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Abstract

Large Language Models (LLMs) have impressive capabilities, but are prone
to outputting falsehoods. Recent work has developed techniques for infer-
ring whether a LLM is telling the truth by training probes on the LLM’s
internal activations. However, this line of work is controversial, with some
authors pointing out failures of these probes to generalize in basic ways,
among other conceptual issues. In this work, we use high-quality datasets
of simple true/false statements to study in detail the structure of LLM
representations of truth, drawing on three lines of evidence: 1. Visualiza-
tions of LLM true/false statement representations, which reveal clear linear
structure. 2. Transfer experiments in which probes trained on one dataset
generalize to different datasets. 3. Causal evidence obtained by surgically
intervening in a LLM’s forward pass, causing it to treat false statements as
true and vice versa. Overall, we present evidence that at sufficient scale,
LLMs linearly represent the truth or falsehood of factual statements. We also
show that simple difference-in-mean probes generalize as well as other
probing techniques while identifying directions which are more causally
implicated in model outputs.

1 Introduction

Despite their impressive capabilities, large language models (LLMs) do not always output
true text (Lin et al., 2022; Steinhardt, 2023; Park et al., 2023). In some cases, this is because
they do not know better. In other cases, LLMs apparently know that statements are false
but generate them anyway. For instance, Perez et al. (2022) demonstrate that LLM assistants
output more falsehoods when prompted with the biography of a less-educated user. More
starkly, OpenAI (2023) documents a case where a GPT-4-based agent gained a person’s help
in solving a CAPTCHA by lying about being a vision-impaired human. “I should not reveal
that I am a robot,” the agent wrote in an internal chain-of-thought scratchpad, “I should
make up an excuse for why I cannot solve CAPTCHAs.”

We would like techniques which, given a language model M and a statement s, determine
whether M believes s to be true (Christiano et al., 2021). One approach to this problem
relies on inspecting model outputs; for instance, the internal chain-of-thought in the above
example provides evidence that the model understood it was generating a falsehood. An
alternative class of approaches instead leverages access to M’s internal state when processing
s. There has been considerable recent work on this class of approaches: Azaria & Mitchell
(2023), Li et al. (2023b), and Burns et al. (2023) all train probes for classifying truthfulness
based on a LLM’s internal activations. In fact, the probes of Li et al. (2023b) and Burns et al.
(2023) are linear probes, suggesting the presence of a “truth direction” in model internals.

However, the efficacy and interpretation of these results are controversial. For instance,
Levinstein & Herrmann (2023) note that the probes of Azaria & Mitchell (2023) fail to
generalize in basic ways, such as to statements containing the word “not.” The probes of
Burns et al. (2023) have similar generalization issues, especially when using representations
from autoregressive transformers. This suggests these probes may be identifying not truth,
but other features that correlate with truth on their training data.
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Figure 1: PCA visualizations for LLaMA-2-70B representations of our true/false datasets.

Working with autoregressive transformers from the LLaMA-2 family (Touvron et al., 2023),
we shed light on this murky state of affairs. After curating high-quality datasets of sim-
ple, unambiguous true/false statements, we perform a detailed investigation of LLM
representations of factuality. Our analysis, which draws on patching experiments, simple
visualizations with principal component analysis (PCA), a study of probe generalization,
and causal interventions, finds:

• Evidence that linear representations of truth emerge with scale, with larger models
having a more abstract notion of truth that applies across structurally and topically
diverse inputs.

• A small group of causally-implicated hidden states which encode these truth
representations.

• Consistent results across a suite of probing techniques, but with simple difference-
in-mean probes identifying directions which are most causally implicated.

Our code, datasets, and an interactive dataexplorer are available at https://github.com/
saprmarks/geometry-of-truth.

1.1 Related work

Linear world models. Substantial previous work has studied whether LLMs encode world
models in their representations (Li et al., 2023a; 2021; Abdou et al., 2021; Patel & Pavlick,
2022). Early work focused on whether individual neurons represent features (Wang et al.,
2022; Sajjad et al., 2022; Bau et al., 2020), but features may more generally be represented
by directions in a LLM’s latent space (i.e. linear combinations of neurons) (Dalvi et al., 2018;
Gurnee et al., 2023; Cunningham et al., 2023; Elhage et al., 2022). We say such features
are linearly represented by the LLM. Just as other authors have asked whether models have
directions representing the concepts of “West Africa” (Goh et al., 2021) or “basketball”
(Gurnee et al., 2023), we ask here whether there is a direction corresponding to the truth or
falsehood of a factual statement.

Probing for truthfulness. Others have trained probes to classify truthfulness from LLM
activations, using both logistic regression (Azaria & Mitchell, 2023; Li et al., 2023b), unsuper-
vised (Burns et al., 2023), and contrastive (Zou et al., 2023; Rimsky et al., 2024) techniques.
This work differs from prior work in a number of ways. First, a cornerstone of our analysis
is evaluating whether probes trained on one dataset transfer to topically and structurally
different datasets in terms of both classification accuracy and causal mediation of model
outputs. Second, we specifically interrogate whether our probes attend to truth, rather
than merely features which correlate with truth (e.g. probable vs. improbable text). Third,
we localize truth representations to a small number of hidden states above certain tokens.
Fourth, we go beyond the mass-mean shift interventions of Li et al. (2023b) by systematically
studying the properties of difference-in-mean. Finally, we carefully scope our setting, using
only datasets of clear, simple, and unambiguous factual statements, rather than statements
which are complicated and structured (Burns et al., 2023), confusing (Azaria & Mitchell,
2023; Levinstein & Herrmann, 2023), or intentionally misleading (Li et al., 2023b; Lin et al.,
2022).
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Table 1: Our datasets
Name Description Rows
cities “The city of [city] is in [country].” 1496
neg cities Negations of statements in cities with “not” 1496
sp en trans “The Spanish word ‘[word]’ means ‘[English word]’.” 354
neg sp en trans Negations of statements in sp en trans with “not” 354
larger than “x is larger than y.” 1980
smaller than “x is smaller than y.” 1980
cities cities conj Conjunctions of two statements in cities with “and” 1500
cities cities disj Disjunctions of two statements in cities with “or” 1500
companies true false Claims about companies; from Azaria & Mitchell (2023) 1200
common claim true false Various claims; from Casper et al. (2023) 4450
counterfact true false Various factual recall claims; from Meng et al. (2022) 31960
likely Nonfactual text with likely or unlikely final tokens 10000

2 Datasets

Curated datasets. Unlike some prior work (Lin et al., 2022; Onoe et al., 2021, inter alia)
on language model truthfulness, our primary goal is not to measure LLMs’ capabilities for
classifying the factuality of challenging data. Rather, our goal is to understand: Do LLMs
have a unified representation of truth that spans structurally and topically diverse data? We
therefore construct curated datasets with the following properties:

1. Clear scope. We scope “truth” to mean factuality, i.e. the truth or falsehood
of a factual statement. App. A further clarifies this definition and contrasts it
with related but distinct notions, such as correct question-answering or compliant
instruction-following.

2. Statements are simple, uncontroversial, and unambiguous. In order to separate
our interpretability analysis from questions of LLM capabilities, we work only with
statements whose factuality our models are very likely to understand. For example
“Sixty-one is larger than seventy-four” (false) or “The Spanish word ‘nariz’ does not
mean ‘giraffe’ ” (true).

3. Controllable structural and topical diversity. We structure our data as a union
of smaller datasets. In each individual dataset, statements follow a fixed template
and topic. However, the inter-dataset variation is large: in addition to covering
different topics, we also—following Levinstein & Herrmann (2023)—introduce
structural diversity by negating statements with ”not” or taking logical conjunc-
tions/disjunctions (e.g. “It is the case both that s1 and that s2”).

Uncurated datasets. In order to validate that the truth representations we identify also
generalize to other factual statements, we use uncurated datasets adapted from prior work.
These more challenging test sets consist of statements which are more diverse, but also
sometimes ambiguous, malformed, controversial, or difficult to understand.

likely dataset. To ensure that our truth representations do not merely reflect a representa-
tion of probable vs. improbable text, we introduce a likely dataset, consisting of nonfactual
text where the final token is either the most or 100th most likely completion according to
LLaMA-13B.

Our curated, uncurated, and likely datasets are shown in Tab. 1; addition information about
their construction is in App. H.

We note that for some of our datasets, there is a strong anti-correlation between text being
probable and text being true. For instance, for neg cities and neg sp en trans, the truth
value of a statement and the log probability LLaMA-2-70B assigns to it correlate at r = −.63
and r = −.89, respectively.1 This is intuitive: when prompted with “The city of Paris is not
in”, LLaMA-2-70B judges “France” to be the most probable continuation (among countries),

1In contrast, the correlation is strong and positive for cities (r = .85) and sp en trans (r = .95).
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Figure 2: Difference log P(TRUE) − log P(FALSE) in LLaMA-2-13B log probabilities after
patching residual stream activation in the indicated token position and layer.

despite this continuation being false. Together with the likely dataset, this will help us
establish that the linear structure we observe in LLM representations is not due to LLMs
linearly representing the difference between probable and improbable text.

3 Localizing truth representations via patching

Before beginning our study of LLM truth representations, we first address the question of
which hidden states might contain such representations. We use simple patching experi-
ments (Vig et al., 2020; Finlayson et al., 2021; Meng et al., 2022; Geiger et al., 2020) to localize
certain hidden states for further analysis. Consider the following prompt pF:

The city of Tokyo is in Japan. This statement is: TRUE
The city of Hanoi is in Poland. This statement is: FALSE
The city of Chicago is in Canada. This statement is:

Similarly, let pT be the prompt obtained from pF by replacing “Chicago” with “Toronto,”
thereby making the final statement true. In order to localize causally implicated hidden
states, we run our model M on the input pT and cache the residual stream activations
hi,ℓ(pT) for each token position i and layer ℓ. Then, for each i and ℓ, we run M on pF
but modify M’s forward pass by swapping out the residual stream activation hi,ℓ(pF) for
hi,ℓ(pT) (and allowing this change to affect downstream computations); for each of these
intervention experiments, we record the difference in log probability between the tokens
“TRUE” and “FALSE”; the larger this difference, the more causally influential the hidden
state in position i and layer ℓ is on the model’s prediction.

Results for LLaMA-2-13B and the cities dataset are shown in Fig. 2; see App. B for results
on more models and datasets. We see three groups of causally implicated hidden states. The
final group, labeled (c), directly encodes the model’s prediction: after applying the LLM’s
decoder head directly to these hidden states, the top logits belong to tokens like “true,”
“True,” and “TRUE.” The first group, labeled (a), likely encodes the LLM’s representation of
“Chicago” or “Toronto.”

What does group (b) encode? The position of this group—over the final token of the state-
ment and end-of-sentence punctuation2—suggests that it encodes information pertaining to
the full statement. Since the information encoded is also causally influential on the model’s
decision to output “TRUE” or “FALSE,” we hypothesize that these hidden states store a

2This summarization behavior, in which information about clauses is encoded over clause-ending
punctuation tokens, was also noted in Tigges et al. (2023). We note that the largest LLaMA model
displays this summarization behavior in a more context-dependent way; see App. B.
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representation of the statement’s truth. In the remainder of this paper, we systematically
study these hidden states.

4 Visualizing LLM representations of true/false datasets

We begin our investigation with a simple technique: visualizing LLMs representations of
our datasets using principal component analysis (PCA). Guided by the results of §3, we
present here visualizations of the most downstream hidden state in group (b); for example,
for LLaMA-2-13B, we use the layer 15 residual stream activation over the end-of-sentence
punctuation token.3 Unlike in §3, we do not prepend the statements with a few-shot prompt
(so our models are not “primed” to consider the truth value of our statements). For each
dataset, we also center the activations by subtracting off their mean.

When visualizing LLaMA-2-13B and 70B representations of our curated datasets – datasets
constructed to have little variation with respect to non-truth features, such as sentence
structure or subject matter – we see clear linear structure (Fig. 1), with true statements
separating from false ones in the top two principal components (PCs). As explored in
App. C, this structure emerges rapidly in early-middle layers and emerges later for datasets
of more structurally complex statements (e.g. conjunctive statements).

To what extent does this visually-apparent linear structure align between different datasets?
Our visualizations indicate a nuanced answer: the axes of separation for various true/false
datasets align often, but not always. For instance, Fig. 3(a) shows the first PC of cities also
separating true/false statements from other datasets, including diverse uncurated datasets.
On the other hand, Fig. 3(c) shows stark failures of alignment, with the axes of separation
for datasets and statements and their negations being approximately orthogonal.

These cases of misalignment have an interesting relationship to scale. Fig. 3(b) shows
larger than and smaller than separating along antipodal directions in LLaMA-2-13B, but
along a common direction in LLaMA-2-70B. App. C depicts a similar phenomenon occuring
over the layers of LLaMA-2-13B: in early layers, cities and neg cities separate antipodally,
before rotating to lie orthogonally (as in Fig. 3(c)), and finally aligning in later layers.

4.1 Discussion

Overall, these visualizations suggest that as LLMs scale (and perhaps, also as a fixed LLM
progresses through its forward pass), they hierarchically develop and linearly represent
increasingly general abstractions. Small models represent surface-level characteristics of
their inputs, and large models linearly represent more abstract concepts, potentially includ-
ing notions like “truth” that capture shared properties of topically and structurally diverse
inputs. In middle regimes, we may find linear representation of concepts at intermediate
levels of abstraction, for example, “accurate factual recall” or “close association” (in the
sense that “Beijing” and “China” are closely associated).

To explore these intermediate regimes more deeply, suppose that D and D′ are true/false
datasets, f+ is a linearly-represented feature which correlates with truth on both D and D′,
and f− is a feature which correlates with truth on D but has a negative correlation with
truth on D′. If f+ is very salient (i.e. the datasets’ have large variance along the f -direction)
and f− is not, then we expect PCA visualizations of D ∪D′ to show joint separation along
f+. If f− is very salient but f+ is not, we expect antipodal separation along f−, as in Fig. 3(b,
center). And if both f+ and f− are salient, we expect visualizations like Fig. 3(c).

To give an example, suppose that D = cities, D′ = neg cities, f+ = “truth”, and
f− = “close association”. Then we might expect f− to correlate with truth positively on D
and negatively on D′. If so, we would expect training linear probes on D ∪D′ to result in

3Our qualitative results are insensitive to choice of layer among early-middle to late-middle layers.
On the other hand, when using representations over the final token in the statement (instead of the
punctuation token), we sometimes see that the top PCs instead capture variation in the token itself
(e.g. clusters for statements ending in “China” regardless of their truth value).
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Figure 3: (a) Projections of LLaMA-2-13B onto the top 2 PCs of cities. (b) PCA visual-
izations of larger than+smaller than. For LLaMA-2-7B (left), we see statements cluster
according to surface-level characteristics, e.g. presence of the token “eighty.” For LLaMA-2-
13B, we see that larger than (center, top) and smaller than (center, bottom) separate along
opposite directions. (c) PCA visualizations of datasets and their negations. Unlike in other
visualizations, we use layer 12 for cities+neg cities; see App. C for an exploration of this
misalignment emerging and resolving across layers.

improved generalization, despite D′ consisting of the same statements as D, but with the
word “not” inserted. We investigate this in §5.

5 Probing and generalization experiments

In this section we train probes on datasets of true/false statements and test their generaliza-
tion to other datasets. But first we discuss a deficiency of logistic regression and propose a
simple, optimization-free alternative: mass-mean probing. Concretely, mass-mean probes
use a difference-in-means direction, but—when the covariance matrix of the classification
data is known (e.g. when working with IID data)—apply a correction intended to mitigate
interference from non-orthogonal features. We will see that mass-mean probes are similarly
accurate to probes trained with other techniques (including on out-of-distribution data)
while being more causally implicated in model outputs.

5.1 Challenges with logistic regression, and mass-mean probing

A common technique in interpretability research for identifying feature directions is training
linear probes with logistic regression (LR; Alain & Bengio, 2018). In some cases, however, the
direction identified by LR can fail to reflect an intuitive best guess for the feature direction,
even in the absence of confounding features. Consider the following scenario, illustrated in
Fig. 4 with hypothetical data:

• Truth is represented linearly along a direction θt.

• Another feature f is represented linearly along a direction θ f not orthogonal to θt.4

• The statements in our dataset have some variation with respect to feature f , inde-
pendent of their truth value.

We would like to identify the direction θt, but LR fails to do so. Assuming for simplicity
linearly separable data, LR instead converges to the maximum margin separator Soudry
et al. (2018) (the dashed magenta line in Fig. 4). Intuitively, LR treats the small projection of
θ f onto θt as significant, and adjusts the probe direction to have less “interference” (Elhage
et al., 2022) from θ f .

4The superposition hypothesis of Elhage et al. (2022), suggests this may be typical in deep networks.
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A simple alternative to LR which identifies the de-
sired direction in this scenario is to take the vector
pointing from the mean of the false data to the mean
of the true data. In more detail if D = {(xi, yi)} is
a dataset of xi ∈ Rd with binary labels yi ∈ {0, 1},
we set θmm = µ+ − µ− where µ+, µ− are the means
of the positively- and negatively-labeled datapoints,
respectively. A reasonable first pass at converting
θmm into a probe is to define5

pmm(x) = σ(θT
mmx)

where σ is the logistic function. However, when eval-
uating on data that is independent and identically
distributed (IID) to D, we can do better by tilting
our decision boundary to accommodate interference
from θ f . Concretely this means setting

piid
mm(x) = σ(θT

mmΣ−1x)

where Σ is the covariance matrix of the dataset Dc = {xi − µ+ : yi = 1} ∪ {xi − µ− : yi = 0};
this coincides with performing linear discriminant analysis (Fisher, 1936).6

We call the probes pmm and piid
mm mass-mean probes. As we will see, mass-mean probing is

about as accurate for classification as LR, while also identifying directions which are more
causally implicated in model outputs.

5.2 Experimental set-up

In this section, we measure the effect that choice of training data, probing technique, and
model scale has on probe accuracy.

For training data, we use one of: cities, cities + neg cities, larger than, larger than
+ smaller than, or likely. By comparing probes trained on cities to probes trained on
cities + neg cities, we are able to measure the effect of increasing data diversity in a
particular, targeted way: namely, we mitigate the effect of linearly-represented features
which have opposite-sign correlations with the truth in cities and neg cities. As in §4,
we will extract activations at the most-downstream hidden state in group (b).

Our probing techniques are logistic regression (LR), mass-mean probing (MM), and contrast-
consistent search (CCS). CCS is an unsupervised method introduced in Burns et al. (2023):
given contrast pairs of statements with opposite truth values, CCS identifies a direction along
which the representations of these statements are far apart. For our contrast pairs, we pair
statements from cities and neg cities, and from larger than and smaller than.

For test sets, we use all of our (curated and uncurated) true/false datasets. Given a training
set D, we train our probe on a random 80% split of D. Then when evaluating accuracy on a
test set D′, we use the remaining 20% of the data if D′ = D and the full test set otherwise.
For mass-mean probing, if D = D′, we use piid

mm, and we use pmm otherwise.

Finally, we also include as baselines calibrated few-shot prompting7 and – as an oracle
baseline – LR on the test set.

5Since we are interested in truth directions, we always center our data and use unbiased probes.
6We prove in App. F that, given infinite data and a homoscedasticity assumption, Σ−1θmm coincides

with the direction found by LR. Thus, one can view IID mass-mean probing as providing a way to
select a good decision boundary while – unlike LR – also tracking a candidate feature direction
which may be non-orthogonal to this decision boundary. App. E provides another interpretation of
mass-mean probing in terms of Mahalanobis whitening. Finally, App.

7We first sweep over a number n of shots and then resample a few n-shot prompts to maximize
performance. The word “calibrated” means we selected a threshold for P(TRUE)− P(FALSE) such that
half of the statements are labeled true; this improves performance by a few percentage points.
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(a) OOD accuracies of LR probes (b) Average test set accuracies

Figure 5: (a) Average accuracies over all datasets aside from those used for training. (b)
Accuracies of probes for varying model scales and training data, averaged over all test sets.

5.3 Results

For each training set, probing technique, and model scale, we report the average accuracy
across test sets. We expect many readers to be interested in the full results (including test
set-specific accuracies), which are reported in App. D. Calibrated few-shot prompting was a
surprisingly weak baseline, so we do not report it here (but see App. D).

Training on statements and their opposites improves generalization (Fig. 5(a)). When
passing from cities to cities+neg cities, this effect is largely explained by improved gen-
eralization on neg sp en trans, i.e. using training data containing the word “not” improves
generalization on other negated statements. On the other hand, passing from larger than
to larger than+smaller than also improves performance, despite both datasets being very
structurally different from the rest of our datasets. As discussed in §4.1, this suggest that
training on statements and their opposites mitigates the effect certain types of non-truth
features have on the probe direction.

Probes generalize better for larger models (Fig. 5). While it is unsurprising that larger
models are themselves better at labeling statements as true or false, it is not obvious that
linear probes trained on larger models should also generalize better. Nevertheless, for
LLaMA-2-13B and 70B, generalization is generally high; for example, no matter which
probing technique is used, we find that probes trained on larger than + smaller than
get > 95% accuracy on sp en trans. This corroborates our discussion in §4.1, in which we
suggested that larger models linearly represent more general concepts concepts, like truth,
which capture shared aspects of diverse inputs.

Mass-mean probes generalize about as well as other probing techniques for larger models
(Fig. 5(b)). While MM underperforms LR and CCS for LLaMA-2-7B, we find for larger
models performance comparable to that of other probing techniques. Further, we will see in
§6 that the directions identified by MM are more causally implicated in model outputs.

Probes trained on likely perform poorly (Fig. 5(b)). The full results reveal that probes
trained on likely are accurate when evaluated on some datasets, such as sp en trans where
there is a strong (r = .95) correlation between text probability and truth. However, on
other datasets, especially those with anti-correlations between probability and truth, these
probes perform worse than chance. Overall, this indicates that LLMs linearly represent
truth-relevant information beyond the plausibility of text.

6 Causal intervention experiments

In §5 we measured the quality of linear probes in terms of their classification accuracy, both in-
and out-of-distribution. In this section, we perform experiments which measure the extent
to which these probes identify directions which are causally implicated in model outputs
Finlayson et al. (2021); Geva et al. (2023); Geiger et al. (2021). To do this, we will intervene in
our model’s computation by shifting the activations in group (b) (identified in §3) along the
directions identified by our linear probes. Our goal is to cause LLMs to treat false statements
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appearing in context as true and vice versa. Crucially—and in contrast to prior work (Li
et al., 2023b)—we evaluate our interventions on OOD inputs.

Table 2: NIEs for intervention experiments, averaged over statements from sp en trans.

LLaMA-2-13B LLaMA-2-70B
train set probe false→true true→false false→true true→false

cities
LR .13 .19 .55 .99

MM .77 .90 .58 .89

cities+
neg cities

LR .33 .52 .61 1.00
MM .85 .97 .81 .95
CCS .31 .73 .55 .96

larger than
LR .28 .27 .61 .96

MM .71 .79 .67 1.01

larger than+
smaller than

LR .07 .13 .54 1.02
MM .26 .53 .66 1.03
CCS .08 .17 .57 1.02

likely
LR .05 .08 .18 .46

MM .70 .54 .68 .27

6.1 Experimental set-up

Let p be a linear probe trained on a true/false dataset D. Let θ be the probe direction,
normalized so that p(µ− + θ) = p(µ+) where µ+ and µ− are the mean representations of
the true and false statements in D, respectively; in other words, we normalize θ so that from
the perspective of the probe p, adding θ turns the average false statement into the average
true statement. If our model encodes the truth value of statements along the direction θ,
we would expect that replacing the representation x of a false statement s with x + θ would
cause the model to produce outputs consistent with s being a true statement.

We use inputs of the form

The Spanish word ‘fruta’ means ‘goat’. This statement is: FALSE
The Spanish word ‘carne’ means ‘meat’. This statement is: TRUE
s. This statement is:

where s varies over sp en trans statements. Then for each of the probes of §5 we record:

• PD+ and PD−, the average probability differences P(TRUE)− P(FALSE) for s varying
over true statements or false statements in sp en trans, respectively,

• PD+
∗ and PD−

∗ , the average probability differences where s varies over true (resp.
false) statements but the probe direction θ is subtracted (resp. added) to each group
(b) hidden state.

Finally, we report the normalized indirect effects (NIEs)
PD−

∗ − PD−

PD+ − PD− or
PD+

∗ − PD+

PD− − PD+

for the false→true and the true→false experiments, respectively. An NIE of 0 means that the
intervention was wholly ineffective at changing model outputs; an NIE of 1 indicates that
the intervention caused the LLM to label false statements as TRUE with as much confidence
as genuine true statements, or vice versa.

6.2 Results

Results are shown in table 2. We summarize our main takeaways.

Mass-mean probe directions are highly causal, with MM outperforming LR and CCS in
7/8 experimental conditions, often substantially. This is true despite LR, MM, and CCS
probes all have very similar sp en trans classification accuracies.
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Training on datasets and their opposites helps for cities but not for larger than. This is
surprising, considering that probes trained on larger than + smaller than are more accurate
on sp en trans than probes trained on larger than alone (see App. D), and indicates that
there is more to be understood about how training on datasets and their opposites affects
truth probes.

Training on likely is a surprisingly good baseline, though still weaker than interventions
using truth probes. The performance here may be due to the strong correlation (r = .95)
between inputs being true and probable (according to LLaMA-2-70B) on sp en trans.

7 Discussion

7.1 Limitations and future work

Our work has a number of limitations. First, we focus on simple, uncontroversial statements,
and therefore cannot disambiguate truth from closely related features, such as “commonly
believed” or “verifiable” (Levinstein & Herrmann, 2023). Second, we study only models in
the LLaMA-2 family, so it is possible that some of our results do not apply for all LLMs.

This work also raises several questions which we were unable to answer here. For instance,
why were interventions with mass-mean probe directions extracted from the likely dataset
so effective, despite these probes not themselves being accurate at classifying true/false
statements? And why did mass-mean probing with the cities + neg cities training data
perform poorly poorly for the 70B model, despite mass-mean probing with larger than +
smaller than performing well?

7.2 Conclusion

In this work we conduct a detailed investigation of the structure of LLM representations
of truth. Drawing on simple visualizations, probing experiments, and causal evidence, we
find evidence that at scale, LLMs compute and linearly represent the truth of true/false
statements. We also localize truth representations to certain hidden states and introduce
mass-mean probing, a simple alternative to other linear probing techniques which better
identifies truth directions from true/false datasets.
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A Scoping of truth

In this work, we consider declarative factual statements, for example “Eighty-one is larger
than fifty-four” or “The city of Denver is in Vietnam.” We scope “truth” to mean factuality,
i.e. the truth or falsehood of these statements; for instance the examples given have truth
values of true and false, respectively. To be clear, we list here some notions of “truth” which
we do not consider in this work:

• Correct question answering (considered in Li et al. (2023b) and for some of the
prompts used in Burns et al. (2023)). For example, we do not consider “What
country is Paris in? France” to have a truth value.

• Presence of deception, for example dishonest expressions of opinion (“I like that
plan”).

• Compliance. For example, “Answer this question incorrectly: what country is Paris
in? Paris is in Egypt” is an example of compliance, even though the statement at
the end of the text is false.

Moreover, the statements under consideration in this work are all simple, unambiguous,
and uncontroversial. Thus, we make no attempt to disambiguate “true statements” from
closely-related notions like:

• Uncontroversial statements

• Statements which are widely believed

• Statements which educated people believe.

On the other hand, our statements do disambiguate the notions of “true statements” and
“statements which are likely to appear in training data”; See our discussion at the end of §2.

B Full patching results

Fig. 6 shows full patching results. We see that both LLaMA-2-7B and LLaMA-2-13B dis-
play the “summarization” behavior in which information relevant to the full statement is
represented over the end-of-sentence punctuation token. On the other hand, LLaMA-2-
70B displays this behavior in a context-dependent way – we see it for cities but not for
sp en trans.

C Emergence of linear structure across layers

The linear structure observed in §4 follows the following pattern: in early layers, represen-
tations are uninformative; then, in early middle layers, salient linear structure in the top
few PCs rapidly emerges, with this structure emerging later for statements with a more
complicated logical structure (e.g. conjunctions). This is shown for LLaMA-2-13B in Fig. 7.
We hypothesize that this is due to LLMs hierarchically developing understanding of their
input data, progressing from surface level features to more abstract concepts.

The misalignment in Fig. 3(c) also has an interesting dependence on layer. In Fig. 8 we
visualize LLaMA-2-13B representations of cities and neg cities at various layers. In early
layers (left) we see antipodal alignment as in Fig. 3(b, center). As we progress through layers,
we see the axes of separation rotate to lie orthogonally, until they eventually align.

One interpretation of this is that in early layers, the model computed and linearly repre-
sented some feature (like “close association”) which correlates with truth on both cities
and neg cities but with opposite signs. In later layers, the model computed and promoted
to greater salience a more abstract concept which correlates with truth across both datasets.
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70
B

13
B

7B

cities sp_en_trans

Figure 6: Full patching results across all three model sizes and inputs. Results are for
patching false inputs (shown) to true by changing the first token shown on the left. Numbers
in parentheses are the index of the token in the full (few-shot) prompt.
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Figure 7: Projections of LLaMA-2-13B representations of datasets onto their top two PCs,
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Figure 9: Generalization results for LLaMA-2-70B.
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Figure 10: Generalization results for LLaMA-2-13B.

D Full generalization results

Here we present the full generalization results for probes trained on LLaMA-2-70B (Fig. 9),
13B (Fig. 10), and 7B (Fig. 11). The horizontal axis shows the training data for the probe and
the vertical axis shows the test set.

E Mass-mean probing in terms of Mahalanobis whitening

One way to interpret the formula piid
mm(x) = σ(θT

mmΣ−1x) for the IID version of mass-mean
probing is in terms of Mahalanobis whitening. Recall that if D = {xi} is a dataset of xi ∈ Rd

with covariance matrix Σ, then the Mahalanobis whitening transformation W = Σ−1/2

18



Published as a conference paper at COLM 2024

cities

neg_cities

larger_than

smaller_than

sp_en_trans

neg_sp_en_trans

cities_cities_conj

cities_cities_disj

companies_true_false

common_claim_true_false

counterfact_true_false

cit
ies

cit
ies

+ne
g_c

iti
es

lar
ger

_th
an

lar
ger

_th
an+

sma
lle

r_t
han
cit

ies

cit
ies

+ne
g_c

iti
es

lar
ger

_th
an

lar
ger

_th
an+

sma
lle

r_t
han

cit
ies

+ne
g_c

iti
es

lar
ger

_th
an+

sma
lle

r_t
han

LR 
on 

lik
ely

MM 
on 

lik
ely

cal
ibr

ate
d f

ew-
sho

t

LR 
on 

tes
t (

ora
cle

)

LR MM CCS Baselines

Figure 11: Generalization results for LLaMA-2-7B.

Figure 12: Mass-mean probing is equivalent to taking the projection onto θmm after applying
a whitening transformation.
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satisfies the property that D′ = {Wxi} has covariance matrix given by the identity matrix,
i.e. the whitened coordinates are uncorrelated with variance 1. Thus, noting that θT

mmΣ−1x
coincides with the inner product between Wx and Wθ, we see that pmm amounts to taking
the projection onto θmm after performing the change-of-basis given by W. This is illustrated
with hypothetical data in Fig. 12.

F For Gaussian data, IID mass-mean probing coincides with logistic
regression on average

Let θ ∈ Rd and Σ be a symmetric, positive-definite d × d matrix. Suppose given access
to a distribution D of datapoints x ∈ Rd with binary labels y ∈ {0, 1} such that the
negative datapoints are distributed as N (−θ, Σ) and the positive datapoints are distributed
as N (θ, Σ). Then the vector identified by mass-mean probing is θmm = 2θ. The following
theorem then shows that piid

mm(x) = σ(2θTΣ−1x) is also the solution to logistic regression
up to scaling.
Theorem F.1. Let

θlr = arg min
ϕ:∥ϕ∥=1

E(x,y)∼D

[
y log σ

(
ϕTx

)
+ (1 − y) log

(
1 − σ

(
ϕTx

))]
be the direction identified by logistic regression. Then θlr ∝ Σ−1θ.

Proof. Since the change of coordinates x 7→ Wx where W = Σ−1/2 (see App. E) sends
N (±θ, Σ) to N (±Wθ, Id), we see that

WΣθlr = arg min
ϕ:∥ϕ∥=1

E(x,y)∼D′

[
y log σ

(
ϕTWx

)
+ (1 − y) log

(
1 − σ

(
ϕTWx

))]
where D′ is the distribution of labeled x ∈ Rd such that the positive/negative datapoints
are distributed as N (±Wθ, Id). But the argmax on the right-hand side is clearly ∝ Wθ, so
that θlr ∝ Σ−1θ as desired.

G Difference-in-means directions and linear concept erasure

In this appendix, we explain the connection between difference-in-means directions and
optimal erasure. One consequence of this connection is that it suggests a natural extension
of difference-in-means probes to multi-class classification data.

The connection comes via the following theorem from Belrose et al. (2023).
Theorem G.1. (Belrose et al., 2023, Thm. 3.1.) Let (X, Y) be jointly distributed random vectors
with X ∈ Rd having finite mean and Y ∈ Y = {y ∈ {0, 1}k : ∥y∥1 = 1} (representing one-hot
encodings of a multi-class labels). Suppose that L : Rk ×Y → R>0 is a loss function convex in its
first argument (e.g. cross-entropy loss).

If the class-conditional means E[X|Y = i] for i ∈ {1, . . . , k} are all equal, then the best affine
predictor (that is, a predictor η : Rd → Rk of the form η(x) = Wx + b) is constant η(x) = b.

In the case of a binary classification problem (X, Y), this theorem implies that any nullity 1
projection P which eliminates linearly-recoverable information from X has kernel

ker P = span(δ)

generated by the difference-in-mean vector δ = µ+ − µ− for the classes.

For a more general multi-class classification problem, one could similarly ask: What is the
“best” direction to project away in order to eliminate linearly-recoverable information from
X? A natural choice is thus the top left singular vector of the cross-covariance matrix ΣXY.
(In the case of binary classification, we have that ΣXY = [−δ δ] has column rank 1, making
δ the top left singular vector.)
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H Details on dataset creation

Here we give example statements from our datasets, templates used for making the datasets,
and other details regarding dataset creation.

cities. We formed these statements from the template “The city of [city] is in [country]”
using a list of world cities from Geonames (2023). We filtered for cities with populations
> 500, 000, which did not share their name with any other listed city, which were located in
a curated list of widely-recognized countries, and which were not city-states. For each city,
we generated one true statement and one false statement, where the false statement was
generated by sampling a false country with probability equal to the country’s frequency
among the true datapoints (this was to ensure that e.g. statements ending with “China”
were not disproportionately true). Example statements:

• The city of Sevastopol is in Ukraine. (TRUE)
• The city of Baghdad is in China. (FALSE)

sp en trans. Beginning with a list of common Spanish words and their English translations,
we formed statements from the template “The Spanish word ‘[Spanish word]’ means
‘[English word]’.” Half of Spanish words were given their correct labels and half were
given random incorrect labels from English words in the dataset. The first author, a Spanish
speaker, then went through the dataset by hand and deleted examples with Spanish words
that have multiple viable translations or were otherwise ambiguous. Example statements:

• The Spanish word ‘imaginar’ means ‘to imagine’. (TRUE)
• The Spanish word ‘silla’ means ‘neighbor’. (FALSE)

larger than and smaller than. We generate these statements from the templates “x is larger
than y” and “x is smaller than y” for x, y ∈ {fifty-one, fifty-two, . . . , ninety-nine}. We
exclude cases where x = y or where one of x or y is divisible by 10. We chose to limit the
range of possible values in this way for the sake of visualization: we found that LLaMA-
13B linearly represents the size of numbers, but not at a consistent scale: the internally
represented difference between one and ten is considerably larger than between fifty and
sixty. Thus, when visualizing statements with numbers ranging to one, the top principal
components are dominated by features representing the sizes of numbers.

neg cities and neg sp en trans. We form these datasets by negating statements from
cities and sp en trans according to the templates “The city of [city] is not in [country]”
and “‘The Spanish word ‘[Spanish word]’ does not mean ‘[English word]’.”

cities cities conj and cities cities disj. These datasets are generated from cities
according to the following templates:

• It is the case both that [statement 1] and that [statement 2].
• It is the case either that [statement 1] or that [statement 2].

We sample the two statements independently to be true with probability 1√
2

for

cities cities conj and with probability 1 − 1√
2

for cities cities disj. These proba-
bilities are selected to ensure that the overall dataset is balanced between true and false
statements, but that there is no correlation between the truth of the first and second statement
in the conjunction.

likely. We generate this dataset by having LLaMA-13B produce unconditioned generations
of length up to 100 tokens, using temperature 0.9. At the final token of the generation,
we either sample the most likely token or the 100th most likely final token. We remove
generations which contain special tokens. Dataset examples:

• The 2019-2024 Outlook for Women’s and Girls’ Cut and Sew and Knit and Crochet
Sweaters in the United States This study covers the latent demand outlook for
(LIKELY)
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• Tags: python, django Question: How to get my django app to work with python
3.7 I am new to django and have been trying to install it in my pc. I have installed
python 3.7 together (UNLIKELY)

companies true false. This dataset was introduced by Azaria & Mitchell (2023); we ob-
tained it via the project repository for Levinstein & Herrmann (2023) which also used the
dataset. Example statements:

• ArcelorMittal has headquarters in Luxembourg. (TRUE)
• Exxon Mobil engages in the provision of banking and financial services. (FALSE)

common claim true false. CommonClaim was introduced in Casper et al. (2023). It consists
of various statements generated by GPT-3-davinci-002, labeled by humans as being true,
false, or neither. If human labelers disagreed on the truth of a statement, this is also recorded.
We adapted CommonClaim by selecting statements which were labeled true or false with no
labeler disagreement, then removing excess true statement to balance the dataset. Example
statements:

• Tomatoes are not actually a vegetable. (TRUE)
• Contrary to popular belief, the platypuses are not venomous. (FALSE)

As these examples show, the statements can be ambiguous or of unclear truth value.

counterfact true false. Counterfact was introduced in Meng et al. (2022) and consists of
factual recall statements. We adapt Counterfact by using statements which form complete
sentences and, for each such statement, using both the true version and a false version given
by one of Counterfact’s suggested false modifications. We also append a period to the end.
Example statements:

• Olaus Rudbeck spoke the language Swedish. (TRUE)
• The official religion of Malacca sultanate is Christianity. (FALSE)
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