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Abstract:
We introduce Knowledge-Refined Prediction Sets (KRPS), a novel approach that
performs semantically-aware uncertainty quantification for multitask-based au-
tonomous perception in urban environments. KRPS extends conformal prediction
(CP) to ensure 2 properties not typically addressed by CP frameworks: semantic
label consistency and true label coverage, across multiple perception tasks. We
elucidate the capability of KRPS through high-level classification tasks crucial
for semantically-aware autonomous perception in urban environments, including
agent classification, agent location classification, and agent action classification.
In a theoretical analysis, we introduce the concept of semantic label consistency
among tasks and prove the semantic consistency and marginal coverage properties
of the produced sets by KRPS. The results of our evaluation on the ROAD dataset
and the Waymo/ROAD++ dataset show that KRPS outperforms state-of-the-art
CP methods in reducing uncertainty by up to 80% and increasing the semantic
consistency by up to 30%, while maintaining the coverage guarantees.
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1 Introduction

In urban environments, autonomous systems are tasked with navigating complex and dynamic
scenes, necessitating robust decision-making mechanisms that can interpret diverse elements with a
high-level semantic understanding. To reason about the scene, autonomous systems perform a se-
ries of critical tasks, distinguishing between different types of agents like pedestrians and vehicles,
understanding their actions such as walking, turning, or stopping, and identifying their locations
relative to key infrastructure like crosswalks and intersections [1, 2, 3, 4, 5, 6]. Such tasks require
the construction of semantic relationships between scene elements to ensure safety and enhance
model interpretability [7, 8, 9]. However, the inherent unpredictability of urban environments and
the safety-critical applications of autonomous perception in urban environments make it essential
to integrate semantically-aware reasoning with uncertainty quantification. Combining semantic and
uncertainty awareness allows autonomous agents to make reliable and contextually appropriate de-
cisions, adapting to the urban landscape dynamically.

Conformal prediction (CP) [10, 11, 12] emerges as a versatile approach for uncertainty quantifica-
tion in learning-based models. Compared to other uncertainty quantification frameworks in deep
learning, such as Bayesian networks [13], Radial Basis Functions networks [14], and evidential
learning [15], CP provides uncertainty-aware predictions by generating prediction sets that are theo-
retically guaranteed to include the correct class with user-defined confidence. The guarantees offered
by CP-based frameworks ensure the reliability of the underlying systems, a property that is much
needed to improve trust and large-scale adoption of autonomous systems interacting with urban
environments. CP has been effectively applied in various areas of robotics, including robot manipu-
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Agent class:
{LarVeh, Bus}

(a) Situation

Traditional CP

  Location: {'OutgoLane', 'IncomLane',
'IncomCycLane', 'Jun', 'BusStop'}

  Action :{ 'MovTow', 'Mov', 'Xing',
'IncatLft', 'IncatRht', 'TurLft', 'TurRht',
'Wait2X', 'XingFmLft', 'XingFmRht'}

Uncertainty: High
Semantic Consistency: Low

(b) Traditional CP

KRPS

  Location: {'IncomLane', 'BusStop'}

  Action :{'MovTow', 'Stop'}

Uncertainty: Low
Semantic Consistency: High

(c) KRPS

Figure 1: An example of refined sets using KRPS on a scene from the ROAD dataset [1]. KRPS
reduces the location set size by 60% and the action set size by 80%. In addition to the set size
reduction, the produced classes are semantically consistent with the predicted agent classes: large
vehicle and Bus. More qualitative examples are presented in Appendix D.

lation [16], human-robot interaction [17, 18], autonomous perception [19, 20, 21], and autonomous
navigation [22, 23].

The separate application of traditional CP to different tasks does not guarantee semantic consistency.
In our context, semantic consistency refers to the logical alignment of predictions across different
tasks, ensuring that the inferred attributes are contextually appropriate and mutually compatible. To
illustrate this, we present in Figure 1b the result of one of our experiments on the ROAD dataset [1],
where an autonomous agent uses three distinct models to classify an agent, its location, and its
action. Applying traditional CP to each task in isolation results in high uncertainty and low semantic
consistency. High uncertainty is shown by the numerous potential classes of actions and locations.
Low semantic consistency is seen in the conflicting locations (e.g., incoming cycle lane) and actions
(e.g., crossing) for the agent classes (i.e., large vehicle and bus). It is important to note that simply
removing inconsistent classes compromises CP coverage guarantees, which is undesirable.

In this work, we address the construction of conformal prediction sets across various classification
tasks for perception, such as agent, action, and location classification, while ensuring conformal
prediction validity and semantic consistency among the produced sets for each task. We propose
Knowledge-Refined Prediction Sets (KRPS), a novel CP approach that reduces uncertainty in au-
tonomous agents in urban environments by producing valid, uncertainty-aware prediction sets that
are semantically consistent across multiple tasks. KRPS consists of a knowledge graph that links the
different tasks, and a sequential1 set construction procedure based on an intial task to ensure the pro-
duced sets for subsequent tasks cover the true label with a user-defined probability. The sequential
processing of tasks in KRPS allows for efficient on-demand refinement of subsequent task predic-
tions, based on initial task results. As depicted in Figure 1c, KRPS sequentially refines the prediction
sets for the location and action tasks using the prediction sets from the agent classification task and
a knowledge graph. In this case, KRPS leads to more semantically consistent results, reflected by
the alignment between the agent classes, its possible locations, and actions, and leads to 80% lower
uncertainty when compared to traditional CP, reflected by the lower number of classes in the predic-
tion sets. In cases where the knowledge graph is incomplete, KRPS manages corner cases, such as
anomalies where vehicles are located on sidewalks, by outputting empty prediction sets, indicating
the absence of semantically consistent labels. We provide a theoretical analysis of KRPS, intro-
ducing the concept of conditional semantic consistency for multitask-based autonomous perception
and demonstrating the semantic consistency and marginal coverage properties of the produced sets.
We evaluate KRPS on 2 large-scale autonomous driving datasets, namely the ROAD dataset [1] and
Waymo/ROAD++ dataset [24], from the scope of 3 high-level perception tasks that are crucial for
semantically-aware autonomous perception and high-level reasoning in urban settings: object class,
location, and action. The results of our evaluation show that KRPS outperforms state-of-the-art con-
formal prediction approaches in reducing the uncertainty of the models by up to 80% and increasing
the semantic consistency by up to 30%, through the generation of smaller prediction sets that are
semantically consistent through the tasks while holding the coverage guarantees.

1Sequentiality in our context means refining predictions for one task at a time.

2



2 Background on Conformal Prediction

We focus on CP for classification, as it is the relevant task for our work. Let gθ be a classifier
pre-trained on a dataset Dtrain. The model gθ outputs estimated probabilities for each class (e.g.,
softmax scores), such that gθ(X) ∈ [0, 1]K , where X is an input image and K is the number of
classes considered.

Assumption. CP assumes the existence of exchangeable unseen pairs of data examples that are
drawn from the same data distribution as Dtrain, to which we refer to as calibration set Dcal. The
goal of CP is to construct prediction sets for unseen data samples C(Xtest) that are valid, i.e., they
contain the true label Ytest with a probability 1 − α, where α is a user-defined error rate. This
property is called marginal coverage and is expressed in Equation 1.

P[Ytest ∈ C(Xtest)] ≥ 1− α (1)

To construct the prediction sets, CP requires a test statistic called non-conformity score S(X,Y ),
which measures the dissimilarity between predictions generated for an unseen data point and the
training data. Based on S, the elements of Dcal are ranked, and the empirical 1 − α quantile q̂ is
calculated. For a novel Xtest, for which Ytest is unknown at test time, C(Xtest) is constructed as
C(Xtest) = {Y : S(X,Y ) ≤ q̂}. This procedure can be expressed through p-values that measure
the probability of non-conformity, as formalized in Theorem 2.1.

Theorem 2.1 (Conformal Prediction [10]) Let Dtrain, Dcal, and Xtest be sets of exchangeable
random variables. Let S be a non-conformity score and α be a user-defined error rate. The set
C(Xtest) defined as C(Xtest) = {Y ∈ Y : p-value(S(Xtest, Y )) ≥ α} satisfies the marginal
coverage property stated in Equation 1.

3 Knowledge-Refined Prediction Sets

We address the problem of autonomous perception for urban scene understanding based on the
reasoning across multiple high-level tasks, that allow the agent to make uncertainty-aware and se-
mantically consistent predictions. We focus on 3 classification tasks: agent type, agent location,
and agent action, that are deemed necessary to achieve a high-level semantic understanding of the
robot’s environment [1, 2, 3, 4]. We assume the existence of 3 separate neural networks gc, gl,
and ga that output the agent class Ŷ c

j ∈ Yc, agent location class Ŷ l
j ∈ Y l, and agent action class

Ŷ a
j ∈ Ya, respectively, given a bounding box around the agent of interest Xj , where Xj ∈ X , and
X represents the set of all agents of interest in a scene. Given the models gc, gl, and ga, a calibration
set Dcal, and an unseen test sample Xtest, our goal is to sequentially construct the prediction sets
Cl(Xtest) for location classification, and Ca(Xtest) for action classification, given a Cc(Xtest) that
was generated by an agent classification CP algorithm. We opt for sequential task refinement as it
permits on-demand processing of subsequent tasks in case of need. We desire our generated sets
to have two properties. The first property is marginal coverage as described in Equation 1, which
means that the predicted sets are guaranteed to include the true label Ytest with a probability of
at least 1 − α. The second property is semantic consistency, which means that the prediction sets
for each of the classification tasks need to account for classes included in other sets. For example,
for Cc(Xtest) = {car,medium vehicle, large vehicle} it is clear that Ytest corresponds to a vehicle,
and so Cl(Xtest) should not include locations that are not proper to vehicles, such as sidewalk.
Traditional CP set-ups do not guarantee these properties, as they only consider one task. In this
work, we propose knowledge-refined prediction sets (KRPS), a CP-based approach that constructs
the prediction sets described above given an initial task and a knowledge graph. For the remain-
der of this paper, we refer to sets constructed by KRPS by CKRPS

c (Xtest), CKRPS
l (Xtest), and

CKRPS
a (Xtest).

KRPS consists of two components: a knowledge graph and a knowledge-based multitask conformal
prediction algorithm. The knowledge graph models the semantic relationships between the different
tasks we consider. For a particular agent class, only a subset of all possible locations and actions can
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be assigned. The other component of our approach is the knowledge-refined multitask conformal
prediction algorithm that leverages the knowledge graph to sequentially construct prediction sets for
each task, that are semantically consistent while satisfying the coverage guarantees. The semantic
consistency is ensured through a knowledge-based pruning procedure that removes location and
action classes if they are semantically inconsistent with the agent class.

Knowledge Graph Construction. To construct knowledge-refined prediction sets (KRPS), we
build a knowledge graph K in order to model the semantic relationships between the tasks.
The knowledge graph in our implementation draws from common sense and available labels in
large-scale datasets for urban scene understanding, such as the ROAD and Waymo/ROAD++
datasets [1, 24], as we detail in Appendix B. Using the labels for each task, the semantic rela-
tionships between the tasks are constructed as follows. Given a task Tc and Ta referring to the tasks
of agent classification and agent action classification, K contains a set-valued deterministic func-
tion Mc→a : Yc → 2Y

a

that maps agent class labels to the set of all possible action labels, as it
is depicted in Figure 2a. Figure 2b shows an example of this mapping, where the class cyclist is
mapped to all its possible locations byMc→l, and to all its possible actions byMc→a. Given K,
we introduce the notion of conditional semantic consistency between prediction sets for each task.

Definition 3.1 (Conditional Semantic Consistency) Let Cj and Ci be 2 prediction sets containing
class candidates for the tasks T j and T i, respectively. Ci is semantically consistent with respect to
Cj and K, if:

∀Yi ∈ Ci,∃Yj ∈ Cj |Yj ∈Mi→j(Yi) (2)

Equation 2 implies that every element in Ci has a pre-image in Cj by the semantic mappingMi→j .
Note that with this definition, Cj can have elements that do not have images in Ci.

Algorithm 1: KRPS Procedure
Input : K: knowledge graph.

T1..Tm: set of tasks.
MTi→Ti+1 , semantic mappings.
M : correction procedure.
Dcal: calibration set.
α: user-defined error rate.

Output: CKRPS
Ti

, i ∈ [1,m]: semantically
consistent prediction sets.

1 CKRPS
T0

←·Y0

2 PTi ← 1,∀Y Ti ∈ YTi , i ∈ [0,m]
3 for i = 1 to m do
4 CK

Ti
←·MTi−1→Ti

(CKRPS
Ti−1

)

5 CKRPS
Ti

←{}
6 for y ∈ CK

Ti
do

7 PTi
←M(p-value(Xtest, Dcal))

8 if PTi
≥ α then

9 CKRPS
Ti

← CKRPS
Ti

∪ {y}
10 end for
11 end for
12 return CKRPS

Ti
, i ∈ [1,m]

KRPS Construction Procedure. KRPS is based
on sequentially pruning prediction sets using
knowledge from K. For a given scene and an
object Xtest, we start by constructing the predic-
tion set for the agent class task CKRPS

c (Xtest).
Since our approach is sequential, the construction
procedure of the prediction set for the first task
follows the usual CP procedure based on Theo-
rem 2.1. Next, we acquire all possible locations
of agent classes in CKRPS

c (Xtest) using the se-
mantic mapping from the knowledge graph K.
The set of all possible locations that correspond to
CKRPS

c (Xtest) is CK
l =Mc→l(C

KRPS
c )2. We

use CK
l as a starting set for further pruning, in-

stead of considering the full space of labels Y l.
The pruning consists of a conformal prediction
step based on a conformity score proper to the lo-
cation classification task. Examples of such con-
formity scores are 1− Softmax. The conformal
prediction step produces the set CKRPS

l . Apply-
ing the steps described above results in a multi-
hypotheses testing problem, where the family-
wise error increases. To account for the MHT
problem, applying a correction procedure M of the p-values is required, as we detail in Appendix A.
Prediction sets for further tasks can be acquired by applying the same procedure sequentially using
CKRPS

l . Using the procedure explained above, the generated sets are guaranteed to be semantically
consistent and to have coverage as formalized in Equation 1. The KRPS set construction proce-

2Mc→l is a point to set mapping. We abuse the notation to indicate the set of images for every elements in
CKRPS

c using the mapping Mc→l.
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Semantic Mapping

Agent

Semantic Mapping Set of all possible locations
for agent      

Set of all possible locations
for agent        

actions

(a) General structure of the knowledge graph.

Actions

Cyclist

Locations - In outgoing cycle lane
- In incoming cycle lane
- At Crossing, ...

- Moving Away               
- Moving Towards
- At Crossing, ...

(b) Knowledge graph for the agent class Cyclist.

Figure 2: Knowledge-graph structure used in KRPS. Figure 2a shows the structure of the knowledge
graph with the semantic mappings {agent→ location} and {agent→ action}. Figure 2b depicts
an example graph for the agent class Cyclist. The full construction procedure is in Appendix B.

dure is formalized in Theorem 3.1 and described in Algorithm 1. The proof of Theorem 3.1 and its
corollary, along with an analysis of their practical implications, are provided in Appendix A.

Theorem 3.1 (Knowledge-Refined Conformal Prediction) Given 2 tasks Tc and Tl, the se-
mantic mapping function Mc→l, and the prediction sets Cc(Xtest) and Cl(Xtest), the set
CKRPS

l (Xtest) = Cl(Xtest) ∩ Mc→l(Y
c
test) is semantically consistent with respect to CKRPS

c

and K, and satisfies the marginal coverage described in Equation 3.

P[Ytest ∈ CKRPS
l (Xtest)] ≥ 1− α (3)

We prove this property by leveraging the probability conservation of the deterministic semantic
mappings between the task and proposing a generalizing of the cascaded CP Theorem [25] to cover
multitask settings. We present the detailed proof of Theorem 3.1 in Appendix A.

Corollary 3.1 (Transitivity of conditional semantic consistency) Let CKRPS
c , CKRPS

l and
CKRPS

a be 3 prediction sets constructed using KRPS. If CKRPS
l is semantically consistent, with

respect to CKRPS
c and K, and CKRPS

a is semantically consistent, with respect to CKRPS
l and K,

then and CKRPS
a is semantically consistent, with respect to CKRPS

c and K.

We prove the transitivity property by leveraging the semantic consistency between prediction sets of
subsequent tasks, guaranteed by Theorem 3.1. We present a proof of Corollary 3.1 in Appendix A.

4 Evaluation

To support the theoretical results for guaranteed coverage and semantic consistency across different
tasks executed sequentially, we evaluate KRPS on 2 large-scale urban scene understanding datasets.
We compare the performance of KRPS against 3 baselines including 2 state-of-the-art approaches,
using 2 widely used CP metrics: deviation from coverage rate and set size. Since we are the first to
consider semantic consistency across tasks in CP, we introduce a metric for semantic consistency.

4.1 Datasets

The ROAD Dataset [1]. The Road Event Awareness dataset (ROAD) for autonomous driving in-
cludes 22 videos, and 1.7M labels across 11 agent classes, 15 locations, and 23 actions under various
weather conditions, providing a diverse and challenging set of scenarios for testing the effectiveness
of KRPS. ROAD offers (agent, location, action) triplets, ideal for a comprehensive evaluation.

The Waymo/ROAD++ Dataset3. The Waymo/ROAD++ dataset, an extension of the ROAD dataset,
incorporates 3.5M agents, 4.3M actions, and 4.2M locations from the expansive Waymo autonomous
driving dataset [24], annotated with road events akin to those in the ROAD dataset.

Implementation. For the evaluation, we use the 3D-RetinaNet [1] with separate heads for each
classification task, outputting softmax scores. The model is trained on each dataset for 30 epochs

3Waymo/ROAD++: https://sites.google.com/view/road-plus-plus/dataset
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with an Adam optimizer at a learning rate of lr = 0.001. We randomly divide the validation splits
of both datasets in 3 equal-sized portions as follows: eval split 1 for validation, eval split 2 for
calibration, and eval split 3 for testing. All experiments use Bonferroni correction for prediction
robustness, with results averaged over 100 trials on a single 24GB RTX 3090.4

4.2 Metrics

Deviation from Target Coverage (DTC). The deviation from the target coverage rate (DTC) quan-
tifies the discrepancy between the achieved coverage, Covapproach, and the desired target coverage,
Covtarget = 1− α, as defined in Equation 4.

DTC = Covapproach − Covtarget (4)

Negative DTC values indicate coverage below 1 − α, indicating a failure to meet the theoretical
lower bound. DTC values nearing zero suggest that the actual coverage closely aligns with the target
coverage. Smaller positive values denote accurate coverage rates above the desired threshold.

Set Size (SS). We measure the average set size provided by KRPS. As providing the full set of labels
would be a trivial output for CP-based methods to achieve the coverage guarantees, a smaller set size
demonstrates better predictive efficiency.

Conditional Semantic Consistency (SC). We introduce a novel metric to measure the semantic
consistency between the generated sets predicted for the task T i with respect to T i−1 and K. For a
prediction set CT i , semantic consistency represents the rate of semantically consistent classes in the
entire set and is formulated in Equation 5. A higher semantic consistency value demonstrates better
coherence between the prediction sets across the tasks.

SC(CT i |CT i−1 ,K) =
|{Y : Y ∈ CT i ∩MTi−1→Ti(CTi−1)}|

|CT i |
(5)

4.3 Baselines

Inspired by recent CP works, such as [26, 25], we evaluate KRPS with the Least Ambiguous Set
Classifier (LAC), for which the scoring function is 1 − Softmax [27], and 2 state-of-the-art CP
scores. The first approach is adaptive predictive sets (APS) [28], which is a scoring technique
known to improve conditional coverage. The second approach is regularized adaptive predictive sets
(RAPS) [29], which is known to generate notably smaller predictive sets. RAPS stands unparalleled
in minimizing the size of prediction sets. Thus, it is crucial to explore the effectiveness of KRPS in
further compressing the predictive set sizes relative to those generated by RAPS.

4.4 Tasks

Our evaluation considers 3 tasks on both datasets, namely agent, location, and action classification.
Since our approach acts sequentially on multiple tasks, the first task is not refined, which makes
the construction of the prediction set for the first task (i.e., agent classification), coincide with the
underlying CP process. The task sequences we consider are: {agent → location} and {agent →
action}. To conduct our evaluation, we first construct the prediction sets for the agent classification
using Softmax, APS, and RAPS. Using the predicted agent class sets, we report the results for the
subsequent tasks: location classification, and action classification. In Appendix C, We report the
results of longer task sequences using 3 tasks to show the capability to handle longer sequences of
tasks with different orders.

4.5 Comparison with State-of-the-Art

We conduct our evaluation using different values of α ranging from 0.1 to 0.5 with a step of 0.1.
We present the results on the ROAD and Waymo/ROAD++ datasets in Table 1a and Table 1b, re-

4Our code is available here: https://gitlab.com/achref.d/krps.

6

https://gitlab.com/achref.d/krps


α = 0.1 α = 0.2 α = 0.4Task Score Method SS DTC SC SS DTC SC SS DTC SC
Standard 7.07 0.05 0.81 6.04 0.10 0.79 4.51 0.19 0.77Softmax KRPS 5.86 0.02 1.00 4.93 0.05 1.00 3.75 0.09 1.00
Standard 7.12 0.05 0.80 6.07 0.10 0.79 4.61 0.20 0.76APS KRPS 5.90 0.02 1.00 4.96 0.05 1.00 3.65 0.12 1.00
Standard 2.66 0.07 0.89 2.03 0.15 0.93 1.56 0.34 0.96

Location

RAPS KRPS 2.18 0.05 1.00 1.78 0.13 1.00 1.45 0.13 1.00
Standard 7.48 0.01 0.79 5.98 0.01 0.78 3.77 0.06 0.77Softmax KRPS 5.83 0.00 1.00 4.70 0.00 1.00 3.06 0.00 1.00
Standard 9.77 0.05 0.75 8.01 0.10 0.73 5.72 0.30 0.70APS KRPS 7.29 0.02 1.00 6.01 0.03 1.00 4.35 0.11 1.00
Standard 4.67 0.07 0.84 3.94 0.13 0.87 2.54 0.25 0.92

Action

RAPS KRPS 3.82 0.03 1.00 3.26 0.02 1.00 2.22 0.15 1.00

(a) Results on the ROAD dataset for for α = [0.1, 0.2, 0.4]. Bold designates better performance.

α = 0.1 α = 0.2 α = 0.4Task Score Method SS DTC SC SS DTC SC SS DTC SC
Standard 8.10 0.05 0.80 6.04 0.11 0.73 4.13 0.21 0.72Softmax KRPS 6.02 0.01 1.00 5.42 0.03 1.00 3.07 0.08 1.00
Standard 9.02 0.07 0.79 7.92 0.10 0.76 4.03 0.22 0.71APS KRPS 7.50 0.01 1.00 5.99 0.06 1.00 3.24 0.14 1.00
Standard 2.45 0.09 0.87 2.07 0.15 0.91 1.83 0.34 0.96

Location

RAPS KRPS 2.01 0.04 1.00 2.04 0.10 1.00 1.17 0.09 1.00
Standard 9.32 0.06 0.80 7.20 0.08 0.78 5.00 0.15 0.81Softmax KRPS 6.09 0.01 1.00 4.17 0.03 1.00 3.50 0.10 1.00
Standard 10.41 0.05 0.77 6.84 0.13 0.74 5.36 0.12 0.78APS KRPS 5.98 0.02 1.00 4.18 0.02 1.00 3.87 0.12 1.00
Standard 4.36 0.06 0.87 3.03 0.15 0.89 1.50 0.24 0.94

Action

RAPS KRPS 3.57 0.04 1.00 2.88 0.02 1.00 1.07 0.07 1.00

(b) Results on the Waymo/ROAD++ dataset for for α = [0.1, 0.2, 0.4]. Bold designates better performance.

Table 1: Results of our experiments. Based on the prediction sets for the agent classification task,
prediction sets for the location and action are sequentially inferred using KRPS with 3 scoring
functions: Softmax, APS, and RAPS. The standard mode refers to the baseline without KRPS.

spectively. Due to space constraints, we only report the results for α = [0.1, 0.2, 0.4], in the main
manuscript. Results for the full set of α values and different task sequences are in Appendix C.

The results show that KRPS substantially reduces the set size for all underlying scores. For the
location classification task, the average set size reduction is by 17% for softmax, 18% for APS,
and 10% for RAPS, for the ROAD dataset, and by 20% for softmax, 20% for APS, and 27% for
RAPS, for the ROAD++ dataset. For the action classification task, the set size reduction achieved
by KRPS is more apparent and equals 24% for softmax, 25% for APS, and 16% for RAPS, for the
ROAD dataset. For the Waymo/ROAD++ dataset, the results show that KRPS achieved a set size
reduction by 36% for softmax, 38% for APS, and 15.4% for RAPS. The contribution of KRPS to
set size reduction is particularly apparent for APS, in both datasets. The reason is that APS is built
to achieve class-wise coverage to account for unbalanced classes in the dataset, which has the effect
of increasing the set size. The application of KRPS succeeds in reducing the set size while holding
the marginal coverage guarantees. KRPS holds the theoretical coverage guarantees for all values of
α and for all the non-conformity scores, which is indicated by positive DTC values. Furthermore,
KRPS adjusts the coverage rate for all scoring functions, leading to lower DTC values.

KRPS holds conditional semantic consistency guarantees as well, achieving 100% of conditional
semantic consistency in all experimental conditions. Compared to the baselines, KRPS increases
the conditional semantic consistency in the task of location classification by an average of 26% for
softmax, 23% for APS, and 6% for RAPS, for the ROAD dataset, and by 26% for softmax, 23%
for APS, and 6% for RAPS, for the ROAD++ dataset. For the task of action classification on the
ROAD dataset, KRPS increased the semantic consistency by 25% for softmax, 24% for APS, and
8% for RAPS. For the Waymo/ROAD++ dataset as well, KRPS increases the semantic consistency
rates for action prediction by 25.5% for softmax, 31% for APS, and 11% for RAPS. We present more
experiments on longer task sequences, the influence of the knowledge graph size, and the percentage
of the empty sets in Appendices B, and E, respectively.
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5 Discussion

Recent studies have underscored the importance of incorporating semantics [30, 31, 32, 33] and
uncertainty [34, 35, 36, 37] into robotic decision-making frameworks, particularly as Large Lan-
guage Models (LLMs) are increasingly used to enhance autonomous navigation [38, 39, 40, 41].
These models, prone to uncertainty and hallucinations [42], necessitate a detailed contextual under-
standing of the scene for effective operation [43]. Incorporating semantic awareness and uncertainty
awareness enhances both the reliability and interpretability of these systems, addressing a fundamen-
tal challenge in their widespread adoption: trust [44, 45]. KRPS introduces a novel approach that
combines these aspects to improve the overall efficacy of autonomous decision-making processes.
KRPS represents the first approach that extends CP to a multitask learning setup without specific
requirements regarding the nature or sequencing of tasks. The theoretical analysis and the empirical
evaluation show that KRPS significantly reduces uncertainty, while ensuring semantic consistency,
in dynamic urban environments. Furthermore, KRPS benefits from the inherent practicalities of CP,
eliminating the need for continual model retraining. Instead, KRPS requires only a computationally
efficient calibration process to integrate new data, assuming data exchangeability as per CP norms.

Limitations. As we see KRPS as a practical approach to consider uncertainty and semantic aware-
ness in autonomous robots and systems, it is important to consider the limitations of its application.
KRPS, being a CP-based approach, traditionally relies on the assumption of data exchangeabil-
ity. This assumption can limit its effectiveness with scoring functions that fail to address out-of-
distribution (OOD) data scenarios. To mitigate this, KRPS has been designed to be agnostic to the
scoring function, as demonstrated in our empirical analysis, making it compatible with OOD-aware
calibration procedures, such as [46, 47, 12]. The effectiveness of KRPS is also contingent on the in-
tegrity of the underlying knowledge graph. Ambiguities within the knowledge graph regarding class
definitions can compromise prediction accuracy. To address this, our evaluation integrates ontologi-
cal structures derived from the datasets utilized, such as ROAD and Waymo [1, 24], and aligns with
established logical frameworks [2], facilitating more precise semantic interpretations. Moreover,
KRPS is designed to identify and respond to these ambiguities by generating empty prediction sets
to effectively manage scenarios not fully covered by the knowledge graph. This feature highlights
cases requiring further scrutiny and ensures that KRPS maintains reliability despite incomplete on-
tologies. KRPS is a sequential approach, leveraging prediction sets from the initial task to generate
semantically consistent sets for subsequent tasks. Its dependence on the quality of the first set is
intrinsic. Although joint prediction set construction is viable [48], the sequential process allows for
on-demand refinements exclusively for the relevant agents in the scene, leading to better efficiency.

Practicality. While our paper focuses on 3 high-level perception tasks for urban scene understand-
ing, KRPS can be extended to other robot perception applications. The formulation of Algorithm 1
and Theorem 3.1 is adaptable to diverse environmental contexts. For example, KRPS can be ap-
plied to urban search and rescue, handling sequences of tasks under high uncertainty like victim
detection, hazard identification, and robot action selection. Other use-cases can also be envisioned,
such as robot manipulation, where a robot is tasked to recognize and sort objects of different sizes
and put them in their corresponding places. KRPS provides uncertainty quantification and semantic
consistency at each stage, ensuring accurate object classification, optimal grasp strategy selection,
and precise object placement. We elaborate more on these applications in Appendix F.

6 Conclusion

We introduced KRPS, a Knowledge-Refined Prediction Set approach, tailored for multitask learn-
ing in urban scene understanding. By refining prediction sets through semantic relationships among
tasks, KRPS ensures semantic consistency and adheres to coverage guarantees by producing sig-
nificantly smaller prediction sets. KRPS shows promise for real-world applications, particularly in
autonomous driving. Due to safety concerns, initial tests were limited to realistic, and challenging
datasets. Future work should focus on integrating KRPS into operational systems, with rigorous
safety validations and controlled real-world trials to ensure trustworthy autonomous navigation.
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A Proofs

A.1 Background For Proofs: Cascaded Conformal Prediction

Cascaded conformal prediction (cascaded-CP) [25] is a technique that allows to prune prediction
sets sequentially for a single task, using a cascade of different non-conformity scores over m steps.
Since different statistical tests are applied to the data set, the multiple hypothesis testing (MHT)
problem arises, which leads to an increased family-wise error rate (i.e., false positives), making the
CP procedure invalid. Cascaded-CP makes use of p-value correction procedures M , such as Simes
corrections, to account for MHT problem. Cascaded-CP is formalized in Theorem A.1.

Theorem A.1 (Cascaded-CP [25]) For any sequence of non-conformity measures (S1, ..., Sm),
which yields p-values (P1, ..., Pm) and α ∈ [0, 1], the prediction set Cj(Xtest) at step j < m
is defined as:

Cj(Xtest) = {Y ∈ Y : P̃ y
j > α} (6)

where P̃ y
j is the corrected p-values using the procedure M for candidate y at step j. Then ∀j ∈

[1,m], Cj(Xtest) satisfies Equation 1, and Cm(Xtest) ⊆ Cj(Xtest).
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In this work, we show that Theorem A.1 can be extended to cover multiple tasks in cascade. Fur-
thermore, in our case the tasks are not required to share the same label space. By constructing a
knowledge graph facilitating semantic mapping between tasks, our approach accommodates differ-
ent tasks. Notably, Cascaded-CP can be seen as a sub-case of our work if all tasks are identical.

A.2 Proof of Theorem 3.1

We consider 2 tasks Tc and Tl that are performed sequentially. Our goal is to prove that the pre-
diction set CKRPS

l obtained by performing any CP procedure on the set CK
l , which represents the

semantic mappingMc→l of the set CKRPS
c , satisfies 2 properties: marginal coverage, and semantic

consistency with respect to CKRPS
c and K.

Marginal Coverage First, we prove the marginal coverage property of the set CKRPS
l , that is:

P[Y l
test ∈ CKRPS

l (Xtest)] ≥ 1− α (7)

The set CKRPS
c is constructed using a CP procedure, meaning that it satisfies Equation 1, and we

have:
P[Y c

test ∈ CKRPS
c (Xtest)] ≥ 1− α (8)

The semantic mapping Mc→l is a deterministic mapping that assigns a set of possible locations
to each element of CKRPS

c (Xtest). Knowing that the true value of the subsequent task Y l
test is

the image of the true value of the starting task Y c
test, the resulting mapping set CK

l (Xtest) =
Mc→l(C

KRPS
c (Xtest)) contains the Y l

test with a probability that is at least equal to 1 − α, as
expressed in Equation 9.

P[Y l
test ∈ CK

l (Xtest)] ≥ 1− α (9)

From the CP coverage Theorem 2.1, we can conclude the existence of a p-value PK
l that satisfies:

P[Y l
test ∈ CK

l (Xtest)] ≥ 1− α ⇐⇒ P[PK
l ≤ α] ≤ α (10)

At this step, we have two distinct p-values for the subsequent task Tl, namely PK
l and Pl. The

p-value PK
l is employed in the construction of the set CK

l , whereas Pl is utilized for forming the set
Cl(Xtest), representing the CP-based set for task Tl independently of the knowledge provided by
the prior task Tc, established on CKRPS

c .

Subsequently, we execute a cascaded-CP procedure using Theorem A.1 on the p-values Pl, P
K
l . We

incorporate a p-value correction procedure denoted as M , resulting in corrected p-values P̃l, P̃
K
l ,

and we have:

P[Y l
test ∈ Cl(Xtest) ∩ CK

l (Xtest)] ≥ 1− α

⇐⇒ P[Y l
test ∈ CKRPS

l (Xtest)] ≥ 1− α

which is the result stated in Equation 3.

Semantic Consistency Our goal now is to show that the newly constructed prediction set CKRPS
l

is semantically consistent with respect to CKRPS
c andK. This result of semantic consistency comes

from the fact that for each element Y l of CKRPS
l , we have Y l ∈ Cl(Xtest) ∩Mc→l(C

c(Xtest)),
meaning that CKRPS

l ⊆Mc→l(C
c(Xtest)), which gives the semantic consistency property.

Implications of Theorem 3.1 The direct implication of Theorem 3.1 is that we can further refine
the prediction sets generated by any CP procedure given K and a related task, by removing classes
that are not semantically consistent with other tasks, without losing the property of marginal cov-
erage, provided that the p-values are properly corrected. The semantic refinement in KRPS plays
an additional role in highlighting corner cases. In urban applications, it is typical to start with a
basic knowledge graph and incrementally add new class relationships as data becomes available.
This process, however, may encounter corner cases or semantic inconsistencies, like vehicles on
sidewalks, not covered by the knowledge graph. KRPS addresses these instances by outputting an
empty prediction set when a semantically consistent vehicle position cannot be found. This empty
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Figure 3: Implications of Theorem 3.1 (blue) and Corollary 3.1 (green) on the semantic consistency.

set signals potential knowledge graph gaps or corner cases, prompting further investigation by end-
users. Updating the knowledge graph and performing a calibration step is sufficient to adapt to new
data without retraining the model.

A.3 Proof of Corollary 3.1

The sets CKRPS
c , CKRPS

l and, CKRPS
a are 3 prediction sets constructed using KRPS, in the de-

scribed order. Given this, our goal is to prove that CKRPS
a is semantically consistent with respect

to CKRPS
c and K. Since CKRPS

a is constructed based on Theorem 3.1, we have CKRPS
a is seman-

tically consistent with respect to CKRPS
l and K, i.e.,

∀Ya ∈ CKRPS
a ,∃Yl ∈ CKRPS

l /Ya ∈Ml→a(Yl) (11)

Since CKRPS
l is constructed using KRPS based on Theorem 3.1, CKRPS

l semantically consistent
with respect to CKRPS

c and K and we have:

∀Yl ∈ CKRPS
l ,∃Yc ∈ CKRPS

c |Yl ∈Mc→l(Yc) (12)

Based on Equations 11 and 12, we can establish that:

∀Ya ∈ CKRPS
a ,∃Yc ∈ CKRPS

c |Ya ∈Mc→a(Yc) (13)

Which gives that CKRPS
a is semantically consistent with respect to CKRPS

c and K.

Implications of Corollary 3.1 Corollary 3.1 establishes the transitive properties of semantic con-
sistency, as defined using Definition 3.1. As depicted in Figure 3, this result implies that two pre-
diction sets from sequential tasks maintain semantic consistency, even if constructed independently,
as long as they are built in sequence relative to a shared task in the middle. This finding holds sig-
nificance as knowledge bases evolve over time with the inclusion of new tasks. Employing KRPS
ensures guarantees of semantic consistency with all prior tasks, by uniquely verifying semantic con-
sistency for the latest executed task.

Comments on the Coverage Guarantees of KRPS. The coverage guarantee, as currently framed
in Theorem 3.1, holds in expectation over the calibration sets, reflecting the standard practice in
conformal prediction to ensure broad applicability and robustness across various operational scenar-
ios [29]. KRPS prioritizes generalizability and statistical validity across diverse conditions, which
is why the guarantee is designed to hold in expectation rather than conditionally. However, KRPS
can be easily adapted to conditional coverage guarantees by adopting class conditional calibration
procedures, such as in [49].

Comments on the Semantic Consistency Guarantees of KRPS. KRPS guarantees conditional
semantic consistency on the prediction sets of the subsequent tasks relative to the first task and the
knowledge graph. This means that while KRPS ensures that the sets are semantically consistent
given the output of the first task and according to the relationships defined in the knowledge graph,
this consistency is conditional on those of initial outputs of the first task executed.
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A.4 Details About the Correction Procedure

In our implementation of KRPS, addressing the challenges of multiple hypothesis testing is crucial
due to the simultaneous consideration of multiple semantic categories in the knowledge graph. To
ensure the validity of our statistical inferences while managing the family-wise error rate (FWER),
we employ the Bonferroni correction procedure. The Bonferroni procedure [50] is a conservative
approach that adjusts for multiple comparisons by dividing the desired significance level α by the
number of hypotheses tested, m.

Specifically, if individual tests are conducted at a significance level α, the Bonferroni correction
modifies the significance threshold for each test to α

m . For KRPS, where each agent’s classification
can lead to multiple related hypotheses about actions and locations, the correction ensures that the
overall probability of making one or more type I errors does not exceed α.

Mathematically, this is represented as:

αadjusted =
α

m

Where m is the total number of hypotheses, which corresponds to the number of potential action
and location classifications linked to each agent class. By applying the adjustment for the values of
α, KRPS maintains the control over the error rates across all tests.

B Structure of the Knowledge Graph

In the following, we provide more details about the knowledge graph used to model the semantic
relationships between the entities in the urban environment. We adopt a simple, yet effective on-
tological model based on the following semantic relationship: Agent performs action in location.
It is possible to adopt different task orders, e.g., Action is performed in location by agent. In our
setup, the classification of an agent, its location, and its action, correspond to different tasks, that are
performed by separate models or separate heads of a single model. This is to ensure that we consider
a multitask setup, in contrast to situations where a model outputs a triplet, which we consider as a
case of multi-class classification tasks.

We adopt the class labels provided by the ROAD and the Waymo/ROAD++ datasets5 [1, 24] for
all the tasks that we consider. For Completeness, we report the list of agent, location, and action
classes, as they are described in the ROAD dataset, in Table 2, Table 3, and Table 4, respectively.

Based on the class labels for each task, the semantic mapping functionsMTi→Tj , where Ti and Tj

represent the start and the subsequent tasks, respectively, are constructed through the examination
of possible label assignments between the tasks in the training set.

More in details, the construction of the knowledge graph begins by loading semantically coher-
ent triplets from ground truth labels in the training set, which define relationships between agents,
actions, and locations. Each agent class is mapped to corresponding action and location classes
through boolean arrays within a structured dictionary. The construction procedure ensures also that
the reverse mappings can be queried, in case a different sequence task is considered. The knowledge
graph construction procedure is detailed in Algorithm 2.

In the KRPS framework, the ground truth data is utilized not merely as examples for training models
but also as a fundamental component for constructing the knowledge graph. This dual utilization
allows the ground truth data to both train the predictive model and guide the development of semanti-
cally aware prediction sets using KRPS, afterwards, ensuring that the prediction sets are statistically
valid and semantically consistent across the tasks. Under the assumption of data exchangeability, a
central tenet of conformal prediction, we assume that the data in the training, calibration, and test
sets come from the same distribution. This assumption helps limit the incompleteness of the knowl-
edge graph construction procedure. Even if the knowledge from the training set is incomplete, KRPS

5Waymo/ROAD++: https://sites.google.com/view/road-plus-plus/dataset
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manages this by outputting empty sets, prompting the user to address gaps in the knowledge graph
or to identify potential anomalies from out-of-distribution samples.

It is important to acknowledge that the construction of knowledge graphs can be approached through
various methodologies beyond the one implemented in KRPS. The method described herein was
selected for its simplicity and effectiveness within our application scope. Alternative methods, such
as [51, 52], demonstrate the capacity to construct complex knowledge graphs tailored to autonomous
driving scenarios using different types of input data and for various tasks, such as perception and
navigation. Such versatility not only illustrates the scalability of knowledge graph construction
processes but also supports their adaptability across different semantic dimensions.

Algorithm 2: Construction of the Knowledge Graph
Input : GTfile:Ground truth annotations containing agent, action, and location classes from

training set.
Output: K: A dictionary representing the knowledge graph where agent classes are linked to

semantically coherent actions and locations.
1: procedure BUILDKNOWLEDGEGRAPH
2: Load ground truth labels from GTfile

3: Extract semantically coherent triplets of agents, actions, and locations
4: Initialize an empty dictionary for the knowledge graph
5: For each agent class:
6: Create a sub-dictionary for actions and locations
7: Initialize boolean arrays for actions and locations based on class counts
8: Populate the boolean arrays using triplet data:
9: For each triplet:

10: Mark the corresponding action and location as semantically coherent
11: Return the constructed knowledge graph, K
12: end procedure

B.1 Complete Structure of the Knowledge Graph

In the following, we detail the finalized knowledge graph utilized in our implementation. Table 5
summarizes the semantic mappingsMc→a andMc→l. The semantic mappingsMa→c andMa→l

are represented in Table 6. Finally, the semantic mappings Ml→c and Ml→a are represented in
Table 7.

B.2 Impact of the Knowledge Graph Size on KRPS

In this section, we systematically evaluate the influence of knowledge graph completeness on the
performance of KRPS. Motivated by the necessity to ascertain how the granularity and extent of
semantic data affect predictive outcomes, the completeness of the knowledge graph is varied at

Label Name Abbreviation
Car Car
Medium Vehicle MedVeh
Large Vehicle LarVeh
Bus Bus
Motorbike Mobike
Emergency Vehicle EmVeh
Pedestrian Ped
Cyclist Cyc
Vehicle Traffic Light TL
Other Traffic Light OthTL

Table 2: List of agent classes and their abbreviations as reported in the ROAD dataset [1].
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Label Abbreviation
In vehicle lane VehLane
In outgoing lane OutgoLane
In incoming lane IncomLane
In outgoing cycle lane OutgoCycLane
In incoming cycle lane IncomCycLane
On left pavement LftPav
On right pavement RhtPav
On pavement Pav
At junction Jun
At crossing Xing
At bus stop BusStop
At parking parking

Table 3: List of used location classes and their abbreviations as reported in the ROAD dataset [1].

Label Abbreviation
Moving away MovAway
Moving towards MovTow
Moving Mov
Braking Brake
Stopped Stop
Indicating left IncatLft
Indicating right IncatRht
Hazard lights on HazLit
Turning left TurnLft
Turning right TurnRht
Moving right MovRht
Moving left MovLft
Overtaking Ovtak
Waiting to cross Wait2X
Crossing road from left XingFmLft
Crossing road from right XingFmRht
Crossing Xing
Pushing object PushObj
Traffic light red Red
Traffic light amber Amber
Traffic light green Green

Table 4: List of used action classes and their abbreviations as reported in the ROAD dataset [1]

Agent List of Actions List of Locations
Ped MovAway,MovTow,Mov,Stop,Wait2X,XingFmLft,XingFmRht, VehLane,IncomLane,Pav,LftPav,RhtPav,Jun,xing,BusStop
Car MovAway,MovTow,Brake,Stop,IncatLft,IncatRht,TurLft,TurRht VehLane,OutgoLane,IncomLane,Jun
Cyc MovAway,MovTow,Stop,TurLft,XingFmLft VehLane,OutgoLane,OutgoCycLane,IncomLane,IncomCycLane
Mobike MovAway,MovTow,Brake,Stop,IncatLft,IncatRht,TurLft,TurRht VehLane,OutgoLane,IncomLane,Jun
MedVeh MovTow,Stop,TurRht, TurLft, Brake IncomLane,Jun,OutgoLane
LarVeh MovTow,Stop,TurRht, TurLft, Brake IncomLane,Jun,OutgoLane
Bus MovTow,Stop,XingFmLft VehLane,IncomLane,Jun, BusStop

Table 5: The semantic mappings between the agent classes and the action classes (Mc→a), and the
agent classes and the location classes (Mc→l).

18



Action List of Agents List of Locations
MovAway Ped,Car,Cyc,MedVeh,Bus,LarVeh VehLane,OutgoLane,OutgoCycLane,Pav,LftPav,RhtPav,Jun
MovTow Ped,Car,Cyc,MedVeh,Bus,LarVeh VehLane,IncomLane,IncomCycLane,LftPav,RhtPav,Jun
Mov Ped Pav
Brake Car VehLane,Jun
Stop Ped,Car,Cyc,MedVeh,Bus VehLane,IncomLane,IncomCycLane,Pav,LftPav,RhtPav,Jun,BusStop
IncatLft Car VehLane,Jun
IncatRht Car IncomLane,Jun
TurLft Car,Cyc VehLane,Jun
TurRht Car,MedVeh IncomLane,Jun
Ovtak Car VehLane
Wait2X Ped LftPav,RhtPav
XingFmLft Ped,Car,Cyc,Bus VehLane,IncomLane,Jun,xing
XingFmRht Ped VehLane,IncomLane,RhtPav,Jun
Xing Ped,Cyc Xing
PushObj Ped LftPav,RhtPav

Table 6: The semantic mappings between the action classes and the agent classes (Ma→c), and the
agent classes and location classes (Ma→l).

Location List of Agents List of Actions
VehLane Ped,Car,Cyc,Bus MovAway,MovTow,Brake,Stop,IncatLft,TurLft,XingFmLft,XingFmRht
OutgoLane Car,Cyc MovAway
OutgoCycLane Cyc MovAway
IncomLane Ped,Car,Cyc,MedVeh,Bus MovTow,Stop,IncatRht,TurRht,XingFmLft,XingFmRht
IncomCycLane Cyc MovTow,Stop
Pav Ped MovAway,Mov,Stop
LftPav Ped,Cyc MovAway,MovTow,Stop,Wait2X,PushObj
RhtPav Ped MovAway,MovTow,Stop,Wait2X,XingFmRht,PushObj
Jun Ped,Car,Cyc,MedVeh,Bus MovAway,MovTow,Brake,Stop,IncatLft,IncatRht,TurLft,TurRht,XingFmLft,XingFmRht
xing Ped XingFmLft
BusStop Ped,Bus Stop
parking Car parking

Table 7: The semantic mappings between the location classes and the agent classes (Ml→c), and
the location classes and action classes (Ml→a).

50%, 70%, and 90% of its full capacity. The Results in Table 8 report the results on the ROAD
dataset with α = 0.1 for the {agent → location} sequence, using the “1 − softmax” score with
KRPS. The results reveal a decrease in semantic consistency corresponding with reduced knowledge
graph completeness, although statistical coverage guarantees are maintained. Furthermore the set
size is larger with reduced portions of the knowledge graph. This result is expected, as the removed
connections from the reduced knowledge graph cannot be used during the refinement process, which
impacts the set size and the semantic consistency w.r.t to the full graph. It’s important to note that
while semantic consistency decreases, Theorem 3.1 and Corollary 3.1 remain valid. This is because
these theorems are formulated with respect to the currently used portion of the knowledge graph;
therefore, semantic consistency remains perfect (value of 1) when considered within the context of
the available graph segment.

Metrics % of used knowledge graph
50% 70% 90% 100%

DTC 0.07 0.06 0.05 0.02
SS 6.82 6.53 5.96 5.86
SC (w.r.t full K) 0.83 0.86 0.98 1.00
SC (w.r.t reduced K) 1.00 1.00 1.00 1.00

Table 8: Effects of the knowledge graph size on the performance of KRPS. We evaluate the per-
formance of KRPS with different sizes of the knowledge graph (50%, 70%, 90%) and compare it
to the reference of 100% of the knowledge graph (designated in Bold in the table). The results are
obtained for α = 0.1 for the {agent → location} sequence, using the “1 − softmax” score with
KRPS.
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α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5Task Score Method SS DTC SC SS DTC SC SS DTC SC SS DTC SC SS DTC SC
Stand 7.12 0.05 0.80 6.07 0.10 0.79 5.58 0.16 0.69 4.61 0.20 0.76 4.20 0.27 0.61APS KRPS 5.90 0.02 1.00 4.96 0.05 1.00 4.05 0.01 1.00 3.65 0.12 1.00 2.61 0.00 1.00
Stand 2.66 0.07 0.89 2.03 0.15 0.93 1.70 0.25 0.95 1.56 0.34 0.96 1.46 0.43 0.95Location

RAPS KRPS 2.18 0.05 1.00 1.78 0.13 1.00 1.58 0.14 1.00 1.45 0.13 1.00 1.36 0.22 1.00
Stand 9.77 0.05 0.75 8.01 0.10 0.73 8.14 0.20 0.72 5.72 0.30 0.70 6.56 0.14 0.69APS KRPS 7.29 0.02 1.00 6.01 0.03 1.00 5.59 0.01 1.00 4.35 0.11 1.00 3.94 0.00 1.00
Stand 4.67 0.07 0.84 3.94 0.13 0.87 3.99 0.23 0.86 2.54 0.25 0.92 2.95 0.37 0.91Action

RAPS KRPS 3.82 0.03 1.00 3.26 0.02 1.00 3.27 0.13 1.00 2.22 0.15 1.00 2.52 0.17 1.00

Table 9: Results on the ROAD dataset for the task sequences {agent → location} and {agent →
action}.

α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5Task Score Method SS DTC SC SS DTC SC SS DTC SC SS DTC SC SS DTC SC
Stand 9.02 0.07 0.79 7.92 0.10 0.76 5.97 0.18 0.73 4.03 0.22 0.71 3.98 0.29 0.64APS KRPS 7.50 0.01 1.00 5.99 0.06 1.00 4.00 0.01 1.00 3.24 0.14 1.00 2.73 0.05 1.00
Stand 2.45 0.09 0.87 2.07 0.15 0.91 1.87 0.23 0.93 1.83 0.34 0.96 1.40 0.40 0.95Location

RAPS KRPS 2.01 0.04 1.00 2.04 0.10 1.00 1.35 0.14 1.00 1.17 0.09 1.00 1.10 0.09 1.00
Stand 10.41 0.05 0.77 6.84 0.13 0.74 6.02 0.15 0.74 5.36 0.12 0.78 4.83 0.20 0.68APS KRPS 5.98 0.02 1.00 4.18 0.02 1.00 3.90 0.07 1.00 3.87 0.12 1.00 3.94 0.08 1.00
Stand 4.36 0.06 0.87 3.03 0.15 0.89 2.48 0.16 0.86 1.50 0.24 0.94 1.20 0.37 0.90Action

RAPS KRPS 3.57 0.04 1.00 2.88 0.02 1.00 2.03 0.09 1.00 1.07 0.07 1.00 1.02 0.10 1.00

Table 10: Results on the Waymo/ROAD++ dataset for the task sequences {agent→ location} and
{agent→ action}.

C Results for Further Task Sequences

In Section 4.5, we reported results for sequences of 2 tasks: {agent → location} and {agent →
action} for α = [0.1, 0.2, 0.4]. In the following, we present more results on both datasets for
the full set of values of α = [0.1, 0.2, 0.3, 0.4, 0.5] for the sequences {agent → location} and
{agent → action} in Table 9 and Table 10, respectively. Furthermore, we present results using
sequences of 3 tasks on the ROAD dataset to show the capability of KRPS to handle sequences with
higher numbers of tasks and in different task orders. The 3-tasks sequences that we consider are:
Seq1 : {agent → action → location}, and Seq2 : {location → action → agent}. We use the
same evaluation set-up and data splits reported in the evaluation section in our paper. The results are
reported in Table11 and Table 12, respectively.

In all task sequences, KRPS still holds the theoretical coverage guarantees for all values of α. More
importantly, KRPS achieves the desired coverage rates while being able to reduce the set size con-
siderably. The conditional semantic consistency also holds, as it is guaranteed by Theorem 3.1 and
Corollary 3.1. For all task sequences, the conditional semantic consistency for task 2 with respect to
task 1 and K, task 3 with respect to task 2 and K, and task 3 with respect to task 1 and K, is 100%.

D Qualitative Results

In this section, we present further qualitative results on the ROAD and Waymo/ROAD++ datasets for
the task sequences {agent→ action}, {agent→ location}, and {agent→ action→ location}.

α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5Task Score Method SS DTC SC SS DTC SC SS DTC SC SS DTC SC SS DTC SC
Stand 9.82 0.05 0.71 8.14 0.10 0.65 6.91 0.15 0.61 5.87 0.21 0.58 5.10 0.26 0.56APS KRPS 7.12 0.01 1.00 5.84 0.02 1.00 4.79 0.00 1.00 3.88 0.01 1.00 3.17 0.00 1.00
Stand 4.73 0.07 0.84 3.98 0.13 0.87 3.16 0.18 0.9 2.61 0.26 0.92 2.20 0.33 0.93Action

RAPS KRPS 3.84 0.06 1.00 3.26 0.12 1.00 2.65 0.17 1.00 2.24 0.15 1.00 1.93 0.21 1.00
Stand 7.67 0.05 0.83 6.77 0.14 0.82 6.19 0.21 0.80 5.80 0.22 0.78 5.31 0.24 0.77APS KRPS 6.33 0.01 1.00 5.30 0.00 1.00 4.53 0.08 1.00 3.86 0.00 1.00 3.23 0.01 1.00
Stand 3.03 0.07 0.90 2.38 0.16 0.94 2.04 0.25 0.95 1.83 0.35 0.96 1.69 0.35 0.96Location

RAPS KRPS 2.06 0.07 1.00 2.12 0.16 1.00 1.80 0.04 1.00 1.69 0.13 1.00 1.57 0.13 1.00

Table 11: Results on the ROAD dataset for the task sequence {agent→ action→ location}.
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α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5Task Score Method SS DTC SC SS DTC SC SS DTC SC SS DTC SC SS DTC SC
Stand 9.82 0.05 0.72 8.15 0.00 0.68 6.91 0.15 0.64 5.87 0.21 0.60 5.10 0.26 0.58APS KRPS 7.35 0.00 1.00 6.02 0.00 1.00 4.91 0.00 1.00 3.97 0.00 1.00 3.20 0.01 1.00
Stand 4.73 0.07 0.82 3.98 0.15 0.85 3.16 0.20 0.89 2.61 0.26 0.91 2.20 0.35 0.92Action

RAPS KRPS 3.86 0.06 1.00 3.24 0.13 1.00 2.64 0.18 1.00 2.23 0.25 1.00 1.93 0.32 1.00
Stand 7.00 0.06 0.53 6.52 0.13 0.54 6.16 0.20 0.55 5.76 0.27 0.56 5.48 0.33 0.55APS KRPS 3.45 0.00 1.00 3.07 0.00 1.00 2.74 0.00 1.00 2.36 0.00 1.00 2.03 0.01 1.00
Stand 1.55 0.08 0.92 1.31 0.08 0.92 1.22 0.27 0.97 1.16 0.27 0.97 1.13 0.26 0.95Agent

RAPS KRPS 1.31 0.08 1.00 1.19 0.10 1.00 1.14 0.17 1.00 1.11 0.27 1.00 1.08 0.26 1.00

Table 12: Results on the ROAD dataset for the task sequence {location→ action→ agent}.

D.1 Qualitative Results on the ROAD Dataset

Figure 4 shows 3 different scenes from the ROAD dataset with the agent of interest highlighted with
the red bounding box. For each bounding box, we perform the indicated CP procedure to acquire
the prediction sets for the agent classification task. Based on the agent prediction sets, we report the
generated prediction sets with and without KRPS using the Softmax, APS, and RAPS scores.

Figure 6a shows a scene with a car stopping in the outgoing lane. The prediction sets for the action
and location classification tasks demonstrate how KRPS achieved a substantial reduction for the
prediction sets. This reduction is particularly observable for the location task with the softmax and
APS scores, where the prediction set size is reduced by 4 classes.

Figure 4b shows a scene with a bus stopping in the vehicle lane. All approaches succeed in in-
cluding the correct labels in the prediction sets. The combination of KRPS with RAPS succeeds
in constructing a singleton for the tasks location and action classification. By applying KRPS, the
action and location classes that are not relevant to the agent class are removed.

Figure 6b showcases a scene with a bus moving towards in the incoming lane. Using KRPS, the size
of the prediction sets for the action classification is reduced by 50% for the softmax score, by 75%
for APS, and by 66% for RAPS. For the location classification task, KRPS reduced the prediction
set size by 50% for the softmax score, by 50% for APS. For RAPS, the prediction set is not reduced,
since both locations, incoming lane and junction are possible, given the agent class and its action.

The figures highlight the capability of KRPS to reduce the set size by removing action and location
classes that are not relevant to the agent. Theorem 3.1 ensures that this removal procedure does not
affect the marginal coverage property.
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Softmax

Agent(5): ['Car' 'MedVeh' 'EmVeh' 'LarVeh' 'Bus']

Action(4): ['Stop' 'IncatLft' 'Brake' 'IncatRht']

Location(7): ['IncomLane' 'OutgoLane' 'Jun' 'RhtPav' 'IncomCycLane' 'parking' 'OutgoCycLane']

KRPS :

Agent(5): ['Car' 'MedVeh' 'EmVeh' 'LarVeh' 'Bus']

Refined Action(4): ['Stop' 'IncatLft' 'Brake' 'IncatRht']

Refined Location(3): ['IncomLane' 'OutgoLane' 'Jun’]

APS

Agent(5): ['Car' 'MedVeh' 'EmVeh' 'LarVeh' 'Bus']

Action(6): ['Stop' 'IncatLft' 'Brake' 'IncatRht' 'HazLit' 'MovAway']

Location(7): ['IncomLane' 'OutgoLane' 'Jun' 'RhtPav' 'IncomCycLane' 'parking''OutgoCycLane']

KRPS :

Refined Agent(5): ['Car' 'MedVeh' 'EmVeh' 'LarVeh' 'Bus']

Refined Action(5):['Stop' 'IncatLft' 'Brake' 'IncatRht' 'MovAway']

Refined Location(3): ['IncomLane' 'OutgoLane' 'Jun’]

RAPS

Agent(1):['Car']

Action(2): ['Stop' 'IncatLft']

Location(4): ['IncomLane' 'OutgoLane' 'Jun' 'RhtPav']

KRPS :

Agent(1): ['Car']

Refined Action(2): ['Stop' 'IncatLft']

Refined Location(3): ['IncomLane' 'OutgoLane' 'Jun']

(a) Scene of a car stopping in the outgoing lane from the ROAD dataset [1] with prediction sets using 3 scoring
functions for CP (Softmax, APS, RAPS) without and with KRPS.

Softmax

Agent(8): ['Bus' 'MedVeh' 'LarVeh' 'Cyc' 'Mobike' 'EmVeh' 'TL' 'OthTL']

Action(7): ['MovAway' 'Stop' 'Brake' 'HazLit' 'IncatRht' 'IncatLft' 'Amber']

Location(2): ['VehLane' 'OutgoCycLane’]

KRPS :

Agent(8): ['Bus' 'MedVeh' 'LarVeh' 'Cyc' 'Mobike' 'EmVeh' 'TL' 'OthTL']

Refined Action(2): ['MovAway' 'Stop']

Refined Location(2): ['VehLane' 'OutgoCycLane’]

APS

Agent(8): ['Bus' 'MedVeh' 'LarVeh' 'Cyc' 'Mobike' 'EmVeh' 'TL' 'OthTL']

Action(8): ['MovAway' 'Stop' 'Brake' 'HazLit' 'IncatRht' 'IncatLft' 'Amber' 'Xing''Ovtak']

Location(2): ['VehLane' 'OutgoCycLane’]

KRPS :

Agent(8): ['Bus' 'MedVeh' 'LarVeh' 'Cyc' 'Mobike' 'EmVeh' 'TL' 'OthTL']

Refined Action(2):['MovAway' 'Stop']

Refined Location(2): ['VehLane' 'OutgoCycLane’]

RAPS

Agent(1):['Bus']

Action(2): ['MovAway' 'Stop' 'Brake' 'HazLit']

Location(1): ['VehLane’]

KRPS :

Agent(1): ['Bus']

Refined Action(1): ['Stop']

Refined Location(1): ['VehLane']

(b) Scene of a bus stopping in the vehicle lane from the ROAD dataset [1] with prediction sets using 3 scoring
functions for CP (Softmax, APS, RAPS) without and with KRPS.

Softmax

Agent(7): ['Bus' 'LarVeh' 'EmVeh' 'MedVeh' 'TL' 'Ped' 'OthTL']

Action(10): ['MovTow' 'IncatLft' 'Stop' 'IncatRht' 'TurLft' 'HazLit' 'Ovtak' 'TurRht' 'XingFmLft' 'XingFmRht']

Location(8): ['IncomLane' 'Jun' 'IncomCycLane' 'OutgoLane' 'parking' 'OutgoCycLane' 'VehLane' 'BusStop’]

KRPS:

Agent(7): ['Bus' 'LarVeh' 'EmVeh' 'MedVeh' 'TL' 'Ped' 'OthTL']

Refined Action(5): ['MovTow' 'Stop' 'TurRht' 'XingFmLft' 'XingFmRht']

Refined Location(4): ['IncomLane' 'Jun' 'VehLane' 'BusStop’]

APS

Agent(7): ['Bus' 'LarVeh' 'EmVeh' 'MedVeh' 'TL' 'Ped' 'OthTL']

Action(10): ['MovTow' 'IncatLft' 'Stop' 'IncatRht' 'TurLft' 'HazLit' 'Ovtak' 'TurRht''XingFmLft' 'XingFmRht']

Location(8): ['IncomLane' 'Jun' 'IncomCycLane' 'OutgoLane' 'parking' 'OutgoCycLane''VehLane' 'BusStop’ ]

KRPS:

Agent(7): ['Bus' 'LarVeh' 'EmVeh' 'MedVeh' 'TL' 'Ped' 'OthTL']

Refined Action(6):['MovTow' 'Stop' 'TurRht' 'XingFmLft' 'XingFmRht' 'Wait2X']

Refined Location(4): ['IncomLane' 'Jun' 'VehLane' 'BusStop’]

RAPS

Agent(1):['Bus']

Action(6): ['MovTow' 'IncatLft' 'Stop' 'IncatRht' 'TurLft' 'HazLit']

Location(2): ['IncomLane' 'Jun’]

KRPS:

Agent(1): ['Bus']

Refined Action(2): ['MovTow' 'Stop']

Refined Location(2): ['IncomLane' 'Jun']

(c) Scene of a bus moving towards in the incoming lane from the ROAD dataset [1] with prediction sets using
3 scoring functions for CP (Softmax, APS, RAPS) without and with KRPS.

Figure 4: Scenes from the ROAD dataset [1] with prediction sets using 3 scoring functions for CP
(Softmax, APS, RAPS) without and with KRPS.
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D.2 Qualitative Results on the Waymo/ROAD++ Dataset

Figure 5 shows 2 different scenes from the Waymo/ROAD++ dataset, characterized by challenging
situational and environmental conditions that may induce high uncertainty. The agent of interest is
highlighted with the red bounding box. We perform the indicated CP procedure for each bounding
box to acquire the prediction sets for the agent classification task. Based on the agent prediction
sets, we report the generated prediction sets with and without KRPS using the Softmax, APS, and
RAPS scores.

Figure 5a depicts a low-light scenario where a pedestrian crosses the street with a car in the back-
ground of the bounding box. The challenging lighting conditions and complex scene composition
contribute to uncertainty, prompting the model to assign vehicle-associated actions and locations
such as Brake and outgoing lane. using KRPS mitigates this confusion by restricting the subsequent
tasks to consider only classes suitable for pedestrians or bicycles, as determined by the agent classi-
fication model. KRPS notably reduces uncertainty and shrinks the prediction set size by 80%, 83%,
and 50% for softmax, APS, and RAPS predictions, respectively, for the action classification task.
For location classification, the prediction set size is reduced by 50%, 75%, and 50% for softmax,
APS, and RAPS, respectively.

Figure 5b illustrates a scenario where a pedestrian is crossing the street while pushing a bicycle.
This presence of the bicycle often misleads models for action and location to assign characteristics
typical of bicyclists, such as Brake and outgoing lane. KRPS addresses this issue by ensuring that
only classes suitable for either pedestrians or bicycles are considered, as dictated by the initial agent
classification results. This application of KRPS significantly reduces uncertainty and narrows the
prediction set size by 71%, 60%, and 66% for the softmax, APS, and RAPS predictions for the
action classification task, respectively. Similarly, for the location classification task, the prediction
set sizes are reduced by 66%, 50%, and 66% for softmax, APS, and RAPS, respectively.

E Further Details About Empty Prediction Sets

In the KRPS framework, the occurrence of empty prediction sets is a critical aspect, designed to
signal either anomalies in the detection or significant mismatches and gaps within the knowledge
graph. The empty sets arise when no available classes meet the semantic and statistical criteria estab-
lished by the knowledge graph and conformal prediction rules. In traditional conformal prediction,
an empty prediction set is generated when the non-conformity score for any potential prediction ex-
ceeds the calibrated threshold, indicating that none of the possible outcomes is statistically plausible
within the given confidence level. KRPS enhances the traditional conformal prediction model by
integrating a semantic layer that evaluates the coherence of potential predictions with the knowl-
edge graph. This integration means that even if a prediction is statistically plausible, it might still
be rejected if it fails to align semantically with the knowledge graph. Hence, empty prediction sets
may also occur due to the absence of semantically consistent labels, particularly in scenarios where
the knowledge graph does not fully cover all possible real-world variations.

We conduct an experiment to quantify the frequency of empty prediction sets produced by KRPS
and compare these outcomes to traditional conformal prediction baselines, to assess the impact of
semantic layer in KRPS on the generation of empty sets. The results, depicted in Figure 6, show a
trend where 1−Softmax, APS, and their combination with KRPS produce more empty sets as the
value of α increases, a behavior expected as higher α values lead conformal prediction approaches
to generate smaller prediction sets, as they tolerate more risk. This is however different for RAPS,
where the percentage of empty sets is zero across the different values of α. This is an expected be-
havior since the regularization term in RAPS encourages the inclusion of additional labels if the set
is too small, thus preventing it from being empty. By adaptively adjusting the threshold for inclusion
based on the desired coverage level, RAPS ensures that there is always at least one label that meets
the criteria, thereby avoiding empty prediction sets. KRPS, in contrast to the baselines, consistently
shows a higher frequency of empty sets due to the semantic consistency checks integrated. If a po-
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Softmax
Agent(2): {'Cyc', 'Ped'}
Action(5):{'Brake', 'TurLft','Stop','IncatRht','XingFmLft'}
Location(6):{'VehLane', 'IncLane','Outgolane','Jun', 'Xing','BusStop'}
KRPS
Agent(2):{'Cyc', 'Ped'}
Refined Action(1): { 'XingFmLft'}
Refined Location(3): { 'Jun', 'Xing','BusStop'}

APS
Agent(2):{'Cyc', 'Ped'}
Action(6):{'Brake', 'TurLft','Stop','IncatRht','XingFmLft','Park'}
Location(8):{'VehLane', 'IncLane','Outgolane','Jun', 'Xing','BusStop', Pav, 'RhtPav'}
KRPS
Agent(2):{'Cyc', 'Ped'}
Refined Action(1):{ 'XingFmLft'}
Refined Location(2):{ 'Jun', 'Xing','BusStop'}

RAPS
Agent(2):{'Cyc', 'Ped'}
Action(2):{ 'XingFmLft','Brake'}
Location(2):{ 'Xing', 'Outgolane'}
KRPS
Agent(2):{'Cyc', 'Ped'}
Refined Action(1):{ 'XingFmLft'}
Refined Location(1):{ 'Xing'}

(a) Scene of a pedestrian pushing a bicycle and crossing the street from the Waymo/ROAD++ dataset with
prediction sets using 3 scoring functions for CP (Softmax, APS, RAPS) without and with KRPS.

Softmax
Agent(2): {'Cyc', 'Ped'}
Action(7):{'TurLft', 'TurRht','Stop','IncatRht','XingFmLft', 'XingFmRht', 'HazLit'}
Location(6):{'Outgolane','Jun', 'IncLane','VehLane','Xing','BusStop'}
KRPS
Agent(2): {'Cyc', 'Ped'}
Action(2):{'XingFmLft', 'XingFmRht'}
Location(2):{'Jun','Xing'}

APS
Agent(2): {'Cyc', 'Ped'}
Action(5):{'Brake', 'TurLft','Stop','IncatRht','XingFmLft'}
Location(6):{'VehLane', 'IncLane','Outgolane','Jun', 'Xing','BusStop'}
KRPS
Agent(2): {'Cyc', 'Ped'}
Action(2):{'XingFmLft', 'XingFmRht'}
Location(3):{'Jun', 'Xing','BusStop'}

RAPS
Agent(1): { 'Ped'}
Action(3):{'Brake', 'Stop','XingFmLft'}
Location(2):{'Parking', 'Xing'}
KRPS
Agent(1): {'Ped'}
Action(1):{'XingFmLft'}
Location(1):{ 'Xing'}

(b) Scene of a pedestrian pushing a bicycle and crossing the street from the Waymo/ROAD++ dataset with
prediction sets using 3 scoring functions for CP (Softmax, APS, RAPS) without and with KRPS.

Figure 5: Scenes from the Waymo/ROAD++ dataset with prediction sets using 3 scoring functions
for CP (Softmax, APS, RAPS) without and with KRPS.

tential prediction fails to meet both semantic and statistical criteria, KRPS opts to return an empty
set, avoiding inaccurate or contextually inappropriate predictions. Conversely, traditional conformal
prediction methods, which lack a semantic filter, tend to produce fewer empty sets but at the risk
of including predictions that, although statistically plausible, might not align semantically with the
context of the scene.

In Figure 7, we show a qualitative example of a situation where KRPS outputs an empty set, while
the RAPS does not. The scenario illustrates a car for which the ground truth location is VehLane,
which indicates a Vehicle lane. Applying RAPS using α = 0.5 leads to a prediction set including
a single class, which is OutgoCycLane, referring to an Outgoing Cycle Lane. In contrast, when
refining the prediction set with KRPS in accordance with the agent class Car and the knowledge
graph, KRPS yields an empty set. This outcome signals that none of the predicted locations are
applicable to the Car agent class, prompting considerations of potential anomalies, such as a car
mistakenly detected in a cycle lane. It is important to note that had such scenarios been present
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(a) Percentage of empty sets for different values of α for the location classification task.
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(b) Percentage of empty sets for different values of α for the action classification task.

Figure 6: Percentage of empty sets for different values of α for the location and action classification
tasks based w.r.t the knowledge graph and predictions of the agent class.

in the training data, the knowledge graph would have accounted for them, preventing KRPS from
producing an empty set under these conditions.

F More on the Practicality of KRPS

While our paper focuses on three high-level perception tasks for urban scene understanding, KRPS
can be extended to other robot perception applications with varying natures and a number of tasks.
The formulation of Algorithm 1 and Theorem 3.1 is adaptable to diverse environmental contexts.

25



 Detected agent class: {'Car'}
 RAPS Location: {OutgoCycLane}
 KRPS: {}

Figure 7: Qualitative example of empty set generated by KRPS, using RAPS and α = 0.5.

For example, KRPS can be applied to urban search and rescue, where tasks such as victim detection,
hazard identification, and robot action selection are critical [53]. In this scenario, the detection
of victims informs subsequent hazard identification tasks by highlighting areas where hazards are
likely to be present. The results from hazard identification can then guide the action selection of
the robot, such as navigating safely through debris or delivering emergency supplies. The role of
external knowledge in the form of knowledge graphs or other forms of semantics can be decisive
for the mission success [54]. KRPS enhances this application by ensuring that each prediction set is
semantically consistent with the preceding tasks and by providing uncertainty quantification, which
is crucial for making reliable decisions in high-stakes environments.

In the domain of robot manipulation, KRPS can significantly improve the accuracy and reliability
of tasks such as object recognition, grasp strategy selection, and precise placement. Here, the clas-
sification of objects directly influences the choice of the manipulation action [55]. For instance,
identifying an object as fragile necessitates a more delicate grasping approach compared to a ro-
bust item. Uncertainty quantification is particularly important in this context to avoid mistakes such
as misidentifying an object, which could lead to improper handling and potential damage. KRPS
ensures that each stage of the manipulation process is informed by the previous task’s outcomes,
enhancing both semantic consistency and decision reliability.

Additionally, KRPS can be utilized in robotic navigation, especially in dynamic and unpredictable
urban environments. The class of the robot’s behavior, such as stopping, turning, or accelerating, can
depend on the classes of agents present in the environment and their predicted future maneuvers [56,
57]. For example, the presence of a pedestrian crossing the road might necessitate the robot to
stop, while an approaching vehicle could require the robot to yield or change lanes [51, 52]. In
this application, KRPS provides a structured way to integrate these interdependent tasks, ensuring
that navigation decisions are not only statistically valid but also semantically coherent with the
surrounding context. This integration of uncertainty quantification and semantic consistency enables
robots to navigate more safely and efficiently, adapting to complex real-world scenarios with greater
reliability.
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