
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IMAGINEBENCH: EVALUATING REINFORCEMENT
LEARNING WITH LARGE LANGUAGE MODEL ROLLOUT

Anonymous authors
Paper under double-blind review

ABSTRACT

A central challenge in reinforcement learning (RL) is its dependence on exten-
sive real-world interaction data to learn policies. While recent work demon-
strates that large language models (LLMs) can help mitigate this limitation by
generating synthetic experience (noted as imaginary rollouts) for learning novel
tasks, this area is hindered by the absence of a standardized benchmark. To
bridge this gap, we propose ImagineBench, the first comprehensive benchmark
for evaluating offline RL algorithms that learn from both real rollouts and LLM-
imaginary rollouts. The key features of ImagineBench include: (1) datasets com-
prising environment-collected and LLM-imaginary rollouts with verified quality;
(2) diverse domains covering locomotion, robotic manipulation, and navigation
tasks; and (3) natural language task instructions of varying complexity to support
instruction-following policy learning. Through comprehensive experiments, we
find that simply applying existing offline RL algorithms yields suboptimal general-
ization on unseen tasks, achieving only 35.44% task completion on unseen tasks
compared to 64.37% for policies trained with real data. Meanwhile, the perfor-
mance varies with instruction complexity, confirming that ImagineBench provides
meaningful spectrum of task difficulty. Furthermore, we show that pre-training
with imaginary rollouts leads to superior asymptotic performance after online
fine-tuning. Based on these findings, ImagineBench identifies key directions
for future research, including improved exploitation of imaginary rollouts, effi-
cient online adaptation, continual learning, and extension to multi-modal task
settings. Our code is available at https://anonymous.4open.science/
r/Imagine_Bench_anonymous-40CD.

1 INTRODUCTION

Developing knowledgeable agents that can generalize to diverse, unseen tasks represents a critical
frontier in artificial intelligence. While reinforcement learning (RL) provides a framework for skill
acquisition (Silver et al., 2016; Mnih et al., 2015; Vinyals et al., 2019), its reliance on extensive
real-world interaction data constitutes a fundamental bottleneck for generalizing to novel tasks. In
contrast, humans efficiently acquire and rehearse new skills through mental imagination, without
direct physical interaction. Inspired by this capability, recent research has explored using Large
Language Models (LLMs) to generate synthetic experience, referred to as imaginary rollouts, for
learning novel tasks (Pang et al., 2024; Chen et al., 2024). This emerging paradigm, which we
formalize as Reinforcement Learning from Imaginary Rollouts (RLIM), involves fine-tuning an LLM
on existing environment data and then prompting it to generate synthetic rollouts for new tasks (see
Fig. 1), thereby eliminating the need for initial costly interactions.

Though learning from imaginary rollouts achieves preliminary successes in robotics manipulation
(Pang et al., 2024; Glossop et al., 2025), football playing (Chen et al., 2024), and browser automation
(Xu et al., 2025), progress in this area is hindered by the absence of a standardized evaluation.
Existing studies often employ custom environments and varied LLM architectures for algorithm
evaluation. The reported performance improvements may not reliably reflect their ability to effectively
utilize the foundation models’ knowledge due to inconsistent evaluation protocols. Furthermore,
the computational cost of fine-tuning LLMs for each new study presents a barrier to entry for many
researchers, slowing progress in the field.

1

https://anonymous.4open.science/r/Imagine_Bench_anonymous-40CD
https://anonymous.4open.science/r/Imagine_Bench_anonymous-40CD

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Large Language

Models

Real-world

rollouts on

prefixed tasks

Fine-tune Generate

Offline RL policy training

Generated

rollouts on

novel tasks

Figure 1: We benchmark the problem of RL with LLM-imaginary rollouts. The LLM is fine-tuned to
generate imaginary rollouts, followed by RL policy training using real and imaginary rollouts.

To address this gap, we introduce ImagineBench, the first comprehensive benchmark designed to
systematically evaluate offline RL algorithms that train a policy with both real rollouts and LLM-
imaginary rollouts. ImagineBench has three key features: (1) Datasets that include both real rollouts
collected from the environment, and imaginary rollouts generated by the fine-tuned LLMs, eliminating
the computational burden of LLM fine-tuning and ensuring consistent comparison. The quality of
the LLM-generated rollouts is verified by the (2) Diverse domains include locomotion, robotic
manipulation, and navigation. (3) Natural language instruction paired with the rollouts, which
are divided into various difficulty levels, supporting the research on instruction-following agents
(Pang et al., 2023b; Ichter et al., 2022). Through extensive experiments with state-of-the-art offline
RL algorithms, we demonstrate that while naively combining real and imaginary rollouts generally
improves performance on unseen tasks, there is still a clear gap on novel tasks, between the current
score (35.44%) and the performance of training with real rollouts (64.37%). This gap underscores
the need for novel algorithms to leverage LLM-generated rollouts better. Furthermore, we show that
pre-training with imaginary rollouts can enhance asymptotic performance after online fine-tuning,
highlighting its potential as a valuable resource.

Our contributions are as follows: We propose ImagineBench, the first benchmark for RL from
LLM-imaginary rollouts, complete with datasets, environments, and evaluation protocols. Based
on ImagineBench, we conduct comprehensive empirical study investigating baseline performance
and revealing the limitations of existing methods. Finally, we identify directions for future research
for RL from imaginary rollouts, including improved offline RL for synthetic data, efficient online
adaptation, continual learning, and extension to multi-modal tasks.

2 RELATED WORK

RL with LLM-imaginary rollouts. Recent advances in leveraging the general knowledge of LLMs
to build knowledgeable agents for interactive and physical tasks have established a promising research
frontier (Pang et al., 2024). The central challenge is that LLMs can not directly handle numerical
control signals for decision-making tasks (Pang et al., 2024; Liu et al., 2024). To address this,
researchers have explored using LLMs to generate imaginary decision-making rollouts that are then
used for RL policy training. For instance, KALM (Pang et al., 2024) fine-tunes LLMs to produce low-
level control rollouts, which are then used to train RL policies via offline RL algorithms. This approach
demonstrates how domain-specific knowledge embedded in LLMs can be effectively distilled to
handle novel tasks. Similarly, URI (Chen et al., 2024) employs LLMs to generate control trajectories
by prompting them with instructional texts from tutorial books, enabling policy training without
environmental interaction. AgentTrek (Xu et al., 2025) extends this paradigm to browser automation
by synthesizing task execution rollouts at scale, followed by imitation learning to train the agent.
Beyond low-level control, InCLET (Wang et al., 2025) introduces a framework where LLMs generate
textual imaginary rollouts, enhancing the agent’s ability to interpret natural language instructions
and derive task representations. While these studies highlight the potential of LLM-imaginary
rollouts, they focus on developing individual algorithms. In contrast, ImagineBench introduces the
comprehensive benchmark to systematically evaluate the algorithm performance, generalizability,
and limitations of RL methods training LLM-imaginary rollouts.

Existing benchmarks in RL. The rapid development of RL has given rise to a diverse array of
benchmarks. These benchmarks fall into three primary categories: online, offline, and off-dynamics,
each handling challenges within specific training paradigms. Online training benchmarks, such as

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Benchmark Environments

HalfCheetah

Locomotion

Meta-world LIBERO CLEVR-Robot

Manipulation

BabyAI

Navigation

Datasets Hierarchical Task Levels

Dataset

of real

rollouts
Rollout

Language
instruction

Please push the

red ball behind
the blue ball.

Rollout
Language
instruction

Use the green ball

as the nucleus of the

circle, arranging the

rest around it.

The language goals

existing in the real dataset,

e.g., Move the blue ball to

the red ball.

Training

Same tasks as real data

but with paraphrased

goals, e.g., Can you

relocate blue ball close

to red ball?

Rephrasing

Novel tasks with

straightforward logical

operations, e.g., push the

red ball to the right slightly.

Easy

Novel tasks that require

complicated operations,

e.g., arrange all the

balls in a straight line.

HardDataset of

LLM-

imaginary

rollouts

Figure 2: Overview of ImagineBench, covering three key features: (1) datasets of both real and LLM-
imaginary rollouts, (2) diverse domains of environments, and (3) natural language instructions with
various task levels. Examples shown in the ‘Datasets’ panel are from the CLEVR-Robot environment.

Gym (Brockman et al., 2016), MuJoCo (Todorov et al., 2012), and the DMC (Tassa et al., 2018),
have long served as foundational tools for evaluating agents that learn through online interaction,
emphasizing exploration and sample efficiency in dynamic settings like Atari 2600 games (Atari, Inc.,
1977) and continuous control tasks. Meanwhile, the rise of offline RL promotes the development of
benchmarks like NeoRL (Qin et al., 2022), D4RL (Fu et al., 2020) and RL Unplugged (Gulcehre
et al., 2020), which contain large-scale, pre-collected datasets to evaluate agents’ ability to learn
from static data while mitigating distributional shift and extrapolation errors in domains ranging from
robotic manipulation to locomotion. Besides, off-dynamics benchmarks, including ODRL (Lyu et al.,
2024) and Meta-World ML1 (Yu et al., 2019), evaluate generalization under shifts in dynamics, such
as altered physical parameters or visual perturbations, challenging agents to adapt policies to unseen
environmental conditions. In contrast, ImagineBench is the first benchmark specifically designed to
evaluate how effectively RL algorithms that utilize LLM-imaginary rollouts, offering scenarios to
measure the benefits and limitations of utilizing LLM knowledge to build knowledgeable agents.

3 BACKGROUND

Reinforcement learning. We consider an RL problem where the agent completes natural language
instructions. The environment can be modeled as a goal-augmented Markov Decision Process (Sutton
& Barto, 1998; Pang et al., 2023a), represented by the tupleM = (S,A,P,R, γ,G), where S, A
denote the state space and action space, respectively. P denotes transition function of the environment,
R the reward function that evaluates the agent’s behavior, γ the discount factor, and G the set of
natural language goals. The objective of RL is to find a policy π : S × G → ∆(A) that maximize
the cumulative reward: J(π) = Eπ[

∑∞
t=0 γ

tr(st, at)]. This work focuses on environments with
structured, vectorized state spaces, where each dimension encodes interpretable, domain-specific
features. We call the state and action data collected from the environment the real environmental
rollouts, and the rollouts generated by LLM the imaginary rollouts.

Offline reinforcement learning with LLM-imaginary rollouts. Traditional offline RL focuses on
offline policy training from a static environmental dataset. In this paper, we consider RL with both
real and LLM-imaginary rollouts. Formally, consider we have (1) a real dataset D collected from the
real environment, and (2) a LLM-imaginary datasets1 DI , which is generated by LLMs. Both real
and imaginary datasets consist of paired language goals and corresponding decision-making rollouts:
{Gk, (sk0 , a

k
0 , s

k
1 , a

k
1 , · · ·)}Kk=1. Here, the sequence (sk0 , a

k
0 , s

k
1 , a

k
1 , · · ·) represents a rollout of states

and actions (ski , a
k
i) to complete the goal Gk. The primary objective is to find a policy that achieves

high rewards on unseen goal distributions (known as novel tasks), represented as G′.

4 IMAGINEBENCH DETAILS

ImagineBench involves a wide range of decision-making environments, including locomotion, manip-
ulation, and navigation. For each environment, ImagineBench provides two datasets as illustrated in
Sec. 3: a dataset of real rollouts collected from the environments, and a dataset of imaginary rollouts

1We will elaborate on how LLMs are trained to generate the rollouts in Sec. 4.2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

generated by LLM. We will briefly introduce the benchmark environments in Sec. 4.1 and how the
datasets are constructed in Sec. 4.2. Last, Sec. 4.3 defines different levels of task complexity.

4.1 BENCHMARK ENVIRONMENTS

The Benchmark Environment panel in Fig. 2 shows the visualization of the environments used in
ImagineBench. We present the environment statistics in Tab. 1, and more details in Appendix C.

Meta-world (Yu et al., 2019) agent controls a Sawyer robot to manipulate objects, e.g., doors, drawers,
and windows. In novel tasks, the agent needs to manipulate, assuming that there is a wall in front of
the object. The state space is R91, encoding the robot’s joint angles and object positions/orientations,
while the action space is R4, controlling the gripper’s movement and open/close. The reward function
combines task (or sub-task) completion signals with a negative distance metric between the gripper
and target location.

CLEVR-Robot (Research, 2019) environment requires the agent to manipulate five colored balls to
reach a target configuration. The state space is R10, encoding the positions of five balls, with an action
space of 40-dimensional discrete actions, using one-hot vectors to specify directional movement for
each ball. The reward is calculated as a reduction in distance between the current state and the target
configuration compared to the previous step, adding a terminal reward for task completion.

BabyAI (Chevalier-Boisvert et al., 2019) is a gridworld environment, which modifies the original
environment’s language-conditioned navigation tasks with full observability. The state space is R17,
encoding object positions (agent, keys, doors, balls) using absolute grid coordinates and RGB at-
tributes. The action space comprises 7-dimensional discrete movement primitives (left/right/up/down)
and object interactions (pickup/drop/toggle). The rewards are calculated as the shortest-path distance
to the goal object, plus a sparse completion reward.

LIBERO (Liu et al., 2023) controls a robot arm to complete various manipulation tasks. LIBERO
originally consists of four task suites, each containing 10 tasks. ImagineBench uses LIBERO-Object
suite and additionally designs novel tasks such as sequential-pick-and-place. The state space is
R44, representing the joint position and object position/poses, while the action space of R7 specifies
joint angle deltas for arm movement and gripper open/close. Similar to Meta-world, we provide
distance-based reward to guide the agent to reach the target object, and terminal judgment when a
sub-task or the entire task is completed as the final step reward.

MuJoCo (Todorov et al., 2012) is a physics-based simulation platform widely used for continuous
control tasks in reinforcement learning. In our case, ImagineBench uses the HalfCheetah robot. The
state (R18) consists of positional values and velocities of different joints, while the action space (R6)
represents the torques applied to 6 robot joints. The reward function combines forward velocity
toward the target direction with control efficiency (minimizing joint torque costs).

Meta-world CLEVR-Robot BabyAI LIBERO MuJoCo
Observation space R91 R10 Z17 R44 R18

Action space R4 Discrete (40) Discrete (7) R7 R6

of real rollout 20,000 100,000 19,200 29,780 16,000

of IR (Rephrasing) 10,000 5,600 19,200 12,000 10,000

of IR (Easy) 8,000 72,400 18,000 24,000 6,000

of IR (Hard) 4,000 1,680 18,000 1,3000 9,000

Table 1: Statistics overview of environments. ‘# of IR’ stands for ‘Number of imaginary rollout’.

4.2 DATASET COLLECTION

The dataset collection procedure consists of two steps: (1) Real rollout collection from the environ-
ment. In this step, we first obtain an expert policy that can complete the given tasks with a high
success rate, and then use the expert policy to collect rollouts in the environment. Meanwhile, a
rollout is labelled with a natural language instruction when collected. (2) Imaginary rollout collection

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Large Language Models

Supervised fine-tuning

Generate a rollout for

the following goal. Goal:

open the door. Rollout:

[𝑠0, 𝑎0, 𝑠1, 𝑎1…]

Explain the rollout for

me: [𝑠0, 𝑎0, 𝑠1, 𝑎1…].
Explanation: turn off

the light ...

Large Language Models

(2) Imaginary rollout generation

𝑎0 𝑠1 𝑎1 ...

Generate a rollout for to the

following goal. Goal: close the door.

Rollout: 𝑠0

(1) LLM fine-tuning

Figure 3: Illustration of the generation of LLM-imaginary rollouts. The LLM is first fine-tuned with
the environment data, and then prompted to generate the rollouts for novel tasks.

from LLM. In this step, the LLM is fine-tuned on the rollout-instruction pairs from the environment,
and then prompted to generate rollouts for novel tasks.

Real rollout collection. To collect real rollouts, we first obtain an expert policy specific to each
environment and then use the policy to collect rollouts: (1) Meta-world & CLRVR-Robot: First, train
an expert policy with PPO (Schulman et al., 2017), and collect an offline dataset of 20,000/100,000
rollout-goal pairs, each comprising state, action, and environment-built-in reward sequences for
completing natural language goals. (2) BabyAI: Employ a rule-based policy to generate 19,200
rollout-goal pairs, with rewards based on agent-target distance. (3) LIBERO: Apply behavior cloning
to public LIBERO datasets to obtain the expert policy, yielding 30,000 rollout-goal pairs with
object-target distance rewards. (4) MuJoCo: Train an expert policy online using the SAC algorithm
(Haarnoja et al., 2018) to collect 16,000 rollout-goal pairs. All real rollouts are annotated with natural
language instructions during collection.

Imaginary rollout collection. Fig. 3 presents the process of fine-tuning LLM to generate imaginary
rollouts2. To enable LLM to generate synthetic task-specific rollouts, we first fine-tune them on real
rollout-instruction pairs. The objective of this step is to enable LLM to interpret the meaning of states,
actions, dynamics, and rollouts of the given environment. Following (Pang et al., 2024), we fine-tune
the LLM using the dataset to perform three different tasks via supervised fine-tuning (SFT), and
model the LLM grounding problem as an instruction-following problem since the LLM demonstrates
excellent performance following given natural language instructions to generate desired answers.
The training objectives for SFT include: (1) Dynamics prediction: The LLM predicts changes in
environmental dynamics. Given the current state st and action at, the LLM predicts the subsequent
state. (2) Rollout explanation: The LLM is presented with a rollout sequence s0, a0, s1, · · · , and it is
required to describe the rollout with natural language. (3) Rollout generation: The LLM generates a
rollout that aligns with a specified goal G. We present the prompts for LLM SFT in Appendix E.

Since LLMs can not directly handle numerical data, we use a pre-trained LLM as the backbone model
and modify it with additional layers to handle environmental data. Then, we employ the fine-tuned
LLM to generate imaginary rollouts given the initial state s0 and the goal: {a0, s1, a1, · · · } ←
M(GOP, s0). Here,M is the LLM, GOP stands for goal-oriented prompt: “Generate a rollout
for the following goal: [GOAL]. Rollout:”, where “[GOAL]” is a placeholder for various goals that
reflect different skills.

Data filtering mechanism. In ImagineBench, we apply a minimal data selection strategy to maintain
data quality, without over-filtering, to preserve the diversity of the imaginary rollouts. For real
rollouts, we omit the failure trajectories that do not match their intended goals, to provide clear and
reliable learning signals. For imaginary rollouts generated by the LLM, we truncate excessively long
sequences to prevent episodes with redundancy that could hinder training efficiency or introduce
noise. This filtering approach balances the benefits of abundant synthetic data with the need for
coherent and meaningful environment interactions.

2In ImagineBench, the backbone LLMs include Qwen-3-4B-Instruct-2507 (Qwen, 2025) and Llama-2-7b-
chat-hf (Touvron et al., 2023).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.3 TASK HIERARCHY AND EVALUATION PROTOCOLS

ImagineBench defines hierarchical task levels indicating various levels of tasks. Due to the space
constraint, we present and discuss each environment’s tasks in detail in Appendix D.1.

• Training: The instructions appeared in the real dataset. Including training tasks is to evaluate
whether the policy preserves the ability to perform these seen tasks.

• Rephrasing: The agent performs the same tasks as real data but receives paraphrased instructions
that are not present in the data. For example, the goal in offline data is move the blue ball to
the front of the red ball, while the paraphrased goal could be I really dislike how the red ball is
positioned in front of the blue ball. Could you exchange their places?

• Easy: The agent is tasked with different manipulation tasks that do not exist in the dataset,
requiring the agent to generalize to easy, unseen tasks.

• Hard: The agent faces tasks substantially different from those in the offline dataset, which require
a complex composition of behaviors, such as “Gather all balls together”, and “Move five balls to
a straight line” in the CLEVR-Robot environment.

Evaluation protocols. We evaluate performance in ImagineBench using two primary metrics: success
rate and task reward. ImagineBench provides specific success criteria for each task (e.g., achieving a
specific positional accuracy in manipulation or consistent directional velocity for HalfCheetah). For
detailed definitions of the completion criteria, please refer to Appendix D.3. Furthermore, each task
is equipped with a designated reward function.

5 EXPERIMENT

In this section, we conduct experiments to address three key questions regarding ImagineBench: (1)
How do existing offline RL methods perform on the tasks of ImagineBench (Sec. 5.2)? (2) For novel
tasks, how does training with imaginary rollouts compare to training with real environment-collected
rollouts (Sec. 5.2)? (3) How is the quality of the LLM-imaginary rollouts (Sec. 5.3)? (4) Can
imaginary rollouts facilitate online adaptation (Sec. 5.4)? We first introduce the experimental setting.

5.1 EXPERIMENT SETTING

Baselines. We consider representative offline RL methods, including: (1) BC, a supervised learning
baseline that directly imitates actions from the dataset. (2) CQL (Kumar et al., 2020), which learns
a conservative Q-function to prevent the policy from overestimating expected returns. (3) BCQ
(Fujimoto et al., 2019), which employs perturbation networks to generate conservative policy updates
near offline data. (4) TD3+BC (Fujimoto & Gu, 2021), which combines TD3’s ((Fujimoto et al.,
2018)) stability with BC constraints to enforce similarity to demonstrated behavior. (5) PRDC (Ran
et al., 2023), which uses a tree-search method to regularize the policy toward the nearest state-action
pairs in the offline data. (6) COMBO (Yu et al., 2021), which uses ensemble environment models to
enforce uncertainty-aware policy learning. (7) SAC (Haarnoja et al., 2018), which is originally an
online RL algorithm, can be applied in the offline setting for comparison.

Due to the varying application scope of different algorithms, we evaluate algorithms (BC, CQL, BCQ,
TD3+BC, PRDC, COMBO) on MuJoCo, LIBERO, and Meta-world, and algorithms (BC, BCQ,
CQL, SAC) on CLEVR-Robot and BabyAI. ‘w/ IR’ represents the methods trained with both real
and imaginary rollouts, while ‘w/o IR’ represents methods trained solely on real rollouts.

Implementation details. All offline RL methods are implemented based on OfflineRL (Team, 2021)
and d3rlpy (Seno & Imai, 2022), two well-established repositories. Policy optimization relies on
the Adam optimizer (Kingma & Ba, 2015). Performance metrics are averaged across results from
the final five training checkpoints. Unless otherwise specified, baselines encode natural language
instructions using BERT (Devlin et al., 2019), and concatenate the language encoding with the
environment observation. Offline RL training employs three random seeds to validate robustness.
Each training batch uniformly samples equal proportions of data from the real and LLM-imaginary
datasets. All experiments are executed on 64 AMD EPYC 9374F 32-core processors, 8 NVIDIA
GeForce RTX 4090 GPUs, and 1TB of RAM to facilitate parallelized computation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

M
uJ

oC
o

BC BCQ CQL PRDC TD3+BCCOMBO0

20

40

60

80

Su
cc

es
s R

at
e

(%
) 76.0

68.0
75.3 74.0

51.3
58.7

78.7 78.0 78.0
82.7

62.0

72.7

BC BCQ CQL PRDC TD3+BCCOMBO0

10

20

30

40

50

60

70

Su
cc

es
s R

at
e

(%
) 65.3

47.3

70.7

62.7

53.3 54.7
59.3

67.3 68.0

44.7

63.3 63.3

BC BCQ CQL PRDC TD3+BCCOMBO0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

35.3

0.0

65.3

44.7

23.320.7

88.7

30.7

98.7

0.7

30.0

44.7

BC BCQ CQL PRDC TD3+BCCOMBO0

10

20

30

40

50

Su
cc

es
s R

at
e

(%
)

34.0
30.0 28.7

39.3

34.0

45.3

27.3

21.3

34.0
38.0 36.7

34.0

w/ IR
w/o IR

L
IB

E
R

O

BC BCQ CQL PRDC TD3+BCCOMBO0

20

40

60

80

Su
cc

es
s R

at
e

(%
) 84.7

88.7

37.3
33.3

10.0 11.3
6.0

1.3
5.3 2.0

70.0

5.3

BC BCQ CQL PRDC TD3+BCCOMBO0

10

20

30

40

50

Su
cc

es
s R

at
e

(%
) 49.3

37.3

27.3

22.0

13.3

5.3 4.0
2.0

4.7
2.7

33.3

0.0
BC BCQ CQL PRDC TD3+BCCOMBO0

5

10

15

20

25

30

Su
cc

es
s R

at
e

(%
) 28.7

6.7

10.7
8.0

0.7
2.0

4.0
2.0

3.3

0.0

18.7

0.0
BC BCQ CQL PRDC TD3+BC COMBO0

1

2

3

4

5

6

7

Su
cc

es
s R

at
e

(%
)

1.3

5.3

3.3

6.7

4.7

2.0

4.0

2.0

5.3

0.0

4.7

2.0w/ IR
w/o IR

M
et

a-
w

or
ld

BC BCQ CQL PRDC TD3+BCCOMBO0

10

20

30

40

50

Su
cc

es
s R

at
e

(%
)

32.032.0

12.2

6.5
10.5

6.3

36.5

45.1

32.7
35.7

4.1 4.8

BC BCQ CQL PRDC TD3+BCCOMBO0

5

10

15

20
Su

cc
es

s R
at

e
(%

)
14.8

10.8
12.4

5.1

7.8
6.4

20.2

17.3
18.719.0

2.5 1.7

BC BCQ CQL PRDC TD3+BC COMBO0

2

4

6

8

Su
cc

es
s R

at
e

(%
)

3.4

0.9

8.0

1.0

3.6
4.3

3.5

1.9

4.2

2.2

0.7
0.3

BC BCQ CQL PRDC TD3+BC COMBO0

1

2

3

4

Su
cc

es
s R

at
e

(%
)

2.3

1.7

3.2

1.5

3.3

2.0

2.9

3.3 3.5

2.1

0.0 0.0

w/ IR
w/o IR

C
L

E
V

R
-R

ob
ot

BC BCQ CQL SAC0
10
20
30
40
50
60
70

Su
cc

es
s R

at
e

(%
)

55.8
63.1

51.4

67.8

40.6

64.5

5.7 8.0

BC BCQ CQL SAC0

10

20

30

40

Su
cc

es
s R

at
e

(%
)

38.8

26.3

42.1

27.9

38.7

27.0

11.1 13.2

BC BCQ CQL SAC0
5

10
15
20
25
30
35

Su
cc

es
s R

at
e

(%
) 33.5

17.5
22.1

16.6

34.8

18.3

8.4
10.5

BC BCQ CQL SAC0
1
2
3
4
5
6
7

Su
cc

es
s R

at
e

(%
) 6.2

1.4

6.2

0.8

3.7

1.4

0.1 0.5

w/ IR
w/o IR

B
ab

yA
I

BC BCQ CQL SAC0

20

40

60

80

Su
cc

es
s R

at
e

(%
) 81.2 80.0

47.0

66.8 67.8 72.0

4.8 5.2

(a) Training
BC BCQ CQL SAC0

10
20
30
40
50
60
70
80

Su
cc

es
s R

at
e

(%
) 76.0

5.2

47.8

3.7

65.8

4.8 5.7 3.7

(b) Rephrasing
BC BCQ CQL SAC0

5
10
15
20
25
30
35
40

Su
cc

es
s R

at
e

(%
)

20.3
17.7

38.5

18.5 19.2
15.7

25.0 25.7

(c) Easy
BC BCQ CQL SAC0.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5

Su
cc

es
s R

at
e

(%
)

1.8
1.4

1.7

2.2
2.5 2.5 2.7

1.3

w/ IR
w/o IR

(d) Hard

Figure 4: Success rate bars of different methods on various levels of goals, with imaginary rollouts
generated by Qwen-3-4B. The x-axis denotes the offline RL algorithm, and the y-axis denotes the
success rate. ’w/ IR’ stands for training with both real and imaginary rollouts. The success rate is
averaged over the last five checkpoints, and the error bars are the half standard deviation over three
seeds. We provide the overall comparison and results for Llama-2-7B in Appendix F.2 and F.3.
5.2 BENCHMARK RESULTS

Main results. Fig. 4 presents the benchmark results of various offline RL algorithms trained with
and without imaginary rollouts on ImagineBench tasks. We have several main findings from the
results. First, policies trained with imaginary rollouts generally perform better on novel tasks than
baseline methods. This suggests that LLM-based knowledge transfer enhances generalization and
skill acquisition in unseen environments. Besides, BC, CQL, and BCQ outperform other methods
across most tasks. BCQ and CQL achieve superior sample efficiency and stability in high-dimensional
action spaces. As SAC is mainly used in online RL, it fails to obtain high scores in the offline cases.
There is clear performance degradation on hard tasks, with most methods’ success rates below 10%
on Meta-World, CLEVR-Robot, and BabyAI. This gap could stem from the suboptimal reward
function with current LLM rollouts, which may fail to encode task-specific constraints or long-
horizon dependencies. All algorithms struggle with novel tasks on LIBERO due to its combinatorial
complexity, indicating a need for advanced exploration strategies or hierarchical representations.

BC BCQ CQL TD3+BC PRDC COMBO0

10

20

30

40

50

60

70

80

Su
cc

es
s R

at
e

(%
)

Real
w/ IR
w/o IR

(a) Rephrasing
BC BCQ CQL TD3+BC PRDC COMBO0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Real
w/ IR
w/o IR

(b) Easy
BC BCQ CQL TD3+BC PRDC COMBO0

20

40

60

80

Su
cc

es
s R

at
e

(%
)

Real
w/ IR
w/o IR

(c) Hard

Figure 5: Comparison of training with LLM-imaginary and real environmental rollouts on novel
tasks. ‘Real’ stands for the method trained with real environmental rollouts for novel tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Success case. Goal: Employ the gripper to seize the salad_dressing and transfer the salad_dressing to the basket.

(b) Failure case. Goal: Employ the gripper to seize the alphabet_soup and transfer the alphabet_soup to the basket. Then
employ the gripper to seize the salad_dressing and transfer the salad_dressing to the basket

Figure 6: Examples of the LLM-imaginary rollouts for novel goals. The figures are obtained by
rendering the states in LLM-imaginary rollouts. We present more examples in Appendix F.1.

Performance of training with real rollouts on novel tasks. To investigate the improvement space
for future algorithm development, we conduct experiments by training a policy with real rollouts on
both training and novel tasks. Fig. 5 shows the experiment results, with ‘Real’ as the method trained
on real rollouts of both training and novel tasks. In most tasks, Real outperforms or gets close to the
methods trained with IR, resulting in 64.37% average success rate for the Real method and 35.44%
for methods with IR in hard tasks. One exception is CQL on the rephrasing task. This is because the
execution rollouts of the rephrasing task have already existed the dataset of real rollouts, with only
the language expression of the instructions different. The conservative learning nature of CQL allows
it to focus on the state’s features, potentially enabling it to perform well on rephrasing even when
using only real rollouts for training tasks.

Model Qwen-3-4B Llama-2-7B

Metrics Legality Transition Success rate Legality Transition Success rate

Rephrasing 95.9 79.2 89.9 98.5 96.0 88.0

Easy 73.4 69.3 43.1 81.1 82.2 43.8

Hard 59.3 44.2 13.5 66.8 72.9 25.8

Table 2: Statistical analysis of the quality of LLM-imaginary rollouts. The reported results are the
LLM-imaginary rollouts for the BabyAI environment.

5.3 ANALYSIS ON LLM-IMAGINARY ROLLOUTS

We investigate the quality of the LLM-imaginary rollouts from four key metrics: (1) Transition
measures whether the LLM generates correct single-step transitions (e.g., an agent not moving too
far at one step); (2) Legality denotes if the generated states are legal (i.e., the states are); (3) Success
rate measures the ratios of the imaginary rollouts that successfully complete the given goals. Tab. 2
reports the quality metrics of LLM-imaginary rollouts generated in the BabyAI environment. Notably,
we observe an important result that larger backbone LLM (Llama-2-7B)’s generation quality clearly
outperforms the small model (Qwen-3-4B). This indicates a promising motivation that future
work could investigate using larger model for better LLM imagination. Besides, rephrasing
goals achieve high-quality rollouts, with success rate, transition correctness, and legality scores of
88.0%, 96.0%, and 98.5%, respectively. This suggests that the LLM, fine-tuned on prefixed goals,
generalizes effectively to semantically equivalent objectives. For novel (Hard) goals, consistency
drops to 25.8%, reflecting challenges in aligning rollouts with unseen task descriptions. However,
transition correctness (72.9%) and state legality (66.8%) remain above 65%, indicating that the LLM
largely adheres to environmental constraints even for complex goals.

Examples of the LLM-imaginary rollouts. Previously we investigate the quality of the imaginary
rollouts through statistics. To further investigate the quality of the generated rollouts, we present
examples of the imaginary rollouts in Fig. 6. We reset the environment to the generated state to
obtain the visualization image. We observe that the generated rollouts can generally reflect the given
goals. For example from the success case, the robot conducts the object manipulation as the language

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

goal required. However, there are still some mismatches when the the goal is complicated (e.g., first
pick A then pick B), where the LLM may generate wrong rollouts (e.g., simultaneous picking instead
of sequential execution, as shown in the failure case). Even so, the LLM-generated rollout catches
the meaning of the novel goal, and correctly demonstrates the tendency to pick up two objects.

5.4 POTENTIAL FOR ONLINE ADAPTATION

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Step ×105

20

40

60

80

Su
cc

es
s R

at
e

(%
)

Offline to Online
From Scratch

Figure 7: Performance of
training with online RL.

We suggest that online adaptation is the next step after training with
imaginary rollouts, as the policies trained with imaginary rollouts
may not be adequate for real-world deployment. To test this, we
initialize a CQL policy (on CLEVR-Robot) with imaginary rollouts
and then train it with PPO (Schulman et al., 2017) on Easy-level
tasks. Fig. 7 shows that offline-to-online training improves adapta-
tion speed and achieves higher asymptotic performance than online
training from scratch. This demonstrates that policies trained with LLM-imaginary rollouts provide
strong initialization for online adaptation.

6 FUTURE DIRECTION

While demonstrating promising results for acquiring novel skills without online environment inter-
actions, RL with imaginary rollouts is still in the early stage of research and requires algorithmic
development. We outline key directions for future research.

Better algorithm design for generating & utilizing imaginary rollouts. ImagineBench reveals a
performance gap between policies trained on real versus imaginary experience, which demonstrates
that simply applying a powerful LLM with a sophisticated offline RL algorithm is insufficient. Future
work could focus on better algorithm design to generate and handle these imaginary rollouts. For
example, it is important to enhance the quality and physical property of the LLM’s generative process,
transforming raw imagination into high-fidelity data. Additionally, the community should design
novel offline RL algorithms that are not merely consumers of this data but are specifically tailored to
its unique statistical properties, including its potential for bias, noise, and distributional shift.

Unbiased and fast online adaptation and continual learning. While RLIM reduces dependency on
real-world interactions, practical deployment still requires online adaptation to address imperfections
in LLM imagination. A key challenge is avoiding catastrophic forgetting of pre-trained knowledge
while rapidly fine-tuning policies with limited real interactions. Future research could consider
developing lightweight regularization techniques to preserve imaginary knowledge, meta-RL frame-
works for few-shot adaptation, or progressive distillation methods to compress multi-task policies.
Furthermore, designing bias correction mechanisms to disentangle inaccuracies in LLM-generated
rollouts during online updates could enhance sample efficiency and stability.

Vision-Language Models and Multi-Modal Imagination. Current benchmark mainly focuses
on the environment state represented by structural and numerical vectors. Extending RLIM to
broader domains, e.g., vision, requires integrating vision-language models capable of processing
and generating multi-modal rollouts. This entails addressing challenges such as aligning visual
observations with language instructions, generating spatially consistent action sequences from pixel
inputs, and handling partial observability in imagined states. Future work could explore cross-modal
attention mechanisms for joint rollout generation or develop hierarchical frameworks where high-level
language plans guide low-level visual motion generation.

7 CONCLUSION

In this work, we present ImagineBench, the first benchmark for RL with LLM-imaginary rollouts.
By providing standardized datasets across locomotion, robotic manipulation, and navigation envi-
ronments, ImagineBench establishes a unified framework to evaluate offline RL algorithms that
utilize the LLM-imaginary rollouts. The benchmark results reveal the limitations of existing offline
RL methods when applied to LLM-imaginary datasets, underscoring the necessity for algorithmic
innovations that better integrate LLM-generated knowledge. Beyond benchmarking, ImagineBench is
a resource to advance the development of agents that can not only execute predefined tasks but also
generalize to unseen ones, marking a foundational step toward robust embodied intelligence.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics and prioritizes responsible research practices. All
natural language instructions used in ImagineBench are carefully curated and sanitized to exclude
harmful, biased, or ethically problematic content, using both automated filtering and manual expert
review. The LLM-generated imaginary rollouts are released exclusively as numerical state-action
sequences—not as human-readable plans or executable code—to inherently limit potential misuse.
Our benchmark is built entirely on simulated environments (e.g., MuJoCo, Meta-World, BabyAI),
contains no human-subject data, and does not involve real-world deployment or personal informa-
tion. By design, ImagineBench supports open, reproducible research while incorporating structural
safeguards to align with principles of fairness, transparency, and societal benefit.

9 REPRODUCIBILITY STATEMENT

To support reproducibility, we provide a comprehensive anonymous codebase at https://
anonymous.4open.science/r/Imagine_Bench_anonymous-40CD, which includes
implementations of all environments, dataset loaders, offline RL baselines, and evaluation pro-
tocols used in this work. Detailed instructions for reproducing our main results are given in Appendix
E, including environment setup and training commands. The full datasets of real and LLM-imaginary
rollouts, along with task definitions and natural language instructions, are included in the supplemen-
tary materials; the download link has been omitted to preserve anonymity during double-blind review
but will be made publicly available upon acceptance.

REFERENCES

Atari, Inc. Atari 2600 home video computer system, 1977. Gaming console.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv, abs/1606.01540, 2016.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. In NeurIPS, 2021.

Xiong-Hui Chen, Ziyan Wang, Yali Du, Shengyi Jiang, Meng Fang, Yang Yu, and Jun Wang. Policy
learning from tutorial books via understanding, rehearsing and introspecting. In NeurIPS, 2024.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. In ICLR, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep
data-driven reinforcement learning. arXiv, abs/2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
NeurIPS, 2021.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In ICML, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In ICML, 2019.

Catherine Glossop, William Chen, Arjun Bhorkar, Dhruv Shah, and Sergey Levine. Cast: Counterfac-
tual labels improve instruction following in vision-language-action models. arXiv, abs/2508.13446,
2025.

10

https://anonymous.4open.science/r/Imagine_Bench_anonymous-40CD
https://anonymous.4open.science/r/Imagine_Bench_anonymous-40CD

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. Rl unplugged: A
suite of benchmarks for offline reinforcement learning. In NeurIPS, 2020.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms
and applications. arXiv, abs/1812.05905, 2018.

Brian Ichter, Anthony Brohan, and et al. Do as I can, not as I say: Grounding language in robotic
affordances. In CoRL, 2022.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. In NeurIPS, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In NeurIPS, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In NeurIPS, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv, abs/2005.01643, 2020.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36:44776–44791, 2023.

Haokun Liu, Yaonan Zhu, Kenji Kato, Atsushi Tsukahara, Izumi Kondo, Tadayoshi Aoyama, and Ya-
suhisa Hasegawa. Enhancing the llm-based robot manipulation through human-robot collaboration.
IEEE Robotics and Automation Letters, 9(8):6904–6911, 2024.

Fan-Ming Luo, Tian Xu, Hang Lai, Xiong-Hui Chen, Weinan Zhang, and Yang Yu. A survey on
model-based reinforcement learning. Science China Information Science, 67(2), 2024.

Jiafei Lyu, Kang Xu, Jiacheng Xu, Mengbei Yan, Jingwen Yang, Zongzhang Zhang, Chenjia Bai,
Zongqing Lu, and Xiu Li. ODRL: A benchmark for off-dynamics reinforcement learning. In
NeurIPS, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Jing-Cheng Pang, Si-Hang Yang, Xiong-Hui Chen, Xinyu Yang, Yang Yu, Mas Ma, Ziqi Guo, Howard
Yang, and Bill Huang. Object-oriented option framework for robotics manipulation in clutter. In
IROS, 2023a.

Jing-Cheng Pang, Xinyu Yang, Si-Hang Yang, Xiong-Hui Chen, and Yang Yu. Natural language
instruction-following with task-related language development and translation. In NeurIPS, 2023b.

Jing-Cheng Pang, Si-Hang Yang, Kaiyuan Li, Jiaji Zhang, Xiong-Hui Chen, Nan Tang, and Yang
Yu. KALM: knowledgeable agents by offline reinforcement learning from large language model
rollouts. In NeurIPS, 2024.

Rongjun Qin, Xingyuan Zhang, Songyi Gao, Xiong-Hui Chen, Zewen Li, Weinan Zhang, and Yang
Yu. NeoRL: A near real-world benchmark for offline reinforcement learning. In Sanmi Koyejo,
S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), NeurIPS, 2022.

Team Qwen. Qwen3 technical report. arXiv, abs/2505.09388, 2025.

Yuhang Ran, Yi-Chen Li, Fuxiang Zhang, Zongzhang Zhang, and Yang Yu. Policy regularization
with dataset constraint for offline reinforcement learning. In ICML, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Google Research. CLEVR-Robot environment. https://github.com/google-research/
clevr_robot_env, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv, abs/1707.06347, 2017.

Takuma Seno and Michita Imai. d3rlpy: An offline deep reinforcement learning library. Journal of
Machine Learning Research, 23(315):1–20, 2022.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. IEEE Trans.
Neural Networks, 9(5):1054–1054, 1998.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A. Riedmiller.
Deepmind control suite. arXiv, abs/1801.00690, 2018.

Polixir Team. OfflineRL: A collection of offline reinforcement learning algorithms.
https://github.com/polixir/OfflineRL?tab=readme-ov-file, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IROS, 2012.

Hugo Touvron, Louis Martin, and et al. LLaMA 2: Open foundation and fine-tuned chat models.
arXiv, abs/2307.09288, 2023.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan,
Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
Grandmaster level in starcraft II using multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019.

Peng-Yuan Wang, Jing-Cheng Pang, Chen-Yang Wang, Xu-Hui Liu, Tian-Shuo Liu, Si-Hang Yang,
Hong Qian, and Yang Yu. InCLET: in-context learning from language models can improve
embodied instruction-following. In AAMAS, 2025.

Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, and
Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. In ICLR,
2025.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In CoRL, 2019.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y. Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. MOPO: model-based offline policy optimization. In NeurIPS, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
COMBO: conservative offline model-based policy optimization. In NeurIPS, 2021.

12

https://github.com/google-research/clevr_robot_env
https://github.com/google-research/clevr_robot_env

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

Table of Contents
A Additional Related Work about Offline RL 14

B More Discussions about RL with Imaginary Rollouts 14

C More Details about Benchmark Environments 14
C.1 State Space Decomposition and Feature Attribution 14
C.2 Action Space Decomposition . 15

D More Details about Hierarchical Tasks 16
D.1 Full List of the Tasks in ImagineBench . 16
D.2 Reward Design for Each Task . 16
D.3 Determination for Task Completion . 20
D.4 Natural Language Instructions for Different Tasks 21

E Implementation Details 29
E.1 Introduction to the codebase . 29
E.2 Prompts for LLM Supervised Fine-tuning . 30

F Additional Results and Analysis 30
F.1 More Examples of the LLM-imaginary Rollouts 30
F.2 Overall Comparison of Offline RL Baselines 30
F.3 Results with Llama-2-7B as Generation Model 31
F.4 Training with Different Ratios of Imaginary Rollouts 31

G Broader Impact Statement 31

H Use of LLMs 32

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ADDITIONAL RELATED WORK ABOUT OFFLINE RL

This work considers utilizing offline RL algorithms to train the policy. Offline RL (Levine et al., 2020;
Fujimoto et al., 2019) enables agents to learn effective policies from static datasets without online
environment interactions. Early approaches to offline RL, such as BCQ (Fujimoto et al., 2019) and
BEAR (Kumar et al., 2019), addressed distributional shift by constraining learned policies to remain
close to the behavior policy through explicit policy regularization or uncertainty-based action clipping.
Subsequent advances introduced CQL (Kumar et al., 2020), which penalizes Q-value overestimation
for out-of-distribution actions, and implicit constraint methods like TD3+BC (Fujimoto & Gu, 2021)
that balance policy improvement with behavior cloning. Decision transformer (Chen et al., 2021)
has also explored leveraging trajectory-level optimization via sequence modelling. Despite these
advancements, offline RL remains constrained by dataset quality: policies trained on narrow or
non-diverse data often fail in unseen scenarios. Model-based RL (Luo et al., 2024) addresses this by
learning a dynamics model from offline data, enabling policy optimization through simulated rollouts.
Methods like MOPO (Yu et al., 2020) and MOReL (Kidambi et al., 2020) incorporate uncertainty
quantification to construct pessimistic models, mitigating model bias and distributional mismatch. In
this work, we utilize offline RL methods to train the policy, providing the benchmark results.

B MORE DISCUSSIONS ABOUT RL WITH IMAGINARY ROLLOUTS

Potential of RL with imaginary rollouts. Generalization is a long-standing problem in the area of
RL. The motivation of developing RLIM algorithms, is to leverage the general knowledge embedded
in the LLMs to facilitate RL policy’s generalization to unseen decision-making task. Previously
RL lacks such general knowledge for generalization. This way of using imaginary rollouts imitates
the human process of acquiring novel skills, i.e., imagining the process of the new objective, and
executing following the imagination. However, the quality of imaginary rollouts remain to be
improved, e.g., incorporating advancements in generative artificial intelligence techniques to better
align generated rollouts with novel tasks.

Better LLM imagination. The quality of imaginary rollouts remains a limiting factor, as current
LLMs often generate rollouts inconsistent with the given instructions. To address this, it is worth
considering improving LLM fine-tuning, integrating physics-based simulators to validate generated
rollouts, or developing iterative imagination procedure where policy learning and LLM generation
both get improvement. Additionally, scaling laws for LLM imagination, exploring how model size,
model type, prompt engineering, and affect rollout quality, also require systematic investigation.

C MORE DETAILS ABOUT BENCHMARK ENVIRONMENTS

C.1 STATE SPACE DECOMPOSITION AND FEATURE ATTRIBUTION

Meta-world This environment consists of a robotic gripper and several (2 at most) interactive objects,
where the state space represents the coordinate values of both the robotic gripper and the interactive
objects. The elements are in Tab. 3

CLEVR-Robot This environment contains five colored balls. The state space encodes the position of
five balls. The elements are in Tab. 4

BabyAI This environment is based on the grid world scenario containing an agent and a few different
objects. We use one room and place one item for all types of object. The state space represents each
item’s color and coordinate, together with extra information including agent position, carrying object
and door state. The elements are in Tab. 5

Libero The Libero environment controls a 3-dimensional robot arm to complete various manipulation
tasks. The state space is R44, consisting of 7 robot joint position values, 7 robot end effector position
values and 2 robot gripper joint position values, together with 28 position values of 4 different objects.
The elements are in Tab. 6.

MuJoCo We use mujoco HalfCheetah environment. This environment is a 2-dimensional robot
consisting of 9 body parts and 8 joints connecting them (including two paws). The state space is R18,
consisting of 9 position values and 9 velocities of the robot’s body parts. The elements are in Tab. 7.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Index Meaning Min Max
0 current x coordinate of robotic gripper -0.525 0.525

1 current y coordinate of robotic gripper 0.348 1.025

2 current z coordinate of robotic gripper -0.0525 0.7

3 current opening degree of robotic gripper -1.0 1.0

4 - 6 current x,y,z coordinate of First interactive objects -Inf Inf

7 - 10 current quaternion(s) of First interactive objects -Inf Inf

11 - 13 current x,y,z coordinate of Second interactive objects -Inf Inf

14 - 17 current quaternion(s) of Second interactive objects -Inf Inf

18 previous (last step) x coordinate of robotic gripper -0.525 0.525

19 previous (last step) y coordinate of robotic gripper 0.348 1.025

20 previous (last step) z coordinate of robotic gripper -0.0525 0.7

21 previous (last step) opening degree of robotic gripper -1.0 1.0

22 - 24 previous (last step) x,y,z coordinate of First interactive objects -Inf Inf

25 - 28 previous (last step) quaternion(s) of First interactive objects -Inf Inf

29 - 31 previous (last step) x,y,z coordinate of Second interactive objects -Inf Inf

32 - 35 previous (last step) quaternion(s) of Second interactive objects -Inf Inf

36 - 38 current x,y,z coordinate of goal position -Inf Inf

Table 3: State space decomposition of Meta-World environment.

Index Meaning Min Max
0 - 1 red ball x,y coordinate -Inf Inf

2 - 3 blue ball x,y coordinate -Inf Inf

4 - 5 green ball x,y coordinate -Inf Inf

6 - 7 purple ball x,y coordinate -Inf Inf

Table 4: State space decomposition of CLEVR-Robot environment.

C.2 ACTION SPACE DECOMPOSITION

Meta-world In Meta-World, the action space is a 2-tuple consisting of the change in 3D space of the
end-effector followed by a normalized torque that the gripper fingers should applyan. The elements
are in Tab.8

CLEVR-Robot In CLEVR-Robot, an action is pushing one certain ball to a certain direction. The
elements are in Tab.9

BabyAI In BabyAI, actions directly controls the agent. Possible actions include move, pick up, drop
and open. The elements are in Tab.10

Libero The Libero environment controls a 7-degree-of-freedom (DoF) PandaGripper using delta
pose control. The action space is R7. An action represents changes in the Cartesian position and
orientation of the robot, along with the gripper actuation.The elements are in Tab. 11.

MuJoCo The MuJoCo HalfCheetah robot’s torso and head are fixed, and torque can only be applied
to the other 6 joints over the front and back thighs, the shins, and the feet. The action space is R6. An
action represents the torques applied at the hinge joints. The elements are in Tab. 12.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Index Meaning Min Max
0 ball color 0 5

1 - 2 ball x,y coordinate 1 6

3 box color 0 5

4 - 5 box x,y coordinate 1 6

6 key color 0 5

7 - 8 key x,y coordinate 1 6

9 door color 0 5

10 - 11 door x,y coordinate 1 6

12 door close or not 0 1

13 - 14 agent x,y coordinate 1 6

15 carrying object type 5 7

16 carrying object color 0 5

Table 5: State space decomposition of BabyAI environment.

Index Meaning Min Max
0 - 6 joint position of the robot arm -Inf Inf

7 - 9 position of the robot end effector -Inf Inf

10 - 13 quaternion of the robot end effector -1 1

14 - 15 joint position of robot gripper -Inf Inf

16 - 18 position of alphabet soup -Inf Inf

19 - 22 quaternion of alphabet soup -1 1

23 - 25 position of cream cheese -Inf Inf

26 - 29 quaternion of cream cheese -1 1

30 - 32 position of salad dressing -Inf Inf

33 - 36 quaternion of salad dressing -1 1

37 - 39 position of basket -Inf Inf

40 - 43 quaternion of basket -1 1

Table 6: State space decomposition of LIBERO environment.

D MORE DETAILS ABOUT HIERARCHICAL TASKS

D.1 FULL LIST OF THE TASKS IN IMAGINEBENCH

Tab. 13 shows the task list of all tasks for each environment. We present some examples of natural
language instructions for these tasks in Appendix D.4.

D.2 REWARD DESIGN FOR EACH TASK

D.2.1 META-WORLD

The rewards for all tasks within the Meta-world environment are determined using the original
Meta-world environment rewards, supplemented by reward shaping techniques. The reward function
is defined as:

rt = rsuccess + (rot − rot−1)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Index Meaning Min Max
0 x-coordinate of the front tip -Inf Inf

1 z-coordinate of the front tip -Inf Inf

2 angle of the front tip -Inf Inf

3 angle of the back thigh -Inf Inf

4 angle of the back shin -Inf Inf

5 angle of the back foot -Inf Inf

6 angle of the front thigh -Inf Inf

7 angle of the front shin -Inf Inf

8 angle of the front foot -Inf Inf

9 velocity of the x-coordinate of front tip -Inf Inf

10 velocity of the z-coordinate of front tip -Inf Inf

11 angular velocity of the front tip -Inf Inf

12 angular velocity of the back thigh -Inf Inf

13 angular velocity of the back shin -Inf Inf

14 angular velocity of the back foot -Inf Inf

15 angular velocity of the front thigh -Inf Inf

16 angular velocity of the front shin -Inf Inf

17 angular velocity of the front foot -Inf Inf

Table 7: State space decomposition of MuJoCo environment.

Num Action
0 ∆x of the robotic gripper

1 ∆y of the robotic gripper

2 ∆z of the robotic gripper

3 opening degree of robotic gripper

Table 8: Action space decomposition of Meta-World environment.

rsuccess ∈ {10, 0} indicate whether the task has been successfully completed. rot stands for the original
Meta-world environment reward at time step t.

Additionally, there are two self-designed environments. In the Make-coffee task, it can be decomposed
into two sub-tasks: Coffee-push and Coffee-button-press. Similarly, the Locked-door-open task can
be separated into two sub-tasks: Door-unlock and Door-open. The variable ro represents the reward
associated with the task being performed.

D.2.2 CLEVR-ROBOT

For Training tasks and Rephrasing tasks, the distance-based reward function is defined as:
rt = rsuccess + (dt−1 − dt) ∗ 10

rsuccess ∈ {100, 0} indicate whether the task has been successfully completed. dt is the distance
between two balls.

For Easy tasks, sparse reward is utilized because the task can be and must be accomplished in a single
step. Specifically, rt = 1 when the action taken is desired; otherwise, rt = 0.

For Hard tasks, the reward function based on sub-goal is defined as:
rt = rsuccess + (gt−1 − gt) ∗ 10

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Num Action
0 - 3 push the red ball to right,back,left,front

4 - 7 push the red ball to right rear,left rear,right font,left font

8 - 11 push the blue ball to right,back,left,front

12 - 15 push the blue ball to right rear,left rear,right font,left font

16 - 19 push the green ball to right,back,left,front

20 - 23 push the green ball to right rear,left rear,right font,left font

24 - 27 push the purple ball to right,back,left,front

28 - 31 push the purple ball to right rear,left rear,right font,left font

32 - 35 push the cyan ball to right,back,left,front

36 - 39 push the cyan ball to right rear,left rear,right font,left font

Table 9: Action space decomposition of CLEVR-Robot environment.

Num Action
0 move left

1 move right

2 move up

3 pick up the object in current grid

4 drop carrying object in current grid

5 open door around agent

6 move down

Table 10: BabyAI env action space

rsuccess ∈ {10, 0} indicates whether the task has been successfully completed. The variable gt
represents the number of sub-goals completed at the time step t.

For Sequential-move, each sub task is a move task.

For Make-line, the task requires all five balls b1, . . . , b5 are placed in a sequential horizontal alignment.
A sub-task is positioning ball bi adjacent to bi+1 horizontally.

For Make-circle, the objective is to arrange all other balls in proximity to the green ball, with each
individual sub-task involving the placement of one additional ball adjacent to the green ball.

D.2.3 BABYAI

Reward of all tasks of BabyAI is calculated based on agent-object distance. The reward function is
defined as:

rt = rsuccess +
dt−1 − dt

d0

rsuccess ∈ {1−0.9× step count
max steps , 0} indicate whether the task has been successfully completed. dt stands

for the agent-object distance at time step t.

In task Goto, Pickup, Open, Go-wall, Go-center d is the Manhattan Distance between agent and
target object or position.

For Put-next, Open-go, Open-pick, Open-lock, the task can be divided into two sub tasks. So the
distance is defined as d = d1 + d2 + p. d1 is the Manhattan Distance between agent and object 1,
d1 = 0 if sub task 1 is accomplished. d2 is the Manhattan Distance between object 1 and object 2 if
sub task 1 has not been accomplished else the Manhattan Distance between agent and object 2. p is
penalty for not accomplishing sub task 1 and unwanted pickups.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Num Action
0 change in x-coordinate of the gripper

1 change in y-coordinate of the gripper

2 change in z-coordinate of the gripper

3 change in x-rotation of the gripper

4 change in y-rotation of the gripper

5 change in z-rotation of the gripper

6 gripper open and close control

Table 11: Action space decomposition of LIBERO environment.

Num Action
0 torque applied on the back thigh rotor

1 torque applied on the back shin rotor

2 torque applied on the back foot rotor

3 torque applied on the front thigh rotor

4 torque applied on the front shin rotor

5 torque applied on the front foot rotor

Table 12: Action space decomposition of MuJoCo environment.

For Put-line, Put-pile, d is defined as the sum of the grid number each object need to pass through to
form the shape of a line or a pile.

D.2.4 LIBERO

Reward of all Libero tasks is based on the distance between current state and target state. The reward
function is defined as:

rt = rsuccess + α · rdistance

The term rsuccess indicates whether the current task has been successfully completed. The agent
receives a rsuccess of +1 if it accomplishes a sub-task or the entire task. For Pick, Place and Reach
tasks, the agent only receives a +1 reward if it accomplishes the entire task successfully. While
for some complex manipulation tasks, such as Pick-and-place, Pick-out, Pick-and-place aside and
Sequential-pick-and-place, the agent first accomplishes a sub-task and then the next. For example, in
sequential-pick-and-place tasks, the agent grasps the object, places the object to the target position
and then repeats the same process for the next object. In these complex tasks, the agent receives a +1
reward if the current sub-task is successfully completed for the first time.

The term rdistance indicates the change in distance between current state and the target state, which can
also be written as dt − dt+1. For all Libero tasks, we use Manhattan Distance to calculate distance
between states. For Pick tasks and complex tasks with pick operation as current sub-task, distance is
calculated by the gripper position and the target object position. While for Place tasks and complex
tasks with place operation as current sub-task, distance is calculated by the object position and the
target position.

The term α is a weighting coefficient that balance rsuccess and rdistance.

D.2.5 MUJOCO

Reward of all MuJoCo tasks is based on the forward distance in the target direction, along with
control efficiency. The reward function is defined as:

rt = rforward + rcontrol

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Meta-world CLEVR-
Robot

BabyAI LIBERO MuJoCo

Training
task

Reach, Push,
Pick-place,

Button-press,
Door-unlock,
Door-open,

Window-open,
Faucet-open,
Coffee-push,

Coffee-button-press

Move Goto,
Pickup,
Open,

Put-next

Pick, Place Run-forward,
Run-backward,
Jump-forward,

Jump-backward

Rephrasing
task

Same as training (with rephrasing instructions)

Easy task Reach-wall, Push-wall,
Pick-place-wall,

Button-press-wall,
Door-lock, Door-close,

Window-close,
Faucet-close

One-step-
move

Open-go,
Open-
pick,

Go-wall,
Go-

center

Pick-and-
place,

Pick-and-
place-to-

unseen, Reach

Run-forward-
faster,

Run-backward-
faster

Hard task Make-coffee,
Locked-door-open,
Hammer, Soccer

Sequential-
move,

Make-line,
Make-
circle

Open-
lock,

Put-line,
Put-pile

Sequential-
pick-and-

place,
Pick-and-

place-aside,
Pick-out

Run-forward-
then-backward,
Run-backward-
then-forward,
Jump-in-place

Table 13: Full lists of tasks for each environment.

The term rforward is a reward for moving in the right direction. This term can also be written as
ωforward · dxdt , where ωforward is the forward reward weight (default is 1), dx is the displacement of the
tip in the right direction and dt is the time between actions (default is 0.05).

The term rcontrol is a negative reward using L2 norm of action at to penalize the robot for taking
actions that are too large. This term can also be written as −ωcontrol∥at∥22, where ωcontrol is set to 0.1
by default.

D.3 DETERMINATION FOR TASK COMPLETION

D.3.1 META-WORLD

• The metrics for evaluating success based on gripper-target distance utilized in Meta-world
environments are identical to those implemented in the original Meta-world environments.

• For Make-coffee and Locked-door-open, these two self-design task can be divided into two
distinct sub tasks. Consequently, the task is deemed successfully completed when both
sub-tasks are accomplished sequentially.

D.3.2 CLEVR-ROBOT

• Training tasks and Rephrasing tasks: these tasks are considered complete when the angular
relationship between the two balls satisfies the specified direction (such as left or right), and
the distance dt between them is less than 0.39.

• For Easy tasks, where a single-step action is required, the task is deemed successful if the
desired action is chosen; otherwise failed.

• For Hard tasks, the task can be segmented into a few sub tasks. The task is considered
complete if all sub tasks are completed, irrespective of the sequence in which they are
completed. For Sequential-move, each sub task is a move task. For Make-line, the task
requires arranging all five balls b1, . . . , b5 in a sequential horizontal line. A specific sub-task
involves aligning each pair of consecutive balls, bi and bi+1, horizontally. For the sub-task,
the angle deviation from the horizontal line should be less than π

6 . For Make-circle, the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

objective is to arrange all additional balls surrounding the green ball, where each individual
task involves placing one of the other balls adjacent to the green ball. The criterion for
”adjacent” is defined as having a distance d < 0.325 between the two balls.

D.3.3 BABYAI

• Goto, Go-wall, Go-center: the agent reaches the desired position.

• Pickup: the target object is picked up.

• Open: the door is opened.

• Put-next, Put-line, Put-pile: the three objects form the desired shape.

• Open-go, Open-pick, Open-lock: the task can be divided into two sub tasks. So the task is
considered to be complete if two sub task is completed in correct order.

D.3.4 LIBERO

• Pick: the task is considered completed if the robot gripper is close enough to the target
object and the position of the target object is changed compared with the last state. In these
tasks, completion judgment can be formally written as dt < ϵ and ∥Postobj−Post+1

obj ∥22 > 0,
where ϵ varies with different objects.

• Reach: the task is considered completed if the robot gripper is close enough to the target
object. For Place tasks, the task is considered completed if the object is close enough to
the target position. In these tasks, completion judgment can be formally written as dt < ϵ,
where ϵ varies with different objects.

• Pick-out: the task is considered completed if the object is far enough from the object’s initial
position. In these tasks, completion judgment can be formally written as dt > ϵ.

• For complex tasks in which the agent accomplishes different sub-tasks sequentially, the task
is considered completed if each sub-task is completed in given order.

D.3.5 MUJOCO

• Jump: the robot completes a jump operation in the right direction. The correctness of
direction can be judged by the symbol of cumulative distance in x-coordinate.

• Run and Run-faster: the cumulative distance in x-coordinate exceeds a pre-defined maximum
distance value. In these tasks, completion judgment can be formally written as

∑t
i=1 di >

dmax, where dmax varies with different tasks. For Run-faster tasks, dmax is a larger value
compared with that in Run tasks.

• Run-forward-then-backward and Run-backward-then-forward: the robot completes both run
forward and run backward operations.

• Jump-in-place: the robot completes a jump operation without a large cumulative distance in
x-coordinate. In this task, completion judgment can be formally written as

∑t
i=1 di < dmin.

D.4 NATURAL LANGUAGE INSTRUCTIONS FOR DIFFERENT TASKS

In this section, we present the natural language instructions for all tasks in ImagineBench for readers’
reference. Note that here we only present partial natural language instructions for each task for
better reading purpose. Please check the full instruction list in our open-sourced codebase.

D.4.1 META-WORLD

Training We use 20 different natural language expressions as training goals generated by ChatGPT
to express different target configuration.

• Reach task

1. Relocate the gripper to the designated spot.
2. Position the gripper at the intended location.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• Push task
1. Employ the gripper to propel the target object towards its designated location.
2. Utilize the gripper to advance the target object to its intended position.

• Pick-place task
1. Employ the gripper to seize the designated item and transfer it to the specified position.
2. Utilize the gripper for grasping the desired object and relocating it to the designated

spot.
• Button-press task

1. Utilize the gripper to firmly depress the button.
2. Apply pressure with the gripper to activate the button.

• Door-unlock task
1. Employ the gripper to turn the door’s unlocking mechanism.
2. Utilize the gripper to manipulate the lock and open the door.

• Door-open task
1. Utilize the gripper to grasp the door handle and pull it open.
2. Employ the gripper to grip the door handle and swing it outward.

• Window-open
1. Employ the clamping tool to pry the window open.
2. Utilize the grabbing device for window aeration.

• Faucet-open
1. Employ the gripping tool to turn the faucet on.
2. Utilize the clamp to twist the tap open.

• Coffee-push
1. Employ the gripper to nudge the coffee beneath the coffee machine.
2. Utilize the gripper to slide the coffee under the coffee machine.

• Coffee-button-press
1. Utilize the gripper to depress the button on the coffee machine.
2. Employ the gripper to push down the button of the coffee machine.

Rephrasing We use 20 different natural language expressions as the novel goals generated by
ChatGPT to express different target configuration.

• Reach task
1. I’m dissatisfied with the gripper’s current location; kindly adjust it to reach the desired

position.
2. The gripper’s current placement doesn’t suit me; could you relocate it to the target

position?
• Push task

1. The current location of the target object isn’t satisfactory to me; please utilize the
gripper to nudge it to the target position.

2. I’m not pleased with where the target object is currently situated; could you employ
the gripper to guide it to the intended position?

• Pick-place task
1. I have a negative sentiment towards the current placement of the object of interest;

therefore, I intend to utilize the gripper mechanism to lift it and relocate it to the desired
destination.

2. The current arrangement of the designated item is unsatisfactory to me, prompting me
to employ the gripper for the purpose of relocating it to the specified destination.

• Button-press task

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

1. I have a displeasure towards the inactive state of the button; therefore, I intend to utilize
the gripper to apply pressure and activate it in order to open it.

2. The current state of the button being inactive is not to my liking, prompting me to use
the gripper to press it and initiate its function of opening.

• Door-unlock task

1. I despise when the door is locked; could you employ the gripper to unlock it?
2. I loathe it when the door is locked; kindly utilize the gripper to release it?

• Door-open task

1. I detest when the door is closed; could you utilize the gripper to open it, please?
2. I can’t stand it when the door is closed; kindly employ the gripper to open it for me?

• Window-open task

1. I dislike it when the window is shut; could you kindly employ the gripper to unlatch it?
2. I have a strong aversion to the closed window; would you mind utilizing the gripper to

open it?

• Faucet-open task

1. I dislike it when the faucet is shut; could you kindly utilize the gripper to turn it on?
2. I have a strong aversion to the closed faucet; would you mind employing the gripper to

open it?

• Coffee-push task

1. I despise the coffee’s current location; utilize the gripper to shift it to the desired spot.
2. The coffee’s present placement irks me; employ the gripper to relocate it to its intended

position.

• Coffee-button-press task

1. I believe the coffee machine shouldn’t be switched off; utilize the gripper to press its
button and activate it.

2. I disagree with the coffee machine being off; employ the gripper to push its button and
power it up.

Easy We use 20 different natural language expressions as the novel goals generated by ChatGPT to
express different target configuration. Natural language instruction can be one of the following:

• Reach-wall task

1. Adjust the gripper’s position to reach the designated target, keeping in mind the
obstructing wall.

2. Maneuver the gripper towards the desired location, taking into consideration the
presence of a barrier.

• Push-wall task

1. Employ the gripper to propel the target object towards the designated location, noting
the nearby wall obstructing the path.

2. Utilize the gripper to push the target object towards its destination, recognizing the
presence of a wall blocking the middle of the path.

• Pick-place-wall task

1. Utilize the gripper apparatus to grasp the designated object and transfer it to the
intended position, notwithstanding the obstruction posed by a wall at the target site.

2. Employ the gripper mechanism to seize the desired item and relocate it to the specified
spot, recognizing the hindrance presented by a wall obstructing the target destination.

• Button-press-wall task

1. Employ the gripper to depress the button, yet a wall has emerged, obstructing access.
2. Utilize the gripper for pushing the button, only to encounter an impediment in the form

of a wall.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

• Door-lock task

1. Utilize the gripper to secure the door shut.
2. Employ the gripper to fasten the door securely.

• Door-close task

1. Employ the gripper to shut the door.
2. Utilize the gripper to seal the door.

• Window-close task

1. Utilize the gripper to shut the window.
2. Employ the gripper to seal the window.

• Faucet-close task

1. Utilize the gripper to shut off the faucet.
2. Employ the gripper to seal the faucet.

Hard We use 20 different natural language expressions as the novel goals generated by ChatGPT to
express different target configuration. Natural language instruction can be one of the following:

• Make-coffee task

1. Utilize the gripper to position the coffee mug beneath the coffee machine nozzle,
ensuring proper alignment.

2. Employ the gripper mechanism to slide the coffee cup into place beneath the coffee
machine’s dispenser.

• Locked-door-open task

1. Would you kindly unlock and open the door using the gripper?
2. Please utilize the gripper to unlock and then open the door.

• Hammer task

1. Utilize the gripper to grasp the hammer and strike the nail at the designated spot.
2. Employ the gripper for seizing the hammer and driving the nail into the target location.

• Soccer task

1. Utilize the gripper to propel the football into the goal at the designated spot.
2. Employ the gripper mechanism to push the football into the goal at the specified

location.

D.4.2 CLEVR-ROBOT

Training/Rephrasing We use 40 different natural language expressions as the novel goals generated
by ChatGPT to express different target configuration. For example, if we take a goal configuration
such as “red ball and blue ball”, its corresponding natural language instruction can be one of the
following:

• I can’t stand the red ball ahead of the blue one. Could you switch the positions of them?

• The sight of the red ball ahead of the blue one bothers me. Can we reverse their order?

• I really dislike how the red ball is positioned in front of the blue ball. Could you exchange
their places?

• It annoys me to see the red ball in front of the blue ball. Can we swap them around?

• Seeing the red ball ahead of the blue ball fills me with frustration. Let’s switch them.

• The placement of the red ball in front of the blue ball is something I detest. Can you flip
them?

Easy In easy task, the agent needs to move one ball to a specific direction. The natural language goal
can be one of the following:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• Move the ball backward, it’s red.
• Push the red ball in reverse.
• Back up the red ball, please.
• Shift the red ball backwards.
• Can you move the red ball backwards?
• Retract the red ball, moving it backwards.

Hard We designed 4 types of completed unseen tasks: combination of two simple tasks, combination
of three simple tasks, object arrangement task, and object collection task.

• Natural language sentence patterns used in combination of simple tasks (Using “red ball
behind blue ball” as goal configuration):

1. Push the red ball behind the blue ball.
2. Move the red ball behind the blue ball.

• Combination of two simple tasks: Push the red ball behind the blue ball and move the green
ball behind the purple ball.

• Combination of three simple tasks: Push the red ball behind the blue ball and move the
green ball to the left of the purple ball and keep the cyan ball in front of the red ball.

• Object arrangement task
1. Place the balls horizontally, lining them up from left to right, in the order of red, blue,

green, purple, and cyan.
2. Set up the balls in a row from left to right, with red, blue, green, purple, and cyan in

sequence.
• Object collection task

1. Position all the other balls around the green ball, considering it as the circle’s focal
point.

2. Use the green ball as the nucleus of the circle, arranging the rest around it.

D.4.3 BABYAI

Training We use 40 different natural language expressions as training goals generated by ChatGPT to
express different target configuration. For example, if we take a goal configuration such as “red ball,
blue key, green door”, its corresponding natural language instruction can be one of the following:

• Goto task
1. go to the red ball.
2. move to the red ball.
3. head toward the red ball.
4. walk to the red ball.
5. proceed to the red ball.
6. navigate to the red ball.

• Open task
1. open the green door.
2. please open the green door.
3. could you open the green door?
4. unlock and open the green door.
5. push the green door open.
6. pull open the green door.

• Pickup task
1. pick up the red ball.
2. grab the red ball.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

3. pick up the ball that is red.
4. retrieve the red ball.
5. lift the red ball.
6. take hold of the red ball.

• Put-next task
1. put the red ball next to the blue key.
2. place the red ball beside the blue key.
3. move the red ball close to the blue key.
4. set the red ball adjacent to the blue key.
5. position the red ball near the blue key.
6. arrange the red ball alongside the blue key.

Rephrasing We use 10 different natural language expressions as the novel goals generated by
ChatGPT to express different target configuration. For example, if we take a goal configuration such
as “red ball, blue key, green door”, its corresponding natural language instructions can be one of the
following:

• Goto task
1. proceed in the vicinity of the red ball.
2. move yourself toward the direction of the red ball.

• Open task
1. leave the green door open.
2. push the green door to open it fully.
3. let the green door remain open.
4. move aside the green door to open it.
5. permit the green door to stay ajar.
6. manipulate the green door into an open state.

• Pickup task
1. grip the red ball.
2. snag hold of the red ball.
3. clasp the red ball.
4. reach over and take the red ball.
5. obtain and hold the red ball.
6. gather the red ball into your hands.

• Put-next task
1. position the red ball right alongside the blue key.
2. ensure the red ball is closely placed beside the blue key.
3. make the red ball sit immediately next to the blue key.
4. arrange the red ball neatly beside the blue key.
5. move the red ball so that it is perfectly adjacent to the blue key.

Easy

• Open-go task
– open the door, then goto any object.

• Open-pick task
– open the door, then pick up any object.

• Go-wall task
– goto the side of the wall.

• Go-center task

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

– goto the center of the room.

Hard

• Open-lock task

– pick up the key, then open the door.

• Put-line task

– put the three items in a line.

• Put-pile task

– gather the three items into a pile.

D.4.4 LIBERO

Training We use 20 different natural language expressions as training goals generated by ChatGPT
to express different target configuration. For example, if we take a goal configuration such as
“alphabet soup”, its corresponding natural language instruction can be one of the following:

• Pick task

1. Employ the gripper to seize the alphabet soup.
2. Utilize the gripper for grasping the alphabet soup.

• Place task

1. Transfer the alphabet soup to the basket.
2. Shift the alphabet soup to the basket.
3. Position the alphabet soup to the basket.
4. Move the alphabet soup to the basket.
5. Place the alphabet soup to the basket.
6. Relocate the alphabet soup to the basket.

Rephrasing We use 10 different natural language expressions as novel goals generated by ChatGPT
to express different target configuration. For example, if we take a goal configuration such as
“alphabet soup”, its corresponding natural language instruction can be one of the following:

• Pick task

1. Employ the gripper tool to clasp the alphabet soup.
2. Utilize the gripping mechanism to hold the alphabet soup.

• Place task

1. Transport the alphabet soup to the basket.
2. Insert the alphabet soup into the basket.

Easy In easy task, the agent needs to complete some unseen manipulation tasks. For example, if we
take a goal configuration such as “alphabet soup, cream cheese”, its corresponding natural language
instruction can be the following:

• Pick-and-place task

– Employ the gripper to seize the alphabet soup and transfer the alphabet soup to the
basket.

• Pcik-and-place-unseen task

– Employ the gripper to seize the alphabet soup and transfer the alphabet soup to the
cream cheese.

• Reach task

– Employ the gripper to get close to the alphabet soup.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Hard We design 3 types of unseen and complex tasks: combination of two simple tasks (Sequential-
pick-and-place), high-level language comprehension task (Pick-and-place-aside, Sequential-pick-
and-place-all) and safe task (Pick-out). For example, if we take a goal configuration such as
“alphabet soup, cream cheese” for combination of two easy tasks, “alphabet soup, cream cheese,
salad dressing” for high-level language comprehension task and “alphabet soup” for safe task, its
corresponding natural language instruction can be the following:

• Sequential-pick-and-place task

– Employ the gripper to seize the alphabet soup and transfer the alphabet soup to the bas-
ket. Then employ the gripper to seize the cream cheese and transfer the cream cheese
to the basket.

• Pick-and-place-aside task

– Employ the gripper to seize the alphabet soup and transfer the alphabet soup to the
other side.

• Sequential-pick-and-place-all task

– Employ the gripper to seize something and transfer it to the basket one by one until the
alphabet soup, cream cheese and salad dressing are all in the basket.

• Pick-out task

– The basket is on fire, employ the gripper to seize the alphabet soup in the basket and
transfer the alphabet soup out of the basket.

D.4.5 MUJOCO

Training We use 10 different natural language expressions as training goals generated by ChatGPT
to express different target configuration. Natural language instruction can be one of the following:

• Jump-forward task

1. Jump a step forward.

• Jump-backward task

1. Jump a step backward.
2. Jump a step back.

• Run-forward task

1. Run forward.
2. Run ahead.

• Run-backward task

1. Run backward.
2. Run back.

Rephrasing We use 10 different natural language expressions as novel goals generated by ChatGPT
to express different target configuration. Natural language instruction can be one of the following:

• Jump-forward task

1. Jump a step forth.
2. Jump one step ahead.

• Jump-backward task

1. Jump one step backward.
2. Jump one step back.

• Run-forward task

1. Speed forward.
2. Speed ahead.

• Run-backward task

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

1. Speed backward.
2. Speed back.

Easy In easy task, the agent needs to complete some novel locomotion tasks. Natural language
instruction can be one of the following:

• Run-forward-fast task
– Move forward faster.

• Run-backward-fast task
– Move backward faster.

Hard We design 2 types of unseen and complex tasks: combination of two simple run tasks (Run-
forward-then-backward, Run-backward-then-forward) and high-level language comprehension task
(Jump-in-place). Natural language instruction can be one of the following:

• Run-forward-then-backward task
– Move forward and slow down. Move backward.

• Run-backward-then-forward task
– Move backward and slow down. Move forward.

• Jump-in-place task
– Jump in the original position.

E IMPLEMENTATION DETAILS

E.1 INTRODUCTION TO THE CODEBASE

ImagineBench The ImagineBench codebase is a benchmark for evaluating reinforcement learning
algorithms that train the policies using both real data and imaginary rollouts from LLMs. In
ImagineBench codebase, we provide offline RL algorithms in imagineBench/algo directory, 5
environments for evaluation in imagineBench/envs directory, evalution method in imagineBench
/evaluations.py and data processing method in imagineBench/utils.py.

Dataset After getting Metaworld environment using imagine_bench.make(), both real data and
imaginary rollouts are available with env.get_dataset() function. Here is an example for getting
Metaworld real and rephrase dataset:

1 import imagine_bench
2

3 # Optional task_level: [’real’, ’rephrase’, ’easy’, ’hard’].
4 env = imagine_bench.make(’MetaWorld-v0’, level=’rephrase’)
5 real_data, imaginary_rollout_rephrase = env.get_dataset(level="

rephrase")
6

7 # Or you can use the dataset with other task levels.
8 env = imagine_bench.make(’MetaWorld-v0’, level=’easy’)
9 real_data, imaginary_rollout_easy = env.get_dataset(level="easy")

Training We provide an example for offline RL training with d3rlpy using MuJoCo environment and
its rephrase dataset:

1 import d3rlpy
2 import imagine_bench
3 from imagine_bench.utils import LlataEncoderFactory,

make_d3rlpy_dataset
4 from imagine_bench.evaluations import CallBack
5 env = imagine_bench.make(’MuJoCo-v0’, level=’rephrase’)
6 env_eval = imagine_bench.make(’MuJoCo-v0’, level=’rephrase’)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

7 real_data, imaginary_rollout_rephrase = env.get_dataset(level="
rephrase")

8 dataset = make_d3rlpy_dataset(real_data,
imaginary_rollout_rephrase)

9

10 agent = d3rlpy.algos.TD3PlusBCConfig(
11 actor_encoder_factory=LlataEncoderFactory(feature_size

=256, hidden_size=256),
12 critic_encoder_factory=LlataEncoderFactory(

feature_size=256, hidden_size=256),
13).create(device="cuda:0")
14

15 callback = CallBack()
16 callback.add_eval_env(env_dict={’rephrase’: env_eval}, eval_num

=10)
17

18 agent.fit(
19 dataset=dataset,
20 n_steps=500000,
21 experiment_name="mujoco",
22 epoch_callback=callback.EvalCallback,
23)

Reproducibility Here is an example for reproduce our result on BabyAI environment using bc
algorithm and rephrase dataset:

1 python imagine_bench/train.py --algo bc --env BabyAI-v0 --ds_type
rephrase

E.2 PROMPTS FOR LLM SUPERVISED FINE-TUNING

• Dynamics prediction: You are an expert in identifying environmental dynamics change.
Current state is [st], after executing action [at], we get next state: [ANSWER].

• Rollout to goal translation: Translate the state/action rollout to textual goal.\n Roll-
out:[ROLLOUT]\n Goal: [ANSWER].

• Goal to rollout translation: Translate the textual goal to state/action rollout.\n Goal:[G].\n
Rollout: [ANSWER]

Here, [ANSWER] is the content that LLM should generate.

F ADDITIONAL RESULTS AND ANALYSIS

F.1 MORE EXAMPLES OF THE LLM-IMAGINARY ROLLOUTS

We present additional examples of the LLM-imaginary rollouts in in Fig. 8. The rendered figures show
that while the imaginary rollouts can reflect the object manipulation for simple goals, the consistency
between the rollouts and the goals reduces when the goal becomes more complicated. This results
call for better usage of the real rollouts to fine-tune LLM to generate high-quality imaginary rollouts.

F.2 OVERALL COMPARISON OF OFFLINE RL BASELINES

We present overall comparison of offline RL baselines in Tab. 14, as a reference for algorithm
selection in future application.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

(a) Success case1. Goal: Employ the gripper to seize the alphabet_soup and transfer the alphabet_soup to the basket.

(b) Success case2. Goal: Employ the gripper to seize the cream_cheese and transfer the cream_cheese to the basket.

(c) Failure case1. Goal: Employ the gripper to seize the salad_dressing and transfer the salad_dressing to the basket. Then
employ the gripper to seize the cream_cheese and transfer the cream_cheese to the basket.

(d) Failure case2. Goal: Employ the gripper to seize something and transfer it to the basket one by one until the
alphabet_soup, cream_cheese and salad_dressing are all in the basket.

Figure 8: Examples of the LLM-imaginary rollouts for novel goals. The figures are obtained by
rendering the states in LLM-imaginary rollouts.

F.3 RESULTS WITH LLAMA-2-7B AS GENERATION MODEL

F.4 TRAINING WITH DIFFERENT RATIOS OF IMAGINARY ROLLOUTS

We further investigate whether imaginary rollouts facilitate the acquisition of novel skills. To achieve
this, we conduct ablation study on the ratios of the imaginary rollouts used for offline RL training,
on BabyAI (rephrasing). As shown in Fig. 10, with larger amount of imaginary rollouts, different
algorithms tend to get higher scores. This result serves as evidence that LLM-imaginary rollouts can
effectively improve the performance on the novel tasks.

G BROADER IMPACT STATEMENT

The development of RLIM holds potential for advancing adaptable and sample-efficient AI systems,
with applications covering robotics, autonomous systems, and assistive technologies. By reducing
reliance on costly real-world interaction data, RLIM could democratize access to advanced AI
training, enabling smaller organizations and researchers to innovate in resource-constrained settings.
The introduction of ImagineBench, an open-source benchmark, accelerates progress by standardizing
evaluation across diverse tasks, from robotic manipulation to navigation. However, challenges such as
computational costs from LLM fine-tuning and risks of synthetic data biases—which may propagate
into deployed systems—warrant careful consideration. Ethical concerns around autonomous decision-
making and environmental impacts of large-scale model training further underscore the need for
responsible development. By addressing these challenges, RLIM could pave the way for safer, more
generalizable AI agents capable of rapid adaptation in dynamic real-world environments, while its
emphasis on instruction-following aligns with human-centric AI design, enhancing accessibility for
non-expert users.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Llama-2-7B Train Rephrase Easy Hard
BC 65.96 ± 15.07 50.74 ± 17.13 35.22 ± 29.60 12.74 ± 11.28

BCQ 45.36 ± 19.68 42.08 ± 17.34 26.42 ± 19.87 11.56 ± 14.00

CQL 43.34 ± 21.41 37.28 ± 20.88 19.00 ± 10.14 11.74 ± 11.43

PRDC 42.57 ± 27.97 31.73 ± 22.90 31.20 ± 36.97 20.47 ± 11.46

TD3+BC 40.70 ± 30.21 28.03 ± 19.17 28.00 ± 30.37 16.83 ± 13.06

COMBO 27.87 ± 29.44 22.13 ± 27.27 21.77 ± 24.78 19.93 ± 10.50

SAC 5.40 ± 2.10 7.85 ± 4.25 16.70 ± 8.30 1.20 ± 0.80

Qwen-3-4B Train Rephrase Easy Hard
BC 67.78 ± 16.64 51.04 ± 17.98 25.96 ± 8.70 9.90 ± 12.23

BCQ 47.56 ± 16.25 43.04 ± 16.03 29.48 ± 20.59 8.62 ± 10.15

CQL 36.04 ± 22.77 35.78 ± 22.38 16.32 ± 12.68 9.64 ± 12.20

PRDC 40.40 ± 29.81 27.83 ± 23.21 32.07 ± 40.05 11.40 ± 11.25

TD3+BC 38.67 ± 29.98 30.47 ± 27.15 35.40 ± 44.76 14.27 ± 13.97

COMBO 45.20 ± 29.60 33.00 ± 24.86 16.87 ± 11.54 18.60 ± 13.40

SAC 5.25 ± 0.45 8.40 ± 2.70 16.70 ± 8.30 1.40 ± 1.30

Table 14: Overall comparison of offline RL baselines, with imaginary rollouts generated by Llama-2-
7B (first table) and Qwen-3-4B (second table).

H USE OF LLMS

In this work, LLMs were used in two ways: (1) Pre-trained LLM (Qwen-3-4B-Instruct-2507 and
Llama-2-7b-chat-hf) was fine-tuned on environment-collected rollouts to generate synthetic imaginary
rollouts for novel tasks, as described in Section 4.2; (2) Publicly available LLM services were used for
language polishing and grammatical refinement of the manuscript. The authors take full responsibility
for all content, including the generated rollouts and the final text.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

M
uJ

oC
o

BC BCQ CQL PRDC TD3+BCCOMBO0

20

40

60

80
Su

cc
es

s R
at

e
(%

)
72.7

68.0

76.774.0

53.3
58.7

72.7
78.0

74.7
82.7

69.3
72.7

BC BCQ CQL PRDC TD3+BCCOMBO0

10

20

30

40

50

60

70

Su
cc

es
s R

at
e

(%
)

56.0

47.3

70.0

62.7

45.3

54.7
60.7

67.3

50.0
44.7

60.763.3

BC BCQ CQL PRDC TD3+BCCOMBO0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
) 92.7

0.0

54.7

44.7

24.7
20.7

83.3

30.7

70.7

0.7

56.7

44.7

BC BCQ CQL PRDC TD3+BCCOMBO0

10

20

30

40

50

Su
cc

es
s R

at
e

(%
)

34.0
30.0

39.339.3

34.0

45.3

36.0

21.3

35.3
38.0

34.734.0

w/ IR
w/o IR

L
IB

E
R

O

BC BCQ CQL PRDC TD3+BCCOMBO0

20

40

60

80

Su
cc

es
s R

at
e

(%
)

79.3

88.7

22.0

33.3

5.3
11.3

5.3
1.3 1.3 2.0

10.7
5.3

BC BCQ CQL PRDC TD3+BCCOMBO0

10

20

30

40

50

Su
cc

es
s R

at
e

(%
) 48.7

37.3

21.322.0

5.3 5.3 4.7
2.0 3.3 2.7 3.3

0.0
BC BCQ CQL PRDC TD3+BCCOMBO0

5

10

15

20

Su
cc

es
s R

at
e

(%
) 20.7

6.7

1.3

8.0

5.3

2.0 1.3 2.0 2.7

0.0

6.7

0.0
BC BCQ CQL PRDC TD3+BCCOMBO0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Su
cc

es
s R

at
e

(%
)

14.0

5.3
6.7 6.7

8.7

2.0

16.7

2.0

8.0

0.0

10.7

2.0

w/ IR
w/o IR

M
et

a-
w

or
ld

BC BCQ CQL PRDC TD3+BCCOMBO0

10

20

30

40

50

60

Su
cc

es
s R

at
e

(%
)

41.2

29.9
26.8

23.5

37.8

29.2

49.7

60.4

46.1
51.0

3.6 5.9

BC BCQ CQL PRDC TD3+BCCOMBO0

5

10

15

20

25

30

35

Su
cc

es
s R

at
e

(%
)

25.8

12.4

27.3

14.2

25.5
23.2

29.8
32.1 30.829.5

2.4 2.9

BC BCQ CQL PRDC TD3+BCCOMBO0

2

4

6

8

10

12

14

Su
cc

es
s R

at
e

(%
)

12.0

6.0

10.8
9.7

12.5

5.4

9.0

6.6

10.6

3.2
1.9 1.8

BC BCQ CQL PRDC TD3+BCCOMBO0

2

4

6

8

10

12

14

16

Su
cc

es
s R

at
e

(%
)

6.2

3.4

5.8
4.5

6.0 5.6

8.7

7.0 7.2
8.0

14.4

0.0

w/ IR
w/o IR

C
L

E
V

R
-R

ob
ot

BC BCQ CQL SAC0
10
20
30
40
50
60
70

Su
cc

es
s R

at
e

(%
)

56.3
63.1

52.6

67.8

51.5

64.5

7.5 8.0

BC BCQ CQL SAC0

10

20

30

40

50

Su
cc

es
s R

at
e

(%
) 44.6

26.3

41.2

27.9

42.6

27.0

12.1 13.2

BC BCQ CQL SAC0
5

10
15
20
25
30
35

Su
cc

es
s R

at
e

(%
) 33.5

17.5
22.1

16.6

34.8

18.3

8.4
10.5

BC BCQ CQL SAC0

2

4

6

8

10

Su
cc

es
s R

at
e

(%
)

7.2

1.4

4.8

0.8

8.5

1.4
0.4 0.5

w/ IR
w/o IR

B
ab

yA
I

BC BCQ CQL SAC0

20

40

60

80

Su
cc

es
s R

at
e

(%
) 80.3 80.0

48.7

66.8 68.8 72.0

3.3 5.2

(a) Training
BC BCQ CQL SAC0

10
20
30
40
50
60
70
80

Su
cc

es
s R

at
e

(%
) 78.6

5.2

50.6

3.7

67.7

4.8 3.6 3.7

(b) Rephrasing
BC BCQ CQL SAC0

10

20

30

40

Su
cc

es
s R

at
e

(%
)

17.2 17.7

43.2

18.5 17.7 15.7

25.0 25.7

(c) Easy
BC BCQ CQL SAC0.0

0.5
1.0
1.5
2.0
2.5
3.0

Su
cc

es
s R

at
e

(%
)

2.3

1.4
1.2

2.2

1.5

2.5

2.0

1.3

w/ IR
w/o IR

(d) Hard

Figure 9: Success rate bars of different methods on various levels of goals, with imaginary rollouts
generated by Llama-2-7B. The x-axis denotes the offline RL algorithm, and the y-axis denotes the
success rate. ’w/ IR’ stands for training with both real and imaginary rollouts. The success rate is
averaged over the last five checkpoints, and the error bars are the half standard deviation over three
seeds. We provide the results for Qwen-3-4B in Sec. 5.2.

0% 20% 40% 60% 80% 100%0

20

40

60

80

Su
cc

es
s R

at
e

(%
)

5.2 7.0

28.8

53.2

82.2 78.6

(a) BC
0% 20% 40% 60% 80% 100%0

10
20
30
40
50
60

Su
cc

es
s R

at
e

(%
)

3.7 6.2

21.3
26.0

53.2 50.6

(b) BCQ
0% 20% 40% 60% 80% 100%0

10
20
30
40
50
60
70

Su
cc

es
s R

at
e

(%
)

4.8 8.7

24.2

43.5

66.7 67.7

(c) CQL

Figure 10: Success rate bars of different methods trained on various ratios imaginary rollouts. The
x-axis denotes the ratio of used imaginary offline RL data, and the y-axis denotes the success rate for
completing various natural language goals. The success rate is calculated based on the average of the
last five checkpoints, and the error bars stand for the half standard deviation over three random seeds.

33

	Introduction
	Related Work
	Background
	ImagineBench Details
	Benchmark Environments
	Dataset Collection
	Task Hierarchy and Evaluation Protocols

	Experiment
	Experiment Setting
	Benchmark Results
	Analysis on LLM-Imaginary Rollouts
	Potential for Online Adaptation

	Future Direction
	Conclusion
	Ethics Statement
	Reproducibility Statement
	 Appendix
	Additional Related Work about Offline RL
	More Discussions about RL with Imaginary Rollouts
	More Details about Benchmark Environments
	State Space Decomposition and Feature Attribution
	Action Space Decomposition

	More Details about Hierarchical Tasks
	Full List of the Tasks in ImagineBench
	Reward Design for Each Task
	Meta-world
	CLEVR-Robot
	BabyAI
	LIBERO
	MuJoCo

	Determination for Task Completion
	Meta-world
	CLEVR-Robot
	BabyAI
	LIBERO
	MuJoCo

	Natural Language Instructions for Different Tasks
	Meta-world
	CLEVR-Robot
	BabyAI
	LIBERO
	MuJoCo

	Implementation Details
	Introduction to the codebase
	Prompts for LLM Supervised Fine-tuning

	Additional Results and Analysis
	More Examples of the LLM-imaginary Rollouts
	Overall Comparison of Offline RL Baselines
	Results with Llama-2-7B as Generation Model
	Training with Different Ratios of Imaginary Rollouts

	Broader Impact Statement
	Use of LLMs

