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Abstract

Learning new knowledge frequently occurs in
our dynamically changing world, e.g., humans
culturally evolve by continuously acquiring new
abilities to sustain their survival, leveraging col-
lective intelligence rather than a large number
of individual attempts. The effective learning
paradigm during cultural evolution is termed so-
cialized learning (SL). Consequently, a straight-
forward question arises: Can multi-agent systems
acquire more new abilities like humans? In con-
trast to most existing methods that address contin-
ual learning and multi-agent collaboration, our
emphasis lies in a more challenging problem:
We prioritize the knowledge in the original ex-
pert classes, and as we adeptly learn new ones,
the accuracy in the original expert classes stays
superior among all in a directional manner. In-
spired by population genetics and cognitive sci-
ence, leading to unique and complete develop-
ment, we propose Multi-Agent Socialized Col-
laboration (MASC), which achieves SL through
interactions among multiple agents. Specifically,
we introduce collective collaboration and recip-
rocal altruism modules, organizing collaborative
behaviors, promoting information sharing, and
facilitating learning and knowledge interaction
among individuals. We demonstrate the effective-
ness of multi-agent collaboration in an extensive
empirical study. Our code will be publicly avail-
able at https://github.com/yxjdarren/SL.
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1. Introduction
Every intelligent agent aspires to grow through learning
new knowledge. Although existing continual learning (CL)
paradigms are capable of acquiring new knowledge, they
heavily rely on a substantial amount of data. Looking back
on the history of human development, cultural evolution
is accomplished by continuously learning new abilities be-
yond existing vital abilities for maintaining one’s own sur-
vival (Henrich, 2016; Laland, 2017). In this process, new
abilities are usually acquired by seeking guidance from ex-
perienced experts with their knowledge rather than through
a large number of attempts and the collection of relevant
examples. Such an effective learning paradigm is termed so-
cialized learning (SL), which has been studied in cognitive
science (Thompson et al., 2022).

Among the paradigms in machine learning, CL is the most
relevant one for SL. It addresses the challenges of obtaining
new knowledge while retaining old one over time (De Lange
et al., 2021; Masana et al., 2022). However, CL focuses
on an individual agent and seriously relies on large-scale
training samples, making it difficult to learn as effectively
as humans. Another alternative is federated learning (FL),
which is a distributed learning paradigm (Zhang et al.,
2021b; Li et al., 2023a). Compared to CL, FL acquires
knowledge from multiple clients through aggregating dif-
ferent agents, leveraging knowledge in multiple agents. FL
is primarily designed to integrate the knowledge of agents
working on similar tasks, making it highly sensitive to data
heterogeneity. This sensitivity is particularly pronounced
in scenarios where there are significant differences in cat-
egories and knowledge among multiple agents (Shi et al.,
2023). Therefore, existing learning paradigms are limited
in realizing effective collective learning.

The existing paradigms struggle to learn new knowledge
through interaction like humans. Due to diverse environ-
ments, individuals inherently exhibit significant heterogene-
ity. For models, the heterogeneity in data and models can
lead to dimensional collapse when interactions are limited
to the parameter space. Complete avoidance of data inter-
action is not necessary in many real-world scenarios with-
out strong data privacy settings, such as emergency rescue
situations. However, data interaction requires high com-

1



Socialized Learning: Making Each Other Better Through Multi-Agent Collaboration

munication costs, making methods like FL, which involves
repeated uploading and downloading, impractical. By re-
visiting existing paradigms, we find that two problems are
still open: (1) Learning without relying on a large amount
of data in a scenario with strong heterogeneity. (2) Learning
with model interaction at low cost.

To address these challenges, we analyze two paradigms: CL
and FL. As shown in Figure 1, relying solely on data for
learning new knowledge, when the knowledge space is al-
ready populated by expert classes, can result in interference
and decreased performance of those expert classes. Besides,
when multiple agents learn through parameter transmission,
the heterogeneity in data and models can lead to dimen-
sion collapse and overall performance decline. A solution to
enable agents to learn from others at a low cost is SL, involv-
ing collaboration and knowledge interaction among multiple
agents. Thus, two significant issues should be explored to
realize it:

1: How to establish sociability for collaboration?

2: How to leverage collective intelligence for learning?

Parallel to perspectives in cognitive science (Mesoudi,
2021), this entails learning new knowledge from diverse
experts and integrating it with individual needs to achieve
growth. Motivated by this target, we employ multi-agent
collaboration to imbue the model with versatility and di-
rectionality, i.e., effectively learning a broader range of
new general classes while directionally retaining the perfor-
mance of original expert classes. When reflecting on the
connection between sociality and cognitive function in hu-
mans, most cultural evolution has been driven by population
genetics and cognitive science (Mesoudi, 2021). Inspired
by this, we are strongly motivated to combine population-
genetic-style modeling with directionally biased transfor-
mations. Specifically, in the context of multi-agent SL, we
focus on acquiring additional capabilities by learning from
various experts through SL. This involves shaping priors
based on information received from other agents and ulti-
mately enabling effective learning of new general classes
while directionally maintaining the accuracy of the original
expert classes within this SL paradigm.

To verify this premise, we turn to the design and analysis of
a framework based on SL. First, we train a student agent by
collective collaboration with multiple teacher agents, each
of which is proficient in its own unique expert classes. Ben-
efiting from both direct experiences obtained from samples
and indirect experiences obtained from teachers, the student
grows from a vanilla agent to a generalist, indicating its
ability to classify all classes. Subsequently, each teacher,
motivated by the desire to grow up, undergoes reciprocal al-
truism from the student, signifying that each teacher learns

novel general classes. Finally, the grown teachers select
the classifier based on Helmholtz free energy (Liu et al.,
2020), enabling them to predict precisely. This process en-
sures the directional maintenance of their original expert
classes while effectively learning new general classes. The
contributions can be further detailed as follows:

• We introduce a practical learning paradigm, socialized
learning (SL), where multiple agents achieve their in-
dividual growth through collaborative interactions.

• We discuss SL using an information-based theoretical
framework, exploring the impact of sociability infor-
mation on SL capabilities.

• We propose a novel insight into the methodology of SL.
Knowledge interaction occurs through collective col-
laboration, followed by reciprocal altruism, ensuring
directional trade-offs among diverse abilities.

(a) Continual learning paradigm.

(b) Federated learning paradigm.

(c) Socialized learning paradigm.

Figure 1: Comparison of different learning paradigms.

2. Related Work
Continual learning (CL), a paradigm addressing the trade-
off between stability and plasticity, requires an individual
agent to retain previously acquired abilities while learning
new ones effectively. Existing approaches (De Lange et al.,
2021) can be broadly categorized into three main groups:
Rehearsal-based techniques involve the selective replay of
a subset of historical exemplars from old classes, either

2



Socialized Learning: Making Each Other Better Through Multi-Agent Collaboration

sourced from prior tasks or generated using generative mod-
els (Rebuffi et al., 2017; Zhou et al., 2023; Zhao et al., 2020;
Douillard et al., 2020; Lin et al., 2023; Tiwari et al., 2022;
Yan et al., 2022). Regularization-based methods enhance
the preservation of prior knowledge by introducing supple-
mentary regularization terms into the loss function (Li &
Hoiem, 2017; Pelosin et al., 2022; Zhou et al., 2022b; Liu
et al., 2023; Kirkpatrick et al., 2017). Parameter isolation
techniques allocate distinct parameter sets for each task,
thereby averting interference between new and old knowl-
edge during incremental learning (Yan et al., 2021; Wang
et al., 2022a; Aljundi et al., 2017; Liu et al., 2021; Yang
et al., 2022; Zhang et al., 2021a; Zhou et al., 2022a).

Existing CL works are mainly based on an individual agent
without considering collaborative interactions among multi-
ple agents. Although CL strives to retain old expert classes
while learning new general ones, the impact of catastrophic
forgetting inevitably leads to a decline in the performance
of the initially mastered expert classes. In CL, the key chal-
lenge lies in the trade-off between stability and plasticity,
i.e., expert and generality, as illustrated in Figure 1a. SL
leverages collaborative interactions among multiple agents
to provide insight into the above issues.

Federated learning (FL), a paradigm of collaborative learn-
ing among multiple agents, is reliant on a centralized server
overseeing the coordination of model training across a dis-
tributed network of devices. Depending on how the data
is distributed in the feature and sample space, FL is di-
vided into horizontal FL, vertical FL, and federated transfer
learning (Li et al., 2023a). In horizontal FL, the datasets
of different parties have the same feature space but little
intersection on the sample space (McMahan et al., 2017;
Wang et al., 2020; Li et al., 2021; Reddi et al., 2021; Li &
Zhan, 2021; Zhang et al., 2022; Qu et al., 2022; Shi et al.,
2023; Jhunjhunwala et al., 2023). Multiple parties with
different features about the same set of users jointly train
machine learning models in vertical FL (Liu et al., 2024;
2022; Castiglia et al., 2023). Federated transfer learning is
an effective solution when data partitioning among parties
involves a hybrid of horizontal and vertical partitioning (Liu
et al., 2018; Wu & Zhang, 2023; Guo et al., 2023; Qi et al.,
2023). Moreover, several works are integrations of FL and
CL, wherein individual clients engage in a sequential acqui-
sition of knowledge from distinct private data streams (Yoon
et al., 2021; Dong et al., 2022).

Notably, a limitation of FL lies in its sensitivity to data
heterogeneity. If attempting to induce the server to learn new
classes by adding a client containing these classes, the strong
heterogeneity of this client compared to others can result
in a server dimension collapse in the model. Additionally,
FL emphasizes privacy protection, which restricts its modes
of collaborative interaction, impeding the learning of new

general classes, as shown in Figure 1b. SL utilizes the
directional transfer of data and knowledge among multiple
agents to alleviate the above problems.

3. Sociability in Collaboration
In this section, to address the first issue highlighted in Sec-
tion 1, we provide detailed definitions for the problem setup,
followed by a concise theoretical analysis.

Problem setup: Let A = {A1,A2, · · ·,AN} denote the
N -agent set. X is a input space and Y is a label space.
The unique data of the n-th agent is denoted as DAn

=

{xi, yi}
MAn
i=1 , where MAn

represents the total number of
samples for An. xi ∈ RD is a sample of class yi ∈ YAn

.
To illustrate clearly, we take two agents, A1 and A2, as
examples. For any two agents, A1 and A2, the sets of expert
classes they possess are unique, i.e., DA1 and DA2 con-
tain expert classes that have not been seen from each other:
YA1

∩YA2
= ∅. After SL, both agents A1 and A2 can infer

the classes YA1
∪ YA2

. Additionally, each agent maintains
superior performance in its respective expert classes, i.e.,
argmin

k∈{A1,A2}
(Exk∼PXk

[1 − max
y∈YA1

P (YA1 = y|xk)]) = A1,

argmin
k∈{A1,A2}

(Exk∼PXk
[1 − max

y∈YA2

P (YA2 = y|xk)]) = A2.

For A1 and A2, the newly learned general classes, corre-
sponding to YA2

and YA1
, respectively, should be learned as

well as possible while maintaining the performance of the
original expert classes directionally, i.e., aspiring to possess
both versatility and directionality, as illustrated in Figure 1c.

Definition 3.1. (Versatility) Each agent effectively learns a
broader range of new general classes, i.e., A1 and A2 can
infer the classes YA1

∪ YA2
with precision.

Definition 3.2. (Directionality) Each agent effectively
learns new general classes while directionally maintaining
its superior performance in its respective expert classes, i.e.,
argmin

k∈{A1,A2}
(Exk∼PXk

[1 − max
y∈YA1

P (YA1
= y|xk)]) = A1,

argmin
k∈{A1,A2}

(Exk∼PXk
[1− max

y∈YA2

P (YA2
= y|xk)]) = A2.

To clearly elucidate the significance of multi-agent collab-
oration, we provide a definition of sociability information
and subsequently conduct an analysis based on this premise:

Definition 3.3. (Sociability Information) For the input vari-
ables XA1 , XA2 , and the target Y , the sociability informa-
tion provided by the agents can be defined as:

ΦXA1
= I(XA1

;Y |XA2
), (1)

ΦXA2
= I(XA2

;Y |XA1
). (2)

The ΦXA1
and ΦXA2

metrics quantify the sociability in-
formation possessed by XA1 and XA2 in SL, respectively.
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Larger values of these metrics imply higher sociability in-
formation, indicating increased multi-agent collaboration.
These measures collectively determine the collaborative ef-
ficiency and information sharing between XA1

and XA2
.

From the standard derivation in information theory, we can
obtain the following relation:

I(XA1
, XA2

;Y ) = ΦXA1
+ΦXA2

+ I(XA1
;XA2

;Y ). (3)

Bayes error rate: The Bayes error rate (Fukunaga & Hum-
mels, 1987) is introduced to measure agent performance,
representing the lowest achievable error for any classifier
or predictor from the multiple agents in inferring the target.
Formally, considering two agent information XA1

and XA2
,

the Bayes errors for multi-agent and single-agent scenarios
(assuming only XA1

exists) in classification, denoted as
Pmul
ec and P sin

ec respectively, are defined as follows:

Pmul
ec = ExA1

,xA2
∼PXA1

,XA2
[1−max

y∈Y
P (Y = y|xA1 , xA2)], (4)

P sin
ec = ExA1

∼PXA1
[1−max

y∈Y
P (Y = y|xA1

)]. (5)

Theorem 3.4. We build upon prior findings (Cover, 1999;
Feder & Merhav, 1994; Li et al., 2023b) and position the
Bayes error rates Pmul

ec and P sin
ec centrally. For the vari-

ables XA1 , XA2 , and Y , the relationships are given by:

H(Y |XA1
,XA2

)−log 2

log |Y | ≤ Pmul
ec ≤ 1− exp(−H(Y | XA1 , XA2)), (6)

H(Y |XA1
)−log 2

log |Y | ≤ P sin
ec ≤ 1− exp(−H(Y | XA1

)). (7)

Since
ΦXA2

= H(Y |XA1
)−H(Y |XA1

, XA2
). (8)

We can derive

H(Y |XA1
)− ΦXA2

− log 2

log |Y |
≤ Pmul

ec ≤ 1− exp(−H(Y | XA1
) + ΦXA2

). (9)

Remark 3.5. The disparity between Pmul
ec and P sin

ec re-
flects the degree of collaboration among multiple agents.
In scenarios lacking sociability information (ΦXA2

= 0),
the agent performs comparably under both settings. How-
ever, as ΦXA2

increases, multi-agent performance increases.
Due to the directionality of A1 and A2 (ΦXA2

> 0), the
multi-agent performance is probably better than the single-
agent performance. Collaboration among multiple intelli-
gent agents can facilitate the growth of each agent.

4. Methodology
In this section, to address the second issue highlighted in
Section 1, we seek to enhance versatility and directionality
in SL. The training target is to prepare for learning new gen-
eral classes while directionally maintaining expert classes.
We achieve this through two aspects. On the one hand, to

enable multiple agents to collaborate effectively, we aim to
let multiple teacher agents (TAs) collectively guide a student
agent (SA) as a medium for knowledge interaction. On the
other hand, to facilitate the growth of each TA, meaning to
maintain their expert accuracy while maximizing general
accuracy, we seek the capability for TAs to be reciprocally
educated by the SA. TAs that have been reciprocally edu-
cated are considered a form of growth, and these grown TAs
can better guide the student, establishing a virtuous cycle.

We first introduce the SL framework and then discuss how
to enable multiple agents to collaborate effectively and how
to facilitate the growth of agents.

4.1. Socialized Learning Framework

We take a closer look at the above two aspects, i.e., col-
laboration and growth, aiming to find the key factor that
connects them. Inspired by (Li et al., 2023b), we provide an
information-theoretical analysis in the previous section for
SL and explore the impact of sociability information on SL
capabilities.

Based on the above analysis, we seek to design a unified SL
framework U(·) with moderate multi-agent information in-
teractions to utilize complementarity and obtain versatility.

Ui(A1,A2) = ψ(φ(A1,A2),Ai), (10)

where A1 and A2 denote two different agents, i ∈ {1, 2}
denotes the i-th agent in growth, φ(·) denotes the approach
of collaboration, and ψ(·) denotes the approach of growth.

4.2. Multi-agent Socialized Learning

Driven by the above analysis and (Wang et al., 2022b; 2023a;
Yang et al., 2021; Wang et al., 2023b), we aim to address SL
from two views: collaboration and growth. We introduce
a novel approach based on SL, referred to as Multi-Agent
Socialized Collaboration (MASC), as depicted in Figure 2.
MASC accomplishes SL through two primary modules:
collective collaboration and reciprocal altruism. For clarity,
we elaborate on each module contained within the agent.

Effect of collective collaboration: In MASC, the student
obtains collective intelligence through collaborative distil-
lation. The objective function is composed of the cross-
entropy loss Ls

ce, knowledge distillation loss Ls
kd, and en-

ergy alignment loss Ls
al, as follows:

Ls = Ls
ce (p

s,pgt) + λ1
∑N

i=1 Ls
kd (p̂

si ,pti) + λ2Ls
al (p

s,∆) , (11)

where ps denotes the prediction of the student, pgt denotes
the ground truth, p̂si denotes the prediction of the classifi-
cation head of the teacher after receiving features from the
student, pti denotes the prediction of the teacher, and ∆ is
a hyper-parameter. λ1 and λ2 are the trade-off parameters.
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Figure 2: Illustration of MASC. Step 1⃝: Collective Collaboration. A vanilla agent grows into a generalist by cross-entropy
loss Lce, knowledge distillation loss Lkd, and alignment loss Lal. Step 2⃝: Reciprocal Altruism. Through interactions with
the generalist, each independent agent learns new general classes while directionally preserving their original expert classes.
Step 3⃝: Growth is achieved through the combined effects of collective collaboration and reciprocal altruism. The red stars ⋆
denote expert classes.

Since MASC involves N agents, there is a risk of con-
fronting the conflict between ground-truth targets and dis-
tillation targets, i.e., the distillation targets predicted by the
teacher have a significant discrepancy with the ground-truth
targets assigned to the student. This carefully designed so-
cialized collaborative distillation approach allows Lkd to
avoid affecting the weight updates of certain student heads,
thereby mitigating the conflict between Lce and Lkd. To
facilitate better knowledge interaction, we align the teacher
and student using Ls

al to restrict their energies around the
anchor ∆. Next, we will provide a detailed explanation of
Ls
al in reciprocal altruism.

Effect of reciprocal altruism: Inspired by previous
works (Liu et al., 2020; Wang et al., 2023b) related to
Helmholtz free energy (HFE), we employ a divide and con-
quer approach to implement reciprocal altruism. Specifi-
cally, we obtain an anchor-based student through Eq. (11),
which comprises a backbone fsb (·) and a classifier fsc (·).
As the student grows up through collective collaboration,
transitioning from a vanilla agent to a generalist, it acquires
classification ability across all classes. Compared to an
individual teacher, the student possesses knowledge of a
wider range of classes. However, its classification ability

in the classes where the teacher excels remains far below
that of the teacher. A straightforward idea arises: Can the
student reciprocally benefit the teacher, enabling the teacher
to maintain its expert classes while learning novel general
classes? To achieve this goal, we keep fsb (·) fixed and train

a grown teacher classifier f t
′
i

c (·) under the guidance of the
original teacher, as follows:

Lt′i = Lt′i
ce

(
pt′i ,pgt

)
+ λ1L

t′i
kd

(
p̂t′i ,pti

)
+ λ2L

t′i
al

(
pt′i ,∆

)
, (12)

where pt′i denotes the prediction of the grown teacher, p̂t′i

denotes the prediction of the classification head of the origi-
nal teacher after receiving features from the grown teacher.
pti , pgt, ∆, λ1 and λ2 are the same in Eq. (11).

The grown teacher consists of fsb (·), fsc (·), and f t
′
i

c (·). Dur-
ing inference, the agent will transfer the features extracted
by fsb (·) to both fsc (·) and f t

′
i

c (·) to obtain their respective
HFE, and we employ the classifier with a higher HFE for
prediction. Next, we define the normal energy function for
a given input-label pair (x, y) as follows:

Ek(x, y) = −hk(x)[y], (13)

where hk(x) = fkc (f
s
b (x)) is the logits of the k-th classifier,

and hk(x)[y] is the logit value of y ∈ Yk. Then, HFE can

5



Socialized Learning: Making Each Other Better Through Multi-Agent Collaboration

be defined as follows:

Fk(x) = − log
∑
y∈Yk

exp
(
−Ek(x, y)

)
. (14)

To align the HFE of different classifiers in the same space,
we employ Ls

al, which constrains the HFE of each classifier
with a fixed anchor ∆, as follows:

Lk
al = Ex∼Dk

(
Fk(x)−∆

)2
. (15)

Inference of SL: Under the influence of collective collab-
oration and reciprocal altruism, agents have acquired the
conditions for SL. To achieve the simultaneous maintenance
of performance in expert classes and high performance in
general classes, we need to utilize the general classifier fsc (·)
and expert classifier f t

′
i

c (·). The final prediction is made by
obtaining the classifier with the highest HFE, as follows:

k∗ = argmax
k∈{s,t′i}

(−Fk(x)). (16)

Then, the final prediction can be obtained as:

y∗ = fk
∗

c (fsb (x)). (17)

For a clearer understanding of training, we have described
the algorithm in Algorithm 1.

Algorithm 1 Training for MASC.
Input: Datasets Ds = (Dt1 , · · ·,DtN ), teacher numbers N ,
energy anchor ∆;
Output: Backbone fsb (·), student classifier fsc (·), teacher

classifier f t
′
i

c (·);
1: Randomly initialize fsb (·), fsc (·), f

t′i
c (·);

2: while not converged do
3: Get a mini-batch of training data from Ds;
4: Calculate the student loss Ls by Eq. (11);
5: Update the student agent, i.e., fsb (·) and fsc (·);
6: end while
7: for i = 1, · · ·, N do
8: while not converged do
9: Get a mini-batch of training data from Dti ;

10: Calculate the grown teacher loss Lt′i by Eq. (12);
11: Update the i-th grown teacher agent, i.e., f t

′
i

c (·);
12: end while
13: end for

5. Experiment
In this section, we compare MASC on CIFAR10 and CI-
FAR100 datasets with state-of-the-art methods. We discuss

the methods of data-driven knowledge distillation, and the
ablations verify the effectiveness of collective collaboration
and reciprocal altruism. More experiments and details of
implementation refer to supplementary materials.

5.1. Implementation Details

Dataset split: We use two versions of dataset split. The
first one involves dividing CIFAR10 evenly among 5 agents,
with each agent having 2 classes (abbreviated as expert-
class, general-class-1, general-class-2, general-class-3, and
general-class-4), i.e., CIFAR10-5-2, while CIFAR100 is
split evenly among 4 agents, each having 25 classes, i.e.,
CIFAR100-4-25. Similarly, the second version is CIFAR10-
2-5 and CIFAR100-5-20. In the following experiments, we
primarily employ the first version as the default scheme, and
the experiments with the second version are presented in the
supplementary materials.

Compared methods: We first compare to CL methods
DER (Yan et al., 2021), EWC (Kirkpatrick et al., 2017),
FOSTER (Wang et al., 2022a), iCaRL (Rebuffi et al., 2017),
LwF (Li & Hoiem, 2017), MEMO (Zhou et al., 2023), POD-
Net (Douillard et al., 2020), and WA (Zhao et al., 2020). Be-
sides, we also compare to FL methods FedAvg (McMahan
et al., 2017), FedAvgM (Hsu et al., 2019), FedNova (Wang
et al., 2020), FedDecorr (Shi et al., 2023), FedProx (Li et al.,
2020), FedSAM (Qu et al., 2022), MOON (Li et al., 2021),
and GLFC (Dong et al., 2022).

5.2. Versatility and Directionality are All You Need

MASC is compared with two paradigms: CL and FL. We
report the performance on the CIFAR10 and CIFAR100
datasets, as shown in Tables 1 and 2.

Method Accuracy before growth Accuracy after growth
Expert General Average Expert General Average

DER (Yan et al., 2021) 96.67 0.00 48.34 64.70 74.13 69.41
EWC (Kirkpatrick et al., 2017) 96.54 0.00 48.27 46.00 64.08 55.04
FOSTER (Wang et al., 2022a) 96.69 0.00 48.35 64.90 71.88 68.39
iCaRL (Rebuffi et al., 2017) 96.57 0.00 48.29 46.45 64.55 55.50
LwF (Li & Hoiem, 2017) 96.70 0.00 48.35 40.85 66.23 53.54
MEMO (Zhou et al., 2023) 96.60 0.00 48.30 78.50 61.46 69.98
PODNet (Douillard et al., 2020) 96.66 0.00 48.33 80.15 66.64 73.39
WA (Zhao et al., 2020) 96.72 0.00 48.36 63.90 74.00 68.95
FedAvg (McMahan et al., 2017) 96.02 0.00 48.01 91.50 63.13 77.31
FedAvgM (Hsu et al., 2019) 96.16 0.00 48.08 91.70 63.88 77.79
FedNova (Wang et al., 2020) 96.31 0.00 48.16 91.90 72.04 81.97
FedDecorr (Shi et al., 2023) 96.35 0.00 48.18 91.85 75.54 83.69
FedProx (Li et al., 2020) 96.27 0.00 48.14 91.40 70.95 81.18
FedSAM (Qu et al., 2022) 96.09 0.00 48.05 91.85 63.40 77.63
MOON (Li et al., 2021) 96.19 0.00 48.10 90.00 67.59 78.79
GLFC (Dong et al., 2022) 96.61 0.00 48.31 33.05 70.06 51.56
MASC 96.65 0.00 48.33 93.40(+1.50) 81.04(+5.50) 87.22(+3.53)

Table 1: Comparison of detailed accuracy across different
classes before and after growth on CIFAR10 dataset. The
1st/2nd best results are indicated in red/blue.

CL forgets original knowledge during growth: We ob-
serve that the general classes often exhibit outstanding per-
formance in CL methods. However, the performance of
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Method Accuracy before growth Accuracy after growth
Expert General Average Expert General Average

DER (Yan et al., 2021) 66.45 0.00 33.23 54.04 54.53 54.29
EWC (Kirkpatrick et al., 2017) 66.12 0.00 33.06 19.25 43.93 31.59
FOSTER (Wang et al., 2022a) 66.41 0.00 33.21 34.40 53.32 43.86
iCaRL (Rebuffi et al., 2017) 66.25 0.00 33.13 31.48 46.45 38.97
LwF (Li & Hoiem, 2017) 66.38 0.00 33.19 15.48 52.00 33.74
MEMO (Zhou et al., 2023) 66.39 0.00 33.20 51.68 44.84 48.26
PODNet (Douillard et al., 2020) 66.34 0.00 33.17 54.36 41.92 48.14
WA (Zhao et al., 2020) 66.47 0.00 33.24 51.12 47.71 49.41
FedAvg (McMahan et al., 2017) 65.42 0.00 32.71 56.00 54.05 55.03
FedAvgM (Hsu et al., 2019) 65.48 0.00 32.74 58.56 54.16 56.36
FedNova (Wang et al., 2020) 66.00 0.00 33.00 58.32 54.64 56.48
FedDecorr (Shi et al., 2023) 66.12 0.00 33.06 60.16 56.93 58.55
FedProx (Li et al., 2020) 65.56 0.00 32.78 58.60 54.48 56.54
FedSAM (Qu et al., 2022) 66.08 0.00 33.04 59.68 55.41 57.55
MOON (Li et al., 2021) 65.29 0.00 32.65 50.12 47.11 48.61
GLFC (Dong et al., 2022) 66.33 0.00 33.17 47.04 40.49 43.77
MASC 66.28 0.00 33.14 65.40(+5.24) 58.64(+1.71) 62.02(+3.47)

Table 2: Comparison of detailed accuracy across different
classes before and after growth on CIFAR100 dataset. The
1st/2nd best results are indicated in red/blue.

expert classes tends to deteriorate rapidly. Naturally, a ques-
tion arises: Can we consider the classes learned in the most
recent session as expert classes? Firstly, such an assump-
tion does not align with our setup. Secondly, even if we
consider the most recently learned general classes as expert
classes, the overall performance is still hampered by catas-
trophic forgetting. We aim for expert classes to be a stable
set of classes throughout the learning process, rather than a
degradation set of classes with learning progress.

FL loses sight of the focus among multiple agents: We
observe that FL is the most competitive paradigm in terms
of the accuracy of expert classes. However, we observe
that the accuracy of expert and general classes in most FL
methods is quite close. A straightforward question arises:
Is this indicative of non-directional learning? Obviously,
it indicates that FL does not prioritize the maintenance of
expert-class performance. FL exhibits a degree of random-
ness and cannot learn based on pre-established preferences.

SL utilizes collective intelligence: MASC is a method de-
signed based on the SL paradigm that combines the best of
all worlds and divide-and-conquer. This method leverages
the knowledge of collective intelligence to its fullest extent.
Specifically, MASC not only learns knowledge through
ground truth but also receives guidance from various teach-
ers. This SL can enhance the ability of the agent. In addi-
tion, through reciprocal altruism and parameter isolation,
the agent can learn more classes while maintaining expert
accuracy. MASC not only enables one agent to grow up
but enables every agent in the population to grow up, as
shown in Table 3. We observe that this SL is directional and
comprehensive.

Analysis of versatility and directionality: Versatility and
directionality are crucial in SL. Possessing versatility im-
plies that the agent can learn more general classes, while
having directionality means maintaining the performance

Dataset Method Accuracy before growth Accuracy after growth
Expert General Average Expert General Average

CIFAR10

Agent-1 96.65 0.00 48.33 93.40 81.04 87.22
Agent-2 86.20 0.00 43.10 86.15 68.08 77.11
Agent-3 93.00 0.00 46.50 90.75 69.61 80.18
Agent-4 96.85 0.00 48.43 92.10 81.19 86.64
Agent-5 96.60 0.00 48.30 94.75 72.01 83.38

CIFAR100

Agent-1 66.28 0.00 33.14 65.40 58.64 62.02
Agent-2 67.60 0.00 33.80 65.36 55.68 60.52
Agent-3 64.84 0.00 32.42 61.64 58.59 60.11
Agent-4 68.40 0.00 34.20 65.92 59.57 62.75

Table 3: Comparison of different agents before and after
growth on CIFAR10 and CIFAR100 datasets.

of expert classes in a directional manner. We analyze versa-
tility and directionality by comparing the average accuracy
across all classes and the accuracy difference between expert
classes and the best-performing general classes. As shown
in Figure 3, most CL methods exhibit obvious forgetting in
the performance of expert classes (negative values in orange
bars), and most FL methods fail to maintain directionality in
the performance of expert classes (orange bar values close
to zero).

5.3. Data-driven Knowledge Distillation

Knowledge distillation encompasses various methods for ex-
tracting knowledge from agents. In practice, most existing
machine learning methods are data-driven, so a straightfor-
ward idea arises: Can task-specific knowledge be distilled
from data? Inspired by (Yang et al., 2021), we use unique
data from each teacher to obtain the corresponding mean
and variance (see supplementary material), thereby generat-
ing data to train agents without directly accessing the real
samples. As shown in Figure 4, data-driven knowledge
distillation contributes to agent performance.

Dataset Method Accuracy before growth Accuracy after growth
Expert General Average Expert General Average

CIFAR10

Agent-1 89.40 0.00 44.70 84.00 65.31 74.66
Agent-2 78.62 0.00 39.31 75.70 49.53 62.61
Agent-3 77.60 0.00 38.80 72.60 61.08 66.84
Agent-4 89.60 0.00 44.80 86.15 57.05 71.60
Agent-5 87.70 0.00 43.85 83.60 64.26 73.93

CIFAR100

Agent-1 44.16 0.00 22.08 43.52 30.99 37.25
Agent-2 42.08 0.00 21.04 41.28 31.24 36.26
Agent-3 46.88 0.00 23.44 42.56 32.17 37.37
Agent-4 45.04 0.00 22.52 44.08 31.80 37.94

Table 4: Comparison of different agents before and after
growth on generated CIFAR10 and CIFAR100 datasets.

Since different agents have diverse classes, they can ex-
plore data-driven knowledge unique to their data, facilitating
agent-specific knowledge interaction. To further validate
the effectiveness of data-driven knowledge distillation, we
conduct extensive experiments, as illustrated in Table 4. We
have observed that data-driven knowledge distillation not
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(a) Comparison on CIFAR10 dataset.

(b) Comparison on CIFAR100 dataset.

Figure 3: Analysis of versatility and directionality on CI-
FAR10 and CIFAR100. Blue bars denote the average ac-
curacy across all classes, while orange bars denote the dif-
ference in accuracy between expert classes and the best-
performing general classes. Blue and orange bars correlate
positively with versatility and directionality, respectively.

only provides a novel insight into traditional knowledge
distillation but also offers a potential solution to reduce data
transmission overhead.

5.4. Ablation Study

To further verify the significance of each module in MASC,
we conduct the ablation study as shown in Table 5.

When using only collective collaboration (CC), we observe
that the performance of expert classes and general classes
is very close, with instances where general classes even
outperform. This indicates that the CC module is a non-
directional interaction primarily designed to facilitate the
learning of new general classes in a multi-agent collabora-
tive setting without ensuring the performance of the original
expert classes. When using only reciprocal altruism (RA),
we observe a significant improvement in the performance

(a) Comparison on generated CIFAR10 dataset.

(b) Comparison on generated CIFAR100 dataset.

Figure 4: Performance comparison after growth. Different
colors denote different learning paradigms.

Dataset CC RA Expert classes General classes Average

CIFAR10
✓ 44.90 82.30 63.60

✓ 97.00 19.75 58.38
✓ ✓ 93.40 81.04 87.22

CIFAR100
✓ 62.16 61.55 61.85

✓ 67.92 54.36 61.14
✓ ✓ 65.40 58.64 62.02

Table 5: Ablation study on CIFAR10 and CIFAR100. In the
table, “✓” denotes MASC with the module.

of expert classes over general classes, but poorer overall
accuracy for both. This is attributed to the dominance of
the expert classifier, as the majority of predictions are made
using the expert classifier, failing to achieve a divide-and-
conquer strategy. Finally, when combining CC and RA, we
find that the agent achieves the expected outcome, main-
taining the performance of the original expert classes while
effectively learning new general classes.
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5.5. Discussion

We expound upon the concept of SL, a paradigm rooted
in the principles of collaboration and knowledge interac-
tion among multiple agents. SL establishes a foundational
system where agents interact, co-learn, and grow collabo-
ratively, enhancing individual abilities. Table 6 illustrates
distinct characteristics of various learning paradigms when
facing different challenges. SL, in particular, exhibits the
following traits:

i) Cooperativity: Multiple agents engage in interactive
collaboration, leveraging collective intelligence.

ii) No heterogeneity: Due to factors such as data distri-
bution, heterogeneity is inevitable, and the ability to resist
heterogeneity holds practical significance.

iii) Versatility: With the emergence of new classes, the
agent needs to learn more general classes while preserving
the performance of the original expert classes.

iv) Directionality: Due to diverse environments and per-
sonalized requirements, possessing the directionality for
targeted growth provides a novel insight.

Paradigm Cooperativity No heterogeneity Versatility Directionality
FL ✓ × × ×
CL × ✓ ✓ ×
SL ✓ ✓ ✓ ✓

Table 6: Comparison of different learning paradigms.

Based on the aforementioned traits, SL has the following
four advantages:

i) Enhanced synergy: SL promotes a superior level of
synergy among agents by leveraging the collective strengths
and capabilities of the group. This design optimizes the
overall learning outcome, surpassing the results achievable
through individual agents teaching each other.

ii) Scalability: The inherent scalability of SL facilitates
the inclusion of an increasing number of agents without
the complexity associated with direct, pairwise teaching-
learning interactions. This feature is pivotal for large-scale
applications, ensuring the approach adapts seamlessly to
expanding agent networks.

iii) Flexibility and robustness: The paradigm of SL, which
does not rely on direct teaching among agents, enhances
robustness to the variability in performance and knowledge
of individual agents. This ensures the collaborative learning
process remains resilient, effectively mitigating potential
inaccuracies or inefficiencies from individual contributions.

iv) Efficient resource utilization: Designed for the effi-
cient use of computational and communication resources,
SL minimizes the necessity for extensive data exchange

among agents. Instead, it focuses on the collective gen-
eration and dissemination of learning updates, optimizing
resource allocation.

SL is not an independent learning paradigm, and it provides
insights into several paradigms. For addressing the stability-
plasticity dilemma, CL may leverage collective intelligence,
with one subset of agents focusing on stability and another
on plasticity. To tackle the challenge of heterogeneity, FL
can explore multi-agent data-driven knowledge distillation
and collective collaboration. Additionally, SL offers insights
into other learning paradigms, such as long-tail distribution
learning and transfer learning. For handling head-and-tail
classes, a divide-and-conquer approach with collaborative
interaction can be employed. To bridge the gap between the
source domain and the target domain, multiple agents can
aggregate shared knowledge, which is relatively universal.
This enables the transfer of learned knowledge from related
tasks, enhancing learning for new tasks.

6. Conclusion
In this paper, we introduce a practical SL paradigm with
rigid mathematical motivation and explanation rooted in in-
formation theory. Additionally, we carefully devise MASC
based on SL, aiming to effectively learn new general classes
while directionally preserving the performance of the orig-
inal expert classes, i.e., learn from others and be itself. In
essence, we treat expert classes and general classes as two
sides of the same coin rather than two separate problems.
Such a unified framework for collective collaboration and
reciprocal altruism provides a novel insight into SL. In our
future work, we plan to delve further into the potential of
combining multiple modalities with multiple agents.

Impact Statement
In real-world scenarios, the collection of the SL dataset
requires many different classes of samples, and multiple
agents are also used to collect the samples, which means
that the lives of some plants and animals will be disturbed
during the data collection process. Therefore, it is necessary
to avoid disturbing or affecting the normal life of plants and
animals as much as possible when collecting the SL dataset
to prevent disrupting the ecological balance. Possible lim-
itations of this work include the absence of the number of
classes in the real world for the datasets. The number of
classes in the existing SL dataset is limited.

In the future, we will consider the dynamic relationships of
different classes under different agents, exploiting the com-
plementarity of each other more sufficiently, and obtaining
more abilities. Moreover, we aim to break the bottleneck of
the SL dataset and construct a large-scale benchmark with
diverse classes and modalities for exhaustive evaluation.
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A. Supplementary Material
In the supplementary material, we provide more details
about the implementations and experimental results men-
tioned in the main paper, as well as additional theoretical
analysis and discussions. The supplementary material is
organized as follows:

• In Section B, we provide a comprehensive overview of
the compared methods employed in the main paper, as
well as a detailed description of the datasets.

• In Section C, we report the full experimental results on
two versions of the dataset split.

• In Section D, we provide the full theoretical anal-
ysis of sociability information and formalization of
knowledge-driven knowledge distillation formula.

B. Implementation Details
In this section, we provide a detailed description of the
compared methods and the datasets in the main paper. Our
agent is deployed in PyTorch (Paszke et al., 2019) with an
NVIDIA RTX 3090 GPU and trained with a batch size of
128 for 500 epochs, and we use SGD with momentum for
optimization. The learning rate is set to 0.005, the energy
anchor is set to -20, λ1 is set to 1, and λ2 is set to 0.1. All
results are reported in means over 3 trials.

B.1. Compared Methods

In this subsection, we introduce the compared methods in
the main paper. These methods are as follows:

• DER (Yan et al., 2021): classical continual learning
(CL) method, which creates a novel backbone for each
new incremental task. These individual backbones
are concatenated to facilitate the learning of a unified
classifier.

• EWC (Kirkpatrick et al., 2017): classical CL method,
which attenuates the impact on essential parameters
from prior tasks.

• FOSTER (Wang et al., 2022a): classical CL method,
which builds upon DER by introducing a model com-
pression stage to manage the memory budget.

• iCaRL (Rebuffi et al., 2017): classical CL method,
which classifies based on a nearest-mean-of-exemplars
rule and incorporates knowledge distillation and proto-
type rehearsal for representation learning.

• LwF (Li & Hoiem, 2017): classical CL method, which
employs knowledge distillation as a regularization term
to address the issue of forgetting. This regularization
relies on the supervision of the old model.

• MEMO (Zhou et al., 2023): classical CL method,
which generates new residual layers instead of an entire
backbone to reduce memory costs.

• PODNet (Douillard et al., 2020): classical CL
method, which applies a spatial-based distillation loss
throughout the model, and a representation is com-
prised of multiple proxy vectors for each class.

• WA (Zhao et al., 2020): classical CL method, which
employs knowledge distillation to preserve discrimina-
tion within old classes and weight aligning to correct
biased weights in fully connected layers.

• FedAvg (McMahan et al., 2017): classical federated
learning (FL) method, which employs an averaging
scheme to amalgamate locally trained models into a
global model.

• FedAvgM (Hsu et al., 2019): classical FL method,
which explores the effect of non-identical data distri-
butions on classification and designs the data synthesis
method with a continuous range of identicalness.

• FedNova (Wang et al., 2020): classical FL method,
which presents a comprehensive framework for analyz-
ing the convergence behaviors of federated heteroge-
neous optimization algorithms.

• FedDecorr (Shi et al., 2023): classical FL method,
which incorporates a regularization term into local
training, fostering the decorrelation of distinct dimen-
sions within representations.

• FedProx (Li et al., 2020): classical FL method, which
solves heterogeneity in the federated network by a
generalization and re-parametrization of FedAvg.

• FedSAM (Qu et al., 2022): classical FL method,
which advances a momentum-based FL approach,
bridging the local and global models through sharpness-
aware minimization.

• MOON (Li et al., 2021): classical FL method, which
leverages the inherent similarity within model repre-
sentations to rectify local training deviations within
individual nodes.

• GLFC (Dong et al., 2022): classical federated CL
method, which incorporates class-aware gradient com-
pensation loss and class-semantic relation distilling
loss.
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Datasets Classes Training instances Testing instances Detailed classes

CIFAR10-5-2

expert-class 10,000 2,000 airplane, automobile

general-class-1 10,000 2,000 bird, cat

general-class-2 10,000 2,000 deer, dog

general-class-3 10,000 2,000 frog, horse

general-class-4 10,000 2,000 ship, truck

CIFAR10-2-5 expert-class 25,000 5,000 airplane, automobile, bird, cat, deer

general-class-1 25,000 5,000 dog, frog, horse, ship, truck

CIFAR100-4-25

expert-class 12,500 2,500

apple, aquarium fish, baby, bear, beaver,
bed, bee, beetle, bicycle, bottle, bowl,
boy, bridge, bus, butterfly, camel, can,
castle, caterpillar, cattle, chair, chimpanzee,
clock, cloud, cockroach

general-class-1 12,500 2,500

couch, crab, crocodile, cup, dinosaur,
dolphin, elephant, flatfish, forest, fox, girl, hamster,
house, kangaroo, keyboard, lamp, lawn mower,
leopard, lion, lizard, lobster, man, maple tree,
motorcycle, mountain

general-class-2 12,500 2,500

mouse, mushroom, oak tree, orange, orchid, otter,
palm tree, pear, pickup truck, pine tree, plain, plate,
poppy, porcupine, possum, rabbit, raccoon, ray, road,
rocket, rose, sea, seal, shark, shrew

general-class-3 12,500 2,500

skunk, skyscraper, snail, snake, spider, squirrel,
streetcar, sunflower, sweet pepper, table, tank, telephone,
television, tiger, tractor, train, trout, tulip, turtle, wardrobe,
whale, willow tree, wolf, woman, worm

CIFAR100-5-20

expert-class 10,000 2,000
apple, aquarium fish, baby, bear, beaver, bed, bee, beetle,
bicycle, bottle, bowl, boy, bridge, bus, butterfly, camel,
can, castle, caterpillar, cattle

general-class-1 10,000 2,000
chair, chimpanzee, clock, cloud, cockroach, couch, crab,
crocodile, cup, dinosaur, dolphin, elephant, flatfish,
forest, fox, girl, hamster, house, kangaroo, keyboard

general-class-2 10,000 2,000

lamp, lawn mower, leopard, lion, lizard, lobster, man,
maple tree, motorcycle, mountain, mouse, mushroom,
oak tree, orange, orchid, otter, palm tree, pear,
pickup truck, pine tree

general-class-3 10,000 2,000
plain, plate, poppy, porcupine, possum, rabbit, raccoon,
ray, road, rocket, rose, sea, seal, shark, shrew, skunk,
skyscraper, snail, snake, spider

general-class-4 10,000 2,000
squirrel, streetcar, sunflower, sweet pepper, table, tank,
telephone, television, tiger, tractor, train, trout, tulip,
turtle, wardrobe, whale, willow tree, wolf, woman, worm

Table 7: Detailed datasets.

B.2. Datasets

In this subsection, we provide an introduction to the
datasets used in the main paper. We evaluate the per-
formance on CIFAR10 (Krizhevsky et al., 2009) and CI-
FAR100 (Krizhevsky et al., 2009). CIFAR10 and CI-
FAR100 both consist of 60,000 images. CIFAR10 has
10 classes, while CIFAR100 has 100 classes. We employ
two versions of dataset partitioning. In the first version,

CIFAR10 is evenly distributed among 5 agents, each as-
signed 2 classes (abbreviated as expert-class, general-class-
1, general-class-2, general-class-3, and general-class-4), de-
noted as CIFAR10-5-2. Similarly, CIFAR100 is evenly
divided among 4 agents, each managing 25 classes (abbre-
viated as expert-class, general-class-1, general-class-2, and
general-class-3), denoted as CIFAR100-4-25. In the second
version, CIFAR10 is evenly split among 2 agents, each han-
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dling 5 classes (CIFAR10-2-5), and CIFAR100 is evenly
distributed among 5 agents, each dealing with 20 classes
(CIFAR100-5-20). Taking one agent as an example, facing
the 10 classes in CIFAR10-2-5, the 10 classes are paired off
into groups of five, and the groups of classes that this agent
is good at are named as expert-class, while the groups of
classes that this agent is not good at are named as general-
class-1. In the case of CL with only 1 agent, we substitute
the number of agents with sessions. We list the details of
the datasets in Table 7.

C. Full Experimental Results
In this section, we report additional experimental results
for the first version of the dataset split and comprehensive
results for the second version of the dataset split.

C.1. The Experimental Results for the First Version of
the Dataset Split

Analysis after growth: To provide a more intuitive compar-
ison of the performance of different methods after growth
on CIFAR10 and CIFAR100 datasets, we present a scatter
plot. Closer proximity to the upper-right corner indicates
better performance, as illustrated in Figure 5. It is evident
that achieving high accuracy for both expert and general
classes simultaneously poses a significant challenge. In
this regard, Multi-Agent Socialized Collaboration (MASC)
demonstrates promising performance.

Analysis of data-driven knowledge distillation: We lever-
age distinct datasets from individual teachers to calculate the
respective mean and variance, facilitating the generation of
synthetic data for agent training without direct access to real
samples. To facilitate a more direct comparison of the per-
formance of different methods on the generated CIFAR10
and CIFAR100 datasets before and after growth, we present
the post-growth performance with a gray background. The
performance trends in generated data, as shown in Table 8
and 9, align consistently with those observed in the original
data. This suggests the meaningfulness of employing data-
driven knowledge distillation, as it not only reduces data
transmission costs but also enables effective agent training
without accessing real samples.

Analysis of versatility and directionality: Versatility and
directionality play pivotal roles in socialized learning (SL).
The possession of versatility indicates the ability of agents
to acquire knowledge from a broader spectrum of general
classes, while directionality ensures the adept preservation
of expert class performance. We conduct an analysis of ver-
satility and directionality by juxtaposing the average accu-
racy across all classes and the accuracy differentials between
expert classes and the best-performing general classes. As
depicted in Figure 6, a notable pattern emerges where most

(a) Comparison on CIFAR10-5-2 dataset.

(b) Comparison on CIFAR100-4-25 dataset.

Figure 5: Performance comparison after growth. Different
colors denote different learning paradigms.

Method Accuracy before growth Accuracy after growth
Expert General Average Expert General Average

DER (Yan et al., 2021) 89.81 0.00 44.91 59.35 58.23 58.79
EWC (Kirkpatrick et al., 2017) 89.32 0.00 44.66 18.55 52.45 35.50
FOSTER (Wang et al., 2022a) 89.79 0.00 44.90 53.45 57.95 55.70
iCaRL (Rebuffi et al., 2017) 89.74 0.00 44.87 40.85 56.43 48.64
LwF (Li & Hoiem, 2017) 89.58 0.00 44.79 32.40 58.84 45.62
MEMO (Zhou et al., 2023) 89.63 0.00 44.82 60.65 51.61 56.13
PODNet (Douillard et al., 2020) 89.69 0.00 44.85 65.50 53.74 59.62
WA (Zhao et al., 2020) 89.83 0.00 44.92 54.40 58.34 56.37
FedAvg (McMahan et al., 2017) 88.95 0.00 44.48 80.30 50.90 65.60
FedAvgM (Hsu et al., 2019) 88.58 0.00 44.29 76.75 50.44 63.59
FedNova (Wang et al., 2020) 89.09 0.00 44.55 80.20 53.48 66.84
FedDecorr (Shi et al., 2023) 89.15 0.00 44.58 78.60 58.49 68.54
FedProx (Li et al., 2020) 89.01 0.00 44.51 78.40 52.31 65.36
FedSAM (Qu et al., 2022) 89.11 0.00 44.56 81.80 56.04 68.92
MOON (Li et al., 2021) 88.65 0.00 44.33 79.65 50.89 65.27
GLFC (Dong et al., 2022) 89.61 0.00 44.81 25.90 59.28 42.59
MASC 89.40 0.00 44.70 84.00(+2.2) 65.31(+6.03) 74.66(+5.74)

Table 8: Comparison of detailed accuracy across different
classes before and after growth on generated CIFAR10-5-2
dataset. The 1st/2nd best results are indicated in red/blue.

CL methods manifest catastrophic forgetting in expert class
performance (indicated by negative values in orange bars).
Simultaneously, the majority of FL methods struggle to sus-
tain directionality in expert class performance, as evidenced
by orange bar values approaching zero.
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Method Accuracy before growth Accuracy after growth
Expert General Average Expert General Average

DER (Yan et al., 2021) 44.28 0.00 22.14 29.12 30.69 29.91
EWC (Kirkpatrick et al., 2017) 44.04 0.00 22.02 10.16 25.53 17.85
FOSTER (Wang et al., 2022a) 44.19 0.00 22.10 16.84 30.76 23.80
iCaRL (Rebuffi et al., 2017) 44.07 0.00 22.04 13.32 27.04 20.18
LwF (Li & Hoiem, 2017) 44.13 0.00 22.07 11.56 28.87 20.21
MEMO (Zhou et al., 2023) 44.17 0.00 22.09 28.92 24.44 26.68
PODNet (Douillard et al., 2020) 44.11 0.00 22.06 33.20 24.64 28.92
WA (Zhao et al., 2020) 44.23 0.00 22.12 37.32 27.13 32.23
FedAvg (McMahan et al., 2017) 43.85 0.00 21.93 29.20 29.03 29.11
FedAvgM (Hsu et al., 2019) 43.88 0.00 21.94 26.96 30.00 28.48
FedNova (Wang et al., 2020) 43.96 0.00 21.98 32.88 29.99 31.43
FedDecorr (Shi et al., 2023) 43.82 0.00 21.91 25.28 29.44 27.36
FedProx (Li et al., 2020) 43.77 0.00 21.89 24.68 26.69 25.69
FedSAM (Qu et al., 2022) 43.91 0.00 21.96 26.36 30.25 28.31
MOON (Li et al., 2021) 43.79 0.00 21.90 29.56 27.32 28.44
GLFC (Dong et al., 2022) 44.08 0.00 22.04 27.74 20.02 23.88
MASC 44.16 0.00 22.08 43.52(+6.2) 30.99(+0.23) 37.25(+5.02)

Table 9: Comparison of detailed accuracy across different
classes before and after growth on generated CIFAR100-4-
25 dataset. The 1st/2nd best results are indicated in red/blue.

(a) Comparison on generated CIFAR10-5-2 dataset.

(b) Comparison on generated CIFAR100-4-25 dataset.

Figure 6: Analysis of versatility and directionality. Blue
bars denote the average accuracy across all classes, while
orange bars denote the difference in accuracy between ex-
pert classes and the best-performing general classes. Blue
and orange bars correlate positively with versatility and di-
rectionality, respectively.

Analysis of t-SNE visualization: We visualize the repre-
sentations of MASC before and after growth to investigate
the effectiveness of SL. Observing Figure 7a, it is evident
that before growth, agents struggle to cluster the same class
and separate different classes, mainly due to the absence
of exposure to general classes. In contrast, observing Fig-
ure 7b, after growth, MASC exhibited promising perfor-
mance, demonstrating not only the ability to classify all
classes but also more compact intra-class variations and
clearer inter-class boundaries. This validates the effective-
ness of SL.

(a) Before growth.

(b) After growth.

Figure 7: t-SNE visualization on CIFAR10-5-2 dataset be-
fore and after growth.

Analysis of trade-off hyperparameters: To assess the im-
pact of λ1 and λ2, we varied their values within the range
{1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 10}. As illustrated in
Figure 8, when λ2 exceeds 1e-2, there is a significant per-
formance decrease. This is attributed to the dominance of
the alignment loss, making it challenging for the agent to
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effectively train from ground truth and other agents. Re-
garding λ1, our method demonstrates robustness. Through
hyperparameter analysis experiments, setting λ1 and λ2 to
1 and 1e-3, respectively, yields superior performance for
MASC.

(a) Accuracy of expert classes.

(b) Accuracy of all classes.

Figure 8: Parameter analysis on CIFAR100-4-25 dataset.

C.2. The Experimental Results for the Second Version
of the Dataset Split

In the main paper, we elucidate the detailed process of
training. For a clearer understanding of inference, we have
described the algorithm in Algorithm 2.

As demonstrated in Tables 10, 11, 12, 13, 14, 15 and Fig-
ures 9, 10, consistent with the results from the first data
split version, our proposed MASC exhibits commendable
overall accuracy. It is evident that most CL methods show
a noticeable trend of learning new knowledge while forget-
ting old knowledge. Although they perform well in general
classes, this achievement comes at the cost of sacrificing
expert class performance, contradicting our original inten-
tion. In summary, MASC provides valuable insights into SL,

Algorithm 2 Inference for MASC.
Given components: Backbone fsb (·), student classifier

fsc (·), teacher classifier f t
′
i

c (·);
Input: Test sample x;
Output: Final prediction y∗;

1: Calculate image feature fsb (x);
2: Calculate the energy of the student −Fs(x);
3: Calculate the energy of the grown teacher −F t′i(x);
4: Obtain the classifier with the highest energy k∗;
5: Return final prediction y∗.

showcasing a high degree of flexibility that allows dynamic
adjustments based on the actual number of agents.

Method Accuracy before growth Accuracy after growth
Expert General Average Expert General Average

DER (Yan et al., 2021) 87.86 0.00 43.93 64.02 92.72 78.37
EWC (Kirkpatrick et al., 2017) 87.93 0.00 43.97 29.80 93.70 61.75
FOSTER (Wang et al., 2022a) 87.96 0.00 43.98 70.64 92.06 81.35
iCaRL (Rebuffi et al., 2017) 87.83 0.00 43.92 45.16 93.12 69.14
LwF (Li & Hoiem, 2017) 87.82 0.00 43.91 45.24 89.86 67.55
MEMO (Zhou et al., 2023) 87.77 0.00 43.89 76.78 69.72 73.25
PODNet (Douillard et al., 2020) 87.79 0.00 43.90 79.48 82.64 81.06
WA (Zhao et al., 2020) 87.91 0.00 43.96 71.68 90.48 81.08
FedAvg (McMahan et al., 2017) 87.72 0.00 43.86 76.38 78.30 77.34
FedAvgM (Hsu et al., 2019) 87.66 0.00 43.83 76.36 76.36 76.36
FedNova (Wang et al., 2020) 87.73 0.00 43.87 77.36 78.64 78.00
FedDecorr (Shi et al., 2023) 87.82 0.00 43.91 81.56 79.72 80.64
FedProx (Li et al., 2020) 87.76 0.00 43.88 80.74 80.42 80.58
FedSAM (Qu et al., 2022) 87.69 0.00 43.85 78.18 76.06 77.12
MOON (Li et al., 2021) 87.62 0.00 43.81 72.82 72.40 72.61
GLFC (Dong et al., 2022) 87.68 0.00 43.84 54.06 94.10 74.08
MASC 87.80 0.00 43.90 86.68(+5.12) 78.80 82.74(+1.39)

Table 10: Comparison of detailed accuracy across different
classes before and after growth on CIFAR10-2-5 dataset.
The 1st/2nd best results are indicated in red/blue.

Method Accuracy before growth Accuracy after growth
Expert General Average Expert General Average

DER (Yan et al., 2021) 67.81 0.00 33.91 46.30 53.69 49.99
EWC (Kirkpatrick et al., 2017) 67.75 0.00 33.88 13.93 37.03 25.48
FOSTER (Wang et al., 2022a) 67.66 0.00 33.83 34.80 43.39 39.09
iCaRL (Rebuffi et al., 2017) 67.29 0.00 33.65 20.35 40.66 30.51
LwF (Li & Hoiem, 2017) 67.12 0.00 33.56 15.73 37.88 26.80
MEMO (Zhou et al., 2023) 67.62 0.00 33.81 44.50 43.91 44.21
PODNet (Douillard et al., 2020) 67.43 0.00 33.72 51.65 42.73 47.19
WA (Zhao et al., 2020) 67.51 0.00 33.76 50.80 47.75 49.28
FedAvg (McMahan et al., 2017) 67.02 0.00 33.51 51.10 54.89 52.99
FedAvgM (Hsu et al., 2019) 67.05 0.00 33.53 50.35 55.76 53.06
FedNova (Wang et al., 2020) 67.13 0.00 33.57 48.80 56.44 52.62
FedDecorr (Shi et al., 2023) 67.29 0.00 33.65 53.25 57.53 55.39
FedProx (Li et al., 2020) 67.09 0.00 33.55 51.45 55.70 53.58
FedSAM (Qu et al., 2022) 67.16 0.00 33.58 51.25 56.46 53.86
MOON (Li et al., 2021) 66.98 0.00 33.49 44.20 48.49 46.34
GLFC (Dong et al., 2022) 67.76 0.00 33.88 14.96 48.43 31.69
MASC 67.40 0.00 33.70 65.95(+12.7) 58.09(+0.56) 62.02(+6.63)

Table 11: Comparison of detailed accuracy across different
classes before and after growth on CIFAR100-5-20 dataset.
The 1st/2nd best results are indicated in red/blue.

D. Theoretical Analysis
Below, we will elucidate the omitted proofs in Section 3 and
the formalized formulas for data-driven knowledge distilla-
tion presented in Section 5 (see main paper).
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Method Accuracy before growth Accuracy after growth
Expert General Average Expert General Average

DER (Yan et al., 2021) 72.68 0.00 36.34 54.18 72.56 63.37
EWC (Kirkpatrick et al., 2017) 72.66 0.00 36.33 15.58 80.08 47.83
FOSTER (Wang et al., 2022a) 72.59 0.00 36.30 46.36 77.44 61.90
iCaRL (Rebuffi et al., 2017) 72.51 0.00 36.26 34.42 78.10 56.26
LwF (Li & Hoiem, 2017) 72.55 0.00 36.28 31.30 76.66 53.98
MEMO (Zhou et al., 2023) 72.47 0.00 36.24 54.08 60.64 57.36
PODNet (Douillard et al., 2020) 72.49 0.00 36.25 46.60 71.44 59.02
WA (Zhao et al., 2020) 72.62 0.00 36.31 53.58 73.00 63.29
FedAvg (McMahan et al., 2017) 72.34 0.00 36.17 48.32 66.92 57.62
FedAvgM (Hsu et al., 2019) 72.41 0.00 36.21 52.90 68.70 60.80
FedNova (Wang et al., 2020) 72.45 0.00 36.23 64.22 59.28 61.75
FedDecorr (Shi et al., 2023) 72.49 0.00 36.25 62.78 63.84 63.31
FedProx (Li et al., 2020) 72.37 0.00 36.19 56.62 63.70 60.16
FedSAM (Qu et al., 2022) 72.43 0.00 36.22 52.18 70.68 61.43
MOON (Li et al., 2021) 72.31 0.00 36.16 46.50 67.32 56.91
GLFC (Dong et al., 2022) 72.46 0.00 36.23 41.72 80.66 61.19
MASC 72.52 0.00 36.26 69.24(+5.02) 62.16 65.70(+2.33)

Table 12: Comparison of detailed accuracy across different
classes before and after growth on generated CIFAR10-2-5
dataset. The 1st/2nd best results are indicated in red/blue.

Method Accuracy before growth Accuracy after growth
Expert General Average Expert General Average

DER (Yan et al., 2021) 41.42 0.00 20.71 26.10 30.16 28.13
EWC (Kirkpatrick et al., 2017) 41.33 0.00 20.67 2.48 20.33 11.40
FOSTER (Wang et al., 2022a) 41.27 0.00 20.64 36.05 18.81 27.43
iCaRL (Rebuffi et al., 2017) 41.19 0.00 20.60 8.15 23.08 15.61
LwF (Li & Hoiem, 2017) 41.23 0.00 20.62 6.93 20.76 13.85
MEMO (Zhou et al., 2023) 41.36 0.00 20.68 28.40 23.03 25.71
PODNet (Douillard et al., 2020) 41.39 0.00 20.70 31.60 25.24 28.42
WA (Zhao et al., 2020) 41.53 0.00 20.77 34.35 28.16 31.26
FedAvg (McMahan et al., 2017) 41.09 0.00 20.55 24.70 27.35 26.03
FedAvgM (Hsu et al., 2019) 41.19 0.00 20.60 24.30 29.31 26.81
FedNova (Wang et al., 2020) 41.22 0.00 20.61 24.90 29.71 27.31
FedDecorr (Shi et al., 2023) 41.12 0.00 20.56 24.75 27.74 26.24
FedProx (Li et al., 2020) 41.05 0.00 20.53 20.45 24.54 22.49
FedSAM (Qu et al., 2022) 41.17 0.00 20.59 23.60 28.46 26.03
MOON (Li et al., 2021) 41.13 0.00 20.57 21.70 28.79 25.24
GLFC (Dong et al., 2022) 41.31 0.00 20.66 6.55 25.64 16.09
MASC 41.25 0.00 20.63 39.00(+2.95) 30.90(+0.74) 34.95(+3.69)

Table 13: Comparison of detailed accuracy across different
classes before and after growth on generated CIFAR100-5-
20 dataset. The 1st/2nd best results are indicated in red/blue.

Dataset Method Accuracy before growth Accuracy after growth
Expert General Average Expert General Average

CIFAR10 Agent-1 87.80 0.00 43.90 86.68 78.80 82.74
Agent-2 92.24 0.00 46.12 89.26 78.62 83.94

CIFAR100

Agent-1 67.40 0.00 33.70 65.95 58.09 62.02
Agent-2 68.70 0.00 34.35 65.10 58.88 61.99
Agent-3 70.30 0.00 35.15 65.30 58.06 61.68
Agent-4 66.70 0.00 33.35 63.15 57.81 60.48
Agent-5 69.85 0.00 34.93 64.30 60.83 62.56

Table 14: Comparison of different agents before and after
growth on CIFAR10-2-5 and CIFAR100-5-20.

D.1. Proof of Theorem 3.4

Proof. We utilize the previous results (Cover, 1999; Feder
& Merhav, 1994; Li et al., 2023b):

− log
(
1− Pmul

ec

)
≤ H(Y | XA1

, XA2
), (18)

H(Y | XA1 , XA2) ≤ log 2 + Pmul
ec log |Y |. (19)

Combine the two inequalities and put Pmul
ec in the middle:

H(Y |XA1
,XA2

)−log 2

log |Y | ≤ Pmul
ec ≤ 1− exp(−H(Y | XA1 , XA2)), (20)

Dataset Method Accuracy before growth Accuracy after growth
Expert General Average Expert General Average

CIFAR10 Agent-1 72.52 0.00 36.26 69.24 62.16 65.70
Agent-2 79.66 0.00 39.83 73.90 66.08 69.99

CIFAR100

Agent-1 41.25 0.00 20.63 39.00 30.90 34.95
Agent-2 42.85 0.00 21.43 39.40 30.65 35.03
Agent-3 43.30 0.00 21.65 38.30 33.19 35.74
Agent-4 41.70 0.00 20.85 37.05 33.44 35.24
Agent-5 44.50 0.00 22.25 41.90 31.01 36.46

Table 15: Comparison of different agents before and after
growth on generated CIFAR10-2-5 and CIFAR100-5-20.

(a) Comparison on CIFAR10-2-5 dataset.

(b) Comparison on CIFAR100-5-20 dataset.

Figure 9: Analysis of versatility and directionality on origi-
nal datasets. Blue bars denote the average accuracy across
all classes, while orange bars denote the difference in accu-
racy between expert classes and the best-performing general
classes. Blue and orange bars correlate positively with ver-
satility and directionality, respectively.

which is the first result in the theorem. Then we apply the
results to P sin

ec :

H(Y |XA1
)−log 2

log |Y | ≤ P sin
ec ≤ 1− exp(−H(Y | XA1)). (21)
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(a) Comparison on generated CIFAR10-2-5 dataset.

(b) Comparison on generated CIFAR100-5-20 dataset.

Figure 10: Analysis of versatility and directionality on gen-
erated datasets. Blue bars denote the average accuracy
across all classes, while orange bars denote the difference
in accuracy between expert classes and the best-performing
general classes. Blue and orange bars correlate positively
with versatility and directionality, respectively.

Since

ΦXA2
= I(XA2

;Y | XA1
)

= I(Y ;XA1 , XA2)− I(Y ;XA1)

= [H(Y )−H(Y | XA1 , XA2)]− [H(Y )−H(Y | XA1)]

= H(Y |XA1)−H(Y |XA1 , XA2).

(22)
We can derive

H(Y |XA1
)− ΦXA2

− log 2

log |Y |
≤ Pmul

ec ≤ 1− exp(−H(Y | XA1
) + ΦXA2

). (23)

D.2. Data-driven Knowledge Distillation

Inspired by (Yang et al., 2021), we posit that the feature
distribution for expert classes follows Gaussian distribu-
tion, and aim to enhance this Gaussian resemblance across

distributions. To achieve this, we initially apply Tukey’s
Ladder of Powers transformation to the features of the target
task, as detailed in (Tukey et al., 1977). This transforma-
tion, belonging to a family of power transformations, is
designed to reduce distribution skewness and render them
more Gaussian-like. It operates as follows:

x =

{
x̃λ if λ ̸= 0
log(x̃) if λ = 0

, (24)

where x̃ is a feature vector from an expert class, and λ is a
hyper-parameter that adjusts the correction of the distribu-
tion. Setting λ to 1 recovers the original feature. Decreasing
λ reduces the positive skew of the distribution, while in-
creasing λ enhances it.

The mean of the feature vector from an expert class i is
calculated as:

µi =

∑ni

j=1 xj

ni
, (25)

where xj is a feature vector of the j-th sample from the
expert class i and ni is the total number of samples in class
i. Given the multidimensional nature of the feature vector
xj , we utilize covariance to more accurately represent the
variance between any two elements within the feature vec-
tor. The covariance matrix Σi for features from class i is
calculated in the following manner:

Σi =
1

ni − 1

ni∑
j=1

(xj − µi) (xj − µi)
T
. (26)

To effectively utilize these transformed features in a tar-
get task, we compile a set of calibrated statistics Sy =
{(µ1,Σ1) , . . . , (µK ,ΣK)} for each class y. We then gen-
erate a series of feature vectors labeled y by sampling from
these calibrated Gaussian distributions, thereby aligning
more closely with the assumed Gaussian feature distribution
of expert classes, which is defined as:

Dy = {(x, y) | x ∼ N (µ,Σ),∀(µ,Σ) ∈ Sy} . (27)
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