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Abstract

Given a source and a target probability measure, the Monge problem studies
efficient ways to map the former onto the latter. This efficiency is quantified by
defining a cost function between source and target data. Such a cost is often set
by default in the machine learning literature to the squared-Euclidean distance,
ℓ22(x,y) := 1

2∥x − y∥22. The benefits of using elastic costs, defined using a
regularizer τ as c(x,y) := ℓ22(x,y)+τ(x−y), was recently highlighted in [Cuturi
et al., 2023]. Such costs shape the displacements of Monge maps T , namely the
difference between a source point and its image T (x) − x, by giving them a
structure that matches that of the proximal operator of τ . In this work, we make
two important contributions to the study of elastic costs: (i) For any elastic cost,
we propose a numerical method to compute Monge maps that are provably optimal.
This provides a much-needed routine to create synthetic problems where the ground-
truth OT map is known, by analogy to the Brenier theorem, which states that the
gradient of any convex potential is always a valid Monge map for the ℓ22 cost;
(ii) We propose a loss to learn the parameter θ of a parameterized regularizer
τθ, and apply it in the case where τA(z) := ∥A⊥z∥22. This regularizer promotes
displacements that lie on a low-dimensional subspace of Rd, spanned by the p
rows of A ∈ Rp×d. We illustrate the soundness of our procedure on synthetic data,
generated using our first contribution, in which we show near-perfect recovery of
A’s subspace using only samples. We demonstrate the applicability of this method
by showing predictive improvements on single-cell data tasks.

1 Introduction

Finding efficient ways to map a distribution of points onto another is a low-level task that plays a
crucial role across many machine learning (ML) problems. Optimal transport (OT) theory [Santam-
brogio, 2015] has emerged as a tool of choice to solve such challenging matching problems, notably
in single-cell genomics [Schiebinger et al., 2019, Tong et al., 2020, Bunne et al., 2023, 2024, Klein
et al., 2023]. We focus in this work on the numerical resolution of the Monge problem, which aims,
using high-dimensional source and target data samples (x1, . . . ,xn) and (y1, . . . ,ym), to recover a
map T : Rd → Rd that is simultaneously (i) a pushfoward map, in the sense that T applied on source
samples recovers the distribution of target samples; (ii) efficient, in the sense that T (xi) is not too
far, on average from xi. The notion of efficiency can be made precise by choosing a real-valued cost
function c that compares a point x and its mapping via c(x, T (x)) ∈ R.

Challenges in the estimation of OT maps. When using standard cost functions such as ℓ22(x,y) :=
1
2∥x−y∥22, the estimation of OT maps is hindered, in principle, by the curse of dimensionality [Hütter
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Figure 1: Illustration of ground-truth optimal transport maps with different costs h, for the same
base function g. In this experiment, g is the negative of a random ICNN with 2-dimensional inputs,
3 layers and hidden dimensions of sizes [8, 8, 8]. All plots display the level lines of g. The optimal
transport map Th

g are recomputed four times using Prop. 1, with four different costs h, displayed
above each plot. (left) When h is the usual ℓ22 cost, we observe a typical OT map that follows from
each xi, minus the gradient of g. With the ℓ1 sparsity-inducing regularizer (middle-left), we obtain
sparse displacements: most arrows follow either of the two canonical axes, yet some points do not
move at all. (middle-right) This is slightly different when using the k-overlap norm, which exhibits
less shrinkage. With a cost that penalizes displacements that are orthogonal to a vector b, we obtain
displacements that push further to the bottom than in the (left) plot, as in the (right) plot, where
displacements are almost parallel to b. When b is not known beforehand, and both source and target
samples are given, we present a procedure to learn adaptively such a parameter in § 5.

and Rigollet, 2021]. A simple workaround is to reduce the dimension of input data, using for instance
a variational auto-encoder [Bunne et al., 2023], or learning hyperplane projections jointly with OT
estimation [Paty and Cuturi, 2019, Niles-Weed and Rigollet, 2022, Lin et al., 2020, Huang et al.,
2021, Lin et al., 2021]. We consider in this work another approach, which explores alternative choices
for ground cost c. While OT theory is rife with rich cost structures [Ambrosio and Pratelli, 2003,
Ma et al., 2005, Lee and Li, 2012, Figalli et al., 2010, Figalli and Rifford, 2010], that choice has
comparatively received far less attention in machine learning, where for a vast majority of applications
the cost function is often chosen as ℓ22 and sometimes ℓ2.

Cost structure impacts map structure. While the usage of Riemannian metrics within OT in ML
has been considered [Cohen et al., 2021, Grange et al., 2023, Pooladian et al., 2023b], computational
challenges restrict these approaches to low-dimensional manifolds. We argue in this work that costs
that are translation invariant (TI), c(x,y) := h(x− y) with h : Rd → R, can offer practitioners a
reasonable middle ground, since many numerical schemes developed for the ℓ22 cost can be extended to
TI costs, both for static and dynamic formulations of OT (see e.g., Villani et al. [2009, Chap.7] or Liu
[2022]). In particular, we propose to focus on elastic costs of the form h(z) = 1

2∥z∥2 + γτ(z), with
γ > 0 and τ : Rd → R a regularizer, following the name of the elastic net regularization [Zou and
Hastie, 2005] proposed in the context of regression. Cuturi et al. [2023] show that using elastic costs in
OT map estimation results in Monge maps whose displacements satisfy T (x)−x = −proxτ ◦∇f(x),
for some potential f , and are therefore shaped by the proximal operator of τ .

Contributions. While elastic costs offer the promise of obtaining OT maps with prescribed structure
inherited from the proximal operator of a regularizer τ , our current understanding of how to use and
exploit such costs is limited to the experimentation provided in [Cuturi et al., 2023]. This stands in
stark contrast with the fine-grained characterization provided by Brenier that a map is optimal for the
ℓ22 cost if and only if it is the gradient of a convex potential. To this end:

• We show in § 3 that OT maps can be generated for any elastic cost h by running a proximal gradient
descent scheme, through the proximal operator of τ , on a suitable objective. This results in, to
our knowledge, the first visualization of Monge maps that extend beyond the usual grad-convex
Brenier maps for ℓ22 costs (see Figure 1), as well as synthetic generation in high-dimensions;

• We introduce subspace elastic costs in § 4, which promote displacements occurring in a low-
dimensional subspace spanned by the line vectors of a matrix A, A ∈ Rp×d, AAT = Ip, setting
τ(z) := ∥A⊥z∥22. We prove sample-complexity estimates for the Monge-Bregman-Occam (MBO)
estimator introduced in [Cuturi et al., 2023] with this cost (and more generally Mahalanobis costs),
and establish a link with the spiked transport model [Niles-Weed and Rigollet, 2022] when γ →∞.
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• Since the choice of the regularizer τ in the elastic cost gives rise to a diverse family of OT maps,
whose structural properties are dictated by the choice of regularizer, we consider parametrized
families τθ, and propose in § 5 a loss to select adaptively a suitable θ.

• We illustrate all above results, showing MBO estimator performance, recovery of A on the basis of
i.i.d. samples, in both synthetic (using our first contribution) and single-cell data tasks, where we
demonstrate an improved predictive ability compared to baseline estimators that do not learn A.

2 Background: Optimal transport with Elastic Costs

Monge Problem. Let P2(Rd) be the set of probability measures with finite second-order moment.
We consider in this work cost functions c of the form c(x,y) := h(x − y), where h : Rd → R
is strictly convex and, to simplify a few computations, symmetric, i.e., h(z) = h(−z). Given two
measures µ, ν ∈ P2(Rd), the Monge problem [1781] seeks a map T : Rd → Rd minimizing an
average transport cost, as quantified by h, of the form:

T ⋆ := argmin
T♯µ=ν

∫
Rd

h(x− T (x))µ(dx) (1)

Because the set of admissible maps T is not convex, solving (1) requires taking a detour that involves
relaxing (1) into the so-called Kantorovich dual and semi-dual formulations, involving respectively
two functions (or only one in the case of the semi-dual)[Santambrogio, 2015, §1.6]:

(f⋆, g⋆) := argmax
f,g:Rd→R

f(x)+g(y)≤h(x−y)

∫
Rd

fdµ+

∫
Rd

g dν = argmax
f :Rd→R,

f is h-concave

∫
Rd

fdµ+

∫
Rd

f̄hdν (2)

A function f is said to be h-concave if there exists a function g such that f is the h-transform of g,
i.e., f = ḡh, where for any function g : Rd → R, we define its h-transform as

ḡh(x) := inf
y

h(x− y)− g(y). (3)

We recall a fundamental theorem in optimal transport [Santambrogio, 2015, §1.3]. Assuming the
optimal, h-concave, potential for (2), f⋆, is differentiable at x0 (this turns out to be a mild assumption
since f⋆ is a.e. differentiable when h is), we have [Gangbo and McCann, 1996]:

T ⋆(x) = x− (∇h)−1(∇f⋆(x)) = x−∇h∗ ◦ ∇f⋆(x) , (4)

where the convex conjugate of h reads: h∗(w) := supz⟨z,w⟩ − h(z) . The classic Brenier theorem
[1991], which is by now a staple of OT estimation in machine learning [Korotin et al., 2019, Makkuva
et al., 2020, Korotin et al., 2021, Bunne et al., 2023] through input-convex neural networks [Amos
et al., 2017], is a particular example, stating for h = 1

2∥ · ∥22, that T (x) = x−∇f⋆(x0), since in this
case, ∇h = (∇h)−1 = Id, see [Santambrogio, 2015, Theorem 1.22].

Maps and Elastic Costs. Cuturi et al. [2023] consider TI costs w.r.t. a regularizer τ : for γ > 0 they
study elastic costs of the form

h(z) = 1
2∥z∥22 + γτ(z), (5)

and show that the resulting Monge map is shaped by the proximal operator of τ :

T ⋆(x) = x− proxγτ ◦∇f⋆(x) , where proxγτ (w) := argmin
z

1

2
∥w − z∥2 + γτ(z) . (6)

The MBO Estimator. While the result above is theoretical, as it assumes knowledge of an optimal
f⋆, the Monge-Bregman-Occam (MBO) estimator proposes to plug into (6) an approximation of f⋆,
recovered from samples from µ and ν. We write X = [x1, · · · ,xn] and Y = [y1, · · · ,ym] for such
samples in Rd, possibly weighted by two probability vectors a and b of size n and m respectively.
f⋆ can be estimated using entropy-regularized transport [Cuturi, 2013], with so-called entropic
potentials [Pooladian and Niles-Weed, 2021]. This involves choosing a regularization strength ε > 0,
and solving the following dual problem using the Sinkhorn algorithm [Peyré and Cuturi, 2019, § 4.2]:

(f⋆,g⋆) = D⋆(X,a,Y,b;h, ε) := argmax
f∈Rn,g∈Rm

⟨f ,a⟩+ ⟨g,b⟩ − ε⟨e f
ε ,Ke

g
ε ⟩ . (7)
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where Kij = exp(−h(xi − yj)/ε). The entropy-regularized optimal transport matrix associated
with that cost h and on those samples can be derived directly from these dual potentials [Peyré and
Cuturi, 2019, Prop. 4.3] as P ⋆(X,a,Y,b;h, ε) ∈ Rn×m with entries at (i, j) equal to:

[P ⋆(X,a,Y,b;h, ε)]i,j = exp

(
f⋆i + g⋆

j − h(xi − yj)

ε

)
. (8)

We now introduce the soft-minimum operator, and its gradient, defined for any vector u ∈ Rq as

minε(u) := −ε log
q∑

l=1

e−ul/ε, and ∇minε(u) =

[
e−uk/ε∑q
l=1 e

−ul/ε

]
k

.

Using vectors (f⋆,g⋆), we can define estimators f̂ε and ĝε for the optimal dual function (f⋆, g⋆):

f̂ε : x 7→ minε([h(x− yj)− g⋆
j ]j) , ĝε : y 7→ minε([h(xi − y) + f⋆i ]i) . (9)

Plugging these approximations into (6) forms the basis for the MBO estimator outlined in Algo. 1.
Definition 1 (MBO Estimator). Given data, an elastic cost function h = ℓ22 + γτ and solutions to
Eq.(7), the MBO map estimator [Pooladian and Niles-Weed, 2021, Cuturi et al., 2023] is given by:

Tε(x) = x− proxγτ

(
x+

m∑
j=1

pj(x) (γ∇τ(x− yj)− yj)
)
, . (10)

where p(x) := ∇minε([h(x− yj)− g⋆
j ]j) is a probability vector.

Algorithm 1 MBO-ESTIMATOR(X,Y; γ, τ, ε)

1: Set h = 1
2ℓ

2
2 + γτ ▷ if γ = 0, equivalent to [Pooladian+,’21]

2: (f⋆,g⋆) = D⋆(X,a,Y,b;h, ε) ▷ Sinkhorn (Eq. 7).
3: p = lambda: x→ softmax([g⋆

j − h(x− yj)]j/ε)

4: M =lambda: x→∑m
j=1 p(x)j (γ∇τ(x− yj)− yj)

5: Tε[γ, τ, ε] = lambda: x→ x− proxγτ (x+M(x)).
6: return: Tε[γ, τ, ε]

3 On Ground-Truth Monge Maps for Elastic Costs

Our strategy to compute examples of ground-truth displacements for any elastic cost h rests on the
following theorem, which is a direct consequence of [Santambrogio, 2015, Theorem 1.17].
Proposition 1. Consider a potential g : Rd → R and its h-transform as defined in (3). Additionally,
set Th

g := Id−∇h∗ ◦ ∇ḡh. Then Th
g is the OT Monge map for cost h between µ and (Th

g )♯µ for any
measure µ in P(Rd).

The ability to compute an OT map for h therefore hinges on the ability to solve numerically the
h-transform (3) of a potential function g. This can be done, provably, as long as g is concave and
smooth, and proxτ is available, as shown in the following result
Proposition 2. Assume g is concave, L-smooth, and that λ < 2/L. Setting y = x and iterating

y← x+ prox λγ
λ+1 τ

(
y − x+ λ∇g(y)

1 + λ

)
(11)

converges to a point y⋆(x) = argminy h(x− y)− g(y). Furthermore, we have

ḡh(x) = h(x− y⋆(x))− g(y⋆(x)) ,∇ḡh(x) = ∇h(x− y⋆(x)) , and Th
g (x) = y⋆(x). (12)

Proof. Because h is the sum of a quadratic norm with γτ , the proximal operator of λh can be restated
in terms of the proximal operator of τ [Parikh et al., 2014, §2.1.1]. The convergence of iterates (11)
follows from [Beck and Teboulle, 2009, Thm. 1] or [Rockafellar, 1976, Thm. 1]. The final identities
are given by [Bauschke and Combettes, 2011, Prop. 18.7].
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Figure 2: Illustration of the h-transform computation in 2d. (left): base concave potential g, here
a negative quadratic. (other figures) Level lines of the corresponding h-transform ḡh for different
choices of h. The h-transform is computed using the iterations described in Prop. 2.

Algorithm 2 GROUND-TRUTH OT MAP Th
g

1: Inputs: point x, elastic cost h = 1
2ℓ

2
2 + γτ ,

potential g.
2: y := x
3: while not converged do
4: y← x+ prox λγ

λ+1 τ

(
y−x+λ∇g(y)

1+λ

)
5: end while
6: return: y ▷ Th

g (x) in (Prop. 1)

As summarized in Algo.2, the proximal operator
of τ is the only thing needed to implement iter-
ations (11), and, as a result, the h-transform of
a suitable concave potential. We can then plug
the solution in (12) to evaluate the pushforward
Th
g . In practice, we use the JAXOPT [Blondel

et al., 2021] library to run proximal gradient
descent. We illustrate numerically in 2D the re-
sulting transport maps for different choices of
regularizer τ in Fig. 1. In this illustration, we
use the same base function g, and see clearly the
impact of c on h transforms.

4 Subspace Elastic Costs

Recall that for a rank-p matrix A ∈ Rp×d, p ≤ d, the projection matrix that maps it to its orthogonal
is A⊥ = I − AT (AAT )−1A. When A lies on the Stiefel manifold (i.e. AAT = I), we have the
simplification A⊥ = I −ATA. This results in the Pythagorean identity ∥z∥2 = ∥A⊥z∥2 + ∥Az∥2.
In order to promote displacements that happen within the span of A, we must set a regularizer that
penalizes the presence of z within its orthogonal complement, namely

τA⊥(z) := 1
2∥A⊥z∥22. (13)

Since τA⊥ is quadratic, its proximal operator can be obtained by solving a linear system [Parikh et al.,
2014, §6.1.1]; developing and using the matrix inversion lemma results in two equivalent quantities

proxγτ
A⊥

(z) =
(
Id + γ(A⊥)TA⊥)−1

z = 1
1+γ (Id + γAT (AAT )−1A) z. (14)

To summarize, given an orthogonal sub-basis A of p vectors (each of size d), promoting that a vector
z lies in its orthogonal can be achieved by regularizing its norm in the space orthogonal to the span of
A. That norm has a proximal operator that can be computed by parameterizing A explicitly, either as
a full-rank p× d matrix, or more simply a p× d orthogonal matrix, to recover the suitable proximal
operator for τA⊥ in (14). Because that operator is simpler when A ∈ Sp,d is in the Stiefel manifold,

proxγτ
A⊥

(z) =
1

1 + γ

(
Id + γATA

)
z. (15)

We propose to restrict the study in this work to elastic costs of the form 14 where A ∈ Sp,d. We also
present in Appendix A alternative parameterizations left aside for future work.

4.1 Statistical Aspects of Subspace Monge Maps

The family of costs (13) is designed to promote transport maps whose displacements mostly lie in a
low-dimensional subspace of Rd. In this section, we consider the statistical complexity of estimating
such maps from data, assuming A is known. The question of estimating transport maps was first
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studied in a statistical context by Hütter and Rigollet [2021], and subsequent research has proposed
alternative estimation procedures, with different statistical and computational properties [Deb et al.,
2021, Manole et al., 2021, Muzellec et al., 2021, Pooladian and Niles-Weed, 2021]. We extend this
line of work by considering the analogous problem for Monge maps with structured displacements.

We show that with a proper choice of ε, the MBO estimator outlined in Definition 1 is a consistent
estimator of T ⋆ as n → ∞, and prove a rate of convergence in L2(µ). We also give preliminary
theoretical evidence that, as γ →∞, maps corresponding to the subspace structured cost 1

2ℓ
2
2+γτA⊥

can be estimated at a rate that depends only on the subspace dimension p, rather than on the ambient
dimension d, thereby avoiding the curse of dimensionality.

Sample Complexity Estimates for the MBO Estimator. The MBO estimator is a generalization of
the entropic map estimator, originally defined by Pooladian and Niles-Weed [2021] for the quadratic
cost h = 1

2ℓ
2
2. This estimator has been statistically analyzed in several regimes, see e.g., [Pooladian

et al., 2023a, Rigollet and Stromme, 2022, del Barrio et al., 2022] and [Goldfeld et al., 2022]. We
show that this procedure also succeeds for subspace structured costs of the form h = 1

2ℓ
2
2 + γτA⊥ .

As a result of being recast as an estimation task for quadratic cost, the following sample-complexity
result for the MBO estimator follows from [Pooladian and Niles-Weed, 2021, Theorem 3], and a
computation relating the MBO estimator to a barycentric projection for the costs we consider (see
Appendix B for the full statements, proofs, and applicability to general Mahalanobis norms).
Theorem 1. Let A ∈ Rp×d be fixed,and suppose ν has an upper- and lower- bounded density, and µ
is upper-bounded, both supported over Ω ⊆ Rd compact. Consider T ⋆ of the form Equation (23) for
some γ ≥ 0 fixed, and suppose we have samples x1, . . . ,xn ∼ µ and y1, . . . ,yn ∼ (T ⋆)♯µ. Let T̂ε

be the MBO estimator with ε ≍ n− 1
d+4 . Then it holds that

E∥T̂ε − T ⋆∥2L2(µ) ≲ n− 2
d+4 ,

where the underlying constants depend on properties of µ, ν, γ and A.

4.2 Connection to the Spiked Transport Model

The additional structure we impose on the displacements allows us to closely relate our model to the
“spiked transport model" as defined by Niles-Weed and Rigollet [2022]. The authors studied the estima-
tion of the Wasserstein distance in the setting where the Brenier map between µ and ν takes the form,

Tspiked(x) = x−AT (Ax− S(Ax)) , (16)

where A ∈ Sp,d and S : Rp → Rp is the gradient of a convex function on Rp. Divol et al. [2022]
performed a statistical analysis of the map estimation problem under the spiked transport model.
They constructed an estimator T̂n such that the L2(µ) risk decays with respect to the intrinsic
dimension p≪ d; this is summarized in the following theorem.
Theorem 2 (Divol et al., 2022, Section 4.6). Suppose µ has compact support, with density bounded
above and below. Suppose further that there exists a matrix A ∈ Rp×d on the Stiefel manifold such
that ν := (Tspiked)♯µ, with Tspiked defined as in Equation (16). Assume that µ is known explicitly.
Given n i.i.d. samples from ν, there exists an estimator T̂n satisfying

E∥T̂n − Tspiked∥2L2(µ) ≲log(n) n
−Θ( 1

p ) . (17)

We now argue that the spiked transport model can be recovered in the large γ limit of subspace
structured costs. Indeed, if γ →∞, then displacements in the subspace orthogonal to A are heavily
disfavored, so that the optimal coupling will concentrate on the subspace given by A, thereby
recovering a map of the form (16), which by Theorem 2 can be estimated at a rate independent of the
ambient dimension. Making this observation quantitative by characterizing the rate of estimation of
T ⋆ as a function of γ for γ large is an interesting question for future work.

5 A Bilevel Loss to Learn Elastic Costs

Following § 4, we propose a general loss to learn the parameter θ of a family of regularizers
{τθ}θ given source and target samples only. Our goal is to infer adaptively a θ that promotes
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regular displacements, apply it within the estimation of Monge maps using MBO, and leverage this
knowledge to improve prediction quality. Given input and target measures characterized by point
clouds X,Y and probability weights a,b, our loss follows a simple intuition: the ideal parameter
θ should be such that the bulk of the OT cost bore by the optimal Monge map, for that cost, is
dominated by displacements that have a low regularization value. Since the only moving piece in
our pipeline will be θ, we consider all other parameters constant in the computation of the primal
solution, to re-write (8) as:

P ⋆(θ) := P ⋆
(
X,a,Y,b; 1

2ℓ
2
2 + γτθ, ε

)
∈ Rn×m. (18)

Each entry [P ⋆(θ)]ij quantifies the optimal association strength between a pair (xi,yj) when the
cost is parameterized by θ, where a given pair can be encoded as a displacement zij := yj − xi. For
the regularizer θ to shape displacements, we expect P ⋆(θ) to have a large entry on displacements zij
that exhibit a low regularizer τθ(zij) value. In other words, we expect that τθ(zij) to be as small as
possible when P ⋆

ij(θ) is high. We can therefore consider the loss

Definition 2 (Elastic Costs Loss). Given two weighted point clouds a,X,b,Y, and P ⋆(θ) defined
implicitly, as an OT solution in Equation (8), let

L(θ) := ⟨P ⋆(θ), R(θ)⟩ , with [R(θ)]ij = τθ(zij). (19)

Because P ⋆(θ) is itself obtained as the solution to an optimization problem, minimizing L is therefore
a bilevel problem. To solve it, we must compute the gradient∇L(θ), given by the vector-Jacobian
operators ∂P ⋆(·)∗[·] and ∂R(·)∗[·] of P ⋆ and R respectively, borrowing notations from [Blondel and
Roulet, 2024, §2.3] (see also § C for a walk-through of this identity)

∇L(θ) = ∂P ⋆(θ)∗[R(θ)] + ∂R(θ)∗[P ⋆(θ)] (20)

The first operator ∂P ⋆(·)∗[·] requires differentiating the solution of an optimization problem P ⋆(θ).
This can be done [Blondel and Roulet, 2024, §10.3.3] using either unrolling of Sinkhorn iterations or
using implicit differentiation. We rely on OTT-JAX [Cuturi et al., 2022] to provide that operator,
using unrolling. The second operator ∂R(·)∗[·] can be trivially evaluated, since it only involves
differentiating the regularizer function τθ(·). These steps are summarized in Algo. 3.

Algorithm 3 RECOVER-THETA: (X,Y; γ, θ0)

1: for t = 0, . . . , T do
2: Sample mini-batches Xn,Yn from X,Y
3: Compute coupling: ▷ Sinkhorn (Eq. 8)

P (θt)← P ⋆(Xn,
1
n ,Yn,

1
n ;

1
2ℓ

2
2 + γτθt , ε).

4: Compute loss: ▷ (Eq. 19)

L(θt) = ⟨P (θt), R(θt)⟩.
5: gradient g← ∇L(θt) using auto-diff.
6: θt+1 ← GRAD-UPDATE(θt,g)
7: end for
8: return: θT

Learning Subspace Costs. We focus in this
section on the challenges arising when optimiz-
ing subspace costs, as detailed in Section 5.
Learning matrix A in this context is equivalent
to learning a subspace in which the displace-
ment between the source and target measures
happen mostly in the range of A. As discussed
previously, the cost function L(A) should be
optimized over the Stiefel manifold [Edelman
et al., 1998]. We use Riemannian gradient de-
scent [Boumal, 2023] for this task, which iter-
ates, for a step-size η > 0

A←− P(A− η∇̃L(A)) ,

with the Riemannian gradient of L given by
∇̃L(A) := G − AGTA where: G := ∇L(A)
the standard Euclidean gradient of A computed with automatic differentiation provided in (20); P is
the projection on the Stiefel manifold, with formula P(A) = (AA⊤)−1/2A. These updates ensure
that one stays on the manifold [Absil and Malick, 2012].

6 Experiments

Thanks to our ability to compute ground-truth h-optimal maps presented in § 3, we generate bench-
mark tasks to measure the performance of Monge map estimators. We propose in § 6.1 to test
the MBO estimator [Cuturi et al., 2023] when the ground-truth cost h that has generated those
benchmarks is known. In §6.2, we consider the more difficult task of learning simultaneously, and
as outlined in § 5, an OT map and the ground-truth parameter of a subspace-elastic cost defined by

7



10−1 101 103

regularizer γ

0.25

0.50

0.75

1.00

M
S

E
ra

ti
o

γ∗

h(z) = 1
2
‖z‖2

2 + γ
2
‖A⊥z‖2

2

10−1 101

regularizer γ

0.50

0.75

1.00

γ∗

h(z) = 1
2
‖z‖2

2 + γ‖z‖1

100 103

regularizer γ

0.8

1.0

γ∗

h(z) = 1
2
‖z‖2

2 + γ
2
‖A⊥z‖2

2

10−1 101

regularizer γ

0.5

1.0

γ∗

h(z) = 1
2
‖z‖2

2 + γ‖z‖1

Figure 3: Performance of the MBO estimator on two ground-truth tasks involving the τ = ℓ1 and
τA⊥ = ∥A⊥z∥22 structured costs, where p = 2 in dimension d = 5 (two figures to the left) and
dimension d = 10 (two figures to the right). We display the MSE ratio between the MSE estimated
with a regularizer strength γ > 0 and that in the absence of regularization (i.e., γ = 0). The level
of regularization used for generating the ground-truth data is γ∗, whereas performance are shown
varying w.r.t. γ. We display curves ± s.t.d. estimated over 10 random seeds.

a matrix A∗ of size p∗ × d. The cost is parameterized by a matrix Â of size p̂ × d, where p̂ is an
estimate of the ground-truth subspace dimension p∗ (usually not known), equal to or larger than p∗.
We check with this synthetic task the soundness of the loss L(θ), Definition 2, and of our Riemannian
descent approach by evaluating to what extent the p̂ vectors in Â recovers the subspace spanned by
A∗. Finally, we consider in § 6.3 a direct application of subspace elastic costs to real data, without
any ground-truth knowledge, using perturbations of single-cell data. In this experiment, our pipeline
learns both an OT map and a subspace. Our code implements a parameterized RegTICost class,
added to OTT-JAX [Cuturi et al., 2022]. Such costs can be fed into the Sinkhorn solver, and their
output cast as DualPotentials objects that can output the Tε map given in Definition 1.

6.1 MBO on Synthetic Ground-Truth Displacement

In this section, we assume that the regularizer τ is known, using the same τ both for generation and
estimation, but that the ground-truth regularization strength γ∗ used to generate data is not known. We
use that cost to evaluate the transport associated with ḡhε on a sample of points, using Proposition 1,
and then compare the performance of Sinkhorn based estimators, either with that cost or the standard
1
2ℓ

2
2 cost (which corresponds to γ = 0).

We consider the τ = ℓ1 and τA⊥ = ∥A⊥z∥22 regularizers, and their associated proximal operators.
While we assume knowledge of τ in the MBO estimator, we do not use the ground-truth regularization
γ∗ which generated the data, and instead consider it a free parameter. The data is generated following
§ 3 by sampling a concave quadratic function g(z) := − 1

2 (z−w)TM(z−w) where M is a Wishart
matrix, sampled as M = QQT , where Q ∈ Rd×2d is multivariate Gaussian, and w is a random
Gaussian vector. We then sample n = 1024 Gaussian points stored in XT and transport each using
the map defined in Proposition 1, computed in practice with Proposition 2. This recovers matched
train data XT and YT . We do the same for a test fold Xt,Yt of the same size, to report our metric,
the mean squared error (MSE), defined as ∥Tε(Xt)−Yt∥22, where Tε is obtained from Definition 1
using XT ,YT . We plot this MSE as a function of γ, where γ = 0 corresponds exactly to the MBO
using the naked ℓ22 cost. We observe in Figure 3 that the MBO estimator with positive γ outperforms
significantly that using ℓ22 only, for any range of the parameter γ.

6.2 Recovery of Ground-Truth Subspace Parameters in Elastic Costs

We propose to test the ability of Algorithm 3 to recover the ground-truth A∗ parameter of a regularizer
τA⊥ as defined in (13). To do so, we proceed as follows: For dimension d, we build the ground-truth
cost h by selecting A∗, sampling a p∗×d normal matrix that is then re-projected on the p∗×d Stiefel
manifold. Next, we sample a random ICNN, and set the base function g to be its negative. We then
sample a point cloud X of n = 512 standard Gaussian points, and apply, following Proposition 1,
the corresponding ground-truth transport to obtain Y of the same size. We tune the regularization
parameter γ for τ , to ensure that the p∗ first singular values of displacements Y −X captured either
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Figure 4: Error averaged over 5 seeded runs (lower is better) in [0, 1] of the p̂× d orthogonal matrix
Â recovered by our algorithm, compared to the ground-truth p∗ × d cost matrix A∗. Error bars are
not shown for compactness, but are negligible since all quantities are bounded below and close to 0.
Dimensions d, p∗ vary in each of these 6 plots, whereas p̂ is fixed to either p∗ (top row) or 1.25p∗
(bottom row). Error is quantified as the normalized squared-residual error obtained when projecting
the p∗ basis vectors of A∗ onto the span of Â. From left to right, the regularization strength γ∗

increases to ensure that 50%, 70% and 90% of the total inertia of all displacements generated by the
ground-truth Monge map are borne by the p∗ highest singular values. As expected, recovery is easier
when p̂ is slightly larger than p∗ (bottom) compared to being exactly equal (top). It is also easier as
the share of inertia captured by p∗ increases.

50%, 70% or 90% of the total inertia. We expect that the larger this percentage, the easier recovery
should be. See § D for details.

We launch our solver fed with these datasets with a subspace dimension p̂ preset in advance to either
p̂ = p∗ (matching ground truth) or p̂ = 5

4p
∗ (overbudgeting). We measure recovery of A∗ by Â

through the average (normalized by the basis size) of the residual error, when projecting the vectors in
A∗ in the span of the basis Â, namely ∥A∗ − ÂÂTA∗∥22/p∗. For simplicity, we report performance
after 1000 iterations of Riemannian gradient descent, with a stepsize η of 0.1/

√
i+ 1 at iteration

i. All results in Figure 4 agree with intuition in the way performance varies with d, p∗, p̂. More
importantly, with errors that are often below one percent, we can be confident that our algorithm is
sound. We observe that most underperforming experiments could be improved using early stopping.

6.3 Learning Displacement Subspaces for Single-Cell Transport

We borrow the experimental setting in [Cuturi et al., 2023], using single-cell RNA sequencing data
from [Srivatsan et al., 2020]. The original dataset shows the responses of cancer cell lines to 188
drug perturbations, downsampled to the 5 drugs (Belinostat, Dacinostat, Givinostat, Hesperadin,
and Quisinostat) that have the largest effect. After various standard pre-processings (dropping low-
variability genes, and using a log(1 + ·) scaling), we project the dataset to d = 256 directions using
PCA. In Table 1, we report the total number of cells used for experiments after pre-processing. We
then use 80% train/20% test folds to benchmark two MBO estimators: that computed using the ℓ22
cost, and ours, using an elastic subspace cost, following the learning pipeline outlined in § 5. We plot
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the Sinkhorn divergence (cf. Feydy et al. [2019]) for the ℓ22 cost for reference (see the documentation
in OTT-JAX [Cuturi et al., 2022]).
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Figure 5: Predictive performance of the MBO estimator on single-cell datasets, d = 256, using either
the naive baseline ℓ22 cost (black dotted line) or elastic subspace cost (13), with varying γ and p̂.
Remarkably, promoting displacements to happen in a subspace of much lower dimension improves
predictions, even when measured in the squared-Euclidean distance.

Table 1: Number of cells for each cell line and drug/control splits.
Control Dac. Giv. Bel. Hes. Quis.

A549 3274 558 703 669 436 475
K562 3346 388 589 656 624 339
MCF7 6346 1562 1805 1684 882 1520

Conclusion. In this work, we proposed an algorithmic mechanism to design ground-truth transports
for elastic costs. As a first application, we were able to successfully benchmark the MBO estimator of
[Cuturi et al., 2023] on two tasks (involving the ℓ1 and an orthogonal projection norm), showcasing the
versatility of the MBO framework. Next, we demonstrated our ability to leverage subspace-penalizing
costs to learn displacement subspaces by solving an inverse OT problem. We showed successful
numerical performance of the MBO estimator when the subspace is known but the regularization
strength is not, but also that we were able to learn the ground-truth subspace. We foresee several
open directions, the most encouraging being considering other learnable proximal operators beyond
subspace approaches, and cementing connections and distinctions between subspace regularized
transport (where displacements happen in a subspace) vs. the spiked transport model (where all
points are projected on a subspace prior to being transported)
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A More on Subspace Elastic Costs

Recall that for a rank-p matrix A ∈ Rp×d, p ≤ d, the projection matrix that maps it to its orthogonal
is A⊥ = I − AT (AAT )−1A. When A lies in the Stiefel manifold (i.e. AAT = I), we have the
simplification A⊥ = I −ATA. This results in the Pythagorean identity ∥z∥2 = ∥A⊥z∥2 + ∥Az∥2,
as intended. In order to promote displacements that happen within the span of A, we must set a
regularizer that penalizes the presence of z within its complement:

τA⊥(z) := 1
2∥A⊥z∥22 = 1

2z
T (A⊥)TA⊥z = 1

2z
T (Id −AT (AAT )−1A)z.

Since τA⊥ is a quadratic form, its proximal operator can be obtained by solving a linear system [Parikh
et al., 2014, §6.1.1]; developing and using the matrix inversion lemma results in

proxγτ
A⊥

(z) =
(
Id + γ(A⊥)TA⊥)−1

z = 1
1+γ (I + γAT (AAT )−1A) z. (21)

To summarize, given an orthogonal sub-basis A of p vectors (each of size d), promoting that a vector
z lies in its orthogonal can be achieved by regularizing its norm in the orthogonal of A. That norm
has a proximal operator that can be computed either by

1. Parameterizing A implicitly, through an explicit parameterization of an orthonormal basis B for A⊥,
as a matrix directly specified in the (d− p)× p Stiefel manifold. This can alleviate computations
to obtain a closed form for its proximal operator:

proxγτ
A⊥

(z) = proxγτB (z) = z−BT

(
Bz− 1

1 + γ
Bz

)
=

(
Id −

γ

1 + γ
BTB

)
z,

but requires storing B, a (d− p)× d orthogonal matrix, which is cumbersome when p≪ d.
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2. Parameterizing A explicitly, either as a full-rank p× d matrix, or more simply a p× d orthogonal
matrix, to recover the suitable proximal operator for τA⊥ , by either

(a) Falling back on the right-most expression in (14) in the linear solve, which can be handled using
sparse conjugate gradient solvers, since the application of the right-most linear operator has
complexity (p + 1) × d and is positive definite, in addition to the linear solve of complexity
O(p3). This simplifies when A is orthogonal, A ∈ Sp,d since in that case,

proxγτ
A⊥

(z) =
1

1 + γ

(
Id + γATA

)
z. (22)

(b) Alternatively, compute a matrix in the (d− p)× p Stiefel manifold that spans the same linear
space as, through the Gram-Schmidt process [Golub and Van Loan, 2013, p.254] of the d× d
matrix A⊥ or rank d− p, B := Gram-Schmidt(A⊥), to fall back on the expression above.

B Proofs from Section 4.1

To perform this analysis, we rely on the following characterization of optimal maps for subspace
structured costs, which reveals a close connection with optimal maps for the standard ℓ22 cost.
Proposition 3. Let T ⋆ be the optimal map between µ and ν for the cost h = 1

2ℓ
2
2 + γτA⊥ . Denote by

W the linear map x 7→ ((1 + γ)I − γATA)1/2x. Then W ◦ T ⋆ ◦W−1 is the Brenier map (i.e., ℓ22
optimal map) between W♯µ and W♯ν. Equivalently, T ⋆ is h-optimal if and only if it can be written

T ⋆ = W−1 ◦ T̃ ◦W, (23)

where T̃ is the gradient of a convex function.

Proof of Proposition 3. The cost h = 1
2ℓ

2
2 + γτA⊥ can be written as

1
2

[
z⊤(I + γ(A⊥)⊤A⊥)z

]
= 1

2∥Wz∥2 .
The optimal transport problem we consider is therefore equivalent to minimizing

min
π∈Γ(µ,ν)

∫
1
2∥Wx−Wy∥2dπ(x, y) = min

π∈Γ(W♯µ,W♯ν)

∫
1
2∥x′ − y′∥2dπ(x′, y′) . (24)

Brenier’s theorem implies that the solution to the latter problem is given by the gradient of a convex
function, and that this property uniquely characterizes the optimal map. Writing this function as T̃ ,
we obtain that the optimal coupling between W♯µ and W♯ν is given by y′ = T̃ (x′), which implies
that the optimal h-coupling between µ and ν is given by T ⋆ = W−1 ◦ T̃ ◦W , as desired.

The proof of Theorem 1 requires the following two lemmas.
Lemma 1. For costs of the form h(z) = 1

2z
⊤Bz where B is positive definite, the MBO estimator

between two measures µ and ν can be written as the barycentric projection of the corresponding
optimal entropic coupling.

Proof. Note that h∗(w) = 1
2w

⊤B−1w, and thus ∇h∗(w) = B−1w. Let (fε, gε) denote the optimal
entropic potentials for this cost, with corresponding coupling πε. Borrowing computations from e.g.,
Proposition 2 of Pooladian and Niles-Weed [2021], we can compute

∇fε(x) =
∫

B(x− y)dπx
ε (y) = Bx−B

∫
ydπx

ε (y) ,

where πx
ε (y) is the conditional entropic coupling (given x). The proof concludes by taking the

expression of the MBO estimator and expanding:

Tε(x) = x− (∇h∗) ◦ (∇fε(x)) = x−B−1

(
Bx−B

∫
ydπx

ε (y)

)
=

∫
ydπx

ε (y) ,

which is the definition of the barycentric projection of πε for a given x.
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Lemma 2 (Pre-conditioning of MBO). Let Tε be the MBO estimator between µ and ν for the cost
h = 1

2ℓ
2 + γτA⊥ . Let W be denoted as in Proposition 3. Then the MBO estimator is written as

Tε = W−1 ◦ T̃ε ◦W , (25)

where T̃ε is the barycentric projection between W♯µ and W♯ν.

Proof. The proof here is similar to Proposition 3, which we outline again for completeness. As
before, we are interested in solutions to the optimization problem

min
π∈Γ(µ,ν)

∫
1
2∥Wx−Wy∥2dπ(x, y) + εKL(π∥µ⊗ ν) ,

with optimal coupling π⋆
ε . Performing a change of variables π′ = (W ⊗W )♯π, we have

min
π′∈Γ(µ′,ν′)

∫
1
2∥x− y∥2dπ′(x, y) + εKL(π′∥µ′ ⊗ ν′) ,

where µ′ := W♯µ (and similarly for ν′), where now the optimizer reads (π′
ε)

⋆. The two optimal plans
are related as

π⋆ = (W−1 ⊗W−1)♯(π
′
ε)

⋆ .

It was established in Lemma 1 that the MBO estimator T ⋆
ε is given by the barycentric projection

T ⋆
ε (x) = Eπ⋆

ε
[Y |X = x] .

Performing the change of variables Y ′ = WY and X ′ = WX , we can re-write this as a function of
π′
ε instead:

T ⋆
ε (x) = Eπ⋆

ε
[Y |X = x]

= E(π′
ε)

⋆ [W−1Y ′|W−1X ′ = x]

= W−1E(π′
ε)

⋆ [Y ′|X ′ = Wx]

= W−1T̃ε(Wx) ,

where we identify T̃ε(·) := E(π′
ε)

⋆ [Y ′|X ′ = ·]; this completes the proof.

We are now ready to present the main proof.

Proof of Theorem 1. Let Tε,n denote the MBO estimator between samples from µ and ν, and let T̃ε,n

denote the entropic map estimator from samples µ′ := W♯µ and ν′ := W♯ν, where W has spectrum
0 < λmin(W ) ≤ λmax(W ) < +∞, where we have access to W since A is known.

Our goal is to establish upper bounds on

∥Tε,n − T ⋆∥2L2(µ) = ∥W−1 ◦ (T̃ε,n ◦W − T̃ ◦W )∥2L2(µ) .

Paying for constants that scale like λmax(W
−1), we have the bound

∥Tε,n − T ⋆∥2L2(µ) ≲W ∥T̃ε,n − T̃∥2L2(µ′) ,

where we can now directly use the rates of convergence from [Pooladian and Niles-Weed, 2021,
Theorem 3], as µ′ satisfies our regularity assumptions under the conditions we have imposed on W .
this completes the proof.

C Gradient of Elastic Cost Loss

The gradient of the loss L in Definition 2 can be recovered through a simple aggregation of weighted
gradients

∇L(θ) =
∑
ij

[R(θ)]ij ∇θ [P
⋆(θ)]ij + [P ⋆(θ)]ij ∇θ [R(θ)]ij . (26)
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To write this formula in a more compact way, it is sufficient to notice that, adopting the convention
that θ be a parameter in Rq , and introducing an arbitrary vector ω ∈ Rq ,

⟨∇L(θ), ω⟩ =
∑
ij

[R(θ)]ij ⟨∇θ [P
⋆(θ)]ij , ω⟩+ [P ⋆(θ)]ij ⟨∇θ [R(θ)]ij , ω⟩

= ⟨R(θ),
[
⟨∇θ [P

⋆(θ)]ij , ω⟩
]
ij
⟩+ ⟨P ⋆(θ),

[
⟨∇θ [R(θ)]ij , ω⟩

]
ij
⟩ .

The products of all coordinate wise gradients with ω is equivalent to the application of the Jacobians
of R and P ⋆. We write JθP

⋆ and JθR for these Jacobians, both being maps taking θ as input, and
outputting a linear map JθR : Rq → Rn×m, i.e. JθR(θ) is a n×m matrix. As a consequence one
has

⟨∇L(θ), ω⟩ = ⟨R(θ), JθP
⋆(θ)ω⟩+ ⟨P ⋆(θ), JθR(θ)ω⟩

because these maps are linear, one also has

⟨∇L(θ), ω⟩ = ⟨JT
θ P ⋆(θ)R(θ), ω⟩+ ⟨JT

θ R(θ)P ⋆(θ), ω⟩
= ⟨JT

θ P ⋆(θ)R(θ) + JT
θ R(θ)P ⋆(θ), ω⟩

which gives the identification given in the main text.

D Additional Details on Experiments

In § 6.2, and unlike Figure 3, we do not choose a predefined value for γ⋆, but instead select it with
the following procedure: we start with a small value for γ0 = 0.1, and increase it gradually, until a
certain desirable criterion on these displacements goes above a threshold. To measure this, we first
compute the (paired) matrix of displacements on a given sample,

D = [Th
g (xi)− xi]i ∈ Rn×d

We then consider ratio of singular values on p∗ subspace (to select γ for ∥A⊥ · ∥22), writing σ for the
vector of singular values of D, ranked in decreasing order, to compute

sv-ratio(γ) =
p∑

i=1

σi/
∑
i

σi ∈ [0, 1] . (27)

D.1 Synthetic experiments

In Algorithm 5, we outline a way to generate ground-truth data used in synthetic experiments
mentioned in § 6.1 and Figure 3. For a given regularization strength γ and a regularizer τθ, we
first sample a concave function g, along with the ground-truth parameters for the regularizer θ∗. We
then sample n source points X from the standard normal distribution and push them through the
ground-truth OT map to get n target points Y, as described in Algorithm 4.

Algorithm 4 GT-SAMPLES(X;h, g0)

1: Inputs: points X, elastic cost h, po-
tential g0 : Rd → R

2: for i,x in enumerate(X) do
3: yi ← Th

g0(x) ▷ Algorithm 2
4: end for
5: return: Y := [y1, . . . ,yn]

Algorithm 5 SYNTHETIC-OT-TASK(γ), on regularizers τθ.

1: Sample g concave function (e.g. minus ICNN).
2: Sample θ∗ parameter ▷ when τ admits parameters
3: Sample n source points X (e.g. Gaussian).
4: Create n targets Y = GT-SAMPLES(X; 1

2ℓ
2
2 + γτθ∗ , g)

5: return: X,Y, optionally GT parameters θ∗.

D.2 Experimental Procedure

Experiments in Section 6.1, MBO on Synthetic Ground Truth Displacement

• For both τ := ℓ1 and τA := ∥A⊥ · ∥2, run SYNTHETIC-OT-TASK (Algo. 5) to form samples
X,Y (store A∗ for τA).
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• Using these samples, benchmark MBO estimator informed by the cost structure: varying γ, using
automatically scaled ε, and ground-truth parameter A∗ when studying τA∗ , for 10 random splits of
X,Y into Xtrain,Ytrain and Xtest,Ytest.
– Run MBO-ESTIMATOR (Alg. 1 using regularization) on Xtrain,Ytrain, store MSE1 =∑

i ∥Tε[γ, τθ∗ , ε](xtest
i )− ytest

i ∥2
– Run MBO-ESTIMATOR (Alg. 1 without regularization) on Xtrain,Ytrain, store MSE2 =∑

i ∥Tε[0, 0, ε](x
test
i )− ytest

i ∥2
– Report ratio MSE1/MSE2, showing MBO seeded with the right regularizer always outperforms

original entropic map.

Experiments in Section 6.2, Recovery of Ground-Truth Subspace Parameters in Elastic Costs

• For τA := ∥A⊥ · ∥2, run SYNTHETIC-OT-TASK (Algo. 5) to generate paired samples X,Y in
Rd. Tune γ to have displacements concentrated (50%, 70%, 90%) in a subspace, as described in
Appendix D. Recover A∗ of dimension p∗ × d.

• Run RECOVER-THETA on X,Y using arbitrary γ to output Â. Display Average recovery error
∥A∗ − ÂÂTA∗∥22/p∗

Experiments in Section 6.3, Learning Displacement Subspaces for Single-Cell Transport

• Here data come from real measurements, X ∈ Rn×d,Y ∈ Rm×d, n ̸= m. Split into Xtrain,Ytrain

and Xtest,Ytest.
• Run RECOVER-THETA on Xtrain,Ytrain using arbitrary γ and random initialization with varying p̂.

Output Â.
• Run MBO-ESTIMATOR (Alg. 1 using regularization) on Xtrain,Ytrain. Form predictions ỹi =
Tε[γ, τÂ, ε](x

test
i ).

• Compute ℓ22 Sinkhorn divergence between point cloud (ỹi)
n
i=1 and (ytestj )mj=1.

• To benchmark (dotted-line in Fig. 5), run two steps above, but setting γ = 0 (no subspace
regularization).
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Answer: [Yes]
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• Theorems and Lemmas that the proof relies upon should be properly referenced.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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dataset, or provide access to the model. In general. releasing code and data is often
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of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail
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Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
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run with given experimental conditions).
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of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Although no claim is made in terms of compute performance, the fairly small
scale of the experiments allows to execute these runs on a single GPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
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Answer: [Yes]
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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societal impacts of the work performed?
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Justification: We discuss these impacts in the conclusion.
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groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
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to point out that an improvement in the quality of generative models could be used to
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that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: NA
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• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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safety filters.
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should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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• The answer NA means that the paper does not use existing assets.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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14. Crowdsourcing and Research with Human Subjects
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include the full text of instructions given to participants and screenshots, if applicable, as
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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or other labor should be paid at least the minimum wage in the country of the data
collector.
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approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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