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Abstract—Learning physically consistent and robust manipu-
lation policies from perceptual inputs remains a key challenge
in robot learning. Most existing diffusion-based approaches
condition only on raw point clouds or robot states, failing to
exploit the underlying geometric relations that govern feasible
object interactions. To address this gap, we propose GeoDiff,
a geometry-conditioned diffusion policy for refined robotic tra-
jectory generation. GeoDiff constructs object-centric geometric
representations via clustering-based point cloud segmentation
and encodes relational features capturing spatial dependencies
between the robot and surrounding objects. Conditioned on
these geometric features, the diffusion policy generates mul-
tiple stochastic trajectory candidates under consistent initial
conditions. A physics-aware evaluation module then scores each
candidate based on smoothness, goal accuracy, and collision
safety, selecting the optimal physically valid trajectory. We
leverage a composite loss combining denoising reconstruction and
differentiable physical consistency to further enforces smooth,
goal-directed, and collision-free motion generation. Extensive
experiments across three well-known simulated manipulation
benchmarks demonstrate that GeoDiff achieves over 15% im-
provement in task success rate and motion smoothness compared
with state-of-the-art diffusion and optimization-based baselines.
Those results highlight the importance of geometric conditioning
and physics-guided refinement for reliable diffusion-based robotic
manipulation.

Index Terms—Robotic manipulation, diffusion policy, geomet-
ric conditioning, trajectory refinement, physical consistency.

I. INTRODUCTION

Learning robust visuomotor policies that produce physi-
cally consistent motion in complex 3D environments remains
a core challenge in robot manipulation. While end-to-end
visuomotor methods [1] have demonstrated that mapping
raw visual observations to motor commands is feasible, they
frequently underperform when generalizing to diverse object
geometries and multi-contact interactions. Recent work on
diffusion models offers a compelling generative approach
for sequential decision making or planning: by progressively
denoising stochastic inputs, these models synthesize smooth,
reliable action trajectories [2], [3]. Diffusion-based control
has shown strong promise in motion planning [4] and imi-
tation learning [5], delivering improved sample efficiency and
training stability relative to standard reinforcement learning
baselines, and thereby advancing the practicality of visuomotor
policy learning. [39], [54], [55]
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Despite recent progress , leading diffusion-based visuomo-
tor policies (e.g., Diffusion Policy [6], 3D Diffusion Policy
(DP3) [7]) typically condition on point clouds and proprio-
ception while omitting explicit inter-object geometric relations
that are critical for spatial reasoning, contact prediction, and
collision avoidance. This lack of a relational inductive bias
often yields discontinuous or physically inconsistent trajecto-
ries in cluttered, multi-object environments. [56] In parallel,
geometry-centric encoders (PointNet++ [8], Point Transformer
[9]) capture structured 3D context, and trajectory optimizers
(CHOMP and TrajOpt [10], [11]) enforce smoothness and
safety via explicit constraints. A principled fusion of gener-
ative diffusion with geometry-aware physical reasoning — so
that denoising respects relational structure and task constraints
— remains largely open.

To bridge this gap, we propose GeoDiff: a
Geometry-Conditioned Diffusion Policy for refined robotic
trajectory generation. GeoDiff derives object-centric
geometric features by clustering point clouds into instances
and encoding inter-object relations (e.g., centroids, pairwise
distances), and uses these features to condition denoising so
that sampled trajectories respect spatial structure and avoid
collisions. At inference, GeoDiff draws multiple candidate
trajectory and ranks them with a physics-aware score that
balances smoothness, goal attainment, and safety constraints
[12], [13]. Training further incorporates a differentiable
physical-consistency loss to promote dynamically feasible
motion [14]. Inspired by contact-aware manipulation [15]
and physics-guided diffusion [16], this design achieves
both trajectory diversity and physics robustness, yielding
geometrically consistent plans in cluttered, multi-object
scenes.

We evaluate GeoDiff on standard manipulation bench-
marks, including Meta-World [17], DexArt [18], and Adroit
[19]. Experiments show that GeoDiff consistently surpasses
diffusion-based and optimization-based baselines, yielding
over 15% gains in success rate and trajectory smoothness,
underscoring the benefit of coupling geometric conditioning
with physics-aware consistency in diffusion control.

In summary, our contributions are:

e GeoDiff: geometry-conditioned diffusion policy that

explicitly encodes object-centric spatial relations for ma-



nipulation planning.

o Multi-sample trajectory refinement: generate and rank
candidates using physics-based consistency metrics to
select robust trajectories.

« Differentiable physical-consistency loss: enforce smooth-
ness, goal accuracy, and safety during training to promote
dynamically feasible motion.

o State-of-the-art  results:  significant  improvements
across diverse manipulation benchmarks over prior
diffusion-based and optimization-based methods.

II. RELATED WORK

A. Diffusion-based Policies for Robotic Control

Diffusion models have recently become a powerful
paradigm for sequential decision making and control. Beyond
planning-as-denoising [2], [3], Diffusion Policy and 3D Dif-
fusion Policy (DP3) demonstrate effective visuomotor control
with action- and 3D-conditioned denoising [6], [7]. A rich
line of work studies diffusion for structured motion gener-
ation, including human motion diffusion [20], controllable
guidance [21], and physics-informed human—object interac-
tions [22]. Transformer-based diffusion for motion predic-
tion [23] and large diffusion foundation models for manip-
ulation [24] further underscore the scalability of this family.
Language-conditioned diffusion policies extend to instruction-
following manipulation [25], while unified planner—controller
formulations for physics-based characters provide an inte-
grated optimization perspective [26]. Recent advances in adap-
tive and test-time improved diffusion policies [27], [34] and
diffusion for scene-level planning and optimization [28] reflect
a growing trend toward incorporating prior knowledge and
constraints during sampling; physics-guided motion diffusion
also emphasizes physical plausibility in generation [29], [42],
[57]. Compared with these methods, our work targets robotic
manipulation and focuses on explicit geometric conditioning
and physics-aware refinement to improve trajectory smooth-
ness and safety.

B. Geometry-Aware and Relational Representations

Explicit 3D geometry is crucial for manipulation. Point
cloud encoders such as PointNet/PointNet++ [8], [30],
DGCNN [31], KPConv [32], and PointCNN [33] learn robust
local and global features; recent pretraining and scaling studies
(e.g., Point-BERT and PointNeXt) highlight the benefits of
large-scale representation learning [34], [35]. For scene-level
reasoning, representation designs including Hough voting for
detection (VoteNet) [36] and SE(3)-equivariant attention [37]
capture relational structure and invariances that are directly
relevant to object-centric control. Our method builds on these
insights by constructing object-centric clusters and relational
features (centroids, robot—target distances, spatial configura-
tions) that condition a diffusion policy, thus making spatial
dependencies explicit rather than implicit. [43]

C. Physics-Consistent and Constraint-Guided Motion Gener-
ation

Classical motion planning emphasizes physical feasibility
via smoothness, collision avoidance, and optimality. Trajectory
optimization methods such as STOMP and ITOMP [38],
Gaussian Process Motion Planning and its continuous-time
variants [40], [41], and optimal sampling-based planning [44]
provide principled mechanisms to handle constraints and
search efficiency. In contact-rich domains, contact-implicit
trajectory optimization explicitly reasons about impacts and
mode switches [45]. Complementary to these methods, GeoD-
iff integrates physics-aware scoring at inference (smoothness,
goal accuracy, collision safety) and a differentiable physical-
consistency loss during training (Sec. III-B), bridging genera-
tive diffusion with constraint-aware planning.

III. METHOD

The proposed method, termed GeoDiff, generates robot
manipulation trajectories conditioned on geometric observa-
tions via a diffusion-based generative framework. An overview
of the overall pipeline is shown in Fig. 1, which includes
five stages: (a) RGB-D perception, (b) geometry and task
representation, (c) trajectory generation and sampling, (d)
physics-aware evaluation, and (e) refined trajectory execution.
GeoDiff leverages geometric features to guide the diffusion
process, ensuring that the generated trajectories are physically
consistent and collision-free.

The following subsections describe the main components in
detail.

A. Clustering and Geometric Representation

We utilize the point cloud P = {p; | p; € R} to represent
the 3D geometry of the workspace. A clustering algorithm
is applied to segment P into N clusters {C1,C5,...,Cn},
each corresponding to an individual object instance. For each
cluster C;, its centroid is computed as:

1
=i > op, )

peC;

and is regarded as the geometric center of the object.

To construct the conditional inputs for the diffusion model,
we define a feature representation that includes the target
object centroid ciqpget, the robot state s, = [T;, R,] € R7,
where T, € R3 denotes the end-effector translation and
R, € R* represents its quaternion rotation. The Euclidean
distance between the end-effector and the target is defined as
d = ||ctarget — Tr||. The raw point cloud features P and a task
description label [ are also included. The label [ describes
the current manipulation goal and may be decomposed into
multiple subgoals for complex tasks. For example, in a soccer
task, the description can be divided into “reach the ball” and
“push the ball toward the goal.” These features are encoded
as a conditional representation:

F= f(cta7'get7 Sr, d, P, l), 2
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Fig. 1. Pipeline of the proposed GeoDiff method. The RGB-D perception module (a) captures both visual and depth information. The geometry and task
representation stage (b) encodes the robot state, point cloud, and task goal into geometric features. The conditional diffusion model (c) generates multiple
trajectory samples. These trajectories are then evaluated by physics-aware metrics (d), and the best-performing refined trajectory (e) is executed by the robot.

and are fed into the diffusion model, which iteratively refines
Gaussian noise into a feasible action trajectory:

3)

where ayn € R3 denotes the translational action of the
end-effector, corresponding directly to its Cartesian position
(x,y,2) in the robot workspace, and agi, € R represents
the scalar gripper control command. Specifically, agip = —1
indicates that the gripper is closing, whereas agi, = 1 indicates
that the gripper is opening.

This formulation explicitly separates the robot state s, from
the action sequence 7, allowing the diffusion model to learn
a distribution over physically consistent control commands.

The forward diffusion process gradually perturbs a clean
trajectory sample 7(*) into a sequence of noisy latent variables
7(F) along diffusion step k:

a7 = N (r 0 Var @, (1 - anr) @

T = {a17a27"'aaT}7 a; = (atranaagrip)a

where a; = [['_,(1 — B;) denotes the cumulative noise
schedule. During the reverse denoising phase, the model
predicts the clean trajectory distribution conditioned on F as:

po(7D | 7 F) :N(T(kfl);ue(T(k),k,f)v

(5)
So(r ).k, ]-")) .

This conditional reverse process allows the model to itera-
tively reconstruct a geometrically consistent and dynamically
feasible end-effector trajectory guided by F.

B. Trajectory Evaluation under Physical Constraints

To enhance robustness, GeoDiff generates N action trajec-
tories in parallel during inference. All trajectories share the
same initial robot state, scene configuration, and conditional
inputs F, and are produced in a single batched diffusion
process. The diversity among candidates comes solely from
independent stochastic noise samples injected into each tra-
jectory within the batch. This ensures fair comparison under
identical conditions and enables selecting the best physically
feasible trajectory.

Each trajectory 7 = {a1,as,...,ar} is composed of dis-
crete actions a = [Qyan, Ggrip] € R*, where ayq € R® denotes

the translational action of the end-effector and agi, € R
represents the gripper opening action. Each trajectory is eval-
uated based on its physical consistency, considering motion
smoothness, goal accuracy, and collision safety.

We define the objective scoring function J(7) as:

a-S(r)+6-G(n),
Oa

if C(r) =0,

J(r) = it C(r) = 1,

(6)

where « and /3 are weighting coefficients, and C(7) indicates
whether a collision occurs during the trajectory. If all sampled
trajectories yield J(7) = 0, a re-sampling process is triggered.
The smoothness metric S(7) quantifies the continuity of
the translational motion of the end-effector. First, the average
second-order difference of the trajectory is computed as:

T-1

1
Z ||atran,t+1 - 2atmm,t + atran,t71||~ @)
t=2

M) =73

Then, the bounded smoothness score is defined as:

S(7) = max(0, 1 — k(1) /0s), (8)

where o is a scaling factor set to the median smoothness value
measured from expert demonstration trajectories. A higher
S(7) indicates smoother and more dynamically consistent
motion.

The goal accuracy term G(7) measures how close the final
end-effector position is to the target centroid ciqrget:

||atran,T - Ctarget ||
Dmaa:

where D,,,, represents the maximum possible distance be-
tween the initial and target positions within the workspace.

The collision indicator C(7) determines whether any trans-
lational action point violates spatial safety constraints. Instead
of computing the minimum distance to each obstacle, we
utilize the Euclidean Signed Distance Field (ESDF) D(.),
which returns the signed distance from any 3D position to the
nearest obstacle surface (positive outside and negative inside
the obstacle region). Given a safety margin e, the collision
indicator is defined as:

0, if D(agans) > 6 VE=1,...,T,
1

g(r)=1- €))

i

C(r) (10)

if 3¢ such that D(ayan) < €,

)



Algorithm 1 GeoDiff: Geometrically-Conditioned Diffusion

Algorithm 2 Training Procedure of GeoDiff

1: Input: Point cloud P, robot state s, task description /, distance
d, number of samples N

2: Cluster P to obtain centroids {c; }; select target cearget

: Construct conditional features F = f(ctarget, Sr, d, P, 1)

4: Initialize noisy batch of trajectories:

K~ N(0, 1),

5: for k = K down to 1 do
6:  Reverse diffusion step (parallel for all N samples):

w

T(K) c RNXTXDaclion

e Denoise(7<k) ,F, k)

7: end for
: Obtain final trajectories batch 7(®) = {7'1(0)7 cee 7'](\9}
9: Evaluate each trajectory independently (n = 1,..., N):
(0) (0) (0
aS(m )+ BG (), if C(n =0

0, otherwise

oo

10: Output: 7" = argmax_ () J (7n )

where D (agyan,:) denotes the ESDF value at the translational

position of the end-effector. When C(7) = 1, the trajectory is

considered physically invalid and is assigned a zero score.
Finally, the optimal trajectory is selected as:

Y

* = arg max J(7;),
i

ensuring that the chosen trajectory best satisfies the overall
physical constraints of smoothness, accuracy, and safety.

Algorithm 1 illustrates the complete process of diffusion-
based trajectory sampling and evaluation under physical con-
straints. It summarizes how GeoDiff performs iterative de-
noising conditioned on geometric features, evaluates multiple
stochastic action trajectories, and selects the optimal motion
plan 7*.

C. Loss Function Design

During training, the objective is to encourage the diffusion
model to generate action trajectories that are physically con-
sistent, smooth, and goal-directed. Accordingly, the total loss
function is formulated as:

Liotal = Lrecon + )\lﬁphyw (12)

where L.con denotes the reconstruction loss that drives the
model to accurately denoise actions during the diffusion pro-
cess, and Lpnys represents a differentiable physical consistency
loss that enforces the physical constraints introduced in Sec-
tion III-B.

a) Reconstruction loss.: The reconstruction term Liecon
follows the standard denoising diffusion objective, guiding the
network to predict the Gaussian noise added to clean action
trajectories:

Lrecon = MSE<Ek; 69(@7(0) + v 1- Qg €k, k7-/—'.)>7 (13)

where 7(9 = {a;1, ay,...,ar} denotes the clean ground-truth
action trajectory, € is Gaussian noise sampled at diffusion

1: Input: Training dataset D with expert trajectories
2: for each batch (P, s,,1,7?) € D do

3:  Sample diffusion step k ~ Uniform{1,..., K}
Sample noise e ~ N (0, I)

Add noise: 7 = /&y 7V + /T = ay ex
Construct conditional features F = f(ctarget, Sr, d, P, 1)
Predict noise: é = eo(7™*), k, F)

Compute Lrecon and Lpnys

9:  Update 0 < 0 — NV (Lccon + A1 Lphys)

10: end for

11: Output: Trained model parameters 6

AN A

step k, and F is the geometric conditional representation.
This objective ensures that the model learns to reconstruct
physically meaningful actions from noisy inputs.

b) Physical consistency loss.: To further enhance the
realism and safety of generated trajectories, the physical
consistency loss Lphys combines continuity, goal accuracy, and
collision regularization:

Ephys = As‘ccont + )\gﬁgoal + )\C‘Ccolv (14)
where Lcon enforces local smoothness, Lyoq drives the final
action toward the target, and L., penalizes proximity to
obstacles.

The detailed definitions are:

Leont = #(7)?, (defined in Section III-B) (15)

Acgoal = ||atran,T - Ctarget||2; (16)
1 d 2

Lol = T ; [min(ov D(atran,t))] . (17)

where D(auan ¢) is the ESDF value at the translational compo-
nent of the end-effector. Negative values indicate penetration
into obstacles and are penalized accordingly. Note that x(7)
is squared here to provide smoother gradients during opti-
mization, while the evaluation metric in Section III-B uses the
non-squared form for stable and interpretable scoring.

The overall training procedure of GeoDiff is summarized in
Algorithm 2, which jointly optimizes the reconstruction and
physical consistency objectives.

D. Implementation Details

We apply the DBSCAN algorithm for point cloud clustering,
which adaptively determines the number of object instances
and remains robust to noise. The diffusion policy follows
a convolutional network-based architecture with DDIM sam-
pling used as the noise scheduler. The model is trained for
1000 epochs on simple MetaWorld tasks and 3000 epochs for
more complex simulated environments, using a batch size of
128. Training involves 100 diffusion steps, while inference is
performed with 10 denoising steps and Nggmpie = 5 trajectory
candidates are generated per trial.



IV. EXPERIMENTS

In this section, we evaluate the proposed GeoDiff frame-
work across diverse simulation environments and manipulation
tasks. We first describe the simulation setup, baselines, and
evaluation metrics, followed by quantitative and qualitative
analyses.

A. Benchmarks and Environments

Fig. 2. Simulation environments for implementing and evaluating GeoDiff,
covering three task categories: Push&Pull, Placement, and Reaching.

Fig. 3. Point cloud observations used in GeoDiff across representative tasks
from Adroit, DexArt, and Meta-World. Each point cloud captures the spatial
geometry of the robot, manipulated objects, and environment, providing the
pose information for diffusion-based policy learning.

We evaluate GeoDiff on three representative robot manip-
ulation benchmarks: Adroit [19], DexArt [18], and Meta-
World [17], covering dexterous hand control [48]-[50],
articulated-object [51], [52], and general tabletop tasks [53]
respectively, as illustrated in Fig. 2.

Adroit. Includes three dexterous-hand tasks: Door, Ham-
mer, and Pen. The action space ranges from 23 to 27 dimen-
sions (finger joints and wrist rotations), and the observation
space is 38 to 45 dimensions, containing the angular positions
of the finger joints, the pose of the palm, and the state of the
manipulated object.

DexArt. Consists of four articulated-object tasks: Bucket,
Faucet, Laptop, and Toilet. Actions are 22-dimensional, rep-
resenting both arm and hand joint positions. Observations
combine proprioception (joint angles, pose, and velocity) with
point cloud inputs for geometric perception.

Meta-World. Comprises 50 tabletop manipulation tasks,
which can be grouped into three categories: Placement (e.g.,
peg-insert-side, pick-place), Reaching (e.g., reach, reach-wall),

and Push&Pull (e.g., push, stick-push, coffee-pull). Its 4-
dimensional action space controls end-effector movement (3D
position + gripper), with 18-dimensional observations describ-
ing object positions and poses.

These benchmarks jointly test GeoDiff across varying con-
trol complexities and geometric conditions, under a unified
simulation setup built on the MuJoCo and SAPIEN physics
engines.

B. Data Generation and Configuration

Expert demonstration data are generated differently across
the three benchmarks, reflecting their varying task structures
and control complexities. For the Meta-World benchmark,
expert trajectories are collected using built-in scripted policies,
ensuring stable and consistent demonstrations for each task.
In the Adroit domain, expert data is obtained from agents
trained by the VRL3 [46] algorithm, which learns dexter-
ous manipulation through reinforcement learning with vision-
based observations. For DexArt, demonstrations are collected
from agents trained via the PPO [47] algorithm after conver-
gence, providing high-quality trajectories for articulated-object
control.

GeoDiff learns from these expert-generated trajectories to
model the distribution and continuity of successful actions.
For Meta-World and Adroit, we generate 10 expert trajectories
per task, while DexArt provides 100 expert trajectories per
task. To improve data quality and reduce randomness during
collection, we first generate 5NV trajectories when N samples
are required for training, then select the top IV trajectories with
the highest success scores as the final training set. A summary
of the benchmarks and their data generation configurations is
provided in Table I.

TABLE I
BENCHMARKS AND EXPERT DATA CONFIGURATIONS IN GEODIFF.
TRAJ./SEL. DENOTES THE NUMBER OF EXPERT TRAJECTORIES PER TASK
AND THE CORRESPONDING SELECTION STRATEGY.

Benchmark Tasks Alg. Traj./Sel.
Meta-World ~ Push&Pull, Placement, Reaching  Scripted 10 / 50
Adroit Door, Hammer, Pen VRL3 10/ 50
DexArt Bucket, Faucet, Laptop, Toilet PPO 100 / 500

This setup ensures consistent supervision quality across
environments while maintaining diversity in control styles
and motion distributions, which is crucial for learning the
physically and geometrically consistent diffusion behaviors of
GeoDiff.

C. Baselines

We compare GeoDiff with two representative diffusion-
based visuomotor policy methods.

Diffusion Policy (DP) [6]: A visuomotor policy trained via
action-space denoising diffusion, which refines noisy actions
into executable trajectories conditioned on visual and propri-
oceptive observations.
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Fig. 4. Convergence comparison on DexArt, Adroit, and Meta-World. GeoDiff converges substantially faster (200—400 epochs) and reaches higher stable

success rates than DP3 (400-600) and DP (1000-1200), showing improved stability and reduced oscillation.

3D Diffusion Policy (DP3) [7]: An extension of DP that
incorporates 3D spatial representations from point clouds or
depth maps, enhancing generalization to unseen objects and
scenes.

Both serve as strong diffusion-policy baselines. Unlike

TABLE III
TASK SUCCESS RATE (SR%) COMPARISON ACROSS META-WORLD,
ADROIT, AND DEXART BENCHMARKS. GEODIFF CONSISTENTLY
OUTPERFORMS DIFFUSION-BASED BASELINES ACROSS DIVERSE
MANIPULATION CATEGORIES AND CONTROL COMPLEXITIES.

them, GeoDiff explicitly models geometric correspondence Benchmark / Category  Task DP  DP3  GeoDiff
and spatial diffusion priors, enabling physically consistent Meta-World
control across diverse manipulation tasks. pick-place 123 630 8533
Placement shelf-place 5.0 4333 72.0
TABLE II pick-out-of-hole  11.0  31.67 66.67
OVERALL TASK SUCCESS RATE (SR) ACROSS THREE BENCHMARKS. sweep-into 100 25.0 55.33
HIGHER VALUES INDICATE BETTER TASK PERFORMANCE. handle-pull P
- Push&Pull push-wall 250  50.0 60.67
Method Meta-World(50) T Adroit T DexArt T Avg. T stick-pull 45.0 66.0 72.0
DP [6] 55.4 36.67 47.0 53.82 hand-insert 433 13.0 40.0
DP3 [7] 72.5 67.22 63.5 7039 Reaching soccer 1233 2767  56.67
GeoDiff (Ours) 88.65 70.78 71.08 86.48 bin-picking 15.67 740 80.0
Adroit
D. Analysis of Geometric Consistency and Efficiency Door 450 700  73.33
Wi d hensi o Ivsis of GeoD Dexterous Hand Hammer 4233 85.67 90.0
_ We con uct a comprehensive quaqtltatlve analysis of GeoD- Pen 1767 460 49.0
iff, emphasizing its geometric consistency, physical feasibil-
. . . . DexArt
ity, and computational efficiency across three representative
benchmarks: Adroit, DexArt, and Meta-World. This section Bucket 45.0 46.67  61.0
jointly discusses evaluation indicators and results, demonstrat-  Articulated Objects iaufet 1791'607 5882303 7841303
. . . aptop . X .
ing how the proposed geometry-aware diffusion framework Toilet 5233 670 68.0

achieves accurate, smooth, and efficient manipulation policies.
1) Task success and accuracy. Table II summarizes the
overall success rate (SR) across three representative bench-
marks. GeoDiff achieves the highest performance in all set-
tings, reaching 88.65% on Meta-World, 70.78% on Adroit,
and 71.08% on DexArt, and surpassing diffusion-based base-
lines DP [6] and DP3 [7] by large margins. On average,
GeoDiff improves task performance by 16.1% over DP3
and 32.7% over DP, demonstrating the effectiveness of incor-
porating explicit geometric priors into the diffusion process.
Tables III further validate these improvements. On Meta-
World, GeoDiff achieves substantial gains across Placement,
Push&Pull, and Reaching categories. For instance, SR im-
proves from 12.3% — 85.33% on pick-place and from 5.0%
— 72.0% on shelf-place, reflecting stronger spatial alignment
and fine-grained contact reasoning. Similarly, on dexterous and

articulated-object tasks, GeoDiff increases performance from
85.67% — 90.0% on Hammer (Adroit) and from 58.33% —
74.33% on Faucet (DexArt), indicating improved robustness
under high-DoF motion and complex geometric constraints.

Overall, these results confirm that geometry-aware condi-
tioning provides powerful structural cues that enable more
accurate, reliable, and generalizable policy generation across
diverse manipulation types.

2) Convergence efficiency. Fig. 4 compares the training
convergence behavior of GeoDiff, DP, and DP3 on represen-
tative tasks from Meta-World (pick-place), Adroit (door), and
DexArt (faucet). Across all benchmarks, GeoDiff converges
substantially faster and reaches higher stable performance,
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Fig. 5. Ablation study results highlighting the effect of geometric clustering
and physics-based evaluation.

achieving a performance plateau within 200-400 epochs,
while DP3 requires 400-600 epochs and DP does not converge
until after 1000-1200 epochs. This verifies that geometry-
aware conditioning greatly improves learning efficiency.

Moreover, GeoDiff presents smoother optimization curves
with less oscillation and only mild late-stage decay, whereas
DP and DP3 show stronger fluctuations and lower peak
performance. For example, on pick-place, GeoDiff reaches
80%+ SR within 400 epochs, while DP3 remains below 60%
and DP below 30%. Similar trends appear on Adroit and
DexArt, demonstrating improved training stability and sample
efficiency.

E. Ablation Study

To validate the effectiveness of each component in GeoDiff,
we conduct a comprehensive ablation study on representative
tasks from Meta-World, Adroit, and DexArt. The proposed
system is decomposed into three key modules: (1) geomet-
ric representation and clustering, (2) physics-aware trajec-
tory evaluation, and (3) physical consistency loss design.
For clarity, all ablation results report the task success rate
(SR), and where applicable, collision rate (CR) and trajectory
smoothness (TS).

1) Effect of geometric representation. We conduct an
ablation study on five representative Meta-World tasks to
assess the contribution of explicit geometry-aware features,
comparing GeoDiff with two reduced variants: Proprio-only
(removing point cloud input) and w/o Cluster (removing
object-level segmentation). As shown in Fig. 5, eliminating
structured geometric representation leads to clear performance
degradation, especially in Placement and Reaching tasks that
require accurate spatial localization. These results indicate that
object-level geometric cues play a key role in enabling reliable
and effective manipulation behavior.

2) Effect of physics-aware evaluation. For Push&Pull
tasks such as handle-pull and stick-pull, where the goal is
implicitly defined by environment interaction rather than a
fixed spatial target, geometric perception alone provides lim-
ited improvement. As shown in Fig. 5, performance gains
mainly result from the physics-aware trajectory evaluation
module, which filters collision-prone and unstable motions

TABLE IV
EFFECT OF PHYSICS-AWARE EVALUATION ON TRAJECTORY SMOOTHNESS
S(7) AND COLLISION RATE (CR) ON SELECTED META-WORLD TASKS.
HIGHER & AND LOWER CR INDICATE BETTER TRAJECTORY QUALITY.

Task S(7) (w/o / ours) CR (%) (w/o / ours)
pick-out-of-hole 0.79 7097 55.0 / 20.0
hand-insert 0.76 / 0.96 78.0 / 55.0
handle-pull 0.83/0.98 50/5.0
shelf-place 0.87 7 0.96 32.0/8.0

to produce smoother and more feasible trajectories. This
highlights the importance of physical feasibility in interaction-
dominant manipulation tasks.

3) Effect of physical consistency loss. We further evaluate
the impact of the physics-aware objective on tasks with high
collision sensitivity or strong smoothness requirements in
Meta-World. As shown in Table IV, GeoDiff substantially
reduces collision rates on constrained insertion tasks such
as pick-out-of-hole and shelf-place, and markedly improves
trajectory smoothness on motion-continuity—critical tasks such
as hand-insert and handle-pull. These results confirm that
enforcing physical feasibility is essential for generating safe
and stable trajectories beyond geometric perception alone.

V. CONCLUSION

We presented GeoDiff, a geometry-conditioned diffusion
framework for robotic manipulation. The method leverages
object-centric geometric representation and a physics-aware
trajectory evaluation module to generate smooth, accurate,
and collision-free motion plans. A differentiable physical-
consistency loss further improves training stability and fea-
sibility.

Experiments on Meta-World, Adroit, and DexArt demon-
strate that GeoDiff achieves state-of-the-art performance, sig-
nificantly improving success rate, convergence efficiency, and
trajectory quality over diffusion-based baselines. Ablation re-
sults confirm the effectiveness of geometric conditioning and
physics-driven refinement.

However, GeoDiff provides smaller gains in tasks requir-
ing strong environment feedback (e.g., complex Pushé&Pull
behaviors), where static geometric priors and offline physical
constraints are insufficient. Future work will integrate real-
time interaction perception and dynamic contact modeling to
enhance adaptability.
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