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Abstract

Estimating causal effects from nonexperimental data is a fundamental problem in
many fields of science. A key component of this task is selecting an appropriate
set of covariates for confounding adjustment to avoid bias. Most existing methods
for covariate selection often assume the absence of latent variables and rely on
learning the global causal structure among variables. However, identifying the
global structure can be unnecessary and inefficient, especially when our primary
interest lies in estimating the effect of a treatment variable on an outcome variable.
To address this limitation, we propose a novel local learning approach for covariate
selection in nonparametric causal effect estimation, which accounts for the presence
of latent variables. Our approach leverages testable independence and dependence
relationships among observed variables to identify a valid adjustment set for a target
causal relationship, ensuring both soundness and completeness under standard
assumptions. We validate the effectiveness of our algorithm through extensive
experiments on both synthetic and real-world data.

1 Introduction

Estimating causal effects is crucial in various fields such as epidemiology [Hernan and Robins| [2006],
social sciences [Spirtes et al., 2000], economics [Imbens and Rubin, [2015]], and artificial intelligence
[Peters et al., 2017, |Chu et al., 2021]]. In these domains, understanding and accurately estimating
causal relationships are vital for policy-making, clinical decisions, and scientific research. Within
the framework of causal graphical models, covariate adjustment, such as the use of the back-door
criterion [Pearll [1993]], emerges as a powerful and primary tool for estimating causal effects from
observational data, since implementing idealized experiments in practice is difficult [Pearl, |2009].
Formally speaking, let do(x) stand for an idealized experiment or intervention, where the values of X
are set to x, and f(y|do(x)) denote the causal effect of X on Y. A valid covariate is a set of variables
Z such that f(y | do(x)) = [, f(y | =,2) f(z)dz [Pearl, 2009, Shpitser et al., 2010]. Consider the
graph (a) in Figure. I} Z = {V5} is a valid covariate set w.r.t. (with respect to) the causal relationship
X =Y.

Given a causal graph, one can determine whether a set is a valid adjustment set using adjustment
criteria such as the back-door criterion [Pearl, [1993| 2009|]. The main challenge in covariate ad-
justment estimation is to find a valid covariate set that satisfies the back-door criterion using only
observational data, without prior knowledge of the causal graph. To tackle this challenge, Maathuis
et al.|[2009] proposed the IDA (Intervention do-calculus when the DAG (Directed Acyclic Graph) is
Absent) algorithm. This algorithm first learns a CPDAG (Complete Partial Directed Acyclic Graph)
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Figure 1: Example MAGs with treatment X and outcome Y. Nodes shaded in green represent a valid
adjustment set. (a) Both global search EHS and local search CEELS methods identify the adjustment
set. (b) Adapted from |Cheng et al.|[2022], CEELS fails to select the adjustment set despite the
presence of a COSO variable V7 (See Fig. 4 in|Cheng et al.| [2022]). (c) An example without a COSO
variable, where the adjustment set can still be found locally.

using the PC (Peter-Clark) algorithm [Spirtes and Glymour, [1991]], enumerates all Markov equivalent
DAGs, and estimates all possible causal effects of a treatment on an outcome. Additionally, with
domain knowledge about specific causal directions, one can further identify more precise causal
effects [Perkovic et al.,[2017} [Fang and Hel 2020]]. For instance, |Perkovic et al.| [2017]] proposed the
semi-local IDA algorithm, which provides a bound estimation of a causal effect when some directed
edge orientation information is available. To efficiently find covariates, a local method CovSel utilizes
criteria from |De Luna et al.|[2011]] for covariate selection [Haggstrom et al.| 2015]]. Though these
methods have been used in a range of fields, they may fail to produce convincing results in cases
with latent confounders, as they do not properly take into account the influences from latent variables
[Maathuis and Colombo, 2015]].

There exists work in the literature that attempts to select covariates and estimate the causal effect in
the presence of latent variables. [Malinsky and Spirtes| [2017] introduced the LV-IDA (Latent Variable
IDA) algorithm based on the generalized back-door criterion [Maathuis and Colombol |2015]]. This
algorithm initially learns a Partial Ancestral Graph (PAG) using the FCI (Fast Causal Inference)
algorithm [Spirtes et al., | 2000]], then enumerates all Markov equivalent Maximal Ancestral Graphs
(MAGs), and estimates all possible causal effects of a treatment on an outcome. Subsequently,
Hyttinen et al.| [2015]] proposed the CE-SAT (Causal Effect Estimation based on SATisfiability solver)
method, which avoids enumerating all MAGs in the PAG. Although these algorithms are effective,
learning the global causal graph is often unnecessary and wasteful when we are only interested in
estimating the causal effects of specific relationships.

Several contributions have been developed to select covariates for estimating causal effects of interest
without learning global causal structure. For instance, Entner et al.|[2013]] designed two inference rules
and proposed the EHS algorithm (named after the authors’ names) to determine whether a treatment
has a causal effect on an outcome. If a causal effect is present, these rules help identify an appropriate
adjustment set for estimating the causal effect of interest, based on the conditional independencies
and dependencies among the observed variables. The EHS method has been demonstrated to be both
sound and complete for this task. However, it is computationally inefficient, with time complexity of
O(t x 2'), where t is the number of observed covariates. It requires an exhaustive search over all
combinations of variables for the inference rules. More recently, by leveraging a special variable, the
Cause Or Spouse of the treatment Only (COSO) variable, combined with a pattern mining strategy
Agrawal et al.|[1994], (Cheng et al.| [2022]] proposed a local algorithm, called CEELS (Causal Effect
Estimation by Local Search), to select the adjustment set. Although the CEELS method is faster than
the EHS method, it may fail to identify an adjustment set during the local search that could be found
using a global search. For instance, considering the causal graphs (b) and (c) illustrated in Figure[T}
where {V2, V3, V,} and {V2, V3} are the valid adjustment sets w.r.t. the causal relationship X — Y,
respectively. The CEELS algorithm fails to select these corresponding adjustment sets, whereas the
EHS method is capable of identifying them.

It is desirable to develop a sound and complete local method to select an adjustment set for a causal
relationship of interest. Specially, we make the following contributions:

1. We propose a novel, fully local algorithm for selecting covariates in nonparametric causal effect
estimation, utilizing testable independence and dependence relationships among the observed
variables, and allowing for the presence of latent variables.



2. We theoretically demonstrate that the proposed algorithm is both sound and complete, and can
identify a valid adjustment set for a target causal relationship (if such a set exists) under standard
assumptions, comparable to global methods.

3. We demonstrate the efficacy of our algorithm through experiments on both synthetic and real-
world datasets.

2 Preliminaries

2.1 Definitions and Notations

Graph. A graph G = (V, E) consists of a set of nodes V. = {Vi,...,V,} and a set of edges E. A
graph G is directed mixed if the edges in the graph are directed (—), or bi-directed (+). A causal
path (directed path) from V; to V; is a path composed of directed edges pointing towards Vj, i.e. ,
Vi = ... = Vj. A non-causal path from V; to V; is a path where at least one edge has an arrowhead
at the mark near V;. e.g. , V; < Vi < ... = V;_1 = V;. Apath 7 from V] to V; is a collider
path if all the passing nodes are colliderson m, e.g., V; = Vip1 < ... < V1 < V. Vjis called
an ancestor of V; and V; is a descendant of V; if there is a causal path from V; to V; or V; = V. A
directed mixed graph is called an ancestral graph if the graph does not contain any directed or almost
directed cycles. An ancestral graph is a maximal ancestral graph (MAG, denoted by M) if there
exists a set of nodes that m-separates any two non-adjacent nodes. A MAG is a DAG if it contains
only directed edges. A directed edge X — Y in M is visible if there is a node S not adjacent to
Y, such that there is an edge between S and X that is into X, or there is a collider path between
S and X that is into X and every non-endpoint node on the path is a parent of Y. See Figure[§]in
Appendix [B] for an example. Otherwise, X — Y is said to be invisible. A visible edge X — Y
means that there are no latent confounders between X and Y. All directed edges in DAGs are said to
be visible. To save space, the detailed graph-related definitions are provided in Appendix [B]

Markov Blanket. The Markov blanket of a variable Y is the smallest set conditioned on which all
other variables are probabilistically independent of Y [H Graphically, in a MAG, the Markov blanket
of anode Y, denoted MB(Y'), is unique and comprises: 1) the adjacent nodes of Y'; and 2) all the
non-adjacent nodes that have a collider path to Y in the MAG. Figure |2 specifically illustrates the
Markov blanket of the node Y in the MAG. The nodes shaded in green belong to MB(Y).

Figure 2: The illustrative example for MB in a MAG, where Y is the target of interest and the green
nodes belong to MB(Y).

Notations. We use Adj(V;), Pa(V;), and De(V;), to denote the set of adjacent, parents and
descendants of node V;, respectively. We denote by (X, Y") an ordered variable (node) pair, where X
is the treatment and Y the outcome. We denote X Il Y|Z as “X is statistically independent of Y
given Z”. Similarly, X U Y|Z denotes that X is not statistically independent of Y given Z. The
main symbols used in this paper are summarized in Table|l|in the Appendix

2.2 Adjustment Set

The covariate adjustment method is often used to estimate causal effects from observational data
[Pearl, [2009]. Throughout, we focus on the causal effect of a single treatment variable X on the

'See Appendix for more details of Markov blanket.



single outcome variable Y. We next introduce a more general graphical language to describe the
covariate adjustment criterion, namely the generalized adjustment criterion [Perkovi et al.| 2018]].
Before providing its definition, we first introduce two important concepts in the graph, as they will be
used in the description of this definition.

Definition 1 (Amenability [[Van der Zander et al., 2014, |Perkovi et al., [2018])). Let (X,Y) be an
ordered node pair in a MAG. The MAG is said to be adjustment amenable w.r.t. (X,Y) if all causal
paths from X to'Y start with a visible directed edge out of X.

Definition 2 (Forbidden set; Forb(X, Y') [Perkovi et al., 2018|]). Ler (X,Y") be an ordered node
pair in a DAG, or MAG G. Then the forbidden set relative to (X,Y') is defined as Forb(X,Y) =

(W' eV |W' e De(W), W lies on a causal path from X to'Y in G}.

Definition 3 (Generalized adjustment criterion [Perkovi et al., [2018])). Let (X,Y") be an ordered
node pair in a DAG or MAG G. A set of nodes Z. C 'V \ { X, Y } satisfies the generalized adjustment
criterion relative to (X, Y') in G if G is adjustment amenable relative to (X,Y ), ZNForb(X,Y) = 0,
and all definite status non-causal paths from X to'Y are blocked by Z. If these conditions hold, then
the causal effect of X on'Y is identifiable and is given byE]

_[f]a) if 2 =0,
f(ydo(:c))—{fzf(yx,z)f(z)dz otherwise. @

Note that the generalized adjustment
criterion is equivalent to the general-
ized back-door criterion of Maathuis
and Colombo| [2015]] when the treat-
ment X is a singleton[Perkovi et al.,
2018]]. Thus, condition 3 can be rep-
resented by the requirement that all
definite status back-door paths from
X to Y are blocked by Z in G.

V3
Example 1 (Generalized adjustment b
criterion). Consider the causal dia- (b)

gram shown in Figure. 3| (b). Accord- Figure 3: (a) An underlying causal DAG (adapted from Hég+
ing to Deﬁn{t{on@] the MAG satisfies  [g5trm| [2018]), in which Uy and Uy are unobserved variables.
the amenability condition relative to (b)) The corresponding MAG of the DAG shown in (a).
(X,Y), and Forb(X,Y) = {YV}

holds true in the graph. Then, the set

{V1,Va} is a valid adjustment set since, they can all block non-causal paths from X to'Y .

2.3 Problem Definition

We consider a Structural Causal Model (SCM) as described by [Pearl| [2009]. The set of variables
is denoted as V = {X, Y} U O U U, with a joint distribution P(V). Here, O represents the set of
observed covariates, and U denotes the set of latent covariates. Therefore, the SCM is associated
with a DAG, where each node corresponds to a variable in V, and each edge represents a function
f. Specifically, each variable V; € V is generated as V; = f;(Pa(V;),e;), where Pa(V;) denotes
the parents of V; in the DAG, and ¢; represents errors (or “disturbances”) due to omitted factors. In
addition, all errors are assumed to be independent of each other. Analogous to|Entner et al.| [2013]],
Cheng et al.[[2022], we assume that Y is not a causal ancestor of X [’|, and that O is a set of
pretreatment variables w.r.t. (X,Y") ,i.e., X and Y are not causal ancestors of any variables in O.

Remark 1. It is noteworthy that existing methods commonly employ the pretreatment assumption
[|Cheng et al., | 2022} |Entner et al.,[2013| \De Luna et al., 2011} \Vander Weele and Shpitser, (2011, [Wu
et al.| |2022|]. This assumption is realistic as it reflects how samples are obtained in many application
areas, such as economics and epidemiology [|Hill, 1201 1| Imbens and Rubin| |2015| |Wager and Athey|
2018]. For instance, every variable within the set O is measured prior to the implementation of the
treatment and before the outcome is observed.

*We present the notation for continuous random variables, with the corresponding discrete cases being
straightforward.
*Note that this assumption can be checked in practice using observational data, as discussed in Section



Remark 2. Recently, Maasch et al.| [2024|] attempted to relax the pretreatment assumption and
proposed the Local Discovery by Partitioning (LDP) method for identifying an adjustment set under
a set of sufficient conditions. However, the method may fail to identify valid adjustment sets in certain
cases where the EHS criterion succeeds, thereby limiting its completeness. For example, in the causal
graph (c) of Figurel[l| the LDP method fails to identify an adjustment set due to the violation of its
sufficient condition, even though the pretreatment assumption holds. Furthermore, experimental
results demonstrate that our proposed method remains effective on benchmark networks, even in
scenarios where the pretreatment assumption is violated (see SectionH).

Task. Under the standard assumptions of the causal Markov condition and the causal Faithfulness
condition. Given an observational dataset D that consists of an ordered variable pair (X,Y") , along
with a set of covariates O, we focus on a local learning approach to tackle the challenge of determining
whether a specific variable X has a causal effect on another variable Y, allowing for latent variables
in the system. If such a causal effect is present, we aim to locally identify an appropriate adjustment
set of covariates that can provide a consistent and unbiased estimator of the true effect. Our method
relies on analyzing the testable (conditional) independence and dependence relationships among the
observed variables.

3 Local Search Adjustment Sets

In this section, we first present the identification results for the local search adjustment set. Based on
these results, we then propose a local search algorithm for identifying the valid adjustment set and
show that it is both sound and complete. All proofs are deferred to Appendix D] for clarity.

3.1 Local Search Theoretical Results

In this section, we provide the theoretical results for estimating the unbiased causal effect X on Y (if
such an effect exists) solely from the observational dataset D. To this end, we need to locally identify
the following three possible scenarios when the full causal structure is not known.

S1. X has a causal effect on Y, and the causal effect is estimated by adjusting with a valid
adjustment set.

S2. X has no causal effecton Y.

S3. It is unknown whether there is a causal effect of X on Y.

It should be emphasized that scenario S3 arises because, under standard assumptions, based on the
(testable) independence and dependence relationships among the observed variables, one may not
identify a unique causal relationship between X and Y. Typically, what we obtain is a Markov
equivalence class encoding the same conditional independencies [Spirtes et al., | 2000} |Zhang| [2008b,
Entner et al.,|2013]]. Thus, some of the causal relationships cannot be uniquely identiﬁed

We now address scenario S1. Before that, we define the adjustment set relative to (X,Y") within
the Markov blanket of Y in a MAG, denoted as A p5(X, Y) . This definition will help us locally
identify a valid adjustment set using testable independencies and dependencies, even in the presence
of latent variables.

Definition 4 (Adjustment set in Markov blanket). Let (X,Y') be an ordered node pair in a MAG
M, where M is adjustment amenable w.rt. (X,Y). A set Z is an Ayp(X,Y) if and only if (1)
Z C MB(Y)\{X}, (2)ZN Forb(X,Y) =0, and (3) all non-causal paths from X to'Y blocked
by Z.

The intuition behind the concept of App(X, V) is as follows: in a graph without hidden variables,
the causal effect of X on Y can be estimated using a subset of Pa(Y) \ {X} [Pearl, 2009]. However,
in practice, some nodes in Pa(Y') \ { X } may be unobserved. For instance, consider the MAG shown
in Figure. [T] (b), where the edge Vj; <+ Y indicates the presence of latent confounders. Consequently,
the observed nodes do not include Pa(Y'). However, MB(Y) = {X, V2, V5, V,} contains the valid
adjustment set {V5, V3, V4 }. According to Definition 4} we know {V2, V3, V;} is an App(X, V).

Remark 3. Under our problem definition, since O is a set of pretreatment variables w.r.t. (X,Y),
we have Forb(X,Y) ={Y} andY notin MB(Y). Therefore, it is crucial to observe that the three

*See Figure. [10|in Appdenix for an example.




conditions in Deﬁnitioncan be simplified to two: (1) Z C MB(Y)\ X, and (2) all non-causal
paths from X to'Y are blocked by Z.

One may raise the following question: if no subset of MB(Y') \ X qualifies as an adjustment set
for (X,Y), does it follow that no adjustment set for (X,Y) exists within the covariate set O?
Interestingly, we find that the answer is yes, as formally stated in the following theorem.

Theorem 1 (Existence of Ay p(X, Y)). Let D be an observational dataset containing an ordered
variable pair (X,Y') and a set of covariates O. There exists a subset of O is an adjustment set
w.rt. (X,Y) if and only if there exists a subset of MB(Y) \ {X } is an adjustment set wrt. (X,Y),
e, Ayp(X,Y).

Theorem 1] states that if there exists a subset of O that is an adjustment set relative to (X,Y") ,
then there exists a subset of MB(Y) \ {X} that is an adjustment set. Conversely, if no subset of
MB(Y) \ {X} is an adjustment set, then no subset of O is an adjustment set relative to (X,Y") .

Example 2. Consider the MAG shown in Figure. E] (b). We can observe MB(Y') from the MAG,
ie., MB(Y) ={X, V1, Vo, V3, Vy, Vs }. According to Deﬁnition?]and the structure of the MAG, we
can infer that any subset of MB(Y) \ {X} that includes {V1, V2 } but excluding {V3} constitutes an
Aup(X, V).

Based on Theorem |l{and the rules in [Entner et al.|[2013]], we next show that we can locally search
Anp (X, Y) by checking certain conditional independence and dependence relationships (Rule R1),
as stated in the following theorem. Meanwhile, we can locally find that X has a causal effecton Y,
ie., S1.

Theorem 2 (R 1 for Locally Searching Adjustment Sets). Let D be an observational dataset con-
taining an ordered variable pair (X,Y) and a set of covariates O. A subset Z C MB(Y) \ {X}
is an Ayp (X, Y) if there exists a variable S € MB(X) \ {Y'} such that (i) S L Y | Z, and (ii)
SLY|Zu{X}.

Intuitively speaking, condition (i) indicates that
there exist active paths from S to Y given Z.
Condition (ii) implies that there are no active
paths from S to Y when given Z U { X }. These
two rules indicate that all active paths from S' to
Y given Z must pass through X. Thus, adding
X to the conditioning set blocks these active
paths. Hence, all non-causal paths from X to Y
are blocked by Z; otherwise, condition (ii) will
not hold. Then, according to Definition 4] we
know Zis an Ayp(X,Y).

Example 3. Consider the causal diagram de-
picted in Figure. 4| (b). Assume that an ora- (b)

cle performs conditional independence tests on

the observational dataset D. Consequently, we Figure 4: (a) An causal DAG, where U;,i =
can determine the MB(X) and MB(Y), i.e., 1,...,4 are latent variables. (b) The correspond-
MB(X) = {V1, V2, V5, Vi, V7, Vs, Vo, Y}, and 59 MAG of the DAG in (a).

MB(Y) = {V17V27‘/5a‘/65V87‘/97X}' Ac-

cording to Theorem we can infer the existence of a causal effect of X on'Y. The set {V5, Vg, Vs}
servesasan Ayp(X,Y),as Ve LY | {V5, V5, Va}tand Vi LY | {V5, Ve, Vs, X}

Next, we provide the rule R2 that allows us to locally identify X has no causal effecton Y, i.e. , S2.

Theorem 3 (R2 for Locally Identifying No Causal effect). Let D be an observational dataset
containing an ordered variable pair (X,Y') and a set of covariates O. Then, X has no causal effect
onY if there exists a subset Z C MB(Y) \ {X} and a variable S € MB(X) \ {Y'} such that at
least one of the following conditions holds: (i) X LY | Z,or (i) S L X |Zand S LY | Z.

According to the faithfulness assumption, condition (i) implies that X and Y are m-separated by
a subset of MB(Y') \ {X}. Thus, X has a zero effect on Y. Condition (ii) provides a strategy to
identify a zero effect even when a latent confounder exists between X and Y. Roughly speaking,
S ) X | Z indicates that there are active paths from S to X given Z. Therefore, if there were a



directed edge from X to Y, it would create an active path from S to Y by connecting to the previous
path, which would contradict condition S IL Y | Z.

Example 4. Consider the MAG shown in the Figure [3|(b). Assuming that the edge from X to
Y is removed, then, we can infer that there is no causal effect of X on'Y by condition (i), as
X LY | {Vi,Va}. Furthermore, suppose Vs is a latent variable. Then, we can infer that there is no
causal effect of X to'Y by condition (ii), as Vg L X | {V1i}and V5 1LY | {V;}.

Lastly, we show that if neither R1 of Theorem[2]nor R2 of Theorem [3|applies, then one cannot identify
whether there is a causal effect of X on Y, based on conditional independence and dependence
relationships among the observational dataset D, i.e. , we are in S3.

Theorem 4. Under the standard assumption, neither R1 of Theorem[2lnor R2 of Theorem [3|applies,
then it is impossible to determine whether there is a causal effect of X on'Y, based on conditional
independence and dependence relationships.

Theorem [ states that there may exist causal structures with and without an edge from X to Y, that
induce the same dependencies and independencies among the observational dataset D. Consequently,
it is not possible to uniquely infer whether there is a causal effect or not.

3.2 The LSAS Algorithm

In this section, we leverage the above theoretical results and propose the Local Search Adjustment
Sets (LSAS) algorithm to infer whether there is a causal effect of a variable X on another variable Y,
and if so, to estimate the unbiased causal effect. Given an ordered variable pair (X,Y") , the algorithm
consists of the following two key steps:

(i) Learning the MBs of X and Y: This involves using an MB discovery algorithm to identify
the Markov Blanket members (MBs) of both X and Y.

(ii) Determining Adjustment Sets: For each variable S in MB(X) \ {Y'}, we check whether S
and the subsets Z of MB(Y)\ {X} satisfy rules R1 and R2 based on Theorems 2| ~[4]

The algorithm uses © to store the estimated causal effect of X on Y. If the output © is null, it
suggests a lack of knowledge to obtain the unbiased causal effect, i.e. , S3. If © = 0, it indicates that
there is no causal effect of X on Y, i.e., $2. Otherwise, © provides the estimated causal effect of X
onY,i.e., 1. The complete procedure is summarized in Algorithm[I] and the algorithm that we
used for the MB learning is in Algorithm 2]

Algorithm 1 Local Search Adjustment Sets (LSAS)

Input: Observational dataset D, treatment variable X, outcome variable Y

1: MB(X), MB(Y) + Markov Blanket Discovery(X,Y, D)

2: O« // Initialize causal effect estimate
3: foreach S € MB(X)\{Y}, eachZ C MB(Y)\ {X} do

4:  if S and Z satisfy R1 (Theorem2)) then
5: Estimate causal effect @ of X on'Y given Z, © «+ 0. /1 81
6: endif
7:  if S and Z satisfy R2 (Theorem 3)) then
8: return © < 0 // No causal effect, i.e. , S2
9: endif
10: end for
Output: Estimated causal effect © /10, if scenario S3 holds.

We next demonstrate that, in the large sample limit, the LSAS algorithm is both sound and complete.

Theorem 5 (The Soundness and Completeness of LSAS Algorithm). Assume Oracle tests for
conditional independence tests. Under the assumptions stated in our problem definition (Section ,
the LSAS algorithm correctly outputs the causal effect © whenever rule R1 or R2 applies. However,
if neither rule R1 nor R2 applies, the LSAS algorithm can not determine whether there is a causal
effect of X on'Y, based on the testable conditional independencies and dependencies among the
observed variables.

Formally, soundness means that, given an independence oracle and under the assumptions stated in
our problem definition (Section [2.3)), the inferences made using rule R1 or R2 are always correct



whenever these rules apply. On the other hand, completeness implies that if neither rule R1 nor
R2 applies, it is impossible to determine, based solely on the conditional independencies and
dependencies among the observed variables, whether X has a causal effect on Y or not.

Complexity of Algorithm. The LSAS algorithm’s complexity comprises two main components:

1. MB discovery using the TC (Total Conditioning) algorithm [Pellet and Elisseeff], 2008b] with
time complexity O(2n), where n is the size of O plus (X,Y) , and

2. local identification using R and Ry (Lines 3 ~ 10) with worst-case complexity O[(|MB(X)| —
1) x 2IMB(Y)I-1],

Thus, the overall worst-case time complexity is O[(|MB(X)| — 1) x 2IMB()I=1 1 »] A detailed
complexity analysis comparing LSAS with other algorithms is provided in Appendix [C.3]

4 Experimental Results

To demonstrate the accuracy and efficiency of our proposed method, we applied it to synthetic data
with random graphs, specific structures, and benchmark networks, as well as to the real-world dataset.
We here use the existing implementation of the TC discovery algorithm [Pellet and Elisseeft] 2008b]
to find the MB of a target variable. Our source code is available at LSAS.

Comparison Methods. We conducted a comparative analysis with several established techniques that
do not require prior knowledge of the causal graph. Specifically, we evaluated our method against the
LV-IDA with RFCI algorithm, which requires learning global graphs [Malinsky and Spirtes, |2016];
the EHS algorithm, which performs global searches under the pretreatment assumption without
requiring graph learning [Entner et al.| 2013]]; the CEELS method, which conducts local searches
under the pretreatment assumption [Cheng et al.| [2022]]; and the LDP method, which relaxes the
pretreatment assumption for local searches [Maasch et al., 2024]). E]

Evaluation Metrics. We evaluate the performance of the algorithms using the following typical
metrics:

* Relative Error (RE): the relative error of the estimated total causal effect (C’AE) compared to the
true total causal effect (C'E), expressed as a percentage, formly,

RE = ‘ ((fE - OE) /OE‘ % 100%
» nTest: the number of (conditional) independence tests implemented by an algorithm.

4.1 Synthetic Data

Following the conventions outlined in[Malinsky and Spirtes|[2016]], [Entner et al.|[2013]], we param-
eterized the random graphs, specific structures, and benchmark networks using a linear Gaussian
causal model. The causal strength of each edge was sampled from a Uniform distribution [0.5, 1.5],
with additional noise terms drawn from a standard Gaussian distribution. Additionally, with linear
regression, the causal effect of X on Y is calculated as the partial regression coefficient of X [Malin+
sky and Spirtes}, 2017]]. Each experiment was repeated 100 times with randomly generated data, and
the results were averaged. The sample sizes were set to 1K, 5K, 10K, and 15K, where K=1000. We
based our experiments on the observed variables after removing the set of latent variables for each
dataset. The experiments on random graphs are provided in Appendix [E. T}

Specific Structures. We generated synthetic data based on the DAGs shown in Figure [3(a) and
Figured{a). The corresponding MAGs, depicted in Figure[3(b) andf[b), exclude the latent variables
(e.g., U;). The treatment variable is X and the outcome variable is Y. Note that both DAGs exhibit
M-structures ﬂ adjusting for the collider V5 leads to over-adjustment and introduces bias.

Benchmark Networks. Algorithms were evaluated on four benchmark Bayesian networks: INSUR-
ANCE, MILDEW, WIN95PTS, and ANDES. These networks contain 27 nodes with 52 arcs, 35 nodes

SImplementation sources: LV-IDA with RFCI algorithm (https: //github. com/dmalinsk/1v-ida, using
R-package pcalg [Kalisch et al.||2012]]); EHS algorithm (https://sites.google.com/site/dorisentner/
publications/CovariateSelection); and LDP method (https://github.com/jmaasch/1dp).

°The shape of the sub-graph looks like the capital letter M. See FigureE]in Appendix for more details.
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Figure 5: Performance of five algorithms on Specific Structures, MILDEW and WIN95PTS.

with 46 arcs, 76 nodes with 112 arcs, and 223 nodes with 338 arcs, respectivelyﬂ The number of
latent variables is set to 3, 5, 7, and 10 for the respective networks. In each dataset, we randomly
selected latent variables and an ordered variable pair (X, Y"). Notably, the selected variable pairs may
have descendants, which implies that the pretreatment assumption might not be satisfied.

Results. Due to space constraints, we present the results for Specific Structures, MILDEW, and
WIN95PTS in Figure 5] while results for additional benchmark networks are provided in Appendix
[E2] Note that some nTest values for LV-IDA are omitted from the plots as they exceed the scale
limits. EHS results are not included in the benchmark networks plots due to excessive runtime. From
these figures, we observe that our proposed LSAS algorithm outperforms other methods with almost
all evaluation metrics in all structures and in all sample sizes. As expected, the nTest of our method
is significantly lower than that of LV-IDA and EHS, which involve learning the global structure
and globally searching for adjustment sets, respectively. Notably, in Figure[5|(b), CEELS and LDP
show limited improvement with increasing sample size, which can be attributed to their lack of
completeness in identifying valid adjustment sets. Additionally, LSAS outperforms other methods
even when the pretreatment assumption may not be satisfied, as shown in Figure[5{c) and (d).

LDP

300k

4.2 Real-world Dataset

In this section, we apply our method to a
real-world dataset, the Cattaneo2 dataset,
which contains birth weights of 4642 sin-
gleton births in Pennsylvania, USA [Catta-
neol[2010]], Almond et al.|[2005]]. We here
investigate the causal effect of a mother’s
smoking status during pregnancy (X) on
a baby’s birth weight (Y'). The datasetﬂ
we used comprises 21 covariates, such as
age, education, and health indicators for the
mother and father, among others. |Almond
et al.|[2005]] have concluded that there is a
strong negative effect of about 200 — 250 g
of maternal smoking (X)) on birth weight

|
=N
=

|
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=3

Estimated ACE
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3
Methods

Figure 6: The causal effects and the number of (condi-
tional) independence tests estimated by different meth-
ods, presented with 95% confidence intervals on the
Cattaneo?2 dataset. The two dotted lines represent the
estimated interval provided in|Almond et al.| [2005].

A detailed overview of these networks is provided in Table in Appendix [E.2| Additional information is
available at https://www.bnlearn.com/bnrepository/.
8The dataset utilized in this study is available at http: //www.stata-press.com/data/r13/cattaneo?2!

dta.
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(Y) using both subclassifications on the propensity score and regression-adjusted methods. Since
there is no ground-truth causal graph and causal effects, we here use the negative effect of about
200 — 250 as the baseline interval given in [Almond et al.,[2005]]. We follow |Almond et al.|[2005] to
estimate the effect of maternal smoking on birth weight by regression-adjusted (see Section IV.C in
[Almond et al.,[2005]]).

Results. The results of all methods are shown in Figure[6] It should be noted that due to the large
number of nTest for EHS, the results for CEELS and LSAS are not clearly visible in the figure.
In fact, the number of conditional independence tests for CEELS, LDP, and LSAS is 1284, 266,
and 158, respectively. From the figure, we found that the effects estimated by EHS and LSAS fall
within the baseline interval, while the effects estimated by other methods do not. Although the
effect estimated by the EHS algorithm also falls within the baseline interval, LSAS requires fewer
conditional independence tests, which means that LSAS is not only effective but also more efficient.

5 Limitations and Future Work

The preceding section presented how to locally search covariates solely from the observational
data. Analogous to the setting studied by [Entner et al.|[2013]] and |Cheng et al.| [2022]], we assume
that Y is not a causal ancestor of X and X and Y are not causal ancestors of any variables in
O (pretreatment assumption). Regarding the first assumption, in practice, if one has no this prior
knowledge, one can first use the existing local search structure algorithm allowing in the presence
of latent variables, such as the MMB-by-MMB algorithm [Xie et al.| [2024], to identify whether
Y is not a causal ancestor of X. If it is, one can still use our proposed method to search for
the adjustment set and estimate the causal effect. Regarding the pretreatment assumption, though
many application areas can be obtained, such as economics and epidemiology |Hill [2011]], Im
bens and Rubin| [2015]], Wager and Athey|[2018]], it may not always hold in real-world scenarios.
Notably, existing methods—such as EHS, CEELS, and ours—do not directly extend to settings
where the pretreatment assumption is violated, as they may select invalid adjustment sets that
include descendants of the treatment, leading to biased estimates. For example, in the Figure

if we choose S = Vs and Z = {Vy, Vs }, then (5, Z) satisfies condi- v @

tion R1, but Z violates the generalized adjustment criterion since Vg |4 3

is a descendant of X. A potential workaround is to identify descen-

dants of X first, then apply R1—but this lacks completeness, and @ a a
may fail to recover adjustment sets even when they exist. To the best

of our knowledge, no existing method can soundly and completely '
identify descendants of a treatment variable locally, especially in the Vs %
presence of latent variables and without recovering the full graph.

Addressing this remains an open and non-trivial challenge; it also Figure 7: A MAG violating
deserves to explore methodologies that relax this assumption and pretreatment assumption
address its violations[Maasch et al., [ 2024]. with respect to (X, Y).

Note that some causal effects cannot be identified only based on

conditional independencies among observed data. Hence, leveraging

background knowledge, such as data generation mechanisms Hoyer et al.|[2008]] and expert insights
Fang and He|[2020], to aid in identifying causal effects within local structures remains a promising
research direction. In addition, obtaining data from multiple environments may also help identify the
causal effect [Shi et al.,[2021] |De Bartolomeis et al., 2025]].

6 Conclusion

We have introduced a novel local learning algorithm for covariate selection in nonparametric causal
effect estimation with latent variables. Compared to existing methods, our approach does not require
learning the global graph, is more efficient, and remains both sound and complete, even in the
presence of latent variables.
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A Related Work

This paper focuses on covariate selection in causal effect estimation within causal graphical models
Pearl [2009], |Spirtes et al.|[2000]]. Broadly speaking, the literature on covariate selection can be
categorized into two main lines of research: methods that assume a known causal graph and methods
that do not assume the availability of a causal graph. Below, we here provide a brief review of these
two lines. For a comprehensive review of data-driven causal effect estimation, see |Pearl| [2009]],
Perkovi et al.|[2018]],|Cheng et al.| [2024]].

Methods with Known Causal Graph. Ideally, when a causal graph is available, one can directly
select an adjustment set for a causal relationship using the (generalized) back-door criterion |Pearl
[2009], Maathuis and Colombo][2015] or the (generalized) adjustment criterion Shpitser et al.| [2010],
Perkovi et al.| [2018]]. Research in this area often focuses on identifying special adjustment sets,
such as minimal adjustment sets or "optimal’ valid adjustment sets that have the smallest asymptotic
variance compared to other adjustment sets. For selecting minimal adjustment sets, see De Luna et al.
[2011]], Textor and Liskiewicz|[2011]]. For *optimal’ valid adjustment sets, one may refer to Henckel
et al.| [2022] for semi-parametric estimators or Rotnitzky and Smucler [2020], Witte et al.| [2020]],
Runge|[2021] for non-parametric estimators. In contrast to the aforementioned methods, this paper
focuses on the identification of valid adjustment sets under unknown causal graphs.

Methods without Known Causal Graph. A classical framework for inferring causal effect is IDA
(Intervention do-calculus when the DAG is Absent) Maathuis et al.|[2009]]. IDA first learns a CPDAG
and enumerates all Markov equivalent DAGs in the learned CPDAGs, then estimates all causal effects
using the back-door criterion. Other notable developments along this line include combining prior
knowledge |Perkovic et al.[[2017], Fang and He| [2020] or employing strategies through local learning
De Luna et al.|[2011]]. However, these methods often assume causal sufficiency, meaning no latent
confounders exist in the system, and thus do not adequately account for the influences of latent
variables. To address this limitation, a version of IDA suitable for systems with latent variables,
known as LV-IDA (Latent Variable IDA), was proposed Malinsky and Spirtes| [2017]], based on the
generalized back-door criterion Maathuis and Colombo|[[2015]]. Subsequently, more efficient methods
were proposed by [Hyttinen et al.|[2015]], [Wang et al.|[2023]], and |Cheng et al.|[2023]. Although these
algorithms are effective, learning the global causal graph and estimating the causal effects for the
entire system can be unnecessary and inefficient when the interest is solely on the causal effects of a
single variable on an outcome variable.

To address this issue, [Entner et al.| [2013]] proposed the EHS algorithm under the pretreatment as-
sumption, demonstrating that the EHS method is both sound and complete for this task. However, the
EHS approach is highly inefficient as it involves an exhaustive search over all possible combinations
of variables for the inference rules. To overcome this inefficiency, |Cheng et al.| [2022] introduced a
local algorithm called CEELS for selecting the adjustment set. While CEELS is faster than the EHS
proposed by [Entner et al.|[2013]], it may miss some adjustment sets during the local search that could
be identified through a global search. In this paper, our work focuses on the same setting as EHS
and introduces a fully local method for selecting the adjustment set. Compared to CEELS, our local
method is both sound and complete, similar to the global learning method such as the EHS algorithm
Entner et al.| [2013]]. More recently, to relax the pretreatment assumption, Maasch et al.| [2024]]
proposed the Local Discovery by Partitioning (LDP) method, which identifies adjustment sets for
exposure-outcome pairs under sufficient conditions. The LDP approach operates under less restrictive
assumptions, and requires a quadratic number of conditional independence tests w.r.t. variable set size;
however, it may fail to identify valid adjustment sets in cases where the EHS method is successful.
In addition, Maasch et al.|[2025] introduced the Local Discovery for Direct Discrimination (LD3)
method, which targets the identification of adjustment sets for the weighted controlled direct effect, a
specific type of causal effect. A notable limitation of LD3 is its requirement that all parents of the
outcome variable be observed, a condition that may not be satisfied in some practical applications.

B More Details of Notations and Definitions

B.1 Graph

A graph G = (V,E) consists of a set of nodes V = {V1,...,V,} and a set of edges E. A graph G is
directed mixed if the edges in the graph are directed (—), or bi-directed (<+). The two ends of an edge
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Symbol Description

W.I.L. With respect to

(X,Y) An ordered variable pair, where X is the treatment and Y is the outcome

Aup(X,Y) A valid adjustment set in MB(Y) \ {X} wrt. (X,Y)

R1 The rules in Theorem

R2 The rules in Theorem

v The set of all variables,i.e., V= (X,Y)UOUU

X The treatment or exposure variable

Y The outcome or response variable

o The set of observed covariates

U The set of latent variables

g A mix graph

M A Maximal Ancestral Graph (MAG)

P A Partial Ancestral Graph (PAG)

t The number of the observed covariates, i.e., t = |O|

n The number of the observed covariates plus the pair of nodes (X,Y), i.e.,
n=|(X,Y)UO|

Adj(V3) The set of adjacent nodes of V;

MB(V;) The Markov blanket of a node V; in a MAG

De(V3) The set of all descendants of V;

PossDe(V;) The set of all possible descendants of V;

(X 1L YI|Z)g A set Z m-separates X and Y in G

X1Y|Z X is statistically independent of Y given Z.

X LY|Z X is not statistically independent of Y given Z

Ox The graph obtained from G by removing all visible directed edges out of X in G

Table 1: The list of main symbols used in this paper

are called marks. In a graph G, two nodes are said to be adjacent in G if there is an edge (of any kind)
between them. A node V; is a parent, child, or spouse of anode V} if there is V; — V;, V; <V}, or
Vi <+ V;. Apath 7 in G is a sequence of distinct nodes (Vo,...,Vs)suchthatfor0 <i<s—1,V;
and V; 1 are adjacent in G. The length of a path equals the number of edges on the path. A causal
path (directed path) from V; to Vj is a path composed of directed edges pointing towards Vj, i.e. ,
Vi — ... = Vj. A possibly causal path (possibly directed path) from V; to V} is a path where every
edge without an arrowhead at the mark near V;. A path from V; to V; that is not possibly causal is
called a non-causal path from V; to V;,e.g., V; < Vipq1 ... = V1 = V;. Apath w from V; to
Vj is a collider path if all the passing nodes are colliderson 7, e.g., V; = Vig1 < ... < V1 « V}.
V; is called an ancestor, or possible ancestor of V; and V is a descendant, or possible descendant
of V; if there is a causal path, or possibly causal path from V; to V; or V; = V. An almost directed
cycle happens when V; is both a spouse and an ancestor of V. A directed cycle happens when V/; is
both a child and an ancestor of V.

Definition 5 (m-separation). In a directed mixed graph G, a path T between nodes X andY is active
(m-connecting) relative to a (possibly empty) set of nodes Z (X,Y ¢ Z) if 1) every non-collider on
is not a member of Z, and 2) every collider on 7 has a descendant in Z.

A set Z m-separates X and Y in G, denoted by (X AL Y|Z)g, if there is no active path between any
nodes in X and any nodes in Y given Z. The criterion of m-separation is a generalization of Pearl’s
d-separation criterion in DAG to ancestral graphs.

Definition 6 (Ancestral Graph and Maximal Ancestral Graph). A directed mixed graph is called
an ancestral graph if the graph does not contain any directed or almost directed cycles (ancestral).
In addition, an ancestral graph is a maximal ancestral graph (MAG) if for any two non-adjacent
nodes, there is a set of nodes that m-separates them.

Definition 7 (Markov Equivalence). Two MAGs M, My are Markov equivalence if they share the
same m-separations.

Basically a Partial Ancestral Graph represents an equivalence class of MAGs.

Definition 8 (Causal Markov condition). The causal markov condition says the m-separation
relations among the nodes in a graph G imply conditional independence in probability relations
among the variables.
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Definition 9 (Causal Faithfulness condition). [Zhang||2008a]] The causal faithfulness condition
states that m-connection in a graph G implies conditional dependence in the probability distribution.

Under the above two conditions, conditional independence relations among the observed variables
correspond exactly to m-separation in the MAG or PAG G, i.e., (X L Y|Z)p & (X 1L Y|Z)g.
Definition 10 (Partial Ancestral Graph). Zhang| [2008b|]] A Partial Ancestral Graph (PAG,
denoted by P) represents a [M], where a tail ‘=’ or arrowhead ‘>’ occurs if the corresponding mark
is tail or arrowhead in all the Markov equivalent MAGs, and a circle ‘o’ occurs otherwise.

In other words, PAG contains all invariant arrowheads and tails in all the Markov equivalent MAGs.
For convenience, we use an asterisk (*) to denote any possible mark of a PAG (o, >, —) or a MAG
(>a _)

Definition 11 (Visible Edges). |Zhang [2008a|] Given a MAG M / PAG P, a directed edge X —Y
in M /P is visible if there is a node S not adjacent to Y, such that there is an edge between S and X
that is into X, or there is a collider path between S and X that is into X and every non-endpoint node
on the path is a parent of Y. Otherwise, X — Y is said to be invisible. Twwo possible configurations
of the visible edge X to'Y are provided as shown in Figure[§]

A visible edge X — Y means that there are no latent confounders between X and Y. All directed
edges in DAGs and CPDAGs are said to be visible.

S S

Va
(a) (b)

Figure 8: Two configurations where the edge X — Y is visible. Nodes S and Y must be nonadjacent
in (a) and (b).

< - - - —> Vl

Definition 12 (Gx Maathuis and Colombol| [2015]]). For a MAG M, let Mx denote the graph
obtained from M by removing all visible directed edges out of X in M. For a PAG P, let M be any
MAG consistent with ‘P that has the same number of edges into X as P, and let Px denote the graph
obtained from M by removing all directed edges out of X that are visible in M.

B.2 Markov Blanket

Definition 13 (Markov Blanket). The Markov blanket of a variable Y, denoted as MB(Y'), is
the smallest set conditioned on which all other variables are probabilistically independent of Y ﬂ

Sformally, VV. e VA {MB(Y)UV}:Y L V| MB(Y).

Graphically, in a DAG, the Markov blanket of a node Y includes the set of parents, children, and the
parents of the children of Y. The Markov blanket of one node in a MAG is then defined as shown in
Definition[14]

Definition 14 (MAG Markov Blanket Richardson| [2003], |[Pellet and Elisseeff| [2008al], |Yu et al.
[2018]). In a MAG M, the Markov blanket of a node Y, noted as MB(Y'), comprises 1) the set of
parents, children, and children’s parents of 'Y ; 2) the district of Y and of the children of Y ; and
3) the parents of each node of these districts. Where the district of a node V is the set of all nodes
reachable from V using only bidirected edges.

B.3 M-structure

As shown in Figure [9] (a), the DAG is called M-structure (M-bias), where U; and U, are latent
variables. This structure is very significant because it can lead to collider stratification bias, also

Some authors use the term “Markov blanket” without the notion of minimality, and use “Markov boundary”
to denote the smallest Markov blanket. For clarity, we adopt the convention that the Markov blanket refers to the
minimal Markov blanket.
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known as collider bias. The MAG corresponding to this DAG is shown in Fig. [9] (b). In this
graph, according to the generalized adjustment criterion, if we are interested in the causal effect
between X and Y, we should not adjust for the variable M. Adjusting for M would open the path
(X « [M] + Y), which was originally blocked. As a result, adjusting for the collider M leads to
over-adjustment and introduces bias.

S r
1

P TS
1
I\U1 'Ugl

T

() (b)

Figure 9: The illustrative example for M-structure. (a) A causal DAG, where U; and U, are latent
variables. (b) The corresponding MAG of the DAG in (a).

v
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Figure 10: Three DAGs that entail the same independencies and dependencies among the observed
variables (X, Y, V'), where Uy, Us, and Us are latent variables.

C Supplement to Section 3|

C.1 An example for S3

Consider the three graphs in Figure[T0] These graphs entail the same independencies and dependencies
among the observed variables (X, Y, V). Consequently, it is impossible to determine, based solely on
testable dependencies and independence, whether X has a causal effect on Y and whether V' should
be included in the adjustment set.

C.2 Markov Blanket Discovery Algorithm

In this section, we outline the procedure of the TC (Total Conditioning) algorithm |Pellet and Elisseeff]
[2008b], which we used to discover the Markov blanket.

Definition 15 (Total conditioning Pellet and Elisseeft| [2008b]). In the context of a faithful causal
graph G, we have:

VX,Y € V: (X € Markov blanket(Y)) & (X LY | V\{X,Y}) 2

C.3 Complexity of Algorithms

The complexity of the LSAS algorithm can be divided into two main components: the first component
is the MB discovery algorithm (Line 1), and the second involves locally identifying causal effects
using R; and R, (Lines 3 ~ 10). Let n represent the size of the set O plus the ordered variable
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Algorithm 2 Markov Blanket Discovery [Pellet and Elisseeff] [2008b]]

Input: Treatment variable X, outcome variable Y, observed covariates O
1: Initialize MB(X) < 0, MB(Y') <+ 0
: V=0U{X,Y}
: foreach V; e OU{Y'} do
ifX UV, | V\{X,V;} then
Add V; to MB(X) // Discover MB(X)
end if
end for
: foreach V; e OU {X} do
ifY JL Vi | V\{Y,V;} then
10: Add V; to MB(Y) // Discover MB(Y')
11:  endif
12: end for
Output: MB(X), MB(Y)

AN A

Nl

pair (X,Y) , and |set| represents the size of the set. We utilized the TC (Total Conditioning)
algorithm |Pellet and Elisseeff] [2008b] to identify the MB. Consequently, the time complexity of
finding the MB for two nodes is O(2n — 3). In the worst-case scenario, the complexity of the
second component is O[(| MB(X)| — 1) x 2IMB(Y)I=1] " Therefore, the overall worst-case time
complexity of the LSAS algorithm is O[(| MB(X)| — 1) x 2/MB(Y)I=1 1 »]. Note that the complexity
of the EHS algorithm is O[(n — 2) x 2"~2], which is significantly higher than the complexity of
our algorithm, particularly when n >> |[MB(Y')]| in large causal networks. The CEELS algorithm
Cheng et al.|[2022]] employs the PC.select algorithm Biihlmann et al.|[2010] to search for Adj(X)
and Adj(Y"). In the worst-case scenario, the overall complexity of CEELS is O (n x 27), where
g = max(|Adj(X)\ Y], |Adj(Y) \ X]). Although in practice, the complexity of CEELS may not
differ significantly from that of our proposed algorithm, it is crucial to note that CEELS might miss an
adjustment set during the local search that could otherwise be identified through a global search. This
issue, as illustrated in Figure[T[b), is not present in our proposed algorithm. We list the complexity of
the algorithms in Table 2]

Table 2: Summary of the algorithms features.

Algorithm | Learning Graph | Time-complexity | Sound and Complete
LV-IDA Vv Ofn x 2™ 1]|Cheng et al. [2022], Malinsky and Spirtes|[2016) &
EHS X Of(n —2) x2"77] &
CEELS X O (n x29) =
LSAS x O[(IMB(X)| — 1) x 2MBMI=1 ) o
Note: = denotes sound, < denotes sound and complete, and 1/ means graph learning is required; x means
it is not.
D Proofs

D.1 Proof of Theorem[I]

Before presenting the proof, we quote Theorem 1 of [Xie et al.|[2024] since it is used to prove Theorem

Lemma 1. [Theorem I of Xie et al.|[2024)]] Let Y be any node in O, and X be a node in MB(Y').
Then'Y and X are m-separated by a subset of O \ {Y, X'} if and only if they are m-separated by a
subset of MB(Y) \ {X}.

Lemmal[I]is an extended version of the result in[Xie and Geng| [2008]}, which considers the presence
of latent variables. Notably, a fundamental fact is that: given any DAG G over V = O U L—where
O denotes the set of observed variables, and L denotes the set of latent variables—there is a MAG
over O alone such that for any disjoint X,Y,Z C O, X and Y are d-separated by Z in G if and only
if they are m-separated by Z in the MAG [Zhang|, 2008a].
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The intuitive implications of Lemma|T]are as follows: given a node Y and another node X, where
X € MB(Y), if there is a subset of O \ {Y, X'} that m-separates Y and X, then there must exist
a subset of MB(Y') \ {X} that m-separates Y and X. Conversely, if no subset of MB(Y") \ {X}
m-separates Y and X, then no subset of O \ {Y, X'} can m-separate Y and X.

We now proceed to establish the proof of Theorem

Proof. According to Definition [3| a set Z is a valid adjustment set w.r.t. (X,Y") in P if it satisfies
all the conditions therein. When the treatment X is a singleton, the generalized adjustment criterion
becomes equivalent to the generalized back-door criterion proposed by Maathuis and Colombo
[2015]. Under our problem definition, the above conditions can be simplified: aset Z C O is a
valid adjustment set w.r.t. (X,Y") if P is adjustment amenable relative to (X,Y") (i.e., X and Y are
connected by a visible edge, as a visible X — Y') and Z m-separates X and Y in the Px.

Equivalently, this is to show that a subset of O is an m-separating set w.r.t. (X,Y") in Px if and only
if a subset of MB’(Y’) is an m-separating set w.r.t. (X,Y") in Px, where MB’(Y") denotes the MB
of Y in Px. Note that MB'(Y) C MB(Y'), and X may not belong to MB’(Y) in Px. We now
analyze two cases:

Case 1: Suppose P is adjustment amenable relative to (X,Y), with X € MB'(Y) in Py, it follows
that X ¢ Adj(Y). According to Lemma|l]and the fact that X € MB'(Y) in Px, X and Y are
m-separated by a subset of O if they are m-separated by a subset of MB’(Y) \ {X}in Px. If no
subset of MB'(Y) \ {X} m-separates X and Y, then no subset of O \ {X, Y} can m-separate X
and Y, which implies X € Adj(Y') in Px. This contradicts the assumption, thus proving that P is

not adjustment amenable relative to (X,Y") .

Case 2: Suppose P is adjustment amenable relative to (X,Y), with X ¢ MB'(Y) in Py, it follows
that X ¢ Adj(Y'). Thus, X and Y are m-separated by MB’(Y),i.e., (X LY | MB'(Y))p,. If
(X LY | MB'(Y))p,, this contradicts the assumption, showing P is not adjustment amenable
relative to (X,Y’) . Consequently, no subset of O \ {X} is a valid adjustment set w.r.t. (X,Y) in

O

P.

D.2 Proof of Theorem 2]

Proof. By S L Y | Z, we can be certain that there exist active paths from S to Y given Z. In
addition, S 1L Y | Z U {X} ensures that all such active paths must go through X, as all paths are
blocked by adding X to the conditioning set.

According to the pretreatment assumption, X is not a causal ancestor of any nodes in O, and X is
not included in the conditioning set for condition (i). Hence, all active paths from S to Y given Z
must include a direct edge from X to Y. Otherwise, if X is a collider, then X would need to be in
the conditioning set for the active paths from S to Y. Therefore, these two conditions determine that
X has a causal effecton Y.

FromS L Y |Zand S 1L Y | ZU{X}, it follows that there exists at least one active path from
S to X given Z, pointing into X (by the pretreatment assumption). Suppose there exists an active
non-causal path between X and Y given Z. By connecting these paths, we obtain an active path
from S to Y given Z U { X } (by Lemma 3.3.1 of |Spirtes et al.|[2000], when these paths share more
than one node), due to a collider at X. Thatis, S J Y | Z U {X}. However, this contradicts
S UY | ZU{X}. Therefore, such active non-causal paths do not exist, and Z must block all
non-causal paths from X to Y, ie., Zisa Ayp(X, V).

O

D.3 Proof of Theorem[3

Proof. Under faithfulness, condition (i) infers that there is no edge between X and Y, and X is not a
causal ancestor of any nodes in O, implying there is no causal path from X to Y unless there is a
directed edge from X to Y. Hence, there is no causal effect of X on Y.

Condition (ii) implies that X and Y are connected through a latent confounder. The condition
S ) X | Z ensures that there are active paths from S to X given Z, and since X is not a causal
ancestor of any nodes in O, these active paths must point to X. Since Y ¢ Z and Y is not a causal
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ancestor of any nodes in O or X, these active paths do not pass through Y. If there were a directed
edge from X to Y, it would create active paths from S to Y, contradicting the condition S Il Y | Z.
Thus, there is no causal effect of X on Y. O

D.4 Proof of Theorem[

To prove Theorem 4] we need to analyze two scenarios:

Scenario 1: First, we will prove R1 that in Theorem [2|is a necessary condition for identifying
the existence of a causal effect of X on Y that can be inferred from D and a set of variables Z
is Ayp(X, Y) . That is, if there exists the causal effect of X on Y that can be inferred through
conditional independence tests from D, then aset Z is App(X,Y),and S L Y |Zand S L Y |
ZU{X},where S € MB(X)\{Y}andZ C MB(Y)\ {X}.

Suppose we are given the causal PAG P that was learned from testable (conditional) independence
and dependence relationships among the observed variables. Consider the generalized adjustment
criterion in |Perkovi et al.| [2018]], which is a sound and complete graphical criterion for covariate
adjustment in DAGs, CPDAGs, MAGs, and PAGs. According to the amenability condition, there is a
visible edge X — Y in P. According to the definition of visible edges: a directed edge X — Y in P
is visible if there is a node V' not adjacent to Y, such that:

1. There is an edge between V and X that is into X, or

2. There is a collider path between V and X that is into X and every non-endpoint node on the
path is a parent of Y.

Otherwise, X — Y is invisible. Treating such a node V' as an S, we then consider it in two cases.

* Case 1: There exists an .S in P that satisfies the above case (1), i.e. , there is an edge between
S and X that points to X, and S is not adjacent to Y. In other words, there exists a path that
Sx— X — Y in the G. Consequently, in this case, S U Y | Z always holds because X is not
included in the conditioning set. According to Theorem([l] there is at leastaset Z C MB(Y) \ {X}
is Ayp(X, YY), meaning Z block all non-causal paths from X to Y. Adding X to the condition
set will block the path Sx— X — Y, and the non-causal paths from X to Y are blocked by Z.
Therefore, S I Y | Z U {X} holds.

e Case 2: If there exists an .S in P that satisfies the above case (2), i.e. , there is a collider path
between S and X that is into X and every non-endpoint node on the path is a parent of Y, and S
not adjacent to Y. In this case, these collider nodes all belong to MB(X ) and MB(Y'). Assuming
that there is no active path from S to X, placing these collider nodes into the condition set will
activate this .S to X collider path. In addition, these collider nodes must be in the condition set
Z for block non-causal paths that pass these nodes. Thus, S J X | Z will hold. According to
Theorem|[I] a set Z blocks all non-causal paths from X to Y. The newly activated path between S
and X and the path after the X — Y merger are not blocked by Z. Adding X to the conditional
set would then block this path, and thus S 1L Y | Z U {X} holds.

In summary, these two cases prove that R 1 is a necessary condition for identifying the causal effect
of X on Y that can be inferred through conditional independence tests.

Scenario 2: Second, we will prove that R2 in Theorem [3]is a necessary condition for identifying
the absence of the causal effect of X on Y that can be inferred from the testable (conditional)
independence and dependence relationships among the observed variables. That is, if the absence
of the causal effect of X on Y that can be inferred from D, then X 1L Y | Z,or S L X | Z and
S U Y |Z where S € MB(X)\{Y}and Z C MB(Y)\ {X}.

Assuming Oracle tests for conditional independence tests. Under our problem definition, the causal
structures discovered through testable conditional independence and dependencies between observ-
able variables, which can infer X has no causal effect on Y can be divided into the following two
cases:

1. There is no edge between X and Y.
2. The edge between X and YV is X <> Y.

We then consider the two cases separately.
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* Case 1: If there is no edge between X and Y, then by Lemma if X € MB(Y'), there must exist a
subset Z of MB(Y)\{X} that m-separates X andY,i.e., X 1L Y | Z,where Z C MB(Y)\{X}.
If X ¢ MB(Y), then by Definition[13] X 1L Y | MB(Y).

* Case 2: Since Y and X are not causal ancestors of any nodes in O, and Y is not a causal ancestor
of X, then X is a collider. If X is an unshielded collider, then there exists a node S that is adjacent
to X, but not to Y. Such S belong to MB(X) \ {Y'} and MB(Y) \ {X}. Then by Lemmall]
S AU Y |Z whereZ C MB(Y)\ {X}. Inaddition, S . X | Z due to S is adjacent to X. If X
is a shielded collider, which can be inferred by testable conditional independence and dependencies
between observable variables, then there exists a discriminating path p for X [Zhang|[2008b]]. This
path p includes at least three edges, X is a non-endpoint node on p and is adjacent to Y on p. The
path has a node S that is not adjacent to Y, and every node between .S and X on p is a collider and
a parent of Y. The colliders between .S and X belong to both MB(X) and MB(Y). Including
these collider nodes in the set Z ensures that S I Y | Z, where Z consists of nodes from MB(Y')
that m-separate S and Y. Furthermore, S J X | Z holds because Z includes these colliders
between X and S.

Proof. Based on the above analysis, if R1 does not apply, then we cannot infer whether there is a
causal effect of X on Y from the independence and dependence relationships among the observed
variables. If R2 does not apply, then we cannot infer that there is no causal effect of X on Y from
the independence and dependence relationships among the observed variables. Consequently, if
neither R1 nor R2 applies, then we cannot infer whether there is a causal effect of X on Y from the
independence and dependence relationships among the observed variables. O

D.5 Proof of Theorem[3]

Proof. Assuming Oracle tests for conditional independence tests, the MB discovery algorithm finds
all and only the MB nodes of a target variable.

Following Theorem [2]and Theoremd] R1 is a sufficient and necessary condition for identifying X
has a causal effect on Y that can be inferred by testable (conditional) independence and dependence
relationships among the observational variables, and there is a set Z is A 5(X, Y'). Hence, if there
is a causal effect of X on Y that can be inferred by observational data, then LSAS can accurately
identify the causal effect of X on Y.

Subsequently, relying on Theorem [3] and Theorem 4] R2 is a sufficient and necessary condition
for identifying the absence of the causal effect of X on Y that can be inferred from observational
data. Thus, LSAS can correctly identify that there is no causal effect of X on Y that can be inferred
from observational data. Ultimately, if neither R1 nor R2 applies, then LSAS cannot infer whether
there is a causal effect of X on Y from the independence and dependence relationships between the
observations.

Hence, the soundness and completeness of the LSAS algorithm are proven. O

E More Results on Experiments

All experiments were conducted on an Intel CPU running at 3.60 GHz, with 64 GB of memory. For
all methods, the significance level for the individual conditional independence tests is set to 0.01. The
maximum size of the conditioning sets considered is 3 for Specific Structures, 5 for the INSURANCE
and MILDEW networks, and 7 for the WIN95PTS and ANDES networks.

E.1 Experimental Results on Random Graphs
E.1.1 Experimental Results with Varying Numbers of Nodes

We conducted experiments on random graphs generated using the Erdds-Rényi model G(n, d) [Erd6s
and Rényi, [1960], where n represents the number of nodes and d denotes the average degree of each
node. In our experiments, we set the number of nodes to 20, 30, 40, and 50, respectively, with an
average degree of 3 for each node. The last two variables in the causal ordering were designated
as the ordered variable pair (X,Y") . Additionally, 10% x n nodes with two or more children were
randomly selected as unobserved variables in each experiment.
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Results. The experimental results on random graphs are presented in Figure For clarity, some
nTest values for LV-IDA are omitted from the plots as they exceed the scale limits. Similarly, the
nTest values for EHS in Figure[IT](a) are excluded for the same reason. Additionally, when n > 20,
EHS results are not shown due to excessive runtime. The results demonstrate that our proposed LSAS
algorithm achieves superior performance compared to other methods across almost all evaluation
metrics, network structures, and sample sizes. This superior performance validates the effectiveness
and efficiency of LSAS across networks with varying numbers of nodes.
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Figure 11: Performance of five algorithms on random graphs
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E.1.2 Experimental Results with Varying Average Degree

In this section, we conducted additional experiments on random graphs with varying average degrees
(3,5, 7, and 9) under the same settings as in Appendix [E-I.T](40 nodes, sample size = 5K). Due to
excessive computational cost, the global method EHS failed to terminate within 2 hours on these

denser graphs. To ensure a fair comparison, we here report its performance based on an early stopping
threshold of 200 seconds.

Results. As shown in Figure[T2] LSAS consistently outperforms all baseline methods in terms of RE
and nTests, even as graph density increases. The only exception occurs in the (40, 9) network, where
the local method LDP achieves a lower nTest, while LSAS attains a substantially lower RE. Although
the performance of all methods declines with increasing density—as expected—LSAS preserves a
clear advantage, particularly in RE accuracy.
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Figure 12: Performance of four algorithms on random graphs with varying average degrees

E.2 Experimental Results on Benchmark Networks
E.2.1 Overview of Benchmark Networks

Table 3| provides a detailed overview of the benchmark network statistics used in this paper. “Max
in-degree” refers to the maximum number of edges pointing to a single node, while “Avg degree”
denotes the average degree of all nodes.

Table 3: Statistics on the Networks.

Networks | Num.nodes | Number of arcs | Max in-degree | Avg degree
INSURANCE 27 52 3 3.85
MILDEW 35 46 3 2.63
WIN9SPTS 76 112 7 2.95

ANDES 223 338 6 3.03

E.2.2 Experimental Results on the INSURANCE and ANDES Benchmark Networks

Experimental results on the INSURANCE and ANDES benchmark Bayesian networks are provided
in Figure[13]
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Figure 13: Performance of five algorithms on INSURANCE and ANDES

E.2.3 Runtime Performance Comparison

In this section, we additionally report the runtime of the algorithms on the benchmark Bayesian
networks, as shown in Figure[T4] LSAS consistently outperforms baselines in runtime across most
graphs and sample sizes. One exception is the WIN9SPTS network at large sample sizes (15K),
where the local method LDP is faster; however, LSAS achieves substantially higher RE accuracy
(see Figures[5]and[T3), due to LDP’s incompleteness in identifying valid adjustment sets.
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We provided detailed proofs in Appendix [D]
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We show our experimental settings as well as some of the experimental results
in Section ] and Appendix [E] In our supplementary materials, we provided the code for our
algorithm as well as simple examples.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We anonymized and packaged our code and data, and put them in the supple-
mentary materials.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We placed the detailed experimental settings of the experiments in Section [
and the Appendix [E]of the paper, and the complete details with the code in the supplementary
materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our experiments included relative error (RE) for the evaluation metrics, which
expresses the statistical significance of the experiment. We show it in all the figures in
the paper. It is obtained by the relative error of the estimated total causal effect (C'E)
compared to the true total causal effect (CE), expressed as a percentage, i.e., RE =

‘ (CAE - CE) /CE‘ x 100%.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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9.

10.

11.

Justification: All experiments were conducted on an Intel CPU running at 3.60 GHz, with
64 GB of memory.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research complies with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Our papers are basic research.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The study does not address this issue.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the original paper that produced the code package or dataset.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The study does not address this issue.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The study does not address this issue.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The study does not address this issue.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: The core theories and methods in this paper are both important and original,
without reliance on large language models (LLMs) as essential components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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