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Abstract

To properly explain sentence pairs that provide
contradictory (different) information for different
conditions, we introduce the task of conditional
natural language inference (Cond-NLI) and fo-
cus on automatically extracting contradictory as-
pects and their conditions from a sentence pair.
Cond-NLI can help to provide a full spectrum
of information, such as when there are multiple
answers to a question each addressing a specific
condition, or reviews with different opinions for
different conditions. We show that widely-used
feature-attribution explanation models are not suit-
able for finding conditions, especially when sen-
tences are long and are written independently.
We propose a simple yet effective model for the
NLI task that can successfully extract conditions
while not requiring token-level annotations. Our
model enhances the interpretability while main-
taining comparable accuracy. To evaluate Cond-
NLI, we present a token-level annotated dataset
BioClaim which contains potentially contradic-
tory claims from the biomedical articles. Experi-
ments show that our model outperforms the full
cross-encoder and other baselines in extracting
conditions. It also performs on-par with GPT-3
which has an order of magnitude more parameters
and trained on a huge amount of data. 1

1 Introduction

We introduce the task of Conditional Natural Lan-
guage Inference (Cond-NLI) that extends the tradi-
tional natural language inference (NLI) to be more
suitable for finding a full spectrum of information.
The original NLI task involves inferring an entail-
ment or contradiction relationship between a pair
of sentences: a premise and a hypothesis. This
is typically modeled as a three-way classification,
predicting if the premise entails, contradicts, or
remains neutral to the hypothesis.

Table 1 shows an example of two claims from
biomedical articles (Dahlöf et al., 2002) and (Mat-
sui et al., 2008), which are included in the Poten-
tially Contradictory Claims (PCC) corpus (Alamri
and Stevenson, 2016). Although the claims seem to

1Our code and dataset are available at https://
github.com/youngwoo-umass/cond-nli

Question: In patients with advanced diabetes, does treat-
ment with antihypertensives improve renal function or pro-
tect against cardiovascular incidents?

Claim1: Interpretation Losartan prevents more

cardiovascular morbidity and death than atenolol for a
similar reduction in blood pressure and is better tolerated.
[Ans: Yes]

Claim2: Although a bedtime dose of doxazosin can
significantly lower the blood pressure, it can also increase
left ventricular diameter, thus increasing the risk of

congestive heart failure. [Ans: No]

Table 1: An example from the BioClaim dataset. To-
kens in red indicate opposite outcomes (contradiction),
and yellow ones indicate different conditions (neutral).

contradict each other, they address different condi-
tions such as patient groups or treatments.2 Given
this difference, the two claims are not actually con-
tradictory, despite reporting contradictory answers.
Neither claim is entailed by the other, thus the most
suitable NLI category for this pair is neutral. Nev-
ertheless, classifying this claim pair as neutral in-
troduces a challenge in providing a comprehensive
range of answers for a given question. This is be-
cause unrelated claims are also classified as neutral,
and mining a large set of neutral-labelled claims
to provide a broad spectrum of answers is not effi-
cient.

We develop a modeling framework to capture the
relationship between a pair of sentences that pro-
vides different answers under diverse conditions.
Such sentence pairs are henceforth referred to as
conditionally-compatible, since none of the entail-
ment, contradiction, or neutral classes of NLI pre-
cisely describes their relationship.

Cond-NLI includes two token-level tasks – one
is to identify contradictory tokens that embody con-
tradictory aspects and the second is to identify neu-
tral tokens that indicate conditions that are not en-

2Losartan and doxazosin are both antihypertensives.

https://github.com/youngwoo-umass/cond-nli
https://github.com/youngwoo-umass/cond-nli


tailed by the other sentence. The focus of this
study is to determine different conditions in a pair
of conditionally-compatible sentences. For the ex-
ample pair in Table 1, the segments highlighted in
yellow represent the condition tokens. Contrary to
NLI, where an ordering is specified between paired
sentences via the roles of premise and hypothesis,
paired sentences in Cond-NLI do not require such
an order because the contradiction holds in both
directions.

Automatic identification of different conditions
in conditionally-compatible sentence pairs allows
us to summarize and provide a full spectrum of an-
swers in a form where users are not overloaded with
excessive information. This is of particular practi-
cal importance as it has shown that there are usually
multiple answers to a user’s question in different do-
mains, such as biomedical (Alamri and Stevenson,
2016), e-commerce (Santos et al., 2011), and fac-
toid question-answering (Min et al., 2020), where
the difference between answers/opinions is their
provided conditions.

We propose Partial-ATtention model, PAT, a sim-
ple yet effective model for natural language infer-
ence that can address the Cond-NLI task. PAT
predicts an NLI label for a sentence pair from the
intermediate labels for their partitions. The inter-
mediate labels for partitions of sentences can be
subsequently used to attribute these labels into the
token-level.

The NLI token-level attributions align closely
with the objective of Cond-NLI . Different condi-
tions in a claim pair would cause an NLI model
to predict the pair to be neutral. Thus, identify-
ing the tokens responsible for triggering neutral
labels could serve as a technique to detect different
condition tokens in Cond-NLI. Similarly, contra-
dictory tokens of Cond-NLI can be attained from
attributing contradiction label in NLI. Finally, PAT
effectively solves Cond-NLI through training with
sentence-level NLI data, without requiring task-
specific token-level annotations.

To evaluate different models for Cond-NLI,
we build (and make publicly available) the
BioClaim dataset, an extension of an exist-
ing corpus initially built to assist systematic
reviews (Alamri and Stevenson, 2016). The
BioClaim dataset provides a challenging bench-
mark for the NLI models. In contrast to the Sci-
EntsBank dataset (Dzikovska et al., 2013), which
lacks contradictory sentence pairs, BioClaim

includes conditionally-compatible sentence pairs.
Such pairs require the identification of neutral to-
kens in the presence of contradictory tokens. Com-
pared to other token-level explanation datasets such
as e-SNLI and MNLITag (Camburu et al., 2018;
Kim et al., 2020), which are built on NLI cor-
pora (Bowman et al., 2015; Williams et al., 2018),
BioClaim has longer hypothesis sentences. This
characteristic introduces additional complexity in
the selection of non-entailed tokens.

Perturbation-based methods (Ribeiro et al., 2016;
Kim et al., 2020) have shown to be effective in
identifying tokens that contribute to contradiction
or neutral labels when evaluated on e-SNLI (Cam-
buru et al., 2018) or MNLITag (Kim et al., 2020).
However, we show that these perturbation-based
explanation models face challenges in accurately
identifying condition tokens when hypothesis sen-
tences are long and contain a large number of non-
entailed tokens (conditions in Cond-NLI).

Extensive experiments on the BioClaim and
SciEntsBank (Dzikovska et al., 2013) datasets show
that our PAT significantly outperforms strong and
state-of-the-art baseline models. Against Intruct-
GPT (Ouyang et al., 2022) and ChatGPT (Ope-
nAI, 2022), PAT shows better performance on the
SciEntsBank dataset and comparable performance
on the BioClaim dataset, while PAT has a sig-
nificantly smaller number of parameters. While
our PAT model slightly underperforms the cross-
encoder BERT model on the original NLI task,
its enhanced interpretability enables effective fine-
grained token-level inference required for Cond-
NLI.

2 Related Work

2.1 NLI corpora

Many NLI datasets (Giampiccolo et al., 2007; Bow-
man et al., 2015; Williams et al., 2018; Thorne
et al., 2018) have limited diversity in contradictory
pairs as hypothesis sentences are crafted by anno-
tators, fails to reveal potential challenges (Zhou
and Bansal, 2020). Our BioClaim dataset (Sec-
tion 3.2) differs in that both sentences of (poten-
tially) contradictory pairs are written independently,
resulting in paired sentences that have large lexical
differences even when they have high semantic sim-
ilarity. Moreover, most of the potentially contradic-
tory sentence pairs contain a large amount of infor-
mation that is not mentioned in both. While some
methods (Ribeiro et al., 2016; Kim et al., 2020;



Wu et al., 2021) have shown token-level prediction
capabilities on e-SNLI (Camburu et al., 2018), we
found them less effective on the BioClaim dataset
that presents new challenges.

2.2 Explaining NLI models
One approach to explain neural NLI models is to
select a subset of the input tokens that are important
for the model decision as a rationale. A token being
important to the model decision is justified by how
it is connected (gradient or active weights) to the
model decision (Gilpin et al., 2018) or how its exis-
tence (or removal) affects the model decision (Lei
et al., 2016; DeYoung et al., 2020).

In the existing NLI datasets (Bowman et al.,
2015; Williams et al., 2018), the hypothesis with
a neutral label has mostly a small number of to-
kens that are not entailed by the premise. In these
samples, individual not-entailed (neutral) tokens
are critical to the NLI model decision and can
be easily identified by feature-attribution explana-
tions (Ghaeini et al., 2018; Liu et al., 2018; Kim
et al., 2020). However, we show that these explana-
tion models are not effective in identifying neutral
tokens on BioClaim. We discuss the reasons for
the failures in subsection 5.2.

Another direction for explaining NLI is to gen-
erate natural language explanation (NLE) (Kumar
and Talukdar, 2020; Zhao and Vydiswaran, 2021),
often trained in a supervised manner using a dataset
such as e-SNLI (Camburu et al., 2018). These
models are not capable of identifying not-entailed
tokens when the prediction for a sentence pair is
contradiction. When a hypothesis contains both
contradictory information and not-entailed infor-
mation in relation to a premise, the assigned NLI
label is contradiction. Some NLE models (Cam-
buru et al., 2018; Kumar and Talukdar, 2020) could
have limitations in capturing all the not-entailed
tokens in low similarity sentence pairs.

Attention-based explanations (Thorne et al.,
2019; Jiang et al., 2021) can identify which to-
kens are closely related, but are not calibrate well
for identifying not-entailed or contradictory tokens.
Both a non-entailed and entailed token of a hypoth-
esis can have high attention to the most related
token in the premise, complicating the distinction
using attention scores.

2.3 Interpretable NLI models
There are a few existing models with interpretable
architectures for the NLI task, however they are

not suitable for solving the Cond-NLI task. Wu
et al. (2021) proposed the Explainable Phrasal
Reasoning (EPR) model, which aligns phrases ex-
tracted from the premise and hypothesis, predicts
phrase-level labels, and subsequently combines
them to predict the sentence-level NLI label. Stacey
et al. (2022) proposed a span-level reasoning (SLR)
model, which partitions a hypothesis into multiple
pieces and predicts labels for each of the hypoth-
esis partitions and the premise. Feng et al. (2022)
also segment a hypothesis into spans and predict
seven logical relations on each of them, which are
used for the final sentence level predictions.

These models use static partitioning for the
premise or hypothesis, which constrains the gran-
ularity of fine-grained information to the predeter-
mined span boundaries. In contrast, we propose
training a model on randomly partitioned hypothe-
ses for enhanced granularity, allowing label predic-
tions across diverse boundaries.

Moreover, for Cond-NLI, partitioning the hy-
pothesis into more than two segments is unneces-
sary. Partitioning into two enables using an ag-
gregation function based on matrix multiplication,
which is not only simpler than the fuzzy logic-
based technique (Wu et al., 2021; Stacey et al.,
2022) but also demonstrates higher accuracy for
NLI.

Li and Srikumar (2019) utilized fine-grained
logic for sentence-level NLI but didn’t show its
use for partial-entailment or token-level predic-
tions. Levy et al. (2013) adapted textual entail-
ment models for facet level partial entailment us-
ing lexical and syntactic matches. This approach,
however, does not apply to NLI models based on
context-sensitive architectures such as Transform-
ers (Vaswani et al., 2017).

3 Cond-NLI task and datasets

3.1 Task definition

Our Conditional Natural Language Inference
(Cond-NLI) is formally defined as a token-level
classification task, aligning with the definition of
the existing task of partial entailment (Levy et al.,
2013). Given a pair of claims (p, h) and a span s
from h, the goal is to classify s as either neutral
or contradictory to p. Note that, neutral tokens are
considered equivalent to condition tokens.



3.2 BioClaim

To evaluate our model, we built the BioClaim
dataset by adding token-level annotations to an ex-
isting corpus of potentially contradictory claims
(PCC) (Alamri and Stevenson, 2016). PCC con-
sists of 24 closed-form research questions and a
total of 259 claims relevant to the questions. The
claims are aligned with the relevant questions and
are also annotated with their answer (Yes or No) to
the relevant questions. Claim pairs relevant to the
same question with different answers to the ques-
tion are potentially contradictory or conditionally-
compatible.

From 24 question groups, we selected pairs with
opposite answers (Yes-No). Since each group has
different numbers of Yes or No labeled claims, the
combinations of opposite-answer pairs range from
3 to several hundred. We limit the maximum num-
ber of pairs from each group to 20, prioritizing
those with greater term overlap when sampling.

Annotators were given a sampled claim pair and
asked to annotate tokens that indicate opposite out-
comes (corresponding to the contradiction label)
and tokens that indicate different conditions in the
two claims (corresponding to the neutral label).
While NLI has three classes, we only annotated
tokens that are related to contradiction and neu-
tral, as the entailment tokens are expected to be
the remaining tokens that are not contradiction nor
neutral.

We employed nursing college students as annota-
tors. The resulting dataset consists of 14,915 anno-
tated tokens, including 1,862 contradiction tokens
and 6,145 neutral tokens, all of which are derived
from 285 claim pairs. Using Cohen’s Kappa (Co-
hen, 1960), we observed a moderate agreement
score of 0.46. Out of all the claim pairs, 195 re-
ceived multiple annotations; we randomly selected
two annotations from these pairs to measure agree-
ment.

In the evaluation of Cond-NLI using BioClaim,
each claim pair generates multiple Cond-NLI prob-
lems. This occurs for every token in the claim
pair (tokenized by spaces) and for each token-level
class, namely neutral and contradiction.

3.3 SciEntsBank

We also used SciEntsBank (Dzikovska et al., 2012),
a dataset with fine-grained entailment annotations,
for our evaluation due to its task similarity with neu-
tral token classification in Cond-NLI. SciEntsBank

was built to assess student answers, and formatted
as an entailment task by taking a student answer
as a premise and a reference answer as hypothesis.
It annotated if a facet of the hypothesis is entailed
by the premise, where a facet is a tuples consisting
of two words. Following a data filtering process
similar to one used in SemEval-2013 (Dzikovska
et al., 2013), the test split contained 9,974 ‘Ex-
pressed’ and 10,516 ‘Unaddressed’ facet-level an-
notations.

4 Partial-Attention NLI Model

The typical effective approach for text-pair classi-
fication, such as the NLI task, using Transformer-
based language models such as BERT (Devlin et al.,
2019), is by concatenating the text pair as input,
which we refer to as full cross-encoder BERT.
Specifically, cross-encoder BERT takes the con-
catenation of premise p and hypothesis h, denoted
by p ◦ h, taking the [CLS] token vector as sentence
representation, and outputs classification probabil-
ity y as:

y = f(p ◦ h). (1)

Output y in the NLI task is a 3-dimensional vec-
tor representing the probabilities of the entailment,
neutral, and contradiction classes.

ρ1

BERT

p h1

ρ2

BERT

p h2

Gross national saving has increased over the past 5 years.

Gross national saving [MASK] this year.

was highest

Agg

y

Figure 1: The architecture of proposed PAT model. p
represents the tokens of the premise. h1 and h2 are
subsets of hypothesis tokens. Agg combines two inter-
mediate output ρ1 and ρ2 as in Eq. 5.

We propose the Partial-ATtention model, PAT,
that predicts the NLI label for p and h based on two
intermediate NLI labels for two subsequences of
h. Specifically, the hypothesis h is partitioned into
two subsequences h1 and h2. Premise p is sepa-
rately concatenated with h1 and h2 and fed into the
encoder f ′, which outputs intermediate predictions
ρ1 and ρ2, respectively. Each intermediate output is



ρ1
Entailment Neutral Contradict

ρ2

Entailment Entailment Neutral Contradict

Neutral Neutral Neutral Contradict

Contradict Contradict Contradict Contradict

Table 2: Logical behavior for combining the intermedi-
ate NLI decisions. Gray cells show the final NLI label.

a probability distribution over three classes. The in-
termediate NLI labels are then aggregated to obtain
the final NLI label for the pair p and h:

g(p, h) = Agg(ρ1, ρ2) (2)

ρ1 = f ′(p ◦ h1), ρ2 = f ′(p ◦ h2), (3)

where f ′ has the same architecture as the function
f in Eq. 1, but is trained to be robust to partial
text segments. The function Agg(.) combines the
intermediate outputs to predict the final NLI label.
Figure 1 shows the PAT architecture.

Partitioning hypothesis. For training, h is par-
titioned by randomly selecting two indices is and
ie, where is ≤ ie. h1 is built from tokens is to ie
of h. h2 is built by concatenating two segments of
h with a [MASK] token between them: token 1 to
is − 1 and token ie + 1 to the last token of h.

Combining intermediate decisions. The ex-
pected logical behavior of the aggregation func-
tion, when each intermediate decision is discrete,
is shown in Table 2. For example, when both inter-
mediate decisions, ρ1 and ρ2, are entailment (the
probabilities for entailment are close to 1), the final
decision y should be entailment (entailment proba-
bility is close to 1). If one of the two intermediate
decisions, for instance ρ1, is neutral (contradiction)
while the other is entailment, then the combined
decision inherits the label of ρ1. If one is neutral
and the other is contradiction, the final decision
should be contradiction. This is similar to the meth-
ods proposed by Wu et al. (2021) and Stacey et al.
(2022), which are motivated by fuzzy logic.

To implement this logical behavior, we first
model Table 2 with an integer matrix

M =

⎡⎣0 1 2
1 1 2
2 2 2

⎤⎦ , (4)

where entailment, neutral and contradiction are rep-
resented as 0, 1 and 2, respectively. Based on this
matrix, we then build a one-hot representation T .
T is a rank 3 tensor where Tijk = 1 if Mij = k

MultiNLI SNLI SciTail
Cross Encoder 0.829 0.887 0.925
PAT 0.793 0.870 0.889
+ fuzzy logic 0.763 0.844 0.860
+ four segments 0.744 0.831 0.818

Table 3: Classification accuracy of the cross-encoder
baseline, proposed PAT, and alternative architectures
(ablation study) for sentence-pair NLI.

and Tijk = 0 otherwise. The final NLI label y is
obtained by the matrix multiplication:

Agg(ρ1, ρ2) = ρT1 · T · ρ2. (5)

Cond-NLI. Once the PAT model is trained, the
intermediate decision predictor f ′ can be used
to predict labels for any arbitrary subsequence s
within a hypothesis, as it would treat p ◦ s similarly
to either p ◦ h1 or p ◦ h2.

While our goal is to predict a label for an individ-
ual token of h, only feeding one token to the model
is not ideal due to lack of contextual information.
Instead, we consider longer spans that contain the
token in h. The tokens’ final label is determined by
combining the labels of these spans.

Specifically, we used sliding windows of size 1,
3 and 6 tokens with a stride of 1. Let Si denote
the set of subsequences that contain the i-th token
of h. The probability vector ci indicating three
NLI classes of i-th token of h with respect to p is
predicted as:

ci =
1

|Si|
∑︂
s∈Si

f ′(p ◦ s), (6)

where f ′(p ◦ s) is a probability vector of three
classes from the intermediate predictions of PAT.

5 Experiments

Experimental Settings. Both the full cross-
encoder NLI (Eq. 1) and the PAT models are trained
by fine-tuning the BERT-base model (Devlin et al.,
2019) on the MultiNLI dataset (Williams et al.,
2018) for one epoch, as more epochs are expected
to result in over-fitting and lower performance on
the BioClaim dataset. For perturbations and
token-level enumerations, sentences are tokenized
by spaces instead of BERT’s subword tokenizer.

5.1 NLI sentence-pair classification
We compare the accuracy of the full cross-encoder
BERT and PAT for the original NLI task over



three datasets MultiNLI, SNLI (Bowman et al.,
2015), and SciTail (Khot et al., 2018). Both mod-
els are separately trained and tested on each of the
datasets.

Table 3 summarizes the accuracy of the PAT
and the full cross-encoder models. PAT shows 2%
to 4% lower accuracy than the full cross-encoder
model, however intermediate decisions enhance the
interpretability of its predicted NLI class.

We also used the accuracy of the NLI task for
an ablation study to compare different design as-
pects of our PAT model, as a higher NLI accuracy
is likely to result in good performance for Cond-
NLI under similar data distributions. Table 3 in-
cludes the accuracy of ablated versions of the PAT
model. The “+ fuzzy logic” model replaces the our
aggregation function in Eq. 5 with the one from
EPR (Wu et al., 2021), a phrased-based NLI model.
The “+ four segments” model, in addition to the
previous change, splits the hypothesis into four
pieces instead of two in PAT. This is based on the
observation that EPR model splits hypothesis into
an average of four pieces in the SNLI. We observe
that replacing our strategies with those used in the
existing models results in lower accuracy over all
datasets.

5.2 Evaluation Metrics for Cond-NLI

We report accuracy and F1 score as the main met-
rics for the evaluation of Cond-NLI. For SciEnts-
Bank, we report macro-averaged F1 which is av-
erage of F1 scores for each of ‘Expressed’ and
‘Unaddressed’ labels (Dzikovska et al., 2013).

Many of the baseline methods such as LIME
or SLR, assign (importance) scores to tokens, and
do not provide binary class labels. To perform a
meaningful comparison that demonstrates the po-
tential of each method, we convert token scores into
binary class labels by applying a threshold crite-
rion; tokens are assigned to a specific class depend-
ing on whether their scores exceeds the predefined
threshold. The threshold is determined through
evaluating multiple candidate values. The chosen
threshold for each model is the one that maximizes
the model’s performance on the validation set.

5.3 Baseline methods

We address three research questions in our evalua-
tion. Baseline methods are selected and described
based on the research question we aim to address.

RQ1 Is PAT more effective than the lexical

match or embedding similarity approaches in clas-
sifying neutral/entailed tokens?

Neutral tokens are the ones not entailed by the
other sentence in a pair. If a token pair from two
sentences has similar meanings (high semantic sim-
ilarity), one can expect that the tokens are less
likely to be neutral. Thus, we consider exact match
and word2vec (Mikolov et al., 2013) as baselines
to predict neutral/entailed tokens

A token’s entailment score with respect to a sen-
tence is determined by its highest similarity to the
other sentence’s tokens. For this purpose, we build
a similarity matrix S|p|·|h| where Sij indicates the
similarity of the i-th token in p to the j-th token in
h. In case of exact match, Sij is a binary value indi-
cating whether the two tokens are the same or not.
With word2vec, Sij indicates the cosine similarity
between embeddings of pi and hj . The entailment
score of the j-th token in h, hj , with respect to
p is computed as maxi Sij . The neutral score is
computed as one minus the entailment score.

In SciEntsBank, a facet s is composed of two
tokens of h and we compute the span entailment
score as an average of two tokens’ entailment score.

RQ2 Is PAT more effective than adapting the
existing models for solving Cond-NLI?

First, we investigate if the feature-attribution ex-
planation models (Ribeiro et al., 2016; Zeiler and
Fergus, 2014; Kim et al., 2020) can solve Cond-
NLI. These methods assign an importance score
to each input feature based on its contribution to
the predicted class probability. Given a premise-
hypothesis pair and an NLI model, we use feature
attribution explainers to obtain importance scores
of input tokens to the predicted probability for the
neutral class by the NLI model. Interpreting these
importance scores as tokens’ neutral scores, feature
attribution explainers can solve the Cond-NLI task.

We include the following perturbation-based
methods that are either widely-used for explanation
of a black-box classifier or specifically designed for
explanation of the NLI task. LIME (Ribeiro et al.,
2016) is a widely-used explanation method which
attributes the model’s prediction to input features
(tokens in the NLI task). Occlusion (Zeiler and
Fergus, 2014) removes one token at a time and mea-
sures the output changes to score the importance
of the removed token. SE-NLI (Kim et al., 2020)
is an explanation model that generates token-level
explanations for the NLI task. It uses BERT token
representation as a feature to predict the impor-



tance score for each token. The training objective
for importance prediction is to predict the change
in the NLI scores when the token is deleted.

SLR (Span-Level Reasoning) (Stacey et al.,
2022) is an NLI model that makes explicit span-
level predictions. However, its span granularity is
restricted because it divides hypothesis into spans
at noun phrase boundaries. Nevertheless, to demon-
strate the limitations of SLR, we converted their
span predictions into a token or facet level by using
a method similar to Equation 6.

Beyond feature-attribution explanation methods,
we consider adapting the full cross-encoder NLI
model for solving Cond-NLI. The assumption is
that if a hypothesis span s is neutral against a
premise p, then the NLI model would predict neu-
tral on (p, s), where span s alone is treated as a
hypothesis. This baseline can demonstrate the ad-
vantage of function f ′ in Eq. 3 over function f in
Eq. 1. We refer to this baseline as Token-entail.
Token-entail is different from our PAT model in
two ways; it uses the full cross-encoder model in
Eq. 1 with only a single token as a hypothesis while
our model uses sub-sequences of variable length
as hypothesis. We did not compare against the full
cross-encoder model when the hypothesis is a sub-
sequence of longer length, because cross-encoder
is not robust to such sub-sequences as input and its
performance drops significantly.

We developed the Co-attention baseline in-
spired by the work of Jiang et al. (2021). Co-
attention uses the attention scores from a Trans-
former encoder as a token similarity proxy. The
intuition is that in an NLI trained model, a high
attention score between a token pair across two
sentences indicates that the tokens are likely se-
mantically similar, which makes their representa-
tions can be compared through attention. Thus, a
token that is neutral is likely to have small atten-
tion scores to the tokens of the other sentence. The
normalized attention scores of a token to the tokens
of the other sentence are averaged over all self-
attention heads in all layers. The obtained scores
are used as similarity matrix S, similar to the exact
match baseline.

RQ3 How does PAT compare against GPT-3
based models?

InstructGPT (Ouyang et al., 2022) and Chat-
GPT (OpenAI, 2022), which are fine-tuned ver-
sions of the large language model GPT-3 (Brown
et al., 2020)), have shown good zero-shot per-

Neutral Contradiction
F1 Acc F1 Acc
Similarity-based

Exact match 0.647† 0.538‡ - -
word2vec 0.645† 0.575‡ - -

NLI-based
Co-attention 0.644‡ 0.538‡ - -

LIME 0.639‡ 0.538‡ 0.277‡ 0.872
Occlusion 0.632‡ 0.538‡ 0.246‡ 0.859‡

SENLI 0.632‡ 0.541‡ 0.292‡ 0.866
SLR 0.624‡ 0.538‡ 0.280‡ 0.859‡

Token-entail 0.638‡ 0.538‡ 0.248‡ 0.866‡

PAT 0.657 0.622 0.414 0.871
Large language model

InstructGPT 0.593‡ 0.673‡ 0.435 0.856‡

ChatGPT 0.624‡ 0.657‡ 0.459 0.846‡

Table 4: Cond-NLI: neutral token and contradiction to-
ken classification results on BioClaim. ‡ and † indicate
that the difference between the method and PAT is sig-
nificant at p < 0.01 and p < 0.05.

formance in many downstream tasks. To solve
Cond-NLI, we used the task instruction used for
BioClaim annotation and a claim pair to build
a prompt to the LLMs. The LLMs are asked to
generate words that correspond to either neutral
or contradiction (Figure 2) . For SciEntsBank, we
included a student answer, a reference answer, and
a facet word pair in the prompt (Figure 3) and then
asked the LLMs to determine if the facet is entailed
by the student’s answer.

The implementation details of the baseline meth-
ods are described in Appendix A.

5.4 Results

Tables 4 and 5 show the performance of all
compared methods on the Cond-NLI over the
BioClaim and SciEntsBank (Dzikovska et al.,
2013) datasets. On both datasets, the proposed
method, PAT, outperforms other NLI-based meth-
ods with the only exception of LIME on contra-
diction in terms accuracy. However, this gap is
not statistically significant and Cond-NLI largely
outperforms LIME when evaluated with F1.

We suggest the following reasons for the poor
performance of explanation models LIME, Occlu-
sion, and SE-NLI on the Cond-NLI, especially for
the neutral class. First, the hypothesis contains
many tokens that are not entailed. Perturbing a
small number of tokens is likely to lead to the
partial removal of neutral tokens. Such pertur-



UA UD UQ Mean
Similarity-based

Exact match 0.733 0.792 0.753‡ 0.759
word2vec 0.753 0.780 0.756‡ 0.763

NLI-based
Co-attention 0.746 0.700‡ 0.817 0.754

LIME 0.635‡ 0.673‡ 0.663‡ 0.657
Occlusion 0.494‡ 0.488‡ 0.404‡ 0.462

SENLI 0.542‡ 0.547‡ 0.600‡ 0.563
SLR 0.722‡ 0.713‡ 0.698‡ 0.711

Token-entail 0.714‡ 0.721‡ 0.713‡ 0.716
PAT 0.763 0.778 0.826 0.789

Large language model
ChatGPT 0.655‡ 0.687‡ 0.680‡ 0.674

Table 5: Macro-averaged F1 score on the partial entail-
ment dataset SciEntsBank. UA (Unseen Answers), UD
(Unseen Domain), and UQ (Unseen Question) are splits
of the test set. ‡ indicates that the difference between
the method and PAT is significant at p < 0.01.

bations would cause negligible changes in model
predictions. Simultaneously removing all neutral
tokens is also unlikely to have a desirable impact
on the model decision as large removal increases
the chance of out-of-distribution inputs and thus
unreliable model decision for explanation (Hase
et al., 2021).

Second, many of conditionally-compatible pairs
are predicted as contradictory by the NLI models
despite the existence of tokens that indicate differ-
ent conditions. In this case, identifying different
conditions becomes more challenging as the neu-
tral probability predicted by the NLI model is very
small and effect of not-entailed tokens for the neu-
tral probability cannot be observed.

SLR (Stacey et al., 2022) also underperformed
PAT due to its fixed span segmentation, limiting
its ability to infer entailment information for arbi-
trary tokens. The performance of the token-entail
method, which is based on the full cross-encoder,
is not as good as PAT. We further inspected its
outputs and found that the token-entail method pre-
dicts high neutral scores for functional and generic
words, such as ‘patient’, ‘study’, and ‘factors’, that
are implicitly entailed. These failure examples im-
ply that the full cross-encoder model is not robust
to partial hypothesis segments and cannot provide
meaningful predictions for them.

Exact match and word2vec outperform other
NLI-based methods for predicting neutral tokens

in terms of F1 scores on BioClaim and SciEnts-
Bank. However, they cannot be used to predict
contradicting tokens, thus their performance for
contradiction is not listed. They outperform PAT in
Unseen Domain (UD) split of SciEntsBank.

On BioClaim, PAT shows comparable perfor-
mance to InstructGPT and ChatGPT, since the su-
periority between them varies depending on the
metrics and token classes. Note that GPT-3 has
175 billion parameters (Brown et al., 2020), which
is more than 1,000 times larger than our proposed
model having 110 million parameters (BERT-base).
On SciEntsBank, ChatGPT is not effective, possi-
bly due to the difficulty in connecting a word pair
(facet) to the student answer and reference answer.
This format might not be frequent in the data that
ChatGPT was trained on.

In BioClaim, the improvements of PAT over all
other methods are statistically significant at p-value
of 0.01, except for similarity-based methods based
on F1, where the significance level is at 0.05. Note
that none of the NLI-based method outperformed
PAT with statistically significance. The statistically
significance was measure by the paired t-test for
accuracy and bootstrapping test for the F1 score.

We also evaluate our PAT on e-SNLI (Cam-
buru et al., 2018) and MNLIEx (Kim et al.,
2020), two token-level annotated datasets, to eval-
uate its robustness. Although these datasets lack
conditionally-compatible sentence pairs, limiting
their use for comparing models on the Cond-NLI
task, they measure the robustness of PAT across
diverse datasets. Our model shows competitive per-
formance with explanation methods such as LIME
and SE-NLI, demonstrating the generalizability of
our model. Detailed results are in the appendix C.2
(Tables 7 and 8).

6 Conclusion

We proposed PAT, a partial attention model, ca-
pable of attributing the model decision into the
parts of input. Using PAT, we address the Cond-
NLI task, a token-level prediction task that ex-
plains conditionally-compatible claims. We built
the BioClaim dataset for Cond-NLI . The pro-
posed method shows the accuracy up to 8% higher
than the best NLI-based baseline method in predict-
ing condition tokens.
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Limitations

The proposed PAT model has limitations compared
to the full cross-encoder. First limitation is re-
lated to combining intermediate predictions in Eq 5.
When intermediate predictions of neutral and con-
tradiction are combined, the current model pre-
dicts contradiction while neutral predictions are
also possible. Similarly, when both intermediate
predictions are contradiction, it is possible that they
cancel out each other as double negation and have
entailment or neutral as the gold label. As identi-
fied in Appendix C.3, partitioning hypothesis has
potential issues that may happen with different fre-
quencies in different datasets.
BioClaim dataset has a few limitations. Anno-

tators have different preferences toward including
tokens that could be chunked as syntactic units. For
example, one annotator selected “stenosis and hy-
pertension” as neutral tokens, while another select
“stenosis” and “hypertension”, excluding “and”.
This could prohibit any system from achieving very
high scores.

Due to the unbalanced distribution of claims an-
swering a question with “yes” versus those with
“no”, some claims are repeated more frequently
than others. While this does not affect our evalua-
tions, it could potentially serve as a limiting factor
for certain applications.
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A Implementation details

A.1 Baselines

Neutral token prediction with similarity scores

Neutral tokens are the ones that are not entailed
by the other sentence in a pair. If a token pair
from two sentences has similar meanings (high
semantic similarity), one can expect that the tokens
are less likely to be neutral. For this purpose, we
first build a similarity matrix S ∈ R|p|×|h| where
Sij indicates the similarity of the i-th token in p to
the j-th token in h. In case of exact match, Sij is a
binary value indicating whether the two tokens are
the same or not. With word2vec, Sij indicates the
cosine similarity between embeddings of pi and
hj .

The entailment score of the j-th token in h, hj ,
with respect to p is computed as.

Entail(p, h, hj) = max
i

Sij (7)

The neutral token score is computed as one mi-
nus the entailment score:

Neutral(p, h, hj) = 1− Entail(p, h, hj) (8)

Word2vec computes the word embedding sim-
ilarity scores between all token pairs across two
sentences. We adopted the widely used version
“GoogleNews-vectors-negative300.bin”. For each
token, a negative of the maximum similarity score
was used as a score for mismatch. If there is no
embedding for the word, we check for the exact
match and assign a score of 1 if there is the exact
match. Otherwise, we assign the score of 0.

Co-attention

To extract attention scores we used the same cross-
encoder NLI model as used for other NLI-based
methods. Co-attention scores tokens based on the
attention scores between tokens. The scoring is
done in the following steps.

1. We collect normalized attention probabilities.
As a result we get a four dimension tensor of
W ∈ RL×L×M×H , where L is the sequence
length, M is the number of layers, and H is
the number of attention heads in each layer.
Wijlk denote the attention probability for the
i-th token to attend to the j-th token in the
k-th attention head of the l-th layer.



2. We average W over the last two dimensions,
which corresponds to different layers and
heads, and get a two-dimensional matrix A.

Aij =
∑︂
l

∑︂
k

Wijlk (9)

3. Let |p| be the number of tokens in the premise
and |h| to be the number of tokens in the hy-
pothesis. When a [CLS] token and [SEP]
tokens are combined with the premise and
hypothesis tokens, the premise tokens are lo-
cated from the second token to (|p| + 1)-th
token, and the hypothesis tokens are located
from (|p|+ 3)-th token to (|p|+ |h|+ 2)-th.

Then, A2:|p|+1,|p|+3:|p|+|h|+2 indicates
the averaged probability that premise to-
kens to attend to hypothesis tokens, and
A|p|+3:|p|+|h|+2,2:|p|+1 indicates averaged
probability that hypothesis tokens attend to
premise tokens.

4. By transposing the latter matrix and adding it
to the first, we obtain S. In this resultant ma-
trix, Sij indicates degree of attention between
the i-th token of the premise and j-th token
of the hypothesis. Finally, we compute entail-
ment and neutral scores using Equations 7 and
8.

Note that Co-attention method is also not capable
of predicting contradiction tokens.

LIME
LIME (Ribeiro et al., 2016) is a widely used expla-
nation method that attributes the model’s prediction
to input features (tokens).

The LIME method begins by tokenizing a hy-
pothesis sentence into a sequence denoted by
T1, T2, ..., Tn. Subsequently, some of the tokens
are perturbed (removed). This perturbation is rep-
resented by a binary vector X; if Ti is removed,
Xi = 0, if Ti remains, Xi = 1. The tokens remain-
ing form a perturbed hypothesis, which is then
concatenated with the premise and fed into the
NLI model. This model outputs probabilities for
the three NLI labels. If the goal is to predict neu-
tral tokens, the neutral probability is selected as
y. This process results in an (X, y) pair for each
perturbation. LIME collects samples of these pairs
and trains a linear regression model represented by
y = Wx+ b. The coefficient vector W serves as a
feature attribution vector, where each Wi indicates

the contribution of the corresponding i-th token Ti

to the NLI model’s neutral probability. This attri-
bution score is subsequently used as a token score
for Cond-NLI prediction.

We used the python library version3 of LIME
and used 500 as the number of samples.

SE-NLI

SENLI (Kim et al., 2020) is an NLI model
which generates token-level explanations (attribu-
tion scores) using BERT’s token representation. It
is trained via multi-task learning alongside the text-
pair classification model. We used the publicly
available implementation of the SE-NLI model.4

For the experiments on BioClaim, we trained
with the default hyperparmeters. For MNLIEx and
e-SNLI, we listed the numbers reported by Kim
et al. (2020), after checking that our implementa-
tion shows scores similar to their reported ones.
SENLI model generates a score for each of sub-
word tokens of BERT. If a word contains multiple
subword tokens and we averaged the scores.

Span-Level Reasoning (SLR)

The Span-Level Reasoning (SLR) is an NLI model
that makes explicit span-level predictions, and has
demonstrated more robust performance on NLI
datasets (Stacey et al., 2022). Unlike our PAT
model, the spans of SLR are split only by noun
phrases as boundaries, limiting the granularity of
the information. Nevertheless, to demonstrate the
limitations of SLR, we applied the scoring method
similar to Equation 6.

We trained the SLR model On the MultiNLI
dataset using the publicly released code. The
trained model showed accuracy of 0.81 on the de-
velopment set, which we accepted as successful
training.

Let hi denote the [CLS] token representation
acquired by encoding i-th span by BERT. hi is en-
coded by the MLP to produce ãn,i and ãc,i. These
are termed “unnormalized attention weights” for
neutral and contradiction labels, respectively. ãn,i
and ãc,i are subsequently combined with other
span-level scores to decide the sentence-level pre-
dictions for the evaluation. Similar to Equation 6,
we compute a token-level score for Cond-NLI as
the mean of the span-level scores containing the

3https://pypi.org/project/lime/
4https://github.com/youngwoo-umass/

SENLI

https://pypi.org/project/lime/
https://github.com/youngwoo-umass/SENLI
https://github.com/youngwoo-umass/SENLI


token. A token i’s score for neutral (ni) and contra-
diction (ci) are computed as

ni =
1

|Si|
∑︂
s∈Si

ãn,s (10)

ci =
1

|Si|
∑︂
s∈Si

ãc,s, (11)

where Si denotes the set of indices for the spans
that include token i.

For the entailment score for SciEntsBank, we
used 1− ni as the entailment score for the token i.

InstructGPT
We used OpenAI’s fine-tuned GPT-3 model, text-
davinci-003, which has 153 billion parameters. We
used different prompt instructions for predictions
of the neutral and contradiction tokens. The prompt
instructions are built by modifying the instructions
that were provided to the annotators for building
our BioClaim dataset. Figure 2 shows the ex-
ample of the prompt given to the model to predict
different condition (neutral) tokens. To identify
where the model generated words appear in the
claim, we used word level exact match. The model
outputs are automatically parsed. When the pars-
ing failed due to slightly different formats of model
output, we manually modified the format to parse
it. We did not apply InstructGPT over the SciEnts-
Bank dataset, as we found ChatGPT outperforms
that over the BioClaim dataset.

ChatGPT
We utilized ChatGPT, specifically the “gpt-3.5-
turbo” version. As we did not have access to the
GPT4 API, this version was our primary choice.
We provided ChatGPT with instructions similar to
those given to InstructGPT. The only difference
is that we specified output format to be JSON, as
ChatGPT has demonstrated the ability for generat-
ing output in the JSON format. To apply ChatGPT
for the facet-level partial entailment task of SciEnts-
Bank, we used the prompt illustrated in Figure 3.

A.2 Experiment setups
A.2.1 Hyperparameters for NLI model

training
For both of the cross-encoder and PAT models, we
used the same hyperparameters: batch size of 32,
learning rate of 10−5, and used 10% of the total
training steps as warming up steps. We used the
maximum sequence length of 300 instead of default

512 to reduce the computational costs. The other
hyperparameters and setups are the same as the
publicly available implementation of BERT (De-
vlin et al., 2019).

A.3 GPU Hours and Infrastructure

We used 4 GPUs, mostly GTX 1080 Ti or similar
capacity devices which have less than 12GB of
VRAM per each. All of our training took less than
8 hours.

B BioClaim

In this section, we describe how our dataset
BioClaim is constructed and how it is intended
to be used. This section is the extension of subsec-
tion 3.2

B.1 License

BioClaim will be released under Creative Com-
mons Attribution-Noncommercial-Share Alike.
We follow the license of the PCC dataset (Alamri
and Stevenson, 2016) that we used, which is
released under Creative Commons Attribution-
Noncommercial-Share Alike 2.0 UK England &
Wales License.

B.2 Intended use

BioClaim is mainly annotated to evaluate the
performance of a NLP system on token-level task
of Cond-NLI. The dataset can be used for train-
ing of token-level predictions or even to assist the
sentence-pair NLI classification task.

B.3 Dataset building

Our annotation spans 23 topics (question groups).
We allocated 12 topics for the development set and
11 topics for the test set. The split information will
be released along with the corpus. We recruited
undergraduate students in a nursing college as an-
notators.

To resolve the different token-level annotations
from annotators, we selected the annotation with
more tokens annotated, with expectation that miss-
ing conditions tokens would be more likely than
including non-condition ones. The disagreements
often appeared by different tendency of including
neighboring tokens of the main tokens, such as an-
notating “indicate a significant relationship” versus
only “significant relationship”.



In each of the examples, two claims extracted from research paper abstracts will be
shown. The given two claims seem to be contradictory as they are implying opposite
results about the same question. Precisely though, the two claims may have been
obtained for different population or intervention details that make it possible that
both claims to be true. We want to annotate the tokens (words) that express different
conditions.

Claim 1: We conclude that in women with preeclampsia, prolonged dietary supple-
mentation with l-arginine significantly decreased blood pressure through increased
endothelial synthesis and/or bioavailability of NO.
Claim 2: Oral L-arginine supplementation did not reduce mean diastolic blood
pressure after 2 days of treatment compared with placebo in pre-eclamptic patients
with gestational length varying from 28 to 36 weeks.

Condition tokens in Claim 1: women, preeclampsia, prolonged, dietary
supplementation, l-arginine, increased, endothelial synthesis, bioavailability, NO

Condition tokens in Claim 2: pre-eclamptic patients, gestational length, 28 to 36

weeks

Figure 2: An example of the prompt given to the InstructGPT model to solve Cond-NLI neutral token prediction.
The text that is colored with yellow are generated by the model.

Student answer: By letting it sit in a dish for a day.
Reference answer: The water was evaporated, leaving the salt.
Facet: (evaporated, water)

The facet is a relation extracted from the reference answer. In the example above,
does the student answer entail the given facet? Answer with Yes/No

Figure 3: An example of the prompt given to the ChatGPT model to solve partial entailment task for SciEntsBank
dataset.



Figure 4: Web annotation interface



C Additional Experiments

C.1 BioClaim evaluation more metrics
Table 6 shows the experiments result on BioClaim
that additionally contain precision, recall and MAP
(Mean average precision) as metric. MAP is com-
puted by taking the mean of average precision for
each sentences.

C.2 e-SNLI and MNLIEx
e-SNLI (Camburu et al., 2018) and MNLIEx (Kim
et al., 2020) are two token-level annotated datasets
built on top of the SNLI and MultiNLI datasets,
respectively. These datasets do not include
conditionally-compatible sentence pairs, thus they
cannot be used to compare the performance of dif-
ferent models on the Cond-NLI task. However, we
applied our PAT model on these datasets to mea-
sure its robustness in other datasets. For MNLIEx,
we used the models trained on MultiNLI and for
e-SNLI, we used the models trained on SNLI.

Table 7 and 8 show the performance of PAT and
baseline models on token-level explanation datasets
e-SNLI and MNLIEx. For this evaluation, we use
the metrics and categories that are used in the pre-
vious works (Thorne et al., 2019; Kim et al., 2020).
Perturbation-based explanation models, LIME and
SE-NLI, achieve high performance on these two
datasets. The results demonstrate that our PAT
does not significantly underperform the explana-
tion model SE-NLI that is designed for and trained
on the NLI datasets.

C.3 Hypothesis partitions that cause error
To get insights about the potentials and possible
improvements of PAT, we analyze how limited con-
texts in hypothesis partitions impact the model be-
havior. For this analysis, we compare PAT with the
full cross-encoder on the sentence-pair NLI classi-
fication over the MultiNLI dataset. We define the
failure of PAT as cases whose labels are correctly
predicted by the full cross-encoder, but not by PAT.
In training and evaluation of PAT for the NLI task,
we use one random partitioning of a hypothesis.
However, failure cases are not very common with
single random partitions. Thus, we enumerated all
possible partitions of the hypothesis of an instance
for collecting failure cases.

We manually analyzed failure cases to under-
stand how the absence of full hypothesis context
results in different predictions by the PAT com-
pared to the full cross-encoder. In most failure

cases, it is possible to guess how the PAT model
interprets each partition. We classified the failure
cases that we could interpret into four categories as
follows with some examples shown in Table 9.

• Double negation: a hypothesis segment con-
tradicts the premise, however this contradic-
tion is negated by an additional negation ex-
pression present in the missing context of the
hypothesis.

• Alignment: an expression in a hypothesis seg-
ment is aligned with a wrong segment of the
premise, where the missing hypothesis con-
text would allow the correct alignment.

• Disambiguation: an expression in a hypoth-
esis segment is interpreted in a wrong sense,
mostly with incorrect parts of speech, where
the missing context would enable correct dis-
ambiguation.

• Contextual: The cases that cannot be catego-
rized into the above three categories.

This failure analysis provides insights into po-
tential strategies for improving PAT’s performance.
For example, the first two categories of failures
could be mitigated without changing the model
or current random partitioning. This could be
achieved by incorporating limited additional in-
formation into the hypothesis partitions, such as
syntactic structure of the missing contexts (first
case of Table 9) or the presence of negation or
quantifiers (second case). These modifications can
be made while keeping the PAT’s advantage of hav-
ing model decisions attributable to input segments.



Neutral tokens Contradiction tokens
Prec Recall F1 Acc MAP Prec Recall F1 Acc MAP

Random 0.462 1.000 0.632 0.538 0.517 0.140 1.000 0.246 0.860 0.251
Similarity-based

Exact match 0.518 0.863 0.647 0.565 0.597 - - - - -
word2vec 0.518 0.856 0.645 0.575 0.634 - - - - -

NLI-based
Co-attention 0.484 0.962 0.644 0.538 0.612 - - - - -

LIME 0.476 0.971 0.639 0.538 0.528 0.187 0.537 0.277 0.872 0.441
Occlusion 0.462 1.000 0.632 0.538 0.478 0.140 1.000 0.246 0.859 0.301

SENLI 0.462 1.000 0.632 0.541 0.513 0.180 0.763 0.292 0.866 0.462
SLR 0.462 0.963 0.624 0.538 0.587 0.220 0.384 0.280 0.859 0.429

Token-entail 0.471 0.988 0.638 0.538 0.624 0.164 0.510 0.248 0.866 0.363
Proposed 0.505 0.939 0.657 0.622 0.711 0.401 0.429 0.414 0.871 0.543

Large Language Model
InstructGPT 0.699 0.515 0.593 0.673 0.686 0.483 0.396 0.435 0.856 0.530

ChatGPT 0.631 0.616 0.624 0.657 0.644 0.453 0.467 0.459 0.846 0.541

Table 6: Full experiments of token-level inference performance of predicting neutral tokens and contradicting tokens
from the claim pairs of BioClaim. This table is an extended version of Table 4, while including additional metrics.
Precision and Recall used the same threshold which is optimized for the F1 score. Mean average precision (MAP)
is a ranking metric and independent of the threshold.

Conflict Match Mismatch
Method P@1 MAP Acc P@1 MAP Acc P@1 MAP Acc
LIME 0.637 0.618 0.799 0.905 0.777 0.597 0.735 0.731 0.601

SE-NLI 0.750 0.723 0.800 0.965 0.903 0.760 0.817 0.830 0.714
Token Entail 0.662 0.628 0.757 0.930 0.842 0.692 0.723 0.733 0.597

PAT 0.696 0.700 0.770 0.918 0.868 0.753 0.850 0.851 0.682

Table 7: Token prediction evaluated on MNLIEx (Kim et al., 2020) It show precision at 1 (P@1), mean average
precision (MAP), accuracy (Acc).

Premise Hypothesis
Method Precision Recall F1 Precision Recall F1
LIME 0.376 1 0.547 0.46 0.834 0.593

SE-NLI 0.525 0.726 0.609 0.492 1 0.66
Token-entail 0.422 1.000 0.560 0.515 1.000 0.649

PAT 0.443 0.939 0.562 0.562 0.959 0.664

Table 8: Token prediction evaluated on e-SNLI (Camburu et al., 2018) It show precision, recall, F1 on each of
premise and hypothesis. All three labels are averaged without differentiation.



Texts Category Gold Prediction
P: yeah well you’re a student right

Disambiguation Neutral Contradiction
H: Well you’re a mechanics student right?
P: She smiled back.

Double negation Neutral Contradiction
H: She was so happy she couldn’t stop smiling.
P: He turned and smiled at Vrenna.

Alignment Neutral Contradiction
H: He smiled at Vrenna who was walking slowly behind him with her mother.
P: One of our number will carry out your instructions minutely.

Contextual Entailment Neutral
H: A member of my team will execute your orders with immense precision.

Table 9: Examples of four frequent categories of PAT’s failures. The background colors on the hypothesis
indicate how the hypothesis is partitioned and what were the predictions for each of the parts. Red color indicates
contradiction, blue is for entailment, and yellow is for neutral. Note that the hypothesis is divided into two partitions
and one partition can have two text segments in it.

Predicted
E N C

Gold
E - 23.0 14.0 37.0
N 8.4 - 28.2 36.6
C 8.4 18.0 - 26.4

8.4 23.0 42.2

Table 10: Confusion matrix on the instances that are
considered hypothesis partition errors. E is for entail-
ment, N is for neutral, and C is for contradiction. The
numbers are percentages among the all error cases


