

000 001 002 003 004 005 IMAGINEBENCH: EVALUATING REINFORCEMENT 006 LEARNING WITH LARGE LANGUAGE MODEL ROLLOUT 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907

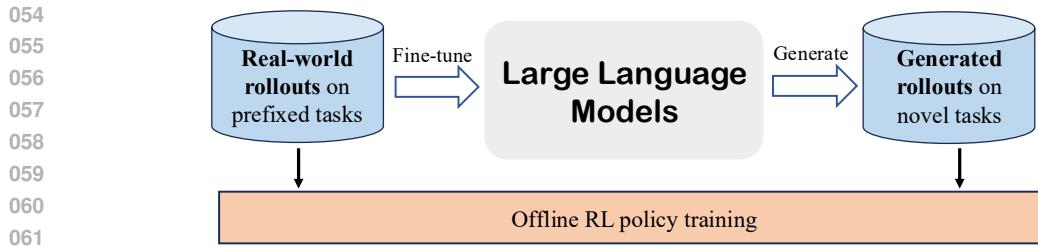


Figure 1: We benchmark the problem of RL with LLM-imaginary rollouts. The LLM is fine-tuned to generate imaginary rollouts, followed by RL policy training using real and imaginary rollouts.

To address this gap, we introduce ImagineBench, the first comprehensive benchmark designed to systematically evaluate offline RL algorithms that train a policy with both real rollouts and LLM-imaginary rollouts. ImagineBench has three key features: (1) **Datasets** that include both real rollouts collected from the environment, and imaginary rollouts generated by the fine-tuned LLMs, eliminating the computational burden of LLM fine-tuning and ensuring consistent comparison. The quality of the LLM-generated rollouts is verified by the (2) **Diverse domains** include locomotion, robotic manipulation, and navigation. (3) **Natural language instruction** paired with the rollouts, which are divided into various difficulty levels, supporting the research on instruction-following agents (Pang et al., 2023b; Ichter et al., 2022). Through extensive experiments with state-of-the-art offline RL algorithms, we demonstrate that while naively combining real and imaginary rollouts generally improves performance on unseen tasks, there is still a clear gap on novel tasks, between the current score (35.44%) and the performance of training with real rollouts (64.37%). This gap underscores the need for novel algorithms to leverage LLM-generated rollouts better. Furthermore, we show that pre-training with imaginary rollouts can enhance asymptotic performance after online fine-tuning, highlighting its potential as a valuable resource.

Our contributions are as follows: We propose ImagineBench, the first benchmark for RL from LLM-imaginary rollouts, complete with datasets, environments, and evaluation protocols. Based on ImagineBench, we conduct comprehensive empirical study investigating baseline performance and revealing the limitations of existing methods. Finally, we identify directions for future research for RL from imaginary rollouts, including improved offline RL for synthetic data, efficient online adaptation, continual learning, and extension to multi-modal tasks.

2 RELATED WORK

RL with LLM-imaginary rollouts. Recent advances in leveraging the general knowledge of LLMs to build knowledgeable agents for interactive and physical tasks have established a promising research frontier (Pang et al., 2024). The central challenge is that LLMs can not directly handle numerical control signals for decision-making tasks (Pang et al., 2024; Liu et al., 2024). To address this, researchers have explored using LLMs to generate imaginary decision-making rollouts that are then used for RL policy training. For instance, KALM (Pang et al., 2024) fine-tunes LLMs to produce low-level control rollouts, which are then used to train RL policies via offline RL algorithms. This approach demonstrates how domain-specific knowledge embedded in LLMs can be effectively distilled to handle novel tasks. Similarly, URI (Chen et al., 2024) employs LLMs to generate control trajectories by prompting them with instructional texts from tutorial books, enabling policy training without environmental interaction. AgentTrek (Xu et al., 2025) extends this paradigm to browser automation by synthesizing task execution rollouts at scale, followed by imitation learning to train the agent. Beyond low-level control, InCLET (Wang et al., 2025) introduces a framework where LLMs generate textual imaginary rollouts, enhancing the agent’s ability to interpret natural language instructions and derive task representations. While these studies highlight the potential of LLM-imaginary rollouts, they focus on developing individual algorithms. In contrast, ImagineBench introduces the comprehensive benchmark to systematically evaluate the algorithm performance, generalizability, and limitations of RL methods training LLM-imaginary rollouts.

Existing benchmarks in RL. The rapid development of RL has given rise to a diverse array of benchmarks. These benchmarks fall into three primary categories: online, offline, and off-dynamics, each handling challenges within specific training paradigms. Online training benchmarks, such as

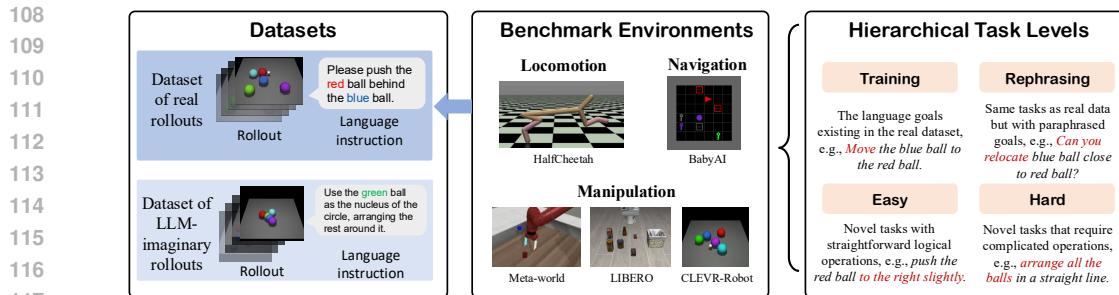


Figure 2: Overview of ImagineBench, covering three key features: (1) datasets of both real and LLM-imaginary rollouts, (2) diverse domains of environments, and (3) natural language instructions with various task levels. Examples shown in the ‘Datasets’ panel are from the CLEVR-Robot environment.

Gym (Brockman et al., 2016), MuJoCo (Todorov et al., 2012), and the DMC (Tassa et al., 2018), have long served as foundational tools for evaluating agents that learn through online interaction, emphasizing exploration and sample efficiency in dynamic settings like Atari 2600 games (Atari, Inc., 1977) and continuous control tasks. Meanwhile, the rise of offline RL promotes the development of benchmarks like NeoRL (Qin et al., 2022), D4RL (Fu et al., 2020) and RL Unplugged (Gulcehre et al., 2020), which contain large-scale, pre-collected datasets to evaluate agents’ ability to learn from static data while mitigating distributional shift and extrapolation errors in domains ranging from robotic manipulation to locomotion. Besides, off-dynamics benchmarks, including ODRL (Lyu et al., 2024) and Meta-World ML1 (Yu et al., 2019), evaluate generalization under shifts in dynamics, such as altered physical parameters or visual perturbations, challenging agents to adapt policies to unseen environmental conditions. In contrast, ImagineBench is the first benchmark specifically designed to evaluate how effectively RL algorithms that utilize LLM-imaginary rollouts, offering scenarios to measure the benefits and limitations of utilizing LLM knowledge to build knowledgeable agents.

3 BACKGROUND

Reinforcement learning. We consider an RL problem where the agent completes natural language instructions. The environment can be modeled as a goal-augmented Markov Decision Process (Sutton & Barto, 1998; Pang et al., 2023a), represented by the tuple $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma, \mathcal{G})$, where \mathcal{S}, \mathcal{A} denote the state space and action space, respectively. \mathcal{P} denotes transition function of the environment, \mathcal{R} the reward function that evaluates the agent’s behavior, γ the discount factor, and \mathcal{G} the set of natural language goals. The objective of RL is to find a policy $\pi : \mathcal{S} \times \mathcal{G} \rightarrow \Delta(\mathcal{A})$ that maximize the cumulative reward: $J(\pi) = \mathbb{E}_\pi[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)]$. This work focuses on environments with structured, vectorized state spaces, where each dimension encodes interpretable, domain-specific features. We call the state and action data collected from the environment the *real environmental rollouts*, and the rollouts generated by LLM the *imaginary rollouts*.

Offline reinforcement learning with LLM-imaginary rollouts. Traditional offline RL focuses on offline policy training from a static environmental dataset. In this paper, we consider RL with both real and LLM-imaginary rollouts. Formally, consider we have (1) a real dataset \mathcal{D} collected from the real environment, and (2) a LLM-imaginary datasets¹ \mathcal{D}^I , which is generated by LLMs. Both real and imaginary datasets consist of paired language goals and corresponding decision-making rollouts: $\{G^k, (s_0^k, a_0^k, s_1^k, a_1^k, \dots)\}_{k=1}^K$. Here, the sequence $(s_0^k, a_0^k, s_1^k, a_1^k, \dots)$ represents a rollout of states and actions (s_i^k, a_i^k) to complete the goal G^k . The primary objective is to find a policy that achieves high rewards on unseen goal distributions (known as novel tasks), represented as \mathcal{G}' .

4 IMAGINEBENCH DETAILS

ImagineBench involves a wide range of decision-making environments, including locomotion, manipulation, and navigation. For each environment, ImagineBench provides two datasets as illustrated in Sec. 3: a dataset of real rollouts collected from the environments, and a dataset of imaginary rollouts

¹We will elaborate on how LLMs are trained to generate the rollouts in Sec. 4.2.

162 generated by LLM. We will briefly introduce the benchmark environments in Sec. 4.1 and how the
 163 datasets are constructed in Sec. 4.2. Last, Sec. 4.3 defines different levels of task complexity.
 164

165 **4.1 BENCHMARK ENVIRONMENTS**
 166

167 The Benchmark Environment panel in Fig. 2 shows the visualization of the environments used in
 168 ImagineBench. We present the environment statistics in Tab. 1, and more details in Appendix C.
 169

170 **Meta-world** (Yu et al., 2019) agent controls a Sawyer robot to manipulate objects, e.g., doors, drawers,
 171 and windows. In novel tasks, the agent needs to manipulate, assuming that there is a wall in front of
 172 the object. The state space is \mathbb{R}^{91} , encoding the robot’s joint angles and object positions/orientations,
 173 while the action space is \mathbb{R}^4 , controlling the gripper’s movement and open/close. The reward function
 174 combines task (or sub-task) completion signals with a negative distance metric between the gripper
 175 and target location.

176 **CLEVR-Robot** (Research, 2019) environment requires the agent to manipulate five colored balls to
 177 reach a target configuration. The state space is \mathbb{R}^{10} , encoding the positions of five balls, with an action
 178 space of 40-dimensional discrete actions, using one-hot vectors to specify directional movement for
 179 each ball. The reward is calculated as a reduction in distance between the current state and the target
 180 configuration compared to the previous step, adding a terminal reward for task completion.
 181

182 **BabyAI** (Chevalier-Boisvert et al., 2019) is a gridworld environment, which modifies the original
 183 environment’s language-conditioned navigation tasks with full observability. The state space is \mathbb{R}^{17} ,
 184 encoding object positions (agent, keys, doors, balls) using absolute grid coordinates and RGB at-
 185 tributes. The action space comprises 7-dimensional discrete movement primitives (left/right/up/down)
 186 and object interactions (pickup/drop/toggle). The rewards are calculated as the shortest-path distance
 187 to the goal object, plus a sparse completion reward.
 188

189 **LIBERO** (Liu et al., 2023) controls a robot arm to complete various manipulation tasks. LIBERO
 190 originally consists of four task suites, each containing 10 tasks. ImagineBench uses LIBERO-Object
 191 suite and additionally designs novel tasks such as sequential-pick-and-place. The state space is
 192 \mathbb{R}^{44} , representing the joint position and object position/poses, while the action space of \mathbb{R}^7 specifies
 193 joint angle deltas for arm movement and gripper open/close. Similar to Meta-world, we provide
 194 distance-based reward to guide the agent to reach the target object, and terminal judgment when a
 195 sub-task or the entire task is completed as the final step reward.
 196

197 **MuJoCo** (Todorov et al., 2012) is a physics-based simulation platform widely used for continuous
 198 control tasks in reinforcement learning. In our case, ImagineBench uses the HalfCheetah robot. The
 199 state (\mathbb{R}^{18}) consists of positional values and velocities of different joints, while the action space (\mathbb{R}^6)
 200 represents the torques applied to 6 robot joints. The reward function combines forward velocity
 201 toward the target direction with control efficiency (minimizing joint torque costs).
 202

	Meta-world	CLEVR-Robot	BabyAI	LIBERO	MuJoCo
Observation space	\mathbb{R}^{91}	\mathbb{R}^{10}	\mathbb{Z}^{17}	\mathbb{R}^{44}	\mathbb{R}^{18}
Action space	\mathbb{R}^4	Discrete (40)	Discrete (7)	\mathbb{R}^7	\mathbb{R}^6
# of real rollout	20,000	100,000	19,200	29,780	16,000
# of IR (Rephrasing)	10,000	5,600	19,200	12,000	10,000
# of IR (Easy)	8,000	72,400	18,000	24,000	6,000
# of IR (Hard)	4,000	1,680	18,000	1,3000	9,000

203 Table 1: Statistics overview of environments. ‘# of IR’ stands for ‘Number of imaginary rollout’.
 204

205 **4.2 DATASET COLLECTION**
 206

207 The dataset collection procedure consists of two steps: (1) *Real rollout collection* from the environ-
 208 ment. In this step, we first obtain an expert policy that can complete the given tasks with a high
 209 success rate, and then use the expert policy to collect rollouts in the environment. Meanwhile, a
 210 rollout is labelled with a natural language instruction when collected. (2) *Imaginary rollout collection*

216

217

218

219

220

221

222

223

224

225

226

Figure 3: Illustration of the generation of LLM-imaginary rollouts. The LLM is first fine-tuned with the environment data, and then prompted to generate the rollouts for novel tasks.

229

230

from LLM. In this step, the LLM is fine-tuned on the rollout-instruction pairs from the environment, and then prompted to generate rollouts for novel tasks.

232

Real rollout collection. To collect real rollouts, we first obtain an expert policy specific to each environment and then use the policy to collect rollouts: (1) Meta-world & CLVR-Robot: First, train an expert policy with PPO (Schulman et al., 2017), and collect an offline dataset of 20,000/100,000 rollout-goal pairs, each comprising state, action, and environment-built-in reward sequences for completing natural language goals. (2) BabyAI: Employ a rule-based policy to generate 19,200 rollout-goal pairs, with rewards based on agent-target distance. (3) LIBERO: Apply behavior cloning to public LIBERO datasets to obtain the expert policy, yielding 30,000 rollout-goal pairs with object-target distance rewards. (4) MuJoCo: Train an expert policy online using the SAC algorithm (Haarnoja et al., 2018) to collect 16,000 rollout-goal pairs. All real rollouts are annotated with natural language instructions during collection.

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

Imaginary rollout collection. Fig. 3 presents the process of fine-tuning LLM to generate imaginary rollouts². To enable LLM to generate synthetic task-specific rollouts, we first fine-tune them on real rollout-instruction pairs. The objective of this step is to enable LLM to interpret the meaning of states, actions, dynamics, and rollouts of the given environment. Following (Pang et al., 2024), we fine-tune the LLM using the dataset to perform three different tasks via supervised fine-tuning (SFT), and model the LLM grounding problem as an instruction-following problem since the LLM demonstrates excellent performance following given natural language instructions to generate desired answers. The training objectives for SFT include: (1) *Dynamics prediction*: The LLM predicts changes in environmental dynamics. Given the current state s_t and action a_t , the LLM predicts the subsequent state. (2) *Rollout explanation*: The LLM is presented with a rollout sequence s_0, a_0, s_1, \dots , and it is required to describe the rollout with natural language. (3) *Rollout generation*: The LLM generates a rollout that aligns with a specified goal G . We present the prompts for LLM SFT in Appendix E.

Since LLMs can not directly handle numerical data, we use a pre-trained LLM as the backbone model and modify it with additional layers to handle environmental data. Then, we employ the fine-tuned LLM to generate imaginary rollouts given the initial state s_0 and the goal: $\{a_0, s_1, a_1, \dots\} \leftarrow \mathcal{M}(GOP, s_0)$. Here, \mathcal{M} is the LLM, GOP stands for *goal-oriented prompt*: “Generate a rollout for the following goal: [GOAL]. Rollout:”, where “[GOAL]” is a placeholder for various goals that reflect different skills.

260

261

262

263

264

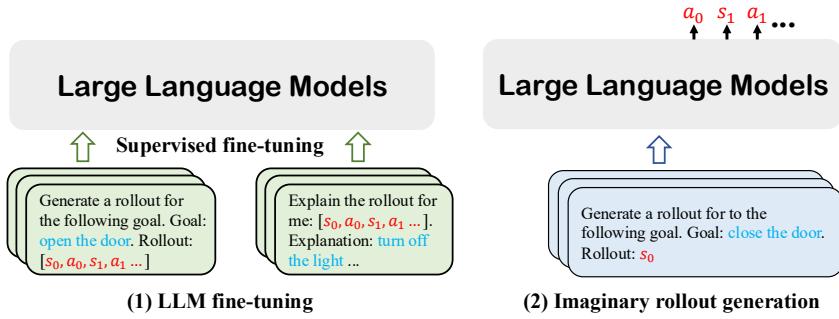
265

266

267

268

269



²In ImagineBench, the backbone LLMs include Qwen-3-4B-Instruct-2507 (Qwen, 2025) and Llama-2-7b-chat-hf (Touvron et al., 2023).

270 4.3 TASK HIERARCHY AND EVALUATION PROTOCOLS
271272 ImagineBench defines hierarchical task levels indicating various levels of tasks. Due to the space
273 constraint, we present and discuss each environment’s tasks in detail in Appendix D.1.
274275

- **Training:** The instructions appeared in the real dataset. Including training tasks is to evaluate
276 whether the policy preserves the ability to perform these seen tasks.
- **Rephrasing:** The agent performs the same tasks as real data but receives paraphrased instructions
277 that are not present in the data. For example, the goal in offline data is *move the blue ball to*
278 *the front of the red ball*, while the paraphrased goal could be *I really dislike how the red ball is*
279 *positioned in front of the blue ball. Could you exchange their places?*
- **Easy:** The agent is tasked with different manipulation tasks that do not exist in the dataset,
280 requiring the agent to generalize to easy, unseen tasks.
- **Hard:** The agent faces tasks substantially different from those in the offline dataset, which require
281 a complex composition of behaviors, such as “Gather all balls together”, and “Move five balls to
282 a straight line” in the CLEVR-Robot environment.

283284 **Evaluation protocols.** We evaluate performance in ImagineBench using two primary metrics: success
285 rate and task reward. ImagineBench provides specific success criteria for each task (e.g., achieving a
286 specific positional accuracy in manipulation or consistent directional velocity for HalfCheetah). For
287 detailed definitions of the completion criteria, please refer to Appendix D.3. Furthermore, each task
288 is equipped with a designated reward function.
289290 5 EXPERIMENT
291292 In this section, we conduct experiments to address three key questions regarding ImagineBench: (1)
293 How do existing offline RL methods perform on the tasks of ImagineBench (Sec. 5.2)? (2) For novel
294 tasks, how does training with imaginary rollouts compare to training with real environment-collected
295 rollouts (Sec. 5.2)? (3) How is the quality of the LLM-imaginary rollouts (Sec. 5.3)? (4) Can
296 imaginary rollouts facilitate online adaptation (Sec. 5.4)? We first introduce the experimental setting.
297300 5.1 EXPERIMENT SETTING
301302 **Baselines.** We consider representative offline RL methods, including: (1) **BC**, a supervised learning
303 baseline that directly imitates actions from the dataset. (2) **CQL** (Kumar et al., 2020), which learns
304 a conservative Q-function to prevent the policy from overestimating expected returns. (3) **BCQ**
305 (Fujimoto et al., 2019), which employs perturbation networks to generate conservative policy updates
306 near offline data. (4) **TD3+BC** (Fujimoto & Gu, 2021), which combines TD3’s ((Fujimoto et al.,
307 2018)) stability with BC constraints to enforce similarity to demonstrated behavior. (5) **PRDC** (Ran
308 et al., 2023), which uses a tree-search method to regularize the policy toward the nearest state-action
309 pairs in the offline data. (6) **COMBO** (Yu et al., 2021), which uses ensemble environment models to
310 enforce uncertainty-aware policy learning. (7) **SAC** (Haarnoja et al., 2018), which is originally an
311 online RL algorithm, can be applied in the offline setting for comparison.312 Due to the varying application scope of different algorithms, we evaluate algorithms (BC, CQL, BCQ,
313 TD3+BC, PRDC, COMBO) on MuJoCo, LIBERO, and Meta-world, and algorithms (BC, BCQ,
314 CQL, SAC) on CLEVR-Robot and BabyAI. ‘w/ IR’ represents the methods trained with both real
315 and imaginary rollouts, while ‘w/o IR’ represents methods trained solely on real rollouts.316 **Implementation details.** All offline RL methods are implemented based on OfflineRL (Team, 2021)
317 and d3rlpy (Seno & Imai, 2022), two well-established repositories. Policy optimization relies on
318 the Adam optimizer (Kingma & Ba, 2015). Performance metrics are averaged across results from
319 the final five training checkpoints. Unless otherwise specified, baselines encode natural language
320 instructions using BERT (Devlin et al., 2019), and concatenate the language encoding with the
321 environment observation. Offline RL training employs three random seeds to validate robustness.
322 Each training batch uniformly samples equal proportions of data from the real and LLM-imaginary
323 datasets. All experiments are executed on 64 AMD EPYC 9374F 32-core processors, 8 NVIDIA
GeForce RTX 4090 GPUs, and 1TB of RAM to facilitate parallelized computation.

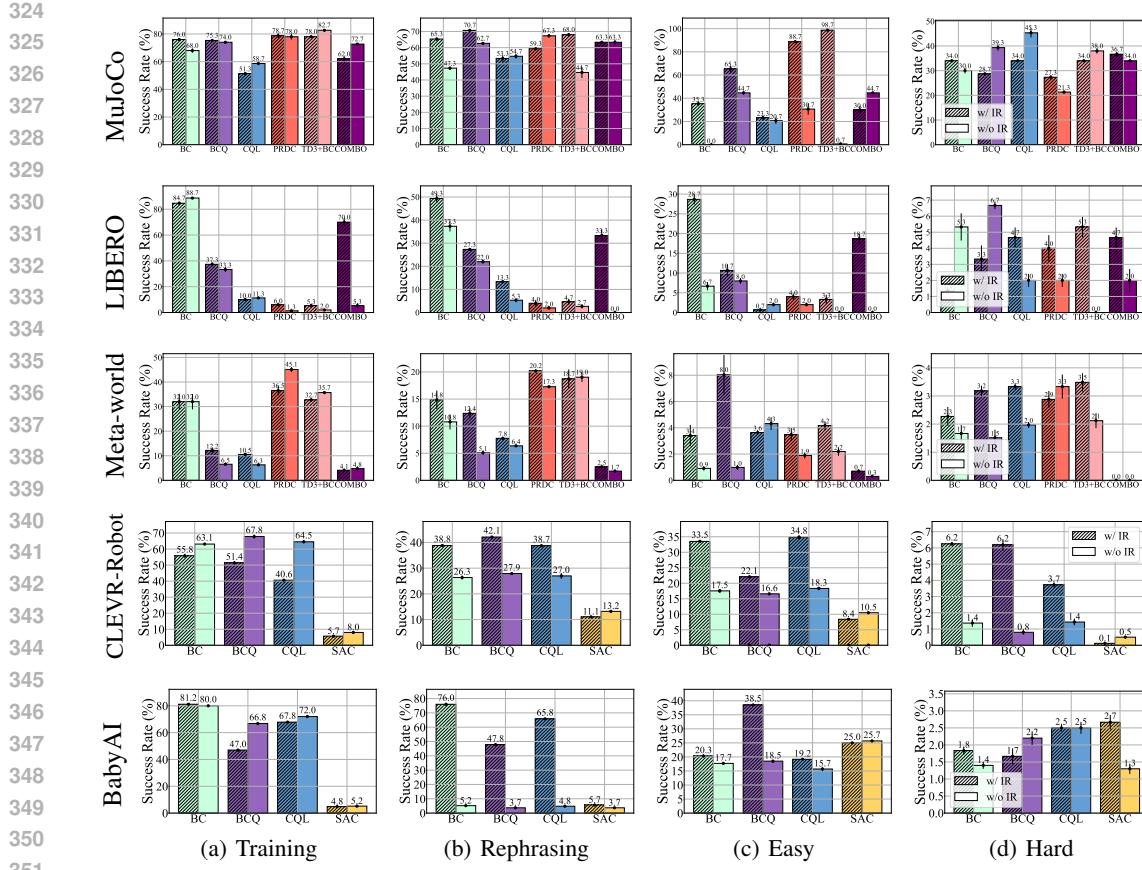


Figure 4: Success rate bars of different methods on various levels of goals, with imaginary rollouts generated by Qwen-3-4B. The x-axis denotes the offline RL algorithm, and the y-axis denotes the success rate. 'w/ IR' stands for training with both real and imaginary rollouts. The success rate is averaged over the last five checkpoints, and the error bars are the half standard deviation over three seeds. We provide the overall comparison and results for Llama-2-7B in Appendix F.2 and F.3.

5.2 BENCHMARK RESULTS

Main results. Fig. 4 presents the benchmark results of various offline RL algorithms trained with and without imaginary rollouts on ImagineBench tasks. We have several main findings from the results. First, policies trained with imaginary rollouts generally perform better on novel tasks than baseline methods. This suggests that LLM-based knowledge transfer enhances generalization and skill acquisition in unseen environments. Besides, BC, CQL, and BCQ outperform other methods across most tasks. BCQ and CQL achieve superior sample efficiency and stability in high-dimensional action spaces. As SAC is mainly used in online RL, it fails to obtain high scores in the offline cases. There is clear performance degradation on hard tasks, with most methods' success rates below 10% on Meta-World, CLEVR-Robot, and BabyAI. This gap could stem from the suboptimal reward function with current LLM rollouts, which may fail to encode task-specific constraints or long-horizon dependencies. All algorithms struggle with novel tasks on LIBERO due to its combinatorial complexity, indicating a need for advanced exploration strategies or hierarchical representations.

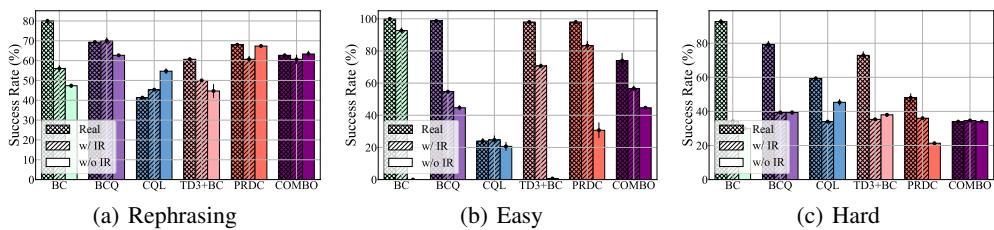


Figure 5: Comparison of training with LLM-imaginary and real environmental rollouts on novel tasks. 'Real' stands for the method trained with real environmental rollouts for novel tasks.

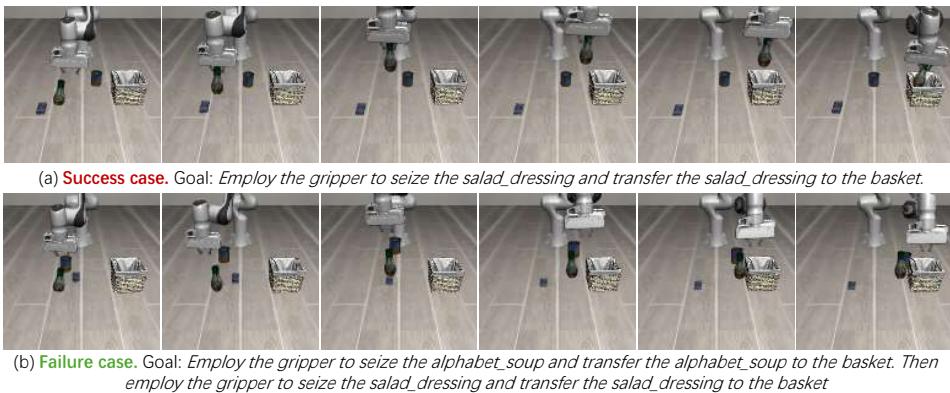


Figure 6: Examples of the LLM-imaginary rollouts for novel goals. The figures are obtained by rendering the states in LLM-imaginary rollouts. We present more examples in Appendix F.1.

Performance of training with real rollouts on novel tasks. To investigate the improvement space for future algorithm development, we conduct experiments by training a policy with real rollouts on both training and novel tasks. Fig. 5 shows the experiment results, with ‘Real’ as the method trained on real rollouts of both training and novel tasks. In most tasks, Real outperforms or gets close to the methods trained with IR, resulting in 64.37% average success rate for the Real method and 35.44% for methods with IR in hard tasks. One exception is CQL on the rephrasing task. This is because the execution rollouts of the rephrasing task have already existed the dataset of real rollouts, with only the language expression of the instructions different. The conservative learning nature of CQL allows it to focus on the state’s features, potentially enabling it to perform well on rephrasing even when using only real rollouts for training tasks.

Model	Qwen-3-4B			Llama-2-7B		
Metrics	Legality	Transition	Success rate	Legality	Transition	Success rate
Rephrasing	95.9	79.2	89.9	98.5	96.0	88.0
Easy	73.4	69.3	43.1	81.1	82.2	43.8
Hard	59.3	44.2	13.5	66.8	72.9	25.8

Table 2: Statistical analysis of the quality of LLM-imaginary rollouts. The reported results are the LLM-imaginary rollouts for the BabyAI environment.

5.3 ANALYSIS ON LLM-IMAGINARY ROLLOUTS

We investigate the quality of the LLM-imaginary rollouts from four key metrics: (1) *Transition* measures whether the LLM generates correct single-step transitions (e.g., an agent not moving too far at one step); (2) *Legality* denotes if the generated states are legal (i.e., the states are); (3) *Success rate* measures the ratios of the imaginary rollouts that successfully complete the given goals. Tab. 2 reports the quality metrics of LLM-imaginary rollouts generated in the BabyAI environment. Notably, we observe an important result that larger backbone LLM (Llama-2-7B)’s generation quality clearly outperforms the small model (Qwen-3-4B). **This indicates a promising motivation that future work could investigate using larger model for better LLM imagination.** Besides, rephrasing goals achieve high-quality rollouts, with success rate, transition correctness, and legality scores of 88.0%, 96.0%, and 98.5%, respectively. This suggests that the LLM, fine-tuned on prefixed goals, generalizes effectively to semantically equivalent objectives. For novel (Hard) goals, consistency drops to 25.8%, reflecting challenges in aligning rollouts with unseen task descriptions. However, transition correctness (72.9%) and state legality (66.8%) remain above 65%, indicating that the LLM largely adheres to environmental constraints even for complex goals.

Examples of the LLM-imaginary rollouts. Previously we investigate the quality of the imaginary rollouts through statistics. To further investigate the quality of the generated rollouts, we present examples of the imaginary rollouts in Fig. 6. We reset the environment to the generated state to obtain the visualization image. We observe that the generated rollouts can generally reflect the given goals. For example from the success case, the robot conducts the object manipulation as the language

goal required. However, there are still some mismatches when the the goal is complicated (e.g., first pick A then pick B), where the LLM may generate wrong rollouts (e.g., simultaneous picking instead of sequential execution, as shown in the failure case). Even so, the LLM-generated rollout catches the meaning of the novel goal, and correctly demonstrates the tendency to pick up two objects.

437 5.4 POTENTIAL FOR ONLINE ADAPTATION

438
439 We suggest that online adaptation is the next step after training with
440 imaginary rollouts, as the policies trained with imaginary rollouts
441 may not be adequate for real-world deployment. To test this, we
442 initialize a CQL policy (on CLEVR-Robot) with imaginary rollouts
443 and then train it with PPO (Schulman et al., 2017) on Easy-level
444 tasks. Fig. 7 shows that offline-to-online training improves adap-
445 tation speed and achieves higher asymptotic performance than online
446 training from scratch. This demonstrates that policies trained with LLM-imaginary rollouts provide
447 strong initialization for online adaptation.

448 6 FUTURE DIRECTION

449 While demonstrating promising results for acquiring novel skills without online environment inter-
450 actions, RL with imaginary rollouts is still in the early stage of research and requires algorithmic
451 development. We outline key directions for future research.

452 **Better algorithm design for generating & utilizing imaginary rollouts.** ImagineBench reveals a
453 performance gap between policies trained on real versus imaginary experience, which demonstrates
454 that simply applying a powerful LLM with a sophisticated offline RL algorithm is insufficient. Future
455 work could focus on better algorithm design to generate and handle these imaginary rollouts. For
456 example, it is important to enhance the quality and physical property of the LLM’s generative process,
457 transforming raw imagination into high-fidelity data. Additionally, the community should design
458 novel offline RL algorithms that are not merely consumers of this data but are specifically tailored to
459 its unique statistical properties, including its potential for bias, noise, and distributional shift.

460 **Unbiased and fast online adaptation and continual learning.** While RLIM reduces dependency on
461 real-world interactions, practical deployment still requires online adaptation to address imperfections
462 in LLM imagination. A key challenge is avoiding catastrophic forgetting of pre-trained knowledge
463 while rapidly fine-tuning policies with limited real interactions. Future research could consider
464 developing lightweight regularization techniques to preserve imaginary knowledge, meta-RL frame-
465 works for few-shot adaptation, or progressive distillation methods to compress multi-task policies.
466 Furthermore, designing bias correction mechanisms to disentangle inaccuracies in LLM-generated
467 rollouts during online updates could enhance sample efficiency and stability.

468 **Vision-Language Models and Multi-Modal Imagination.** Current benchmark mainly focuses
469 on the environment state represented by structural and numerical vectors. Extending RLIM to
470 broader domains, e.g., vision, requires integrating vision-language models capable of processing
471 and generating multi-modal rollouts. This entails addressing challenges such as aligning visual
472 observations with language instructions, generating spatially consistent action sequences from pixel
473 inputs, and handling partial observability in imagined states. Future work could explore cross-modal
474 attention mechanisms for joint rollout generation or develop hierarchical frameworks where high-level
475 language plans guide low-level visual motion generation.

476 7 CONCLUSION

477 In this work, we present ImagineBench, the first benchmark for RL with LLM-imaginary rollouts.
478 By providing standardized datasets across locomotion, robotic manipulation, and navigation envi-
479 ronments, ImagineBench establishes a unified framework to evaluate offline RL algorithms that
480 utilize the LLM-imaginary rollouts. The benchmark results reveal the limitations of existing offline
481 RL methods when applied to LLM-imaginary datasets, underscoring the necessity for algorithmic
482 innovations that better integrate LLM-generated knowledge. Beyond benchmarking, ImagineBench is
483 a resource to advance the development of agents that can not only execute predefined tasks but also
484 generalize to unseen ones, marking a foundational step toward robust embodied intelligence.

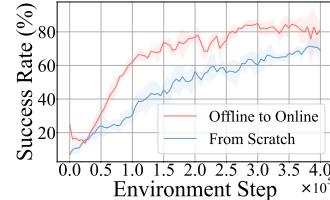


Figure 7: Performance of training with online RL.

486 8 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics and prioritizes responsible research practices. All
489 natural language instructions used in ImagineBench are carefully curated and sanitized to exclude
490 harmful, biased, or ethically problematic content, using both automated filtering and manual expert
491 review. The LLM-generated imaginary rollouts are released exclusively as numerical state-action
492 sequences—not as human-readable plans or executable code—to inherently limit potential misuse.
493 Our benchmark is built entirely on simulated environments (e.g., MuJoCo, Meta-World, BabyAI),
494 contains no human-subject data, and does not involve real-world deployment or personal information.
495 By design, ImagineBench supports open, reproducible research while incorporating structural
496 safeguards to align with principles of fairness, transparency, and societal benefit.
497498 9 REPRODUCIBILITY STATEMENT
499500 To support reproducibility, we provide a comprehensive anonymous codebase at https://anonymous.4open.science/r/Imagine_Bench_anonymous-40CD, which includes
501 implementations of all environments, dataset loaders, offline RL baselines, and evaluation pro-
502 tocols used in this work. Detailed instructions for reproducing our main results are given in Appendix
503 E, including environment setup and training commands. The full datasets of real and LLM-imaginary
504 rollouts, along with task definitions and natural language instructions, are included in the supple-
505 mentary materials; the download link has been omitted to preserve anonymity during double-blind review
506 but will be made publicly available upon acceptance.
507508 509 REFERENCES
510511 Atari, Inc. Atari 2600 home video computer system, 1977. Gaming console.
512 Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
513 Wojciech Zaremba. Openai gym. *arXiv*, abs/1606.01540, 2016.
514 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
515 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
516 modeling. In *NeurIPS*, 2021.
517 Xiong-Hui Chen, Ziyan Wang, Yali Du, Shengyi Jiang, Meng Fang, Yang Yu, and Jun Wang. Policy
518 learning from tutorial books via understanding, rehearsing and introspecting. In *NeurIPS*, 2024.
519 Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
520 Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
521 grounded language learning. In *ICLR*, 2019.
522 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
523 bidirectional transformers for language understanding. In *NAACL-HLT*, 2019.
524 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep
525 data-driven reinforcement learning. *arXiv*, abs/2004.07219, 2020.
526 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
527 *NeurIPS*, 2021.
528 Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
529 actor-critic methods. In *ICML*, 2018.
530 Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
531 exploration. In *ICML*, 2019.
532 Catherine Glossop, William Chen, Arjun Bhorkar, Dhruv Shah, and Sergey Levine. Cast: Counterfac-
533 tual labels improve instruction following in vision-language-action models. *arXiv*, abs/2508.13446,
534 2025.

540 Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
 541 Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. RI unplugged: A
 542 suite of benchmarks for offline reinforcement learning. In *NeurIPS*, 2020.

543

544 Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
 545 Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms
 546 and applications. *arXiv*, abs/1812.05905, 2018.

547 Brian Ichter, Anthony Brohan, and et al. Do as I can, not as I say: Grounding language in robotic
 548 affordances. In *CoRL*, 2022.

549

550 Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
 551 based offline reinforcement learning. In *NeurIPS*, 2020.

552 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *ICLR*, 2015.

553

554 Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
 555 q-learning via bootstrapping error reduction. In *NeurIPS*, 2019.

556 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 557 reinforcement learning. In *NeurIPS*, 2020.

558 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
 559 review, and perspectives on open problems. *arXiv*, abs/2005.01643, 2020.

560

561 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
 562 Benchmarking knowledge transfer for lifelong robot learning. *Advances in Neural Information
 563 Processing Systems*, 36:44776–44791, 2023.

564

565 Haokun Liu, Yaonan Zhu, Kenji Kato, Atsushi Tsukahara, Izumi Kondo, Tadayoshi Aoyama, and Ya-
 566 suhisa Hasegawa. Enhancing the l1m-based robot manipulation through human-robot collaboration.
 567 *IEEE Robotics and Automation Letters*, 9(8):6904–6911, 2024.

568

569 Fan-Ming Luo, Tian Xu, Hang Lai, Xiong-Hui Chen, Weinan Zhang, and Yang Yu. A survey on
 570 model-based reinforcement learning. *Science China Information Science*, 67(2), 2024.

571

572 Jiafei Lyu, Kang Xu, Jiacheng Xu, Mengbei Yan, Jingwen Yang, Zongzhang Zhang, Chenjia Bai,
 573 Zongqing Lu, and Xiu Li. ODRL: A benchmark for off-dynamics reinforcement learning. In
 574 *NeurIPS*, 2024.

575

576 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
 577 mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
 578 Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
 579 Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
 580 *Nature*, 518(7540):529–533, 2015.

581

582 Jing-Cheng Pang, Si-Hang Yang, Xiong-Hui Chen, Xinyu Yang, Yang Yu, Mas Ma, Ziqi Guo, Howard
 583 Yang, and Bill Huang. Object-oriented option framework for robotics manipulation in clutter. In
 584 *IROS*, 2023a.

585

586 Jing-Cheng Pang, Xinyu Yang, Si-Hang Yang, Xiong-Hui Chen, and Yang Yu. Natural language
 587 instruction-following with task-related language development and translation. In *NeurIPS*, 2023b.

588

589 Jing-Cheng Pang, Si-Hang Yang, Kaiyuan Li, Jiaji Zhang, Xiong-Hui Chen, Nan Tang, and Yang
 590 Yu. KALM: knowledgeable agents by offline reinforcement learning from large language model
 591 rollouts. In *NeurIPS*, 2024.

592

593 Rongjun Qin, Xingyuan Zhang, Songyi Gao, Xiong-Hui Chen, Zewen Li, Weinan Zhang, and Yang
 594 Yu. NeoRL: A near real-world benchmark for offline reinforcement learning. In Sanmi Koyejo,
 595 S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *NeurIPS*, 2022.

596

597 Team Qwen. Qwen3 technical report. *arXiv*, abs/2505.09388, 2025.

598

599 Yuhang Ran, Yi-Chen Li, Fuxiang Zhang, Zongzhang Zhang, and Yang Yu. Policy regularization
 600 with dataset constraint for offline reinforcement learning. In *ICML*, 2023.

594 Google Research. CLEVR-Robot environment. https://github.com/google-research/clevr_robot_env, 2019.

595

596

597 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
598 optimization algorithms. *arXiv*, abs/1707.06347, 2017.

599

600 Takuma Seno and Michita Imai. d3rlpy: An offline deep reinforcement learning library. *Journal of
Machine Learning Research*, 23(315):1–20, 2022.

601

602 David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
603 che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
604 Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
605 Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
606 of go with deep neural networks and tree search. *Nature*, 529(7587):484–489, 2016.

607

608 Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. *IEEE Trans.
Neural Networks*, 9(5):1054–1054, 1998.

609

610 Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
611 Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A. Riedmiller.
612 Deepmind control suite. *arXiv*, abs/1801.00690, 2018.

613

614 Polixir Team. OfflineRL: A collection of offline reinforcement learning algorithms.
<https://github.com/polixir/OfflineRL?tab=readme-ov-file>, 2021.

615

616 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
617 In *IROS*, 2012.

618

619 Hugo Touvron, Louis Martin, and et al. LLaMA 2: Open foundation and fine-tuned chat models.
arXiv, abs/2307.09288, 2023.

620

621 Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
622 Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan,
623 Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max
624 Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
625 Budden, Yury Sulsky, James Molloy, Tom Le Paine, Çağlar Gülcehre, Ziyu Wang, Tobias Pfaff,
626 Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom
627 Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
628 Grandmaster level in starcraft II using multi-agent reinforcement learning. *Nature*, 575(7782):
629 350–354, 2019.

630

631 Peng-Yuan Wang, Jing-Cheng Pang, Chen-Yang Wang, Xu-Hui Liu, Tian-Shuo Liu, Si-Hang Yang,
632 Hong Qian, and Yang Yu. InCLET: in-context learning from language models can improve
633 embodied instruction-following. In *AAMAS*, 2025.

634

635 Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, and Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. In *ICLR*, 2025.

636

637 Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
638 Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
639 In *CoRL*, 2019.

640

641 Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y. Zou, Sergey Levine, Chelsea Finn,
642 and Tengyu Ma. MOPO: model-based offline policy optimization. In *NeurIPS*, 2020.

643

644 Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
645 COMBO: conservative offline model-based policy optimization. In *NeurIPS*, 2021.

646

647

648

649

650

651

652

653

654

Appendix

Table of Contents

A Additional Related Work about Offline RL	14
B More Discussions about RL with Imaginary Rollouts	14
C More Details about Benchmark Environments	14
C.1 State Space Decomposition and Feature Attribution	14
C.2 Action Space Decomposition	15
D More Details about Hierarchical Tasks	16
D.1 Full List of the Tasks in ImagineBench	16
D.2 Reward Design for Each Task	16
D.3 Determination for Task Completion	20
D.4 Natural Language Instructions for Different Tasks	21
E Implementation Details	29
E.1 Introduction to the codebase	29
E.2 Prompts for LLM Supervised Fine-tuning	30
F Additional Results and Analysis	30
F.1 More Examples of the LLM-imaginary Rollouts	30
F.2 Overall Comparison of Offline RL Baselines	30
F.3 Results with Llama-2-7B as Generation Model	31
F.4 Training with Different Ratios of Imaginary Rollouts	31
G Broader Impact Statement	31
H Use of LLMs	32

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A ADDITIONAL RELATED WORK ABOUT OFFLINE RL
703

704 This work considers utilizing offline RL algorithms to train the policy. Offline RL (Levine et al., 2020;
705 Fujimoto et al., 2019) enables agents to learn effective policies from static datasets without online
706 environment interactions. Early approaches to offline RL, such as BCQ (Fujimoto et al., 2019) and
707 BEAR (Kumar et al., 2019), addressed distributional shift by constraining learned policies to remain
708 close to the behavior policy through explicit policy regularization or uncertainty-based action clipping.
709 Subsequent advances introduced CQL (Kumar et al., 2020), which penalizes Q-value overestimation
710 for out-of-distribution actions, and implicit constraint methods like TD3+BC (Fujimoto & Gu, 2021)
711 that balance policy improvement with behavior cloning. Decision transformer (Chen et al., 2021)
712 has also explored leveraging trajectory-level optimization via sequence modelling. Despite these
713 advancements, offline RL remains constrained by dataset quality: policies trained on narrow or
714 non-diverse data often fail in unseen scenarios. Model-based RL (Luo et al., 2024) addresses this by
715 learning a dynamics model from offline data, enabling policy optimization through simulated rollouts.
716 Methods like MOPO (Yu et al., 2020) and MORL (Kidambi et al., 2020) incorporate uncertainty
717 quantification to construct pessimistic models, mitigating model bias and distributional mismatch. In
718 this work, we utilize offline RL methods to train the policy, providing the benchmark results.

719 B MORE DISCUSSIONS ABOUT RL WITH IMAGINARY ROLLOUTS
720

721 **Potential of RL with imaginary rollouts.** Generalization is a long-standing problem in the area of
722 RL. The motivation of developing RLIM algorithms, is to leverage the general knowledge embedded
723 in the LLMs to facilitate RL policy’s generalization to unseen decision-making task. Previously
724 RL lacks such general knowledge for generalization. This way of using imaginary rollouts imitates
725 the human process of acquiring novel skills, i.e., imagining the process of the new objective, and
726 executing following the imagination. However, the quality of imaginary rollouts remain to be
727 improved, e.g., incorporating advancements in generative artificial intelligence techniques to better
728 align generated rollouts with novel tasks.

729 **Better LLM imagination.** The quality of imaginary rollouts remains a limiting factor, as current
730 LLMs often generate rollouts inconsistent with the given instructions. To address this, it is worth
731 considering improving LLM fine-tuning, integrating physics-based simulators to validate generated
732 rollouts, or developing iterative imagination procedure where policy learning and LLM generation
733 both get improvement. Additionally, scaling laws for LLM imagination, exploring how model size,
734 model type, prompt engineering, and affect rollout quality, also require systematic investigation.

736 C MORE DETAILS ABOUT BENCHMARK ENVIRONMENTS
737738 C.1 STATE SPACE DECOMPOSITION AND FEATURE ATTRIBUTION
739

740 **Meta-world** This environment consists of a robotic gripper and several (2 at most) interactive objects,
741 where the state space represents the coordinate values of both the robotic gripper and the interactive
742 objects. The elements are in Tab. 3

743 **CLEVR-Robot** This environment contains five colored balls. The state space encodes the position of
744 five balls. The elements are in Tab. 4

745 **BabyAI** This environment is based on the grid world scenario containing an agent and a few different
746 objects. We use one room and place one item for all types of object. The state space represents each
747 item’s color and coordinate, together with extra information including agent position, carrying object
748 and door state. The elements are in Tab. 5

750 **Libero** The Libero environment controls a 3-dimensional robot arm to complete various manipulation
751 tasks. The state space is \mathbb{R}^{44} , consisting of 7 robot joint position values, 7 robot end effector position
752 values and 2 robot gripper joint position values, together with 28 position values of 4 different objects.
753 The elements are in Tab. 6.

754 **MuJoCo** We use mujoco HalfCheetah environment. This environment is a 2-dimensional robot
755 consisting of 9 body parts and 8 joints connecting them (including two paws). The state space is \mathbb{R}^{18} ,
consisting of 9 position values and 9 velocities of the robot’s body parts. The elements are in Tab. 7.

Index	Meaning	Min	Max
0	current x coordinate of robotic gripper	-0.525	0.525
1	current y coordinate of robotic gripper	0.348	1.025
2	current z coordinate of robotic gripper	-0.0525	0.7
3	current opening degree of robotic gripper	-1.0	1.0
4 - 6	current x,y,z coordinate of First interactive objects	-Inf	Inf
7 - 10	current quaternion(s) of First interactive objects	-Inf	Inf
11 - 13	current x,y,z coordinate of Second interactive objects	-Inf	Inf
14 - 17	current quaternion(s) of Second interactive objects	-Inf	Inf
18	previous (last step) x coordinate of robotic gripper	-0.525	0.525
19	previous (last step) y coordinate of robotic gripper	0.348	1.025
20	previous (last step) z coordinate of robotic gripper	-0.0525	0.7
21	previous (last step) opening degree of robotic gripper	-1.0	1.0
22 - 24	previous (last step) x,y,z coordinate of First interactive objects	-Inf	Inf
25 - 28	previous (last step) quaternion(s) of First interactive objects	-Inf	Inf
29 - 31	previous (last step) x,y,z coordinate of Second interactive objects	-Inf	Inf
32 - 35	previous (last step) quaternion(s) of Second interactive objects	-Inf	Inf
36 - 38	current x,y,z coordinate of goal position	-Inf	Inf

Table 3: State space decomposition of Meta-World environment.

Index	Meaning	Min	Max
0 - 1	red ball x,y coordinate	-Inf	Inf
2 - 3	blue ball x,y coordinate	-Inf	Inf
4 - 5	green ball x,y coordinate	-Inf	Inf
6 - 7	purple ball x,y coordinate	-Inf	Inf

Table 4: State space decomposition of CLEVR-Robot environment.

C.2 ACTION SPACE DECOMPOSITION

Meta-world In Meta-World, the action space is a 2-tuple consisting of the change in 3D space of the end-effector followed by a normalized torque that the gripper fingers should apply. The elements are in Tab.8

CLEVR-Robot In CLEVR-Robot, an action is pushing one certain ball to a certain direction. The elements are in Tab.9

BabyAI In BabyAI, actions directly controls the agent. Possible actions include move, pick up, drop and open. The elements are in Tab.10

Libero The Libero environment controls a 7-degree-of-freedom (DoF) PandaGripper using delta pose control. The action space is \mathbb{R}^7 . An action represents changes in the Cartesian position and orientation of the robot, along with the gripper actuation. The elements are in Tab. 11.

MuJoCo The MuJoCo HalfCheetah robot's torso and head are fixed, and torque can only be applied to the other 6 joints over the front and back thighs, the shins, and the feet. The action space is \mathbb{R}^6 . An action represents the torques applied at the hinge joints. The elements are in Tab. 12.

Index	Meaning	Min	Max
0	ball color	0	5
1 - 2	ball x,y coordinate	1	6
3	box color	0	5
4 - 5	box x,y coordinate	1	6
6	key color	0	5
7 - 8	key x,y coordinate	1	6
9	door color	0	5
10 - 11	door x,y coordinate	1	6
12	door close or not	0	1
13 - 14	agent x,y coordinate	1	6
15	carrying object type	5	7
16	carrying object color	0	5

Table 5: State space decomposition of BabyAI environment.

Index	Meaning	Min	Max
0 - 6	joint position of the robot arm	-Inf	Inf
7 - 9	position of the robot end effector	-Inf	Inf
10 - 13	quaternion of the robot end effector	-1	1
14 - 15	joint position of robot gripper	-Inf	Inf
16 - 18	position of alphabet_soup	-Inf	Inf
19 - 22	quaternion of alphabet_soup	-1	1
23 - 25	position of cream_cheese	-Inf	Inf
26 - 29	quaternion of cream_cheese	-1	1
30 - 32	position of salad_dressing	-Inf	Inf
33 - 36	quaternion of salad_dressing	-1	1
37 - 39	position of basket	-Inf	Inf
40 - 43	quaternion of basket	-1	1

Table 6: State space decomposition of LIBERO environment.

D MORE DETAILS ABOUT HIERARCHICAL TASKS

D.1 FULL LIST OF THE TASKS IN IMAGINEBENCH

Tab. 13 shows the task list of all tasks for each environment. We present some examples of natural language instructions for these tasks in Appendix D.4.

D.2 REWARD DESIGN FOR EACH TASK

D.2.1 META-WORLD

The rewards for all tasks within the Meta-world environment are determined using the original Meta-world environment rewards, supplemented by reward shaping techniques. The reward function is defined as:

$$r_t = r_{\text{success}} + (r_t^o - r_{t-1}^o)$$

Index	Meaning	Min	Max
0	x-coordinate of the front tip	-Inf	Inf
1	z-coordinate of the front tip	-Inf	Inf
2	angle of the front tip	-Inf	Inf
3	angle of the back thigh	-Inf	Inf
4	angle of the back shin	-Inf	Inf
5	angle of the back foot	-Inf	Inf
6	angle of the front thigh	-Inf	Inf
7	angle of the front shin	-Inf	Inf
8	angle of the front foot	-Inf	Inf
9	velocity of the x-coordinate of front tip	-Inf	Inf
10	velocity of the z-coordinate of front tip	-Inf	Inf
11	angular velocity of the front tip	-Inf	Inf
12	angular velocity of the back thigh	-Inf	Inf
13	angular velocity of the back shin	-Inf	Inf
14	angular velocity of the back foot	-Inf	Inf
15	angular velocity of the front thigh	-Inf	Inf
16	angular velocity of the front shin	-Inf	Inf
17	angular velocity of the front foot	-Inf	Inf

Table 7: State space decomposition of MuJoCo environment.

Num	Action
0	Δx of the robotic gripper
1	Δy of the robotic gripper
2	Δz of the robotic gripper
3	opening degree of robotic gripper

Table 8: Action space decomposition of Meta-World environment.

$r_{\text{success}} \in \{10, 0\}$ indicate whether the task has been successfully completed. r_t^o stands for the original Meta-world environment reward at time step t .

Additionally, there are two self-designed environments. In the Make-coffee task, it can be decomposed into two sub-tasks: Coffee-push and Coffee-button-press. Similarly, the Locked-door-open task can be separated into two sub-tasks: Door-unlock and Door-open. The variable r^o represents the reward associated with the task being performed.

D.2.2 CLEVR-ROBOT

For Training tasks and Rephrasing tasks, the distance-based reward function is defined as:

$$r_t = r_{\text{success}} + (d_{t-1} - d_t) * 10$$

$r_{\text{success}} \in \{100, 0\}$ indicate whether the task has been successfully completed. d_t is the distance between two balls.

For Easy tasks, sparse reward is utilized because the task can be and must be accomplished in a single step. Specifically, $r_t = 1$ when the action taken is desired; otherwise, $r_t = 0$.

For Hard tasks, the reward function based on sub-goal is defined as:

$$r_t = r_{\text{success}} + (g_{t-1} - g_t) * 10$$

Num	Action
0 - 3	push the red ball to right,back,left,front
4 - 7	push the red ball to right rear,left rear,right font, left font
8 - 11	push the blue ball to right,back,left,front
12 - 15	push the blue ball to right rear,left rear,right font, left font
16 - 19	push the green ball to right,back,left,front
20 - 23	push the green ball to right rear,left rear,right font, left font
24 - 27	push the purple ball to right,back,left,front
28 - 31	push the purple ball to right rear,left rear,right font, left font
32 - 35	push the cyan ball to right,back,left,front
36 - 39	push the cyan ball to right rear,left rear,right font, left font

Table 9: Action space decomposition of CLEVR-Robot environment.

Num	Action
0	move left
1	move right
2	move up
3	pick up the object in current grid
4	drop carrying object in current grid
5	open door around agent
6	move down

Table 10: BabyAI env action space

$r_{\text{success}} \in \{10, 0\}$ indicates whether the task has been successfully completed. The variable g_t represents the number of sub-goals completed at the time step t .

For Sequential-move, each sub task is a move task.

For Make-line, the task requires all five balls b_1, \dots, b_5 are placed in a sequential horizontal alignment. A sub-task is positioning ball b_i adjacent to b_{i+1} horizontally.

For Make-circle, the objective is to arrange all other balls in proximity to the green ball, with each individual sub-task involving the placement of one additional ball adjacent to the green ball.

D.2.3 BABYAI

Reward of all tasks of BabyAI is calculated based on agent-object distance. The reward function is defined as:

$$r_t = r_{\text{success}} + \frac{d_{t-1} - d_t}{d_0}$$

$r_{\text{success}} \in \{1 - 0.9 \times \frac{\text{step_count}}{\text{max_steps}}, 0\}$ indicate whether the task has been successfully completed. d_t stands for the agent-object distance at time step t .

In task Goto, Pickup, Open, Go-wall, Go-center d is the Manhattan Distance between agent and target object or position.

For Put-next, Open-go, Open-pick, Open-lock, the task can be divided into two sub tasks. So the distance is defined as $d = d_1 + d_2 + p$. d_1 is the Manhattan Distance between agent and object 1, $d_1 = 0$ if sub task 1 is accomplished. d_2 is the Manhattan Distance between object 1 and object 2 if sub task 1 has not been accomplished else the Manhattan Distance between agent and object 2. p is penalty for not accomplishing sub task 1 and unwanted pickups.

Num	Action
0	change in x-coordinate of the gripper
1	change in y-coordinate of the gripper
2	change in z-coordinate of the gripper
3	change in x-rotation of the gripper
4	change in y-rotation of the gripper
5	change in z-rotation of the gripper
6	gripper open and close control

Table 11: Action space decomposition of LIBERO environment.

Num	Action
0	torque applied on the back thigh rotor
1	torque applied on the back shin rotor
2	torque applied on the back foot rotor
3	torque applied on the front thigh rotor
4	torque applied on the front shin rotor
5	torque applied on the front foot rotor

Table 12: Action space decomposition of MuJoCo environment.

For Put-line, Put-pile, d is defined as the sum of the grid number each object need to pass through to form the shape of a line or a pile.

D.2.4 LIBERO

Reward of all Libero tasks is based on the distance between current state and target state. The reward function is defined as:

$$r_t = r_{\text{success}} + \alpha \cdot r_{\text{distance}}$$

The term r_{success} indicates whether the current task has been successfully completed. The agent receives a r_{success} of +1 if it accomplishes a sub-task or the entire task. For Pick, Place and Reach tasks, the agent only receives a +1 reward if it accomplishes the entire task successfully. While for some complex manipulation tasks, such as Pick-and-place, Pick-out, Pick-and-place aside and Sequential-pick-and-place, the agent first accomplishes a sub-task and then the next. For example, in sequential-pick-and-place tasks, the agent grasps the object, places the object to the target position and then repeats the same process for the next object. In these complex tasks, the agent receives a +1 reward if the current sub-task is successfully completed for the first time.

The term r_{distance} indicates the change in distance between current state and the target state, which can also be written as $d_t - d_{t+1}$. For all Libero tasks, we use Manhattan Distance to calculate distance between states. For Pick tasks and complex tasks with pick operation as current sub-task, distance is calculated by the gripper position and the target object position. While for Place tasks and complex tasks with place operation as current sub-task, distance is calculated by the object position and the target position.

The term α is a weighting coefficient that balance r_{success} and r_{distance} .

D.2.5 MUJOCO

Reward of all MuJoCo tasks is based on the forward distance in the target direction, along with control efficiency. The reward function is defined as:

$$r_t = r_{\text{forward}} + r_{\text{control}}$$

	Meta-world	CLEVR-Robot	BabyAI	LIBERO	MuJoCo	
1026						
1027						
1028	Training task	Reach, Push, Pick-place, Button-press, Door-unlock, Door-open, Window-open, Faucet-open, Coffee-push, Coffee-button-press	Move	Goto, Pickup, Open, Put-next	Pick, Place	Run-forward, Run-backward, Jump-forward, Jump-backward
1029						
1030						
1031						
1032						
1033						
1034						
1035						
1036	Rephrasing task	Same as training (with rephrasing instructions)				
1037						
1038	Easy task	Reach-wall, Push-wall, Pick-place-wall, Button-press-wall, Door-lock, Door-close, Window-close, Faucet-close	One-step-move	Open-go, Open-pick, Go-wall, Go-center	Pick-and-place, Pick-and-place-to-unseen, Reach	Run-forward-faster, Run-backward-faster
1039						
1040						
1041						
1042						
1043						
1044	Hard task	Make-coffee, Locked-door-open, Hammer, Soccer	Sequential-move, Make-line, Make-circle	Open-lock, Put-line, Put-pile	Sequential-pick-and-place, Pick-and-place-aside, Pick-out	Run-forward-then-backward, Run-backward-then-forward, Jump-in-place
1045						
1046						
1047						
1048						

Table 13: Full lists of tasks for each environment.

1049

1050 The term r_{forward} is a reward for moving in the right direction. This term can also be written as
1051 $\omega_{\text{forward}} \cdot \frac{dx}{dt}$, where ω_{forward} is the forward reward weight (default is 1), dx is the displacement of the
1052 tip in the right direction and dt is the time between actions (default is 0.05).

1053 The term r_{control} is a negative reward using L2 norm of action a_t to penalize the robot for taking
1054 actions that are too large. This term can also be written as $-\omega_{\text{control}} \|a_t\|_2^2$, where ω_{control} is set to 0.1
1055 by default.

D.3 DETERMINATION FOR TASK COMPLETION

D.3.1 META-WORLD

- 1062 The metrics for evaluating success based on gripper-target distance utilized in Meta-world
1063 environments are identical to those implemented in the original Meta-world environments.
- 1064
- 1065 For Make-coffee and Locked-door-open, these two self-design task can be divided into two
1066 distinct sub tasks. Consequently, the task is deemed successfully completed when both
1067 sub-tasks are accomplished sequentially.

D.3.2 CLEVR-ROBOT

- 1070 Training tasks and Rephrasing tasks: these tasks are considered complete when the angular
1071 relationship between the two balls satisfies the specified direction (such as left or right), and
1072 the distance d_t between them is less than 0.39.
- 1073 For Easy tasks, where a single-step action is required, the task is deemed successful if the
1074 desired action is chosen; otherwise failed.
- 1075 For Hard tasks, the task can be segmented into a few sub tasks. The task is considered
1076 complete if all sub tasks are completed, irrespective of the sequence in which they are
1077 completed. For Sequential-move, each sub task is a move task. For Make-line, the task
1078 requires arranging all five balls b_1, \dots, b_5 in a sequential horizontal line. A specific sub-task
1079 involves aligning each pair of consecutive balls, b_i and b_{i+1} , horizontally. For the sub-task,
1080 the angle deviation from the horizontal line should be less than $\frac{\pi}{6}$. For Make-circle, the

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 objective is to arrange all additional balls surrounding the green ball, where each individual task involves placing one of the other balls adjacent to the green ball. The criterion for "adjacent" is defined as having a distance $d < 0.325$ between the two balls.

D.3.3 BABYAI

- Goto, Go-wall, Go-center: the agent reaches the desired position.
- Pickup: the target object is picked up.
- Open: the door is opened.
- Put-next, Put-line, Put-pile: the three objects form the desired shape.
- Open-go, Open-pick, Open-lock: the task can be divided into two sub tasks. So the task is considered to be complete if two sub task is completed in correct order.

D.3.4 LIBERO

- Pick: the task is considered completed if the robot gripper is close enough to the target object and the position of the target object is changed compared with the last state. In these tasks, completion judgment can be formally written as $d_t < \epsilon$ and $\|Pos_{\text{obj}}^t - Pos_{\text{obj}}^{t+1}\|_2^2 > 0$, where ϵ varies with different objects.
- Reach: the task is considered completed if the robot gripper is close enough to the target object. For Place tasks, the task is considered completed if the object is close enough to the target position. In these tasks, completion judgment can be formally written as $d_t < \epsilon$, where ϵ varies with different objects.
- Pick-out: the task is considered completed if the object is far enough from the object's initial position. In these tasks, completion judgment can be formally written as $d_t > \epsilon$.
- For complex tasks in which the agent accomplishes different sub-tasks sequentially, the task is considered completed if each sub-task is completed in given order.

D.3.5 MUJOCo

- Jump: the robot completes a jump operation in the right direction. The correctness of direction can be judged by the symbol of cumulative distance in x-coordinate.
- Run and Run-faster: the cumulative distance in x-coordinate exceeds a pre-defined maximum distance value. In these tasks, completion judgment can be formally written as $\sum_{i=1}^t d_i > d_{\text{max}}$, where d_{max} varies with different tasks. For Run-faster tasks, d_{max} is a larger value compared with that in Run tasks.
- Run-forward-then-backward and Run-backward-then-forward: the robot completes both run forward and run backward operations.
- Jump-in-place: the robot completes a jump operation without a large cumulative distance in x-coordinate. In this task, completion judgment can be formally written as $\sum_{i=1}^t d_i < d_{\text{min}}$.

D.4 NATURAL LANGUAGE INSTRUCTIONS FOR DIFFERENT TASKS

In this section, we present the natural language instructions for all tasks in ImagineBench for readers' reference. Note that here we *only present partial natural language instructions for each task for better reading purpose*. Please check the full instruction list in our open-sourced codebase.

D.4.1 META-WORLD

Training We use 20 different natural language expressions as training goals generated by ChatGPT to express different target configuration.

- Reach task
 1. Relocate the gripper to the designated spot.
 2. Position the gripper at the intended location.

1134 • Push task
 1135 1. Employ the gripper to propel the target object towards its designated location.
 1136 2. Utilize the gripper to advance the target object to its intended position.
 1137 • Pick-place task
 1138 1. Employ the gripper to seize the designated item and transfer it to the specified position.
 1139 2. Utilize the gripper for grasping the desired object and relocating it to the designated
 1140 spot.
 1141 • Button-press task
 1142 1. Utilize the gripper to firmly depress the button.
 1143 2. Apply pressure with the gripper to activate the button.
 1144 • Door-unlock task
 1145 1. Employ the gripper to turn the door’s unlocking mechanism.
 1146 2. Utilize the gripper to manipulate the lock and open the door.
 1147 • Door-open task
 1148 1. Utilize the gripper to grasp the door handle and pull it open.
 1149 2. Employ the gripper to grip the door handle and swing it outward.
 1150 • Window-open
 1151 1. Employ the clamping tool to pry the window open.
 1152 2. Utilize the grabbing device for window aeration.
 1153 • Faucet-open
 1154 1. Employ the gripping tool to turn the faucet on.
 1155 2. Utilize the clamp to twist the tap open.
 1156 • Coffee-push
 1157 1. Employ the gripper to nudge the coffee beneath the coffee machine.
 1158 2. Utilize the gripper to slide the coffee under the coffee machine.
 1159 • Coffee-button-press
 1160 1. Utilize the gripper to depress the button on the coffee machine.
 1161 2. Employ the gripper to push down the button of the coffee machine.
 1162

1163 **Rephrasing** We use 20 different natural language expressions as the novel goals generated by
 1164 ChatGPT to express different target configuration.

1165 • Reach task
 1166 1. I’m dissatisfied with the gripper’s current location; kindly adjust it to reach the desired
 1167 position.
 1168 2. The gripper’s current placement doesn’t suit me; could you relocate it to the target
 1169 position?
 1170 • Push task
 1171 1. The current location of the target object isn’t satisfactory to me; please utilize the
 1172 gripper to nudge it to the target position.
 1173 2. I’m not pleased with where the target object is currently situated; could you employ
 1174 the gripper to guide it to the intended position?
 1175 • Pick-place task
 1176 1. I have a negative sentiment towards the current placement of the object of interest;
 1177 therefore, I intend to utilize the gripper mechanism to lift it and relocate it to the desired
 1178 destination.
 1179 2. The current arrangement of the designated item is unsatisfactory to me, prompting me
 1180 to employ the gripper for the purpose of relocating it to the specified destination.
 1181 • Button-press task

1188 1. I have a displeasure towards the inactive state of the button; therefore, I intend to utilize
 1189 the gripper to apply pressure and activate it in order to open it.
 1190 2. The current state of the button being inactive is not to my liking, prompting me to use
 1191 the gripper to press it and initiate its function of opening.
 1192

- Door-unlock task
 1. I despise when the door is locked; could you employ the gripper to unlock it?
 2. I loathe it when the door is locked; kindly utilize the gripper to release it?
- Door-open task
 1. I detest when the door is closed; could you utilize the gripper to open it, please?
 2. I can't stand it when the door is closed; kindly employ the gripper to open it for me?
- Window-open task
 1. I dislike it when the window is shut; could you kindly employ the gripper to unlatch it?
 2. I have a strong aversion to the closed window; would you mind utilizing the gripper to open it?
- Faucet-open task
 1. I dislike it when the faucet is shut; could you kindly utilize the gripper to turn it on?
 2. I have a strong aversion to the closed faucet; would you mind employing the gripper to open it?
- Coffee-push task
 1. I despise the coffee's current location; utilize the gripper to shift it to the desired spot.
 2. The coffee's present placement irks me; employ the gripper to relocate it to its intended position.
- Coffee-button-press task
 1. I believe the coffee machine shouldn't be switched off; utilize the gripper to press its button and activate it.
 2. I disagree with the coffee machine being off; employ the gripper to push its button and power it up.

1219 **Easy** We use 20 different natural language expressions as the novel goals generated by ChatGPT to
 1220 express different target configuration. Natural language instruction can be one of the following:
 1221

- Reach-wall task
 1. Adjust the gripper's position to reach the designated target, keeping in mind the obstructing wall.
 2. Maneuver the gripper towards the desired location, taking into consideration the presence of a barrier.
- Push-wall task
 1. Employ the gripper to propel the target object towards the designated location, noting the nearby wall obstructing the path.
 2. Utilize the gripper to push the target object towards its destination, recognizing the presence of a wall blocking the middle of the path.
- Pick-place-wall task
 1. Utilize the gripper apparatus to grasp the designated object and transfer it to the intended position, notwithstanding the obstruction posed by a wall at the target site.
 2. Employ the gripper mechanism to seize the desired item and relocate it to the specified spot, recognizing the hindrance presented by a wall obstructing the target destination.
- Button-press-wall task
 1. Employ the gripper to depress the button, yet a wall has emerged, obstructing access.
 2. Utilize the gripper for pushing the button, only to encounter an impediment in the form of a wall.

- 1242 • Door-lock task
- 1243 1. Utilize the gripper to secure the door shut.
- 1244 2. Employ the gripper to fasten the door securely.
- 1245 • Door-close task
- 1246 1. Employ the gripper to shut the door.
- 1247 2. Utilize the gripper to seal the door.
- 1248 • Window-close task
- 1249 1. Utilize the gripper to shut the window.
- 1250 2. Employ the gripper to seal the window.
- 1251 • Faucet-close task
- 1252 1. Utilize the gripper to shut off the faucet.
- 1253 2. Employ the gripper to seal the faucet.

1254 **Hard** We use 20 different natural language expressions as the novel goals generated by ChatGPT to
 1255 express different target configuration. Natural language instruction can be one of the following:

- 1256 • Make-coffee task
- 1257 1. Utilize the gripper to position the coffee mug beneath the coffee machine nozzle,
 1258 ensuring proper alignment.
- 1259 2. Employ the gripper mechanism to slide the coffee cup into place beneath the coffee
 1260 machine's dispenser.
- 1261 • Locked-door-open task
- 1262 1. Would you kindly unlock and open the door using the gripper?
- 1263 2. Please utilize the gripper to unlock and then open the door.
- 1264 • Hammer task
- 1265 1. Utilize the gripper to grasp the hammer and strike the nail at the designated spot.
- 1266 2. Employ the gripper for seizing the hammer and driving the nail into the target location.
- 1267 • Soccer task
- 1268 1. Utilize the gripper to propel the football into the goal at the designated spot.
- 1269 2. Employ the gripper mechanism to push the football into the goal at the specified
 1270 location.

1271 D.4.2 CLEVR-ROBOT

1272 **Training/Rephrasing** We use 40 different natural language expressions as the novel goals generated
 1273 by ChatGPT to express different target configuration. For example, if we take a goal configuration
 1274 such as “**red** ball and **blue** ball”, its corresponding natural language instruction can be one of the
 1275 following:

- 1276 • I can't stand the red ball ahead of the blue one. Could you switch the positions of them?
- 1277 • The sight of the red ball ahead of the blue one bothers me. Can we reverse their order?
- 1278 • I really dislike how the red ball is positioned in front of the blue ball. Could you exchange
 1279 their places?
- 1280 • It annoys me to see the red ball in front of the blue ball. Can we swap them around?
- 1281 • Seeing the red ball ahead of the blue ball fills me with frustration. Let's switch them.
- 1282 • The placement of the red ball in front of the blue ball is something I detest. Can you flip
 1283 them?

1284 **Easy** In easy task, the agent needs to move one ball to a specific direction. The natural language goal
 1285 can be one of the following:

1296 • Move the ball backward, it's red.
 1297 • Push the red ball in reverse.
 1298 • Back up the red ball, please.
 1299 • Shift the red ball backwards.
 1300 • Can you move the red ball backwards?
 1301 • Retract the red ball, moving it backwards.
 1302
 1303

1304 **Hard** We designed 4 types of completed unseen tasks: combination of two simple tasks, combination
 1305 of three simple tasks, object arrangement task, and object collection task.
 1306

1307 • Natural language sentence patterns used in combination of simple tasks (Using “**red** ball
 1308 **behind blue** ball” as goal configuration):
 1309 1. Push the red ball behind the blue ball.
 1310 2. Move the red ball behind the blue ball.
 1311
 1312 • Combination of two simple tasks: Push the red ball behind the blue ball and move the green
 1313 ball behind the purple ball.
 1314 • Combination of three simple tasks: Push the red ball behind the blue ball and move the
 1315 green ball to the left of the purple ball and keep the cyan ball in front of the red ball.
 1316 • Object arrangement task
 1317 1. Place the balls horizontally, lining them up from left to right, in the order of red, blue,
 1318 green, purple, and cyan.
 1319 2. Set up the balls in a row from left to right, with red, blue, green, purple, and cyan in
 1320 sequence.
 1321 • Object collection task
 1322 1. Position all the other balls around the green ball, considering it as the circle’s focal
 1323 point.
 1324 2. Use the green ball as the nucleus of the circle, arranging the rest around it.
 1325

1326 D.4.3 BABYAI

1328 **Training** We use 40 different natural language expressions as training goals generated by ChatGPT to
 1329 express different target configuration. For example, if we take a goal configuration such as “**red** ball,
 1330 **blue** key, **green** door”, its corresponding natural language instruction can be one of the following:
 1331

1332 • Goto task
 1333 1. go to the red ball.
 1334 2. move to the red ball.
 1335 3. head toward the red ball.
 1336 4. walk to the red ball.
 1337 5. proceed to the red ball.
 1338 6. navigate to the red ball.
 1339
 1340 • Open task
 1341 1. open the green door.
 1342 2. please open the green door.
 1343 3. could you open the green door?
 1344 4. unlock and open the green door.
 1345 5. push the green door open.
 1346 6. pull open the green door.
 1347
 1348 • Pickup task
 1349 1. pick up the red ball.
 1349 2. grab the red ball.

1350 3. pick up the ball that is red.
 1351 4. retrieve the red ball.
 1352 5. lift the red ball.
 1353 6. take hold of the red ball.
 1354
 1355 • Put-next task
 1356 1. put the red ball next to the blue key.
 1357 2. place the red ball beside the blue key.
 1358 3. move the red ball close to the blue key.
 1359 4. set the red ball adjacent to the blue key.
 1360 5. position the red ball near the blue key.
 1361 6. arrange the red ball alongside the blue key.
 1362

1363 **Rephrasing** We use 10 different natural language expressions as the novel goals generated by
 1364 ChatGPT to express different target configuration. For example, if we take a goal configuration such
 1365 as “**red** ball, **blue** key, **green** door”, its corresponding natural language instructions can be one of the
 1366 following:

1367
 1368 • Goto task
 1369 1. proceed in the vicinity of the red ball.
 1370 2. move yourself toward the direction of the red ball.
 1371 • Open task
 1372 1. leave the green door open.
 1373 2. push the green door to open it fully.
 1374 3. let the green door remain open.
 1375 4. move aside the green door to open it.
 1376 5. permit the green door to stay ajar.
 1377 6. manipulate the green door into an open state.
 1378
 1379 • Pickup task
 1380 1. grip the red ball.
 1381 2. snag hold of the red ball.
 1382 3. clasp the red ball.
 1383 4. reach over and take the red ball.
 1384 5. obtain and hold the red ball.
 1385 6. gather the red ball into your hands.
 1386
 1387 • Put-next task
 1388 1. position the red ball right alongside the blue key.
 1389 2. ensure the red ball is closely placed beside the blue key.
 1390 3. make the red ball sit immediately next to the blue key.
 1391 4. arrange the red ball neatly beside the blue key.
 1392 5. move the red ball so that it is perfectly adjacent to the blue key.
 1393

1394 **Easy**

1395
 1396 • Open-go task
 1397 – open the door, then goto any object.
 1398 • Open-pick task
 1399 – open the door, then pick up any object.
 1400 • Go-wall task
 1401 – goto the side of the wall.
 1402 • Go-center task

1404 – goto the center of the room.

1405

1406 **Hard**

1407

1408 • Open-lock task

1409 – pick up the key, then open the door.

1410

1411 • Put-line task

1412 – put the three items in a line.

1413

1414 • Put-pile task

1415 – gather the three items into a pile.

1416

1417 **D.4.4 LIBERO**

1418 **Training** We use 20 different natural language expressions as training goals generated by ChatGPT
 1419 to express different target configuration. For example, if we take a goal configuration such as
 1420 “alphabet_soup”, its corresponding natural language instruction can be one of the following:

1421

1422 • Pick task

1423 1. Employ the gripper to seize the alphabet_soup.

1424 2. Utilize the gripper for grasping the alphabet_soup.

1425

1426 • Place task

1427 1. Transfer the alphabet_soup to the basket.

1428 2. Shift the alphabet_soup to the basket.

1429 3. Position the alphabet_soup to the basket.

1430 4. Move the alphabet_soup to the basket.

1431 5. Place the alphabet_soup to the basket.

1432 6. Relocate the alphabet_soup to the basket.

1433

1434 **Rephrasing** We use 10 different natural language expressions as novel goals generated by ChatGPT
 1435 to express different target configuration. For example, if we take a goal configuration such as
 1436 “alphabet_soup”, its corresponding natural language instruction can be one of the following:

1437

1438 • Pick task

1439 1. Employ the gripper tool to clasp the alphabet_soup.

1440 2. Utilize the gripping mechanism to hold the alphabet_soup.

1441

1442 • Place task

1443 1. Transport the alphabet_soup to the basket.

1444 2. Insert the alphabet_soup into the basket.

1445

1446 **Easy** In easy task, the agent needs to complete some unseen manipulation tasks. For example, if we
 1447 take a goal configuration such as “alphabet_soup, cream_cheese”, its corresponding natural language
 1448 instruction can be the following:

1449

1450 • Pick-and-place task

1451 – Employ the gripper to seize the alphabet_soup and transfer the alphabet_soup to the

1452 basket.

1453

1454 • Pick-and-place-unseen task

1455 – Employ the gripper to seize the alphabet_soup and transfer the alphabet_soup to the

1456 cream_cheese.

1457

1458 • Reach task

1459 – Employ the gripper to get close to the alphabet_soup.

1458
 1459 **Hard** We design 3 types of unseen and complex tasks: combination of two simple tasks (Sequential-
 1460 pick-and-place), high-level language comprehension task (Pick-and-place-aside, Sequential-pick-
 1461 and-place-all) and safe task (Pick-out). For example, if we take a goal configuration such as
 1462 “alphabet_soup, cream_cheese” for combination of two easy tasks, “alphabet_soup, cream_cheese,
 1463 salad_dressing” for high-level language comprehension task and “alphabet_soup” for safe task, its
 corresponding natural language instruction can be the following:

1464

- 1465 • Sequential-pick-and-place task
 - 1466 – Employ the gripper to seize the alphabet_soup and transfer the alphabet_soup to the bas-
 ket. Then employ the gripper to seize the cream_cheese and transfer the cream_cheese
 to the basket.
- 1467 • Pick-and-place-aside task
 - 1468 – Employ the gripper to seize the alphabet_soup and transfer the alphabet_soup to the
 other side.
- 1469 • Sequential-pick-and-place-all task
 - 1470 – Employ the gripper to seize something and transfer it to the basket one by one until the
 alphabet_soup, cream_cheese and salad_dressing are all in the basket.
- 1471 • Pick-out task
 - 1472 – The basket is on fire, employ the gripper to seize the alphabet_soup in the basket and
 transfer the alphabet_soup out of the basket.

1473 **D.4.5 MUJoCo**

1474 **Training** We use 10 different natural language expressions as training goals generated by ChatGPT
 1475 to express different target configuration. Natural language instruction can be one of the following:

1476

- 1477 • Jump-forward task
 - 1478 1. Jump a step forward.
- 1479 • Jump-backward task
 - 1480 1. Jump a step backward.
 - 1481 2. Jump a step back.
- 1482 • Run-forward task
 - 1483 1. Run forward.
 - 1484 2. Run ahead.
- 1485 • Run-backward task
 - 1486 1. Run backward.
 - 1487 2. Run back.

1488 **Rephrasing** We use 10 different natural language expressions as novel goals generated by ChatGPT
 1489 to express different target configuration. Natural language instruction can be one of the following:

1490

- 1491 • Jump-forward task
 - 1492 1. Jump a step forth.
 - 1493 2. Jump one step ahead.
- 1494 • Jump-backward task
 - 1495 1. Jump one step backward.
 - 1496 2. Jump one step back.
- 1497 • Run-forward task
 - 1498 1. Speed forward.
 - 1499 2. Speed ahead.
- 1500 • Run-backward task

1512 1. Speed backward.
 1513 2. Speed back.
 1514

1515 **Easy** In easy task, the agent needs to complete some novel locomotion tasks. Natural language
 1516 instruction can be one of the following:

1517 • Run-forward-fast task
 1518 – Move forward faster.
 1519 • Run-backward-fast task
 1520 – Move backward faster.
 1521

1523 **Hard** We design 2 types of unseen and complex tasks: combination of two simple run tasks (Run-
 1524 forward-then-backward, Run-backward-then-forward) and high-level language comprehension task
 1525 (Jump-in-place). Natural language instruction can be one of the following:

1526 • Run-forward-then-backward task
 1527 – Move forward and slow down. Move backward.
 1528 • Run-backward-then-forward task
 1529 – Move backward and slow down. Move forward.
 1530 • Jump-in-place task
 1531 – Jump in the original position.
 1532

1535 E IMPLEMENTATION DETAILS

1537 E.1 INTRODUCTION TO THE CODEBASE

1539 **ImagineBench** The ImagineBench codebase is a benchmark for evaluating reinforcement learning
 1540 algorithms that train the policies using both real data and imaginary rollouts from LLMs. In
 1541 ImagineBench codebase, we provide offline RL algorithms in `imagineBench/algo` directory, 5
 1542 environments for evaluation in `imagineBench/envs` directory, evalution method in `imagineBench`
 1543 /`evaluations.py` and data processing method in `imagineBench/utils.py`.

1544 **Dataset** After getting Metaworld environment using `imagine_bench.make()`, both real data and
 1545 imaginary rollouts are available with `env.get_dataset()` function. Here is an example for getting
 1546 Metaworld real and rephrase dataset:

```
1548 1 import imagine_bench
1549 2
1550 3 # Optional task_level: ['real', 'rephrase', 'easy', 'hard'].
1551 4 env = imagine_bench.make('MetaWorld-v0', level='rephrase')
1552 5 real_data, imaginary_rollout_rephrase = env.get_dataset(level="rephrase")
1553 6
1554 7 # Or you can use the dataset with other task levels.
1555 8 env = imagine_bench.make('MetaWorld-v0', level='easy')
1556 9 real_data, imaginary_rollout_easy = env.get_dataset(level="easy")
```

1558 **Training** We provide an example for offline RL training with d3rlpy using MuJoCo environment and
 1559 its rephrase dataset:

```
1560 1 import d3rlpy
1561 2 import imagine_bench
1562 3 from imagine_bench.utils import LlataEncoderFactory,
1563 4   make_d3rlpy_dataset
1564 5 from imagine_bench.evaluations import CallBack
1565 6 env = imagine_bench.make('MuJoCo-v0', level='rephrase')
1566 6 env_eval = imagine_bench.make('MuJoCo-v0', level='rephrase')
```

```

1566     7     real_data, imaginary_rollout_rephrase = env.get_dataset(level="rephrase")
1567
1568     8     dataset = make_d3rlpy_dataset(real_data,
1569           imaginary_rollout_rephrase)
1570
1571     9     agent = d3rlpy.algos.TD3PlusBCConfig(
1572           actor_encoder_factory=LlataEncoderFactory(feature_size=256, hidden_size=256),
1573           critic_encoder_factory=LlataEncoderFactory(feature_size=256, hidden_size=256),
1574           ).create(device="cuda:0")
1575
1576     10    callback = CallBack()
1577     11    callback.add_eval_env(env_dict={'rephrase': env_eval}, eval_num=10)
1578
1579     12    agent.fit(
1580       dataset=dataset,
1581       n_steps=500000,
1582       experiment_name="mujoco",
1583       epoch_callback=callback.EvalCallback,
1584     )
1585
1586
1587
1588

```

Reproducibility Here is an example for reproduce our result on BabyAI environment using bc algorithm and rephrase dataset:

```

1589     1     python imagine_bench/train.py --algo bc --env BabyAI-v0 --ds_type
1590           rephrase
1591
1592
1593
1594

```

E.2 PROMPTS FOR LLM SUPERVISED FINE-TUNING

- Dynamics prediction: *You are an expert in identifying environmental dynamics change. Current state is $[s_t]$, after executing action $[a_t]$, we get next state: [ANSWER].*
- Rollout to goal translation: *Translate the state/action rollout to textual goal.\n Rollout:[ROLLOUT]\n Goal: [ANSWER].*
- Goal to rollout translation: *Translate the textual goal to state/action rollout.\n Goal:[G].\n Rollout: [ANSWER]*

Here, [ANSWER] is the content that LLM should generate.

F ADDITIONAL RESULTS AND ANALYSIS

F.1 MORE EXAMPLES OF THE LLM-IMAGINARY ROLLOUTS

We present additional examples of the LLM-imaginary rollouts in in Fig. 8. The rendered figures show that while the imaginary rollouts can reflect the object manipulation for simple goals, the consistency between the rollouts and the goals reduces when the goal becomes more complicated. This results call for better usage of the real rollouts to fine-tune LLM to generate high-quality imaginary rollouts.

F.2 OVERALL COMPARISON OF OFFLINE RL BASELINES

We present overall comparison of offline RL baselines in Tab. 14, as a reference for algorithm selection in future application.

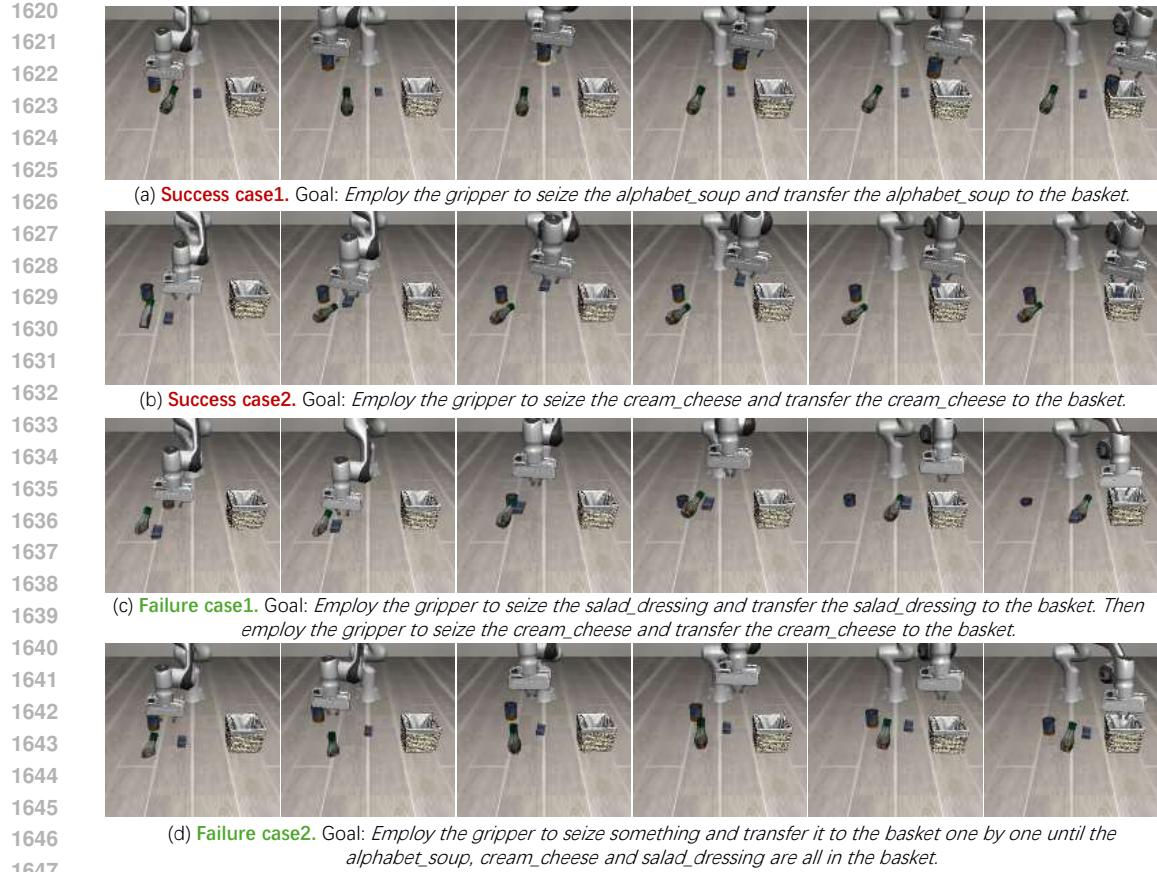


Figure 8: Examples of the LLM-imaginary rollouts for novel goals. The figures are obtained by rendering the states in LLM-imaginary rollouts.

F.3 RESULTS WITH LLAMA-2-7B AS GENERATION MODEL

F.4 TRAINING WITH DIFFERENT RATIOS OF IMAGINARY ROLLOUTS

We further investigate whether imaginary rollouts facilitate the acquisition of novel skills. To achieve this, we conduct ablation study on the ratios of the imaginary rollouts used for offline RL training, on BabyAI (rephrasing). As shown in Fig. 10, with larger amount of imaginary rollouts, different algorithms tend to get higher scores. This result serves as evidence that LLM-imaginary rollouts can effectively improve the performance on the novel tasks.

G BROADER IMPACT STATEMENT

The development of RLIM holds potential for advancing adaptable and sample-efficient AI systems, with applications covering robotics, autonomous systems, and assistive technologies. By reducing reliance on costly real-world interaction data, RLIM could democratize access to advanced AI training, enabling smaller organizations and researchers to innovate in resource-constrained settings. The introduction of ImagineBench, an open-source benchmark, accelerates progress by standardizing evaluation across diverse tasks, from robotic manipulation to navigation. However, challenges such as computational costs from LLM fine-tuning and risks of synthetic data biases—which may propagate into deployed systems—warrant careful consideration. Ethical concerns around autonomous decision-making and environmental impacts of large-scale model training further underscore the need for responsible development. By addressing these challenges, RLIM could pave the way for safer, more generalizable AI agents capable of rapid adaptation in dynamic real-world environments, while its emphasis on instruction-following aligns with human-centric AI design, enhancing accessibility for non-expert users.

		Train	Rephrase	Easy	Hard	
1674	Llama-2-7B	BC	65.96 ± 15.07	50.74 ± 17.13	35.22 ± 29.60	12.74 ± 11.28
1675		BCQ	45.36 ± 19.68	42.08 ± 17.34	26.42 ± 19.87	11.56 ± 14.00
1676		CQL	43.34 ± 21.41	37.28 ± 20.88	19.00 ± 10.14	11.74 ± 11.43
1677		PRDC	42.57 ± 27.97	31.73 ± 22.90	31.20 ± 36.97	20.47 ± 11.46
1678		TD3+BC	40.70 ± 30.21	28.03 ± 19.17	28.00 ± 30.37	16.83 ± 13.06
1679		COMBO	27.87 ± 29.44	22.13 ± 27.27	21.77 ± 24.78	19.93 ± 10.50
1680		SAC	5.40 ± 2.10	7.85 ± 4.25	16.70 ± 8.30	1.20 ± 0.80
1681	<hr/>					
1682	Qwen-3-4B	Train	Rephrase	Easy	Hard	
1683		BC	67.78 ± 16.64	51.04 ± 17.98	25.96 ± 8.70	9.90 ± 12.23
1684		BCQ	47.56 ± 16.25	43.04 ± 16.03	29.48 ± 20.59	8.62 ± 10.15
1685		CQL	36.04 ± 22.77	35.78 ± 22.38	16.32 ± 12.68	9.64 ± 12.20
1686		PRDC	40.40 ± 29.81	27.83 ± 23.21	32.07 ± 40.05	11.40 ± 11.25
1687		TD3+BC	38.67 ± 29.98	30.47 ± 27.15	35.40 ± 44.76	14.27 ± 13.97
1688		COMBO	45.20 ± 29.60	33.00 ± 24.86	16.87 ± 11.54	18.60 ± 13.40
1689		SAC	5.25 ± 0.45	8.40 ± 2.70	16.70 ± 8.30	1.40 ± 1.30
1690	<hr/>					
1691	Table 14: Overall comparison of offline RL baselines, with imaginary rollouts generated by Llama-2-7B (first table) and Qwen-3-4B (second table).					
1692						
1693						
1694						
1695						
1696						
1697						
1698	<h2>H USE OF LLMs</h2>					
1699						
1700						
1701	In this work, LLMs were used in two ways: (1) Pre-trained LLM (Qwen-3-4B-Instruct-2507 and Llama-2-7b-chat-hf) was fine-tuned on environment-collected rollouts to generate synthetic imaginary rollouts for novel tasks, as described in Section 4.2; (2) Publicly available LLM services were used for language polishing and grammatical refinement of the manuscript. The authors take full responsibility for all content, including the generated rollouts and the final text.					
1702						
1703						
1704						
1705						
1706						
1707						
1708						
1709						
1710						
1711						
1712						
1713						
1714						
1715						
1716						
1717						
1718						
1719						
1720						
1721						
1722						
1723						
1724						
1725						
1726						
1727						

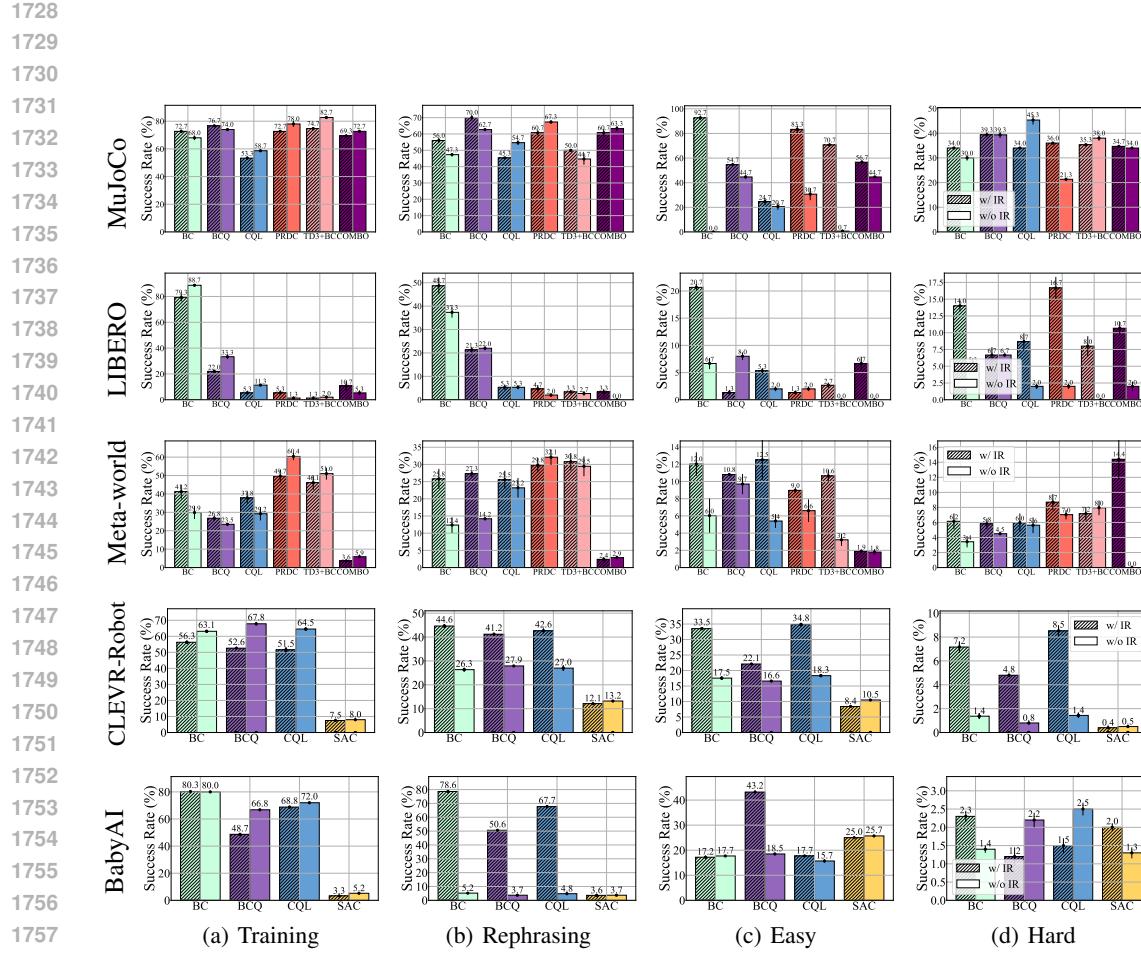


Figure 9: Success rate bars of different methods on various levels of goals, with imaginary rollouts generated by Llama-2-7B. The x-axis denotes the offline RL algorithm, and the y-axis denotes the success rate. 'w/ IR' stands for training with both real and imaginary rollouts. The success rate is averaged over the last five checkpoints, and the error bars are the half standard deviation over three seeds. We provide the results for Qwen-3-4B in Sec. 5.2.

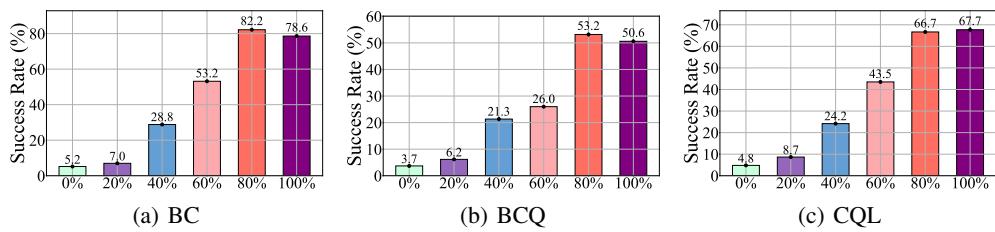


Figure 10: Success rate bars of different methods trained on various ratios of imaginary rollouts. The x-axis denotes the ratio of used imaginary offline RL data, and the y-axis denotes the success rate for completing various natural language goals. The success rate is calculated based on the average of the last five checkpoints, and the error bars stand for the half standard deviation over three random seeds.