lot of energy. For instance, a popular CNN needs21

a large number of training epochs for very slow hyperparameter optimization. Thus, traditional22

neural network software systems with very slow hyperparameter optimization algorithms are not23

suitable for high-speed real-time learning and fast real-time prediction applications. In addition24

to the long training time problem, the conventional neural networks have the black-box problem25

(i.e., hyperparameters such as weights are not meaningful). How to build explainable open-box26

machine learning systems with low CO2 emissions and low energy consumption is an important27

long-term problem.28

In recent years, new green machine learning (ML) systems have been made to reduce both29

CO2 emissions and computational energy consumption. For instance, the AutoML framework30

for different methods such as neural architecture search (NAS), and automated pruning and31

quantization is used to build efficient on-device ML systems with low energy consumption and32

low CO2 emissions by measuring GPU hours and the estimated CO2 emission amount CO2e [1].33

Since CO2e is proportional to the total computational power pt: CO2e = 0.954pt [2], effectively34

reducing training times results in greatly reducing both energy consumption and CO2 emissions.35
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Currently, popular ML systems running on CPUs and GPUs generate a lot of CO2 emissions36

and also waste much energy because (1) tedious traditional training algorithms such as gradient37

descent algorithms and genetic algorithms take huge amount of time to optimize billions of38

hyperparameters, and (2) CPUs and GPUs are not green effective and not energy efficient. In39

summary, an urgent challenge is developing a novel ML system with high-speed non-traditional40

training algorithms running on the green and energy efficient hardware to significantly reduce41

both CO2 emissions and energy consumption.42

Based on the successful implementation of the FPGA-based direct linear equation solver [3-5],43

the high-speed FPGA-based direct linear equation solver can be used to quickly generate optimal44

hyperparameters in just one epoch for the new GGNN in a real-time manner. For example,45

the Questa*-Intel FPGA Edition Software provides the FPGA design simulation that involves46

generating simulation files, compiling simulation models, running the simulation, and viewing the47

results. We will use FPGA software simulation systems to implement the high-speed FPGA-based48

direct linear equation solver. The goal is to develop more effective and faster hardware-based49

hyperparameter optimization algorithms with a fast direct linear equation solver for training a50

new GGNN. We will develop the novel Green Granular Convolutional Neural Network (GGCNN)51

with new fast FPGA-based training algorithm to effectively reduce both CO2 emissions and52

energy consumption more effectively than the CPU-GPU-based training algorithms.53

2 A Building Block: an Efficient FPGA-based GGNN54

2.1 Granular Sets55

Different sets dealing with uncertainty of data and information, such as the fuzzy set [6], the56

neutrosophic fuzzy set [7], the intuitionistic fuzzy set [8], and Pythagorean fuzzy set [9], were57

defined. A new granular set is defined as follows to be used to build a new granular neural58

network.59

Definition 1. Let X be a nonempty set. A granular set A in X is defined as A =60

{〈x, µA(x), νA(x), φA(x), ϕA(x), θA(x), ϑA(x)〉 : x ∈ X}, where (1) µA(x) is degree of mem-61

bership of x for 0 ≤ µA(x) ≤ 1, (2) νA(x) is degree of non-membership of x for 0 ≤ νA(x) ≤ 1,62

(3) φA(x) is certain degree of µA(x) for 0 ≤ φA(x) ≤ 1, (4) ϕA(x) is uncertain degree of63

µA(x) for 0 ≤ ϕA(x) ≤ 1, (5) θA(x) is certain degree of νA(x) for 0 ≤ θA(x) ≤ 1, and64

(6) ϑA(x) is uncertain degree of νA(x) for 0 ≤ ϑA(x) ≤ 1, where 0 ≤ µA(x) + νA(x) ≤ 1,65

0 ≤ φA(x) + ϕA(x) ≤ 1, and 0 ≤ θA(x) + ϑA(x) ≤ 1.66

Meaningful linguistic values, such as very slow, about 25, around 200, can be represented by67

the granular sets that are used to build interpretable granular fuzzy If-Then rules. For example,68

an explainable granular If-Then rule is If x1 is low and x2 is around −1000, Then an output is69

high.70

2.2 Software-FPGA Co-designed Learning71

The green granular neural network (GGNN) with new fast software-FPGA co-designed learning iss72

designed using granular sets and the software-FPGA co-designed learning algorithm. It uses the73

software-based learning system to compute the coefficients for a linear system of hyperparameter74

equations, then uses the fast FPGA-based learning system to optimize the hyperparameters, and75

finally builds a GGNN model for prediction.76

For convenience, an N -record relational database has n numerical input fields xi for i = 1, 2, ..., n,77

and one numerical output field y. Now the problem is how to build a GGNN using given N records78

in the relational database. Here, granular sets are used as basic granules in granular partitions of79

the input variables xi for i = 1, 2, ..., n and the output variable y. The interval [ai, bi] of xi are80

partitioned into mi− 1 intervals (ai1 ≤ xi ≤ ai2, ai2 ≤ xi ≤ ai3, ..., ai(mi−1) ≤ xi ≤ aimi
). So81

mi granules Aij are used to cover the mi − 1 intervals for i = 1, 2, ..., n, j = 1, 2, ...,mi. The82

granules Aij are defined by granular sets such as a fuzzy set [6]. After the above granulation of83

xi for i = 1, 2, ..., n, there are G data base granules for G =
∏n

i=1(mi − 1). For each data base84

granule, a GGNN with an output g(x1, x1, ..., xn) is constructed by using two input granular sets85

covering one interval of xi and 2n output granular sets of y. So y has 2n granular sets Bk for86

k = 1, 2, ..., 2n.87
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The granular rule base has 2n granular IF-THEN rules for one database granule such that88

IF x1 is A1j1 and ... xn is Anjn THEN y is Bk for ji ∈ 1, 2, i = 1, 2, ..., n, and k = 1, 2, ..., 2n.89

A database granule has K =
∏n

i=1 ki records totally if an input xi has ki values for i =90

1, 2, ..., n in the database granule, and an output y has K corresponding values yk for k =91

1, 2, ...,K. The optimization function for the database granule is to minimize Q = 1
2

∑K
k=1[yk −92

g(x1k
, x2k

, ..., xnk
)]2. Based on ∂Q

∂pj
= 0 for the GGNN, we can get a linear system of M -93

hyperparameter equations for k = 1, 2, ...,M for M = 2n+1:94

T k
1 q1 + T k

1 q2 + ...+ T k
MqM = ψk (1)

Now we can solve the linear system of M -hyperparameter equations to directly get optimal M95

hyperparameters qk of the GGNN for k = 1, 2, ...,M .96

Based on the successful design of the FPGA-based linear equation solver [3-5], it is feasible to97

use the same architecture of the FPGA-based linear equation solver to solve equation (1) to get98

optimized hyperparameters qk for k = 1, 2, ...,M .99

The major merits of the granular constructive learning method are (1) quickly optimize parameters100

using predefined formulas, and (2) discover meaningful granular rules from training data.101

We develop the novel GGNN with new fast FPGA-based training algorithm to reduce CO2102

emissions more effectively than the CPU-GPU-based training algorithms. Popular CPUs and103

GPUs generate much more CO2 emissions and run less efficiently than the field programmable104

gate array (FPGA) [10, 11]. For instance, the new FPGA-based massive parallel data processing105

system can reduce CO2 emissions by around 50% [11]. FPGA is a light-weight hardware with low106

CO2 emissions and low energy consumption [12] for quickly solving a system of linear equations.107

For example, on a Xilinx Vertex 6 FPGA (200MHz), the minimum latency of the FPGA-based108

direct linear equation solver was lower than 5 microseconds for a linear system of equations109

of order 32 [3]. Thus, it is feasible to use FPGA to implement the new FPGA-based training110

algorithm.111

3 Simulations for FPGA-based Learning Methods112

Once we calculated coefficients as T k
1 , T k

2 , ..., T k
M , we can solve equation (1) by simply using113

matrix inversion method. However, matrix inversion is, by its nature, not hardware-friendly. Many114

algorithms rely on division which requires huge resources on FPGA. Also, we usually need to115

fix the matrix size in prior to feeding numbers to the hardware. The first problem has been a116

hot topic in the FPGA community, and the second problem can be solved by HLS (High-Level117

Synthesis) [13].118

Based on previous sections, if we have n input parameters, T k
1 , ..., T k

M will form a square matrix119

with 2n+1 × 2n+1. There have been some researches focusing on FPGA-based matrix inversion120

for the past decades [3, 14, 15], such as steepest descent method [16], QR decomposition [15]121

and Gauss Jordan method [17], etc. The current method we use is LUP (LU factorization with122

partial pivoting). Fig. 2 shows an example for a 4× 4 matrix. Following the color order, we can123

easily decompose a given matrix in A = LU . And the inverse of an upper or lower triangular124

matrix is easy to compute, since U−1 is also an upper triangular matrix [18].125

Furthermore, we used a FPGA code and a Python code to test their running times on for the126

matrix inversion with different linear systems of hyperparameter equations of different orders (i.e.,127

8, 16, 32, 64, and 100). For each case, we create 20 complex square matrices of different orders.128

Table 1 shows running times that are measured in 10−4s. All the tests are running on the same129

computer. The FPGA code ran faster than the Python code.130

Table 1: Running times of the Python code and the FPGA code

Method 8 16 32 64 100
Python 1.139 1.581 7.057 30.147 76.581
FPGA 0.638 1.313 2.803 6.207 12.284

In addition, the FPGA code is effective to reduce both energy consumption and CO2 emissions131

because the short execution time of the FPGA code results in a small computational power132
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Figure 1: LU factorization on a 4× 4 matrix [19]

consumption pt for CO2e = 0.954pt [2]. Importantly, a FPGA hardware will be much faster than133

a software-based equation solver to reduce both energy consumption and CO2 emissions more134

effectively.135

Based on LUP, we can write the corresponding C program. To generate feasible Verilog scripts,136

we can use Vivado HLS to transform the C program to Verilog code and simulate it in the137

software. Therefore, the new software-FPGA-based learning method is feasible and useful for138

implementing the new fast FPGA-based GGNNs.139

To compare an artificial neural network (ANN) and the GGNN using a fuzzy set (a special granular140

set), simulations using two different functions are done. The first 3-input-1-output benchmark141

function f1
k [20-23] is given below:142

f1
k = (1 + x0.5

k + y−1
k + z−1.5

k )2. (2)

The training data set with 8, 000 training data is generated by f1
k shown in equation (2) such143

that xtr
k = 1.0 + b k

400c, y
tr
k = 1.0 + b k

20c, z
tr
k = 1.0 + k mod20, where the operator mod is144

used, f1
k ∈ [4.248, 55.833], and k = 0, 1, ..., 7, 999. A testing data set with 6, 859 testing data is145

generated by f1
k such that xte

j = 1.5 + b j
361c, y

te
j = 1.5 + b j

19c, z
te
j = 1.5 + j mod19, where the146

operator mod is used, j = 0, 1, ..., 6, 858. 8, 000 training data are distributed in 27 subspaces,147

but data in 16 subspaces are used to train both ANNs and GGNN (i.e., no training data in 11148

other subspaces like missing data in the subspaces). 6, 858 testing data are distributed in all the149

27 subspaces to compare ANNs and GGNN .150

Tables 2 to 4 show that GGNN outperforms both 10-Layer ANN and 20-Layer ANN in terms151

of the prediction Mean Square Error (MSE), and the prediction Root Mean Square Error (RMSE)152

for 100, 500, and 1, 000 training epochs.153

Table 2: Function Prediction Performance Comparison between ANNs and the GGNN for f1 for
100 training epochs.

Neural Network MSE RMSE
10-Layer ANN 58.22 7.63
20-Layer ANN 63.44 6.88

GGNN 47.31 6.88

4 A New GGCNN with Software-FPGA Co-Designed Learning154

Since the previous simulations indicate that the new software-FPGA-based learning method is155

feasible and useful to quickly train the GGNN, the GGNN can be used to build a new machine156

learning model as a basic building block. A CNN consists of convolutional layers, activation157
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Table 3: Function Prediction Performance Comparison between ANNs and the GGNN for f1 for
500 training epochs.

Neural Network MSE RMSE
10-Layer ANN 55.68 7.46
20-Layer ANN 76.99 8.77

GGNN 46.38 6.81

Table 4: Function Prediction Performance Comparison between ANNs and the GGNN for f1 for
1, 000 training epochs.

Neural Network MSE RMSE
10-Layer ANN 51.16 7.15
20-Layer ANN 53.66 7.33

GGNN 46.71 6.83

layers, pooling layers, and a classifier such as a MLP. The new GGCNN consists of convolutional158

layers, activation layers, pooling layers, a new FPGA-based GGNN layer called a FPGA learner,159

and a hybrid decision model for making a final decision. The new GGCNN with software-FPGA160

co-designed learning is shown in Fig. 3.161

Figure 2: A GGCNN framework with Software-FPGA Co-Designed Learning

The FPGA-based direct hierarchical hyperparameter optimization algorithm for a GGCNN, a162

hybrid software-hardware-based algorithm, is given below as Algorithm 1. We assume that the163

linear equation solver can quickly solve a linear system of L hyperparameter equations. A n× n164
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Feature Map (FM) has n × n features. N n × n feature maps FMp for p = 1, 2, ..., N are165

generated by the last pooling layer. K = N × n× n.166

for k = 1 to n do
Step 1: Use software to partition n× n feature map FMp into Mj nj × nj sub-feature
maps for for Mj = lj × lj , and nj < L).
Step 2: Use software to pre-calculate coefficients for Mj linear systems of
hyperparameter equations for nj × nj sub-feature maps): Use software to calculate
coefficients such as P 1k

1 , ..., P 1k
m , P 2k

1 , . . ., P 2k
m , P 3k

1 , . . ., P 3k
m , and then calculate

P 1k
1 = P 1k

1 + S1k
1 , ..., P 1k

m = P 1k
m + S1k

m , P 2k
1 = P 2k

1 + S2k
1 , ..., P 2k

m = P 2k
m + S2k

m ,
P 3k

1 = T 3k
1 + S3k

1 , ..., P 1k
m = P 3k

2n + S3k
m of a linear system of hyperparameter equations.

Step 3: Use the FPGA-based linear equation solver to solve Mj linear systems of
hyperparameter equations using Mj l × l sub-feature maps): Use the FPGA-based linear
equation solver to calculate optimal hyperparameters such as (ci, ηi, and δi) for
i = 1, 2, ...,m of each linear system of hyperparameter equations. The optimized
hyperparameters are used to build new Mj GGNNs with relevant granular knowledge
bases with meaningful granular If-Then rules.
Step 4: Use Mj Use the Mj FPGA-based GGNNs to make Mj decisions Dp

j for a new
test feature map.
Step 5: Use all individual decisions Dp

j to make a hybrid decision.
end

Algorithm 1: Software-FPGA Co-Designed Learning Algorithm for the GGCNN

167

5 Conclusions168

Initial simulation results indicates that the FPGA equation solver code ran faster than the Python169

equation solver code. In additon, the GGNN can perform more accurately than a traditional170

neural network. Therefore, it is feasible to make a novel software-FPGA co-designed GGNN to171

reduce both CO2 emissions and energy consumption more effectively than the CPU-GPU-based172

neural networks. Since FPGA is a high-speed light-weight hardware with low CO2 emissions173

and low energy consumption, the FPGA is used to quickly solve a system of linear equations to174

directly calculate optimal values of hyperparameters of the shallow GGNN. It is feasible to build175

the GGCNN using the GGNNs as basic building blocks to solve image recognition problems.176

6 Future Works177

In the future, the GGCNN with the software-FPGA co-designed learning will be evaluated by178

comparing with other machine learning models with traditional software-CPU-GPU co-designed179

learning in terms of speeds, model sizes, accuracy, CO2 emissions and energy consumption by180

using popular datasets. New intelligent algorithms will be developed to find out optimal or near181

optimal sub-spaces on which accurate GGCNN models will be built.182

A GGCNN with a large number of inputs has the curse of dimensionality. New algorithms will be183

created to divide the inputs to different input groups that will be used to build different small-size184

GGCNNs to solve the problem.185

We will use different granular sets with different nonlinear membership functions, and then select186

the best one to improve performance (accuracy, AUC, F1-score, etc.) of the GGCNN.187

After the software-FPGA co-designed learning is successful, a special high-speed FPGA hardware188

based direct linear equation solver as a fast learner will be implemented for building an efficient189

GGCNN with high classification accuracy to significantly reduce both CO2 emissions and energy190

consumption.191
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