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ABSTRACT

A central challenge in reinforcement learning (RL) is its dependence on exten-
sive real-world interaction data to learn policies. While recent work demon-
strates that large language models (LLMs) can help mitigate this limitation by
generating synthetic experience (noted as imaginary rollouts) for learning novel
tasks, this area is hindered by the absence of a standardized benchmark. To
bridge this gap, we propose ImagineBench, the first comprehensive benchmark
for evaluating offline RL algorithms that learn from both real rollouts and LLM-
imaginary rollouts. The key features of ImagineBench include: (1) datasets com-
prising environment-collected and LLM-imaginary rollouts with verified quality;
(2) diverse domains covering locomotion, robotic manipulation, and navigation
tasks; and (3) natural language task instructions of varying complexity to support
instruction-following policy learning. Through comprehensive experiments, we
find that simply applying existing offline RL algorithms yields suboptimal general-
ization on unseen tasks, achieving only 35.44% task completion on unseen tasks
compared to 64.37% for policies trained with real data. Meanwhile, the perfor-
mance varies with instruction complexity, confirming that ImagineBench provides
meaningful spectrum of task difficulty. Furthermore, we show that pre-training
with imaginary rollouts leads to superior asymptotic performance after online
fine-tuning. Based on these findings, ImagineBench identifies key directions
for future research, including improved exploitation of imaginary rollouts, effi-
cient online adaptation, continual learning, and extension to multi-modal task
settings. Our code is available at https://anonymous.4open.science/
r/Imagine_Bench_anonymous-40CD.

1 INTRODUCTION

Developing knowledgeable agents that can generalize to diverse, unseen tasks represents a critical
frontier in artificial intelligence. While reinforcement learning (RL) provides a framework for skill
acquisition (Silver et al., 2016; Mnih et al., 2015; Vinyals et al., 2019), its reliance on extensive
real-world interaction data constitutes a fundamental bottleneck for generalizing to novel tasks. In
contrast, humans efficiently acquire and rehearse new skills through mental imagination, without
direct physical interaction. Inspired by this capability, recent research has explored using Large
Language Models (LLMs) to generate synthetic experience, referred to as imaginary rollouts, for
learning novel tasks (Pang et al., 2024; Chen et al., 2024). This emerging paradigm, which we
formalize as Reinforcement Learning from Imaginary Rollouts (RLIM), involves fine-tuning an LLM
on existing environment data and then prompting it to generate synthetic rollouts for new tasks (see
Fig. 1), thereby eliminating the need for initial costly interactions.

Though learning from imaginary rollouts achieves preliminary successes in robotics manipulation
(Pang et al., 2024; Glossop et al., 2025), football playing (Chen et al., 2024), and browser automation
(Xu et al., 2025), progress in this area is hindered by the absence of a standardized evaluation.
Existing studies often employ custom environments and varied LLM architectures for algorithm
evaluation. The reported performance improvements may not reliably reflect their ability to effectively
utilize the foundation models’ knowledge due to inconsistent evaluation protocols. Furthermore,
the computational cost of fine-tuning LLMs for each new study presents a barrier to entry for many
researchers, slowing progress in the field.
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Figure 1: We benchmark the problem of RL with LLM-imaginary rollouts. The LLM is fine-tuned to
generate imaginary rollouts, followed by RL policy training using real and imaginary rollouts.

To address this gap, we introduce ImagineBench, the first comprehensive benchmark designed to
systematically evaluate offline RL algorithms that train a policy with both real rollouts and LLM-
imaginary rollouts. ImagineBench has three key features: (1) Datasets that include both real rollouts
collected from the environment, and imaginary rollouts generated by the fine-tuned LLMs, eliminating
the computational burden of LLM fine-tuning and ensuring consistent comparison. The quality of
the LLM-generated rollouts is verified by the (2) Diverse domains include locomotion, robotic
manipulation, and navigation. (3) Natural language instruction paired with the rollouts, which
are divided into various difficulty levels, supporting the research on instruction-following agents
(Pang et al., 2023b; Ichter et al., 2022). Through extensive experiments with state-of-the-art offline
RL algorithms, we demonstrate that while naively combining real and imaginary rollouts generally
improves performance on unseen tasks, there is still a clear gap on novel tasks, between the current
score (35.44%) and the performance of training with real rollouts (64.37%). This gap underscores
the need for novel algorithms to leverage LLM-generated rollouts better. Furthermore, we show that
pre-training with imaginary rollouts can enhance asymptotic performance after online fine-tuning,
highlighting its potential as a valuable resource.

Our contributions are as follows: We propose ImagineBench, the first benchmark for RL from
LLM-imaginary rollouts, complete with datasets, environments, and evaluation protocols. Based
on ImagineBench, we conduct comprehensive empirical study investigating baseline performance
and revealing the limitations of existing methods. Finally, we identify directions for future research
for RL from imaginary rollouts, including improved offline RL for synthetic data, efficient online
adaptation, continual learning, and extension to multi-modal tasks.

2 RELATED WORK

RL with LLM-imaginary rollouts. Recent advances in leveraging the general knowledge of LLMs
to build knowledgeable agents for interactive and physical tasks have established a promising research
frontier (Pang et al., 2024). The central challenge is that LLMs can not directly handle numerical
control signals for decision-making tasks (Pang et al., 2024; Liu et al., 2024). To address this,
researchers have explored using LLMs to generate imaginary decision-making rollouts that are then
used for RL policy training. For instance, KALM (Pang et al., 2024) fine-tunes LLMs to produce low-
level control rollouts, which are then used to train RL policies via offline RL algorithms. This approach
demonstrates how domain-specific knowledge embedded in LLMs can be effectively distilled to
handle novel tasks. Similarly, URI (Chen et al., 2024) employs LLMs to generate control trajectories
by prompting them with instructional texts from tutorial books, enabling policy training without
environmental interaction. AgentTrek (Xu et al., 2025) extends this paradigm to browser automation
by synthesizing task execution rollouts at scale, followed by imitation learning to train the agent.
Beyond low-level control, InCLET (Wang et al., 2025) introduces a framework where LLMs generate
textual imaginary rollouts, enhancing the agent’s ability to interpret natural language instructions
and derive task representations. While these studies highlight the potential of LLM-imaginary
rollouts, they focus on developing individual algorithms. In contrast, ImagineBench introduces the
comprehensive benchmark to systematically evaluate the algorithm performance, generalizability,
and limitations of RL methods training LLM-imaginary rollouts.

Existing benchmarks in RL. The rapid development of RL has given rise to a diverse array of
benchmarks. These benchmarks fall into three primary categories: online, offline, and off-dynamics,
each handling challenges within specific training paradigms. Online training benchmarks, such as
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Figure 2: Overview of ImagineBench, covering three key features: (1) datasets of both real and LLM-
imaginary rollouts, (2) diverse domains of environments, and (3) natural language instructions with
various task levels. Examples shown in the ‘Datasets’ panel are from the CLEVR-Robot environment.

Gym (Brockman et al., 2016), MuJoCo (Todorov et al., 2012), and the DMC (Tassa et al., 2018),
have long served as foundational tools for evaluating agents that learn through online interaction,
emphasizing exploration and sample efficiency in dynamic settings like Atari 2600 games (Atari, Inc.,
1977) and continuous control tasks. Meanwhile, the rise of offline RL promotes the development of
benchmarks like NeoRL (Qin et al., 2022), D4RL (Fu et al., 2020) and RL Unplugged (Gulcehre
et al., 2020), which contain large-scale, pre-collected datasets to evaluate agents’ ability to learn
from static data while mitigating distributional shift and extrapolation errors in domains ranging from
robotic manipulation to locomotion. Besides, off-dynamics benchmarks, including ODRL (Lyu et al.,
2024) and Meta-World ML1 (Yu et al., 2019), evaluate generalization under shifts in dynamics, such
as altered physical parameters or visual perturbations, challenging agents to adapt policies to unseen
environmental conditions. In contrast, ImagineBench is the first benchmark specifically designed to
evaluate how effectively RL algorithms that utilize LLM-imaginary rollouts, offering scenarios to
measure the benefits and limitations of utilizing LLM knowledge to build knowledgeable agents.

3 BACKGROUND

Reinforcement learning. We consider an RL problem where the agent completes natural language
instructions. The environment can be modeled as a goal-augmented Markov Decision Process (Sutton
& Barto, 1998; Pang et al., 2023a), represented by the tupleM = (S,A,P,R, γ,G), where S, A
denote the state space and action space, respectively. P denotes transition function of the environment,
R the reward function that evaluates the agent’s behavior, γ the discount factor, and G the set of
natural language goals. The objective of RL is to find a policy π : S × G → ∆(A) that maximize
the cumulative reward: J(π) = Eπ[

∑∞
t=0 γ

tr(st, at)]. This work focuses on environments with
structured, vectorized state spaces, where each dimension encodes interpretable, domain-specific
features. We call the state and action data collected from the environment the real environmental
rollouts, and the rollouts generated by LLM the imaginary rollouts.

Offline reinforcement learning with LLM-imaginary rollouts. Traditional offline RL focuses on
offline policy training from a static environmental dataset. In this paper, we consider RL with both
real and LLM-imaginary rollouts. Formally, consider we have (1) a real dataset D collected from the
real environment, and (2) a LLM-imaginary datasets1 DI , which is generated by LLMs. Both real
and imaginary datasets consist of paired language goals and corresponding decision-making rollouts:
{Gk, (sk0 , a

k
0 , s

k
1 , a

k
1 , · · · )}Kk=1. Here, the sequence (sk0 , a

k
0 , s

k
1 , a

k
1 , · · · ) represents a rollout of states

and actions (ski , a
k
i ) to complete the goal Gk. The primary objective is to find a policy that achieves

high rewards on unseen goal distributions (known as novel tasks), represented as G′.

4 IMAGINEBENCH DETAILS

ImagineBench involves a wide range of decision-making environments, including locomotion, manip-
ulation, and navigation. For each environment, ImagineBench provides two datasets as illustrated in
Sec. 3: a dataset of real rollouts collected from the environments, and a dataset of imaginary rollouts

1We will elaborate on how LLMs are trained to generate the rollouts in Sec. 4.2.
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generated by LLM. We will briefly introduce the benchmark environments in Sec. 4.1 and how the
datasets are constructed in Sec. 4.2. Last, Sec. 4.3 defines different levels of task complexity.

4.1 BENCHMARK ENVIRONMENTS

The Benchmark Environment panel in Fig. 2 shows the visualization of the environments used in
ImagineBench. We present the environment statistics in Tab. 1, and more details in Appendix C.

Meta-world (Yu et al., 2019) agent controls a Sawyer robot to manipulate objects, e.g., doors, drawers,
and windows. In novel tasks, the agent needs to manipulate, assuming that there is a wall in front of
the object. The state space is R91, encoding the robot’s joint angles and object positions/orientations,
while the action space is R4, controlling the gripper’s movement and open/close. The reward function
combines task (or sub-task) completion signals with a negative distance metric between the gripper
and target location.

CLEVR-Robot (Research, 2019) environment requires the agent to manipulate five colored balls to
reach a target configuration. The state space is R10, encoding the positions of five balls, with an action
space of 40-dimensional discrete actions, using one-hot vectors to specify directional movement for
each ball. The reward is calculated as a reduction in distance between the current state and the target
configuration compared to the previous step, adding a terminal reward for task completion.

BabyAI (Chevalier-Boisvert et al., 2019) is a gridworld environment, which modifies the original
environment’s language-conditioned navigation tasks with full observability. The state space is R17,
encoding object positions (agent, keys, doors, balls) using absolute grid coordinates and RGB at-
tributes. The action space comprises 7-dimensional discrete movement primitives (left/right/up/down)
and object interactions (pickup/drop/toggle). The rewards are calculated as the shortest-path distance
to the goal object, plus a sparse completion reward.

LIBERO (Liu et al., 2023) controls a robot arm to complete various manipulation tasks. LIBERO
originally consists of four task suites, each containing 10 tasks. ImagineBench uses LIBERO-Object
suite and additionally designs novel tasks such as sequential-pick-and-place. The state space is
R44, representing the joint position and object position/poses, while the action space of R7 specifies
joint angle deltas for arm movement and gripper open/close. Similar to Meta-world, we provide
distance-based reward to guide the agent to reach the target object, and terminal judgment when a
sub-task or the entire task is completed as the final step reward.

MuJoCo (Todorov et al., 2012) is a physics-based simulation platform widely used for continuous
control tasks in reinforcement learning. In our case, ImagineBench uses the HalfCheetah robot. The
state (R18) consists of positional values and velocities of different joints, while the action space (R6)
represents the torques applied to 6 robot joints. The reward function combines forward velocity
toward the target direction with control efficiency (minimizing joint torque costs).

Meta-world CLEVR-Robot BabyAI LIBERO MuJoCo
Observation space R91 R10 Z17 R44 R18

Action space R4 Discrete (40) Discrete (7) R7 R6

# of real rollout 20,000 100,000 19,200 29,780 16,000

# of IR (Rephrasing) 10,000 5,600 19,200 12,000 10,000

# of IR (Easy) 8,000 72,400 18,000 24,000 6,000

# of IR (Hard) 4,000 1,680 18,000 1,3000 9,000

Table 1: Statistics overview of environments. ‘# of IR’ stands for ‘Number of imaginary rollout’.

4.2 DATASET COLLECTION

The dataset collection procedure consists of two steps: (1) Real rollout collection from the environ-
ment. In this step, we first obtain an expert policy that can complete the given tasks with a high
success rate, and then use the expert policy to collect rollouts in the environment. Meanwhile, a
rollout is labelled with a natural language instruction when collected. (2) Imaginary rollout collection

4
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Figure 3: Illustration of the generation of LLM-imaginary rollouts. The LLM is first fine-tuned with
the environment data, and then prompted to generate the rollouts for novel tasks.

from LLM. In this step, the LLM is fine-tuned on the rollout-instruction pairs from the environment,
and then prompted to generate rollouts for novel tasks.

Real rollout collection. To collect real rollouts, we first obtain an expert policy specific to each
environment and then use the policy to collect rollouts: (1) Meta-world & CLRVR-Robot: First, train
an expert policy with PPO (Schulman et al., 2017), and collect an offline dataset of 20,000/100,000
rollout-goal pairs, each comprising state, action, and environment-built-in reward sequences for
completing natural language goals. (2) BabyAI: Employ a rule-based policy to generate 19,200
rollout-goal pairs, with rewards based on agent-target distance. (3) LIBERO: Apply behavior cloning
to public LIBERO datasets to obtain the expert policy, yielding 30,000 rollout-goal pairs with
object-target distance rewards. (4) MuJoCo: Train an expert policy online using the SAC algorithm
(Haarnoja et al., 2018) to collect 16,000 rollout-goal pairs. All real rollouts are annotated with natural
language instructions during collection.

Imaginary rollout collection. Fig. 3 presents the process of fine-tuning LLM to generate imaginary
rollouts2. To enable LLM to generate synthetic task-specific rollouts, we first fine-tune them on real
rollout-instruction pairs. The objective of this step is to enable LLM to interpret the meaning of states,
actions, dynamics, and rollouts of the given environment. Following (Pang et al., 2024), we fine-tune
the LLM using the dataset to perform three different tasks via supervised fine-tuning (SFT), and
model the LLM grounding problem as an instruction-following problem since the LLM demonstrates
excellent performance following given natural language instructions to generate desired answers.
The training objectives for SFT include: (1) Dynamics prediction: The LLM predicts changes in
environmental dynamics. Given the current state st and action at, the LLM predicts the subsequent
state. (2) Rollout explanation: The LLM is presented with a rollout sequence s0, a0, s1, · · · , and it is
required to describe the rollout with natural language. (3) Rollout generation: The LLM generates a
rollout that aligns with a specified goal G. We present the prompts for LLM SFT in Appendix E.

Since LLMs can not directly handle numerical data, we use a pre-trained LLM as the backbone model
and modify it with additional layers to handle environmental data. Then, we employ the fine-tuned
LLM to generate imaginary rollouts given the initial state s0 and the goal: {a0, s1, a1, · · · } ←
M(GOP, s0). Here,M is the LLM, GOP stands for goal-oriented prompt: “Generate a rollout
for the following goal: [GOAL]. Rollout:”, where “[GOAL]” is a placeholder for various goals that
reflect different skills.

Data filtering mechanism. In ImagineBench, we apply a minimal data selection strategy to maintain
data quality, without over-filtering, to preserve the diversity of the imaginary rollouts. For real
rollouts, we omit the failure trajectories that do not match their intended goals, to provide clear and
reliable learning signals. For imaginary rollouts generated by the LLM, we truncate excessively long
sequences to prevent episodes with redundancy that could hinder training efficiency or introduce
noise. This filtering approach balances the benefits of abundant synthetic data with the need for
coherent and meaningful environment interactions.

2In ImagineBench, the backbone LLMs include Qwen-3-4B-Instruct-2507 (Qwen, 2025) and Llama-2-7b-
chat-hf (Touvron et al., 2023).
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4.3 TASK HIERARCHY AND EVALUATION PROTOCOLS

ImagineBench defines hierarchical task levels indicating various levels of tasks. Due to the space
constraint, we present and discuss each environment’s tasks in detail in Appendix D.1.

• Training: The instructions appeared in the real dataset. Including training tasks is to evaluate
whether the policy preserves the ability to perform these seen tasks.

• Rephrasing: The agent performs the same tasks as real data but receives paraphrased instructions
that are not present in the data. For example, the goal in offline data is move the blue ball to
the front of the red ball, while the paraphrased goal could be I really dislike how the red ball is
positioned in front of the blue ball. Could you exchange their places?

• Easy: The agent is tasked with different manipulation tasks that do not exist in the dataset,
requiring the agent to generalize to easy, unseen tasks.

• Hard: The agent faces tasks substantially different from those in the offline dataset, which require
a complex composition of behaviors, such as “Gather all balls together”, and “Move five balls to
a straight line” in the CLEVR-Robot environment.

Evaluation protocols. We evaluate performance in ImagineBench using two primary metrics: success
rate and task reward. ImagineBench provides specific success criteria for each task (e.g., achieving a
specific positional accuracy in manipulation or consistent directional velocity for HalfCheetah). For
detailed definitions of the completion criteria, please refer to Appendix D.3. Furthermore, each task
is equipped with a designated reward function.

5 EXPERIMENT

In this section, we conduct experiments to address three key questions regarding ImagineBench: (1)
How do existing offline RL methods perform on the tasks of ImagineBench (Sec. 5.2)? (2) For novel
tasks, how does training with imaginary rollouts compare to training with real environment-collected
rollouts (Sec. 5.2)? (3) How is the quality of the LLM-imaginary rollouts (Sec. 5.3)? (4) Can
imaginary rollouts facilitate online adaptation (Sec. 5.4)? We first introduce the experimental setting.

5.1 EXPERIMENT SETTING

Baselines. We consider representative offline RL methods, including: (1) BC, a supervised learning
baseline that directly imitates actions from the dataset. (2) CQL (Kumar et al., 2020), which learns
a conservative Q-function to prevent the policy from overestimating expected returns. (3) BCQ
(Fujimoto et al., 2019), which employs perturbation networks to generate conservative policy updates
near offline data. (4) TD3+BC (Fujimoto & Gu, 2021), which combines TD3’s ((Fujimoto et al.,
2018)) stability with BC constraints to enforce similarity to demonstrated behavior. (5) PRDC (Ran
et al., 2023), which uses a tree-search method to regularize the policy toward the nearest state-action
pairs in the offline data. (6) COMBO (Yu et al., 2021), which uses ensemble environment models to
enforce uncertainty-aware policy learning. (7) SAC (Haarnoja et al., 2018), which is originally an
online RL algorithm, can be applied in the offline setting for comparison.

Due to the varying application scope of different algorithms, we evaluate algorithms (BC, CQL, BCQ,
TD3+BC, PRDC, COMBO) on MuJoCo, LIBERO, and Meta-world, and algorithms (BC, BCQ,
CQL, SAC) on CLEVR-Robot and BabyAI. ‘w/ IR’ represents the methods trained with both real
and imaginary rollouts, while ‘w/o IR’ represents methods trained solely on real rollouts.

Implementation details. All offline RL methods are implemented based on OfflineRL (Team, 2021)
and d3rlpy (Seno & Imai, 2022), two well-established repositories. Policy optimization relies on
the Adam optimizer (Kingma & Ba, 2015). Performance metrics are averaged across results from
the final five training checkpoints. Unless otherwise specified, baselines encode natural language
instructions using BERT (Devlin et al., 2019), and concatenate the language encoding with the
environment observation. Offline RL training employs three random seeds to validate robustness.
Each training batch uniformly samples equal proportions of data from the real and LLM-imaginary
datasets. All experiments are executed on 64 AMD EPYC 9374F 32-core processors, 8 NVIDIA
GeForce RTX 4090 GPUs, and 1TB of RAM to facilitate parallelized computation.
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Figure 4: Success rate bars of different methods on various levels of goals, with imaginary rollouts
generated by Qwen-3-4B. The x-axis denotes the offline RL algorithm, and the y-axis denotes the
success rate. ’w/ IR’ stands for training with both real and imaginary rollouts. The success rate is
averaged over the last five checkpoints, and the error bars are the half standard deviation over three
seeds. We provide the overall comparison and results for Llama-2-7B in Appendix F.2 and F.3.
5.2 BENCHMARK RESULTS

Main results. Fig. 4 presents the benchmark results of various offline RL algorithms trained with
and without imaginary rollouts on ImagineBench tasks. We have several main findings from the
results. First, policies trained with imaginary rollouts generally perform better on novel tasks than
baseline methods. This suggests that LLM-based knowledge transfer enhances generalization and
skill acquisition in unseen environments. Besides, BC, CQL, and BCQ outperform other methods
across most tasks. BCQ and CQL achieve superior sample efficiency and stability in high-dimensional
action spaces. As SAC is mainly used in online RL, it fails to obtain high scores in the offline cases.
There is clear performance degradation on hard tasks, with most methods’ success rates below 10%
on Meta-World, CLEVR-Robot, and BabyAI. This gap could stem from the suboptimal reward
function with current LLM rollouts, which may fail to encode task-specific constraints or long-
horizon dependencies. All algorithms struggle with novel tasks on LIBERO due to its combinatorial
complexity, indicating a need for advanced exploration strategies or hierarchical representations.
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Figure 5: Comparison of training with LLM-imaginary and real environmental rollouts on novel
tasks. ‘Real’ stands for the method trained with real environmental rollouts for novel tasks.
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(a) Success case. Goal: Employ the gripper to seize the salad_dressing and transfer the salad_dressing to the basket.

(b) Failure case. Goal: Employ the gripper to seize the alphabet_soup and transfer the alphabet_soup to the basket. Then 
employ the gripper to seize the salad_dressing and transfer the salad_dressing to the basket

Figure 6: Examples of the LLM-imaginary rollouts for novel goals. The figures are obtained by
rendering the states in LLM-imaginary rollouts. We present more examples in Appendix F.1.

Performance of training with real rollouts on novel tasks. To investigate the improvement space
for future algorithm development, we conduct experiments by training a policy with real rollouts on
both training and novel tasks. Fig. 5 shows the experiment results, with ‘Real’ as the method trained
on real rollouts of both training and novel tasks. In most tasks, Real outperforms or gets close to the
methods trained with IR, resulting in 64.37% average success rate for the Real method and 35.44%
for methods with IR in hard tasks. One exception is CQL on the rephrasing task. This is because the
execution rollouts of the rephrasing task have already existed the dataset of real rollouts, with only
the language expression of the instructions different. The conservative learning nature of CQL allows
it to focus on the state’s features, potentially enabling it to perform well on rephrasing even when
using only real rollouts for training tasks.

Model Qwen-3-4B Llama-2-7B

Metrics Legality Transition Success rate Legality Transition Success rate

Rephrasing 95.9 79.2 89.9 98.5 96.0 88.0

Easy 73.4 69.3 43.1 81.1 82.2 43.8

Hard 59.3 44.2 13.5 66.8 72.9 25.8

Table 2: Statistical analysis of the quality of LLM-imaginary rollouts. The reported results are the
LLM-imaginary rollouts for the BabyAI environment.

5.3 ANALYSIS ON LLM-IMAGINARY ROLLOUTS

We investigate the quality of the LLM-imaginary rollouts from four key metrics: (1) Transition
measures whether the LLM generates correct single-step transitions (e.g., an agent not moving too
far at one step); (2) Legality denotes if the generated states are legal (i.e., the states are ); (3) Success
rate measures the ratios of the imaginary rollouts that successfully complete the given goals. Tab. 2
reports the quality metrics of LLM-imaginary rollouts generated in the BabyAI environment. Notably,
we observe an important result that larger backbone LLM (Llama-2-7B)’s generation quality clearly
outperforms the small model (Qwen-3-4B). This indicates a promising motivation that future
work could investigate using larger model for better LLM imagination. Besides, rephrasing
goals achieve high-quality rollouts, with success rate, transition correctness, and legality scores of
88.0%, 96.0%, and 98.5%, respectively. This suggests that the LLM, fine-tuned on prefixed goals,
generalizes effectively to semantically equivalent objectives. For novel (Hard) goals, consistency
drops to 25.8%, reflecting challenges in aligning rollouts with unseen task descriptions. However,
transition correctness (72.9%) and state legality (66.8%) remain above 65%, indicating that the LLM
largely adheres to environmental constraints even for complex goals.

Examples of the LLM-imaginary rollouts. Previously we investigate the quality of the imaginary
rollouts through statistics. To further investigate the quality of the generated rollouts, we present
examples of the imaginary rollouts in Fig. 6. We reset the environment to the generated state to
obtain the visualization image. We observe that the generated rollouts can generally reflect the given
goals. For example from the success case, the robot conducts the object manipulation as the language
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goal required. However, there are still some mismatches when the the goal is complicated (e.g., first
pick A then pick B), where the LLM may generate wrong rollouts (e.g., simultaneous picking instead
of sequential execution, as shown in the failure case). Even so, the LLM-generated rollout catches
the meaning of the novel goal, and correctly demonstrates the tendency to pick up two objects.

5.4 POTENTIAL FOR ONLINE ADAPTATION
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Figure 7: Performance of
training with online RL.

We suggest that online adaptation is the next step after training with
imaginary rollouts, as the policies trained with imaginary rollouts
may not be adequate for real-world deployment. To test this, we
initialize a CQL policy (on CLEVR-Robot) with imaginary rollouts
and then train it with PPO (Schulman et al., 2017) on Easy-level
tasks. Fig. 7 shows that offline-to-online training improves adapta-
tion speed and achieves higher asymptotic performance than online
training from scratch. This demonstrates that policies trained with LLM-imaginary rollouts provide
strong initialization for online adaptation.

6 FUTURE DIRECTION

While demonstrating promising results for acquiring novel skills without online environment inter-
actions, RL with imaginary rollouts is still in the early stage of research and requires algorithmic
development. We outline key directions for future research.

Better algorithm design for generating & utilizing imaginary rollouts. ImagineBench reveals a
performance gap between policies trained on real versus imaginary experience, which demonstrates
that simply applying a powerful LLM with a sophisticated offline RL algorithm is insufficient. Future
work could focus on better algorithm design to generate and handle these imaginary rollouts. For
example, it is important to enhance the quality and physical property of the LLM’s generative process,
transforming raw imagination into high-fidelity data. Additionally, the community should design
novel offline RL algorithms that are not merely consumers of this data but are specifically tailored to
its unique statistical properties, including its potential for bias, noise, and distributional shift.

Unbiased and fast online adaptation and continual learning. While RLIM reduces dependency on
real-world interactions, practical deployment still requires online adaptation to address imperfections
in LLM imagination. A key challenge is avoiding catastrophic forgetting of pre-trained knowledge
while rapidly fine-tuning policies with limited real interactions. Future research could consider
developing lightweight regularization techniques to preserve imaginary knowledge, meta-RL frame-
works for few-shot adaptation, or progressive distillation methods to compress multi-task policies.
Furthermore, designing bias correction mechanisms to disentangle inaccuracies in LLM-generated
rollouts during online updates could enhance sample efficiency and stability.

Vision-Language Models and Multi-Modal Imagination. Current benchmark mainly focuses
on the environment state represented by structural and numerical vectors. Extending RLIM to
broader domains, e.g., vision, requires integrating vision-language models capable of processing
and generating multi-modal rollouts. This entails addressing challenges such as aligning visual
observations with language instructions, generating spatially consistent action sequences from pixel
inputs, and handling partial observability in imagined states. Future work could explore cross-modal
attention mechanisms for joint rollout generation or develop hierarchical frameworks where high-level
language plans guide low-level visual motion generation.

7 CONCLUSION

In this work, we present ImagineBench, the first benchmark for RL with LLM-imaginary rollouts.
By providing standardized datasets across locomotion, robotic manipulation, and navigation envi-
ronments, ImagineBench establishes a unified framework to evaluate offline RL algorithms that
utilize the LLM-imaginary rollouts. The benchmark results reveal the limitations of existing offline
RL methods when applied to LLM-imaginary datasets, underscoring the necessity for algorithmic
innovations that better integrate LLM-generated knowledge. Beyond benchmarking, ImagineBench is
a resource to advance the development of agents that can not only execute predefined tasks but also
generalize to unseen ones, marking a foundational step toward robust embodied intelligence.
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8 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics and prioritizes responsible research practices. All
natural language instructions used in ImagineBench are carefully curated and sanitized to exclude
harmful, biased, or ethically problematic content, using both automated filtering and manual expert
review. The LLM-generated imaginary rollouts are released exclusively as numerical state-action
sequences—not as human-readable plans or executable code—to inherently limit potential misuse.
Our benchmark is built entirely on simulated environments (e.g., MuJoCo, Meta-World, BabyAI),
contains no human-subject data, and does not involve real-world deployment or personal informa-
tion. By design, ImagineBench supports open, reproducible research while incorporating structural
safeguards to align with principles of fairness, transparency, and societal benefit.

9 REPRODUCIBILITY STATEMENT

To support reproducibility, we provide a comprehensive anonymous codebase at https://
anonymous.4open.science/r/Imagine_Bench_anonymous-40CD, which includes
implementations of all environments, dataset loaders, offline RL baselines, and evaluation pro-
tocols used in this work. Detailed instructions for reproducing our main results are given in Appendix
E, including environment setup and training commands. The full datasets of real and LLM-imaginary
rollouts, along with task definitions and natural language instructions, are included in the supplemen-
tary materials; the download link has been omitted to preserve anonymity during double-blind review
but will be made publicly available upon acceptance.

REFERENCES

Atari, Inc. Atari 2600 home video computer system, 1977. Gaming console.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv, abs/1606.01540, 2016.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. In NeurIPS, 2021.

Xiong-Hui Chen, Ziyan Wang, Yali Du, Shengyi Jiang, Meng Fang, Yang Yu, and Jun Wang. Policy
learning from tutorial books via understanding, rehearsing and introspecting. In NeurIPS, 2024.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. In ICLR, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep
data-driven reinforcement learning. arXiv, abs/2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
NeurIPS, 2021.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In ICML, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In ICML, 2019.

Catherine Glossop, William Chen, Arjun Bhorkar, Dhruv Shah, and Sergey Levine. Cast: Counterfac-
tual labels improve instruction following in vision-language-action models. arXiv, abs/2508.13446,
2025.

10

https://anonymous.4open.science/r/Imagine_Bench_anonymous-40CD
https://anonymous.4open.science/r/Imagine_Bench_anonymous-40CD


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
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A ADDITIONAL RELATED WORK ABOUT OFFLINE RL

This work considers utilizing offline RL algorithms to train the policy. Offline RL (Levine et al., 2020;
Fujimoto et al., 2019) enables agents to learn effective policies from static datasets without online
environment interactions. Early approaches to offline RL, such as BCQ (Fujimoto et al., 2019) and
BEAR (Kumar et al., 2019), addressed distributional shift by constraining learned policies to remain
close to the behavior policy through explicit policy regularization or uncertainty-based action clipping.
Subsequent advances introduced CQL (Kumar et al., 2020), which penalizes Q-value overestimation
for out-of-distribution actions, and implicit constraint methods like TD3+BC (Fujimoto & Gu, 2021)
that balance policy improvement with behavior cloning. Decision transformer (Chen et al., 2021)
has also explored leveraging trajectory-level optimization via sequence modelling. Despite these
advancements, offline RL remains constrained by dataset quality: policies trained on narrow or
non-diverse data often fail in unseen scenarios. Model-based RL (Luo et al., 2024) addresses this by
learning a dynamics model from offline data, enabling policy optimization through simulated rollouts.
Methods like MOPO (Yu et al., 2020) and MOReL (Kidambi et al., 2020) incorporate uncertainty
quantification to construct pessimistic models, mitigating model bias and distributional mismatch. In
this work, we utilize offline RL methods to train the policy, providing the benchmark results.

B MORE DISCUSSIONS ABOUT RL WITH IMAGINARY ROLLOUTS

Potential of RL with imaginary rollouts. Generalization is a long-standing problem in the area of
RL. The motivation of developing RLIM algorithms, is to leverage the general knowledge embedded
in the LLMs to facilitate RL policy’s generalization to unseen decision-making task. Previously
RL lacks such general knowledge for generalization. This way of using imaginary rollouts imitates
the human process of acquiring novel skills, i.e., imagining the process of the new objective, and
executing following the imagination. However, the quality of imaginary rollouts remain to be
improved, e.g., incorporating advancements in generative artificial intelligence techniques to better
align generated rollouts with novel tasks.

Better LLM imagination. The quality of imaginary rollouts remains a limiting factor, as current
LLMs often generate rollouts inconsistent with the given instructions. To address this, it is worth
considering improving LLM fine-tuning, integrating physics-based simulators to validate generated
rollouts, or developing iterative imagination procedure where policy learning and LLM generation
both get improvement. Additionally, scaling laws for LLM imagination, exploring how model size,
model type, prompt engineering, and affect rollout quality, also require systematic investigation.

C MORE DETAILS ABOUT BENCHMARK ENVIRONMENTS

C.1 STATE SPACE DECOMPOSITION AND FEATURE ATTRIBUTION

Meta-world This environment consists of a robotic gripper and several (2 at most) interactive objects,
where the state space represents the coordinate values of both the robotic gripper and the interactive
objects. The elements are in Tab. 3

CLEVR-Robot This environment contains five colored balls. The state space encodes the position of
five balls. The elements are in Tab. 4

BabyAI This environment is based on the grid world scenario containing an agent and a few different
objects. We use one room and place one item for all types of object. The state space represents each
item’s color and coordinate, together with extra information including agent position, carrying object
and door state. The elements are in Tab. 5

Libero The Libero environment controls a 3-dimensional robot arm to complete various manipulation
tasks. The state space is R44, consisting of 7 robot joint position values, 7 robot end effector position
values and 2 robot gripper joint position values, together with 28 position values of 4 different objects.
The elements are in Tab. 6.

MuJoCo We use mujoco HalfCheetah environment. This environment is a 2-dimensional robot
consisting of 9 body parts and 8 joints connecting them (including two paws). The state space is R18,
consisting of 9 position values and 9 velocities of the robot’s body parts. The elements are in Tab. 7.
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Index Meaning Min Max
0 current x coordinate of robotic gripper -0.525 0.525

1 current y coordinate of robotic gripper 0.348 1.025

2 current z coordinate of robotic gripper -0.0525 0.7

3 current opening degree of robotic gripper -1.0 1.0

4 - 6 current x,y,z coordinate of First interactive objects -Inf Inf

7 - 10 current quaternion(s) of First interactive objects -Inf Inf

11 - 13 current x,y,z coordinate of Second interactive objects -Inf Inf

14 - 17 current quaternion(s) of Second interactive objects -Inf Inf

18 previous (last step) x coordinate of robotic gripper -0.525 0.525

19 previous (last step) y coordinate of robotic gripper 0.348 1.025

20 previous (last step) z coordinate of robotic gripper -0.0525 0.7

21 previous (last step) opening degree of robotic gripper -1.0 1.0

22 - 24 previous (last step) x,y,z coordinate of First interactive objects -Inf Inf

25 - 28 previous (last step) quaternion(s) of First interactive objects -Inf Inf

29 - 31 previous (last step) x,y,z coordinate of Second interactive objects -Inf Inf

32 - 35 previous (last step) quaternion(s) of Second interactive objects -Inf Inf

36 - 38 current x,y,z coordinate of goal position -Inf Inf

Table 3: State space decomposition of Meta-World environment.

Index Meaning Min Max
0 - 1 red ball x,y coordinate -Inf Inf

2 - 3 blue ball x,y coordinate -Inf Inf

4 - 5 green ball x,y coordinate -Inf Inf

6 - 7 purple ball x,y coordinate -Inf Inf

Table 4: State space decomposition of CLEVR-Robot environment.

C.2 ACTION SPACE DECOMPOSITION

Meta-world In Meta-World, the action space is a 2-tuple consisting of the change in 3D space of the
end-effector followed by a normalized torque that the gripper fingers should applyan. The elements
are in Tab.8

CLEVR-Robot In CLEVR-Robot, an action is pushing one certain ball to a certain direction. The
elements are in Tab.9

BabyAI In BabyAI, actions directly controls the agent. Possible actions include move, pick up, drop
and open. The elements are in Tab.10

Libero The Libero environment controls a 7-degree-of-freedom (DoF) PandaGripper using delta
pose control. The action space is R7. An action represents changes in the Cartesian position and
orientation of the robot, along with the gripper actuation.The elements are in Tab. 11.

MuJoCo The MuJoCo HalfCheetah robot’s torso and head are fixed, and torque can only be applied
to the other 6 joints over the front and back thighs, the shins, and the feet. The action space is R6. An
action represents the torques applied at the hinge joints. The elements are in Tab. 12.
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Index Meaning Min Max
0 ball color 0 5

1 - 2 ball x,y coordinate 1 6

3 box color 0 5

4 - 5 box x,y coordinate 1 6

6 key color 0 5

7 - 8 key x,y coordinate 1 6

9 door color 0 5

10 - 11 door x,y coordinate 1 6

12 door close or not 0 1

13 - 14 agent x,y coordinate 1 6

15 carrying object type 5 7

16 carrying object color 0 5

Table 5: State space decomposition of BabyAI environment.

Index Meaning Min Max
0 - 6 joint position of the robot arm -Inf Inf

7 - 9 position of the robot end effector -Inf Inf

10 - 13 quaternion of the robot end effector -1 1

14 - 15 joint position of robot gripper -Inf Inf

16 - 18 position of alphabet soup -Inf Inf

19 - 22 quaternion of alphabet soup -1 1

23 - 25 position of cream cheese -Inf Inf

26 - 29 quaternion of cream cheese -1 1

30 - 32 position of salad dressing -Inf Inf

33 - 36 quaternion of salad dressing -1 1

37 - 39 position of basket -Inf Inf

40 - 43 quaternion of basket -1 1

Table 6: State space decomposition of LIBERO environment.

D MORE DETAILS ABOUT HIERARCHICAL TASKS

D.1 FULL LIST OF THE TASKS IN IMAGINEBENCH

Tab. 13 shows the task list of all tasks for each environment. We present some examples of natural
language instructions for these tasks in Appendix D.4.

D.2 REWARD DESIGN FOR EACH TASK

D.2.1 META-WORLD

The rewards for all tasks within the Meta-world environment are determined using the original
Meta-world environment rewards, supplemented by reward shaping techniques. The reward function
is defined as:

rt = rsuccess + (rot − rot−1)
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Index Meaning Min Max
0 x-coordinate of the front tip -Inf Inf

1 z-coordinate of the front tip -Inf Inf

2 angle of the front tip -Inf Inf

3 angle of the back thigh -Inf Inf

4 angle of the back shin -Inf Inf

5 angle of the back foot -Inf Inf

6 angle of the front thigh -Inf Inf

7 angle of the front shin -Inf Inf

8 angle of the front foot -Inf Inf

9 velocity of the x-coordinate of front tip -Inf Inf

10 velocity of the z-coordinate of front tip -Inf Inf

11 angular velocity of the front tip -Inf Inf

12 angular velocity of the back thigh -Inf Inf

13 angular velocity of the back shin -Inf Inf

14 angular velocity of the back foot -Inf Inf

15 angular velocity of the front thigh -Inf Inf

16 angular velocity of the front shin -Inf Inf

17 angular velocity of the front foot -Inf Inf

Table 7: State space decomposition of MuJoCo environment.

Num Action
0 ∆x of the robotic gripper

1 ∆y of the robotic gripper

2 ∆z of the robotic gripper

3 opening degree of robotic gripper

Table 8: Action space decomposition of Meta-World environment.

rsuccess ∈ {10, 0} indicate whether the task has been successfully completed. rot stands for the original
Meta-world environment reward at time step t.

Additionally, there are two self-designed environments. In the Make-coffee task, it can be decomposed
into two sub-tasks: Coffee-push and Coffee-button-press. Similarly, the Locked-door-open task can
be separated into two sub-tasks: Door-unlock and Door-open. The variable ro represents the reward
associated with the task being performed.

D.2.2 CLEVR-ROBOT

For Training tasks and Rephrasing tasks, the distance-based reward function is defined as:
rt = rsuccess + (dt−1 − dt) ∗ 10

rsuccess ∈ {100, 0} indicate whether the task has been successfully completed. dt is the distance
between two balls.

For Easy tasks, sparse reward is utilized because the task can be and must be accomplished in a single
step. Specifically, rt = 1 when the action taken is desired; otherwise, rt = 0.

For Hard tasks, the reward function based on sub-goal is defined as:
rt = rsuccess + (gt−1 − gt) ∗ 10
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Num Action
0 - 3 push the red ball to right,back,left,front

4 - 7 push the red ball to right rear,left rear,right font,left font

8 - 11 push the blue ball to right,back,left,front

12 - 15 push the blue ball to right rear,left rear,right font,left font

16 - 19 push the green ball to right,back,left,front

20 - 23 push the green ball to right rear,left rear,right font,left font

24 - 27 push the purple ball to right,back,left,front

28 - 31 push the purple ball to right rear,left rear,right font,left font

32 - 35 push the cyan ball to right,back,left,front

36 - 39 push the cyan ball to right rear,left rear,right font,left font

Table 9: Action space decomposition of CLEVR-Robot environment.

Num Action
0 move left

1 move right

2 move up

3 pick up the object in current grid

4 drop carrying object in current grid

5 open door around agent

6 move down

Table 10: BabyAI env action space

rsuccess ∈ {10, 0} indicates whether the task has been successfully completed. The variable gt
represents the number of sub-goals completed at the time step t.

For Sequential-move, each sub task is a move task.

For Make-line, the task requires all five balls b1, . . . , b5 are placed in a sequential horizontal alignment.
A sub-task is positioning ball bi adjacent to bi+1 horizontally.

For Make-circle, the objective is to arrange all other balls in proximity to the green ball, with each
individual sub-task involving the placement of one additional ball adjacent to the green ball.

D.2.3 BABYAI

Reward of all tasks of BabyAI is calculated based on agent-object distance. The reward function is
defined as:

rt = rsuccess +
dt−1 − dt

d0

rsuccess ∈ {1−0.9× step count
max steps , 0} indicate whether the task has been successfully completed. dt stands

for the agent-object distance at time step t.

In task Goto, Pickup, Open, Go-wall, Go-center d is the Manhattan Distance between agent and
target object or position.

For Put-next, Open-go, Open-pick, Open-lock, the task can be divided into two sub tasks. So the
distance is defined as d = d1 + d2 + p. d1 is the Manhattan Distance between agent and object 1,
d1 = 0 if sub task 1 is accomplished. d2 is the Manhattan Distance between object 1 and object 2 if
sub task 1 has not been accomplished else the Manhattan Distance between agent and object 2. p is
penalty for not accomplishing sub task 1 and unwanted pickups.
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Num Action
0 change in x-coordinate of the gripper

1 change in y-coordinate of the gripper

2 change in z-coordinate of the gripper

3 change in x-rotation of the gripper

4 change in y-rotation of the gripper

5 change in z-rotation of the gripper

6 gripper open and close control

Table 11: Action space decomposition of LIBERO environment.

Num Action
0 torque applied on the back thigh rotor

1 torque applied on the back shin rotor

2 torque applied on the back foot rotor

3 torque applied on the front thigh rotor

4 torque applied on the front shin rotor

5 torque applied on the front foot rotor

Table 12: Action space decomposition of MuJoCo environment.

For Put-line, Put-pile, d is defined as the sum of the grid number each object need to pass through to
form the shape of a line or a pile.

D.2.4 LIBERO

Reward of all Libero tasks is based on the distance between current state and target state. The reward
function is defined as:

rt = rsuccess + α · rdistance

The term rsuccess indicates whether the current task has been successfully completed. The agent
receives a rsuccess of +1 if it accomplishes a sub-task or the entire task. For Pick, Place and Reach
tasks, the agent only receives a +1 reward if it accomplishes the entire task successfully. While
for some complex manipulation tasks, such as Pick-and-place, Pick-out, Pick-and-place aside and
Sequential-pick-and-place, the agent first accomplishes a sub-task and then the next. For example, in
sequential-pick-and-place tasks, the agent grasps the object, places the object to the target position
and then repeats the same process for the next object. In these complex tasks, the agent receives a +1
reward if the current sub-task is successfully completed for the first time.

The term rdistance indicates the change in distance between current state and the target state, which can
also be written as dt − dt+1. For all Libero tasks, we use Manhattan Distance to calculate distance
between states. For Pick tasks and complex tasks with pick operation as current sub-task, distance is
calculated by the gripper position and the target object position. While for Place tasks and complex
tasks with place operation as current sub-task, distance is calculated by the object position and the
target position.

The term α is a weighting coefficient that balance rsuccess and rdistance.

D.2.5 MUJOCO

Reward of all MuJoCo tasks is based on the forward distance in the target direction, along with
control efficiency. The reward function is defined as:

rt = rforward + rcontrol

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Meta-world CLEVR-
Robot

BabyAI LIBERO MuJoCo

Training
task

Reach, Push,
Pick-place,

Button-press,
Door-unlock,
Door-open,

Window-open,
Faucet-open,
Coffee-push,

Coffee-button-press

Move Goto,
Pickup,
Open,

Put-next

Pick, Place Run-forward,
Run-backward,
Jump-forward,

Jump-backward

Rephrasing
task

Same as training (with rephrasing instructions)

Easy task Reach-wall, Push-wall,
Pick-place-wall,

Button-press-wall,
Door-lock, Door-close,

Window-close,
Faucet-close

One-step-
move

Open-go,
Open-
pick,

Go-wall,
Go-

center

Pick-and-
place,

Pick-and-
place-to-

unseen, Reach

Run-forward-
faster,

Run-backward-
faster

Hard task Make-coffee,
Locked-door-open,
Hammer, Soccer

Sequential-
move,

Make-line,
Make-
circle

Open-
lock,

Put-line,
Put-pile

Sequential-
pick-and-

place,
Pick-and-

place-aside,
Pick-out

Run-forward-
then-backward,
Run-backward-
then-forward,
Jump-in-place

Table 13: Full lists of tasks for each environment.

The term rforward is a reward for moving in the right direction. This term can also be written as
ωforward · dxdt , where ωforward is the forward reward weight (default is 1), dx is the displacement of the
tip in the right direction and dt is the time between actions (default is 0.05).

The term rcontrol is a negative reward using L2 norm of action at to penalize the robot for taking
actions that are too large. This term can also be written as −ωcontrol∥at∥22, where ωcontrol is set to 0.1
by default.

D.3 DETERMINATION FOR TASK COMPLETION

D.3.1 META-WORLD

• The metrics for evaluating success based on gripper-target distance utilized in Meta-world
environments are identical to those implemented in the original Meta-world environments.

• For Make-coffee and Locked-door-open, these two self-design task can be divided into two
distinct sub tasks. Consequently, the task is deemed successfully completed when both
sub-tasks are accomplished sequentially.

D.3.2 CLEVR-ROBOT

• Training tasks and Rephrasing tasks: these tasks are considered complete when the angular
relationship between the two balls satisfies the specified direction (such as left or right), and
the distance dt between them is less than 0.39.

• For Easy tasks, where a single-step action is required, the task is deemed successful if the
desired action is chosen; otherwise failed.

• For Hard tasks, the task can be segmented into a few sub tasks. The task is considered
complete if all sub tasks are completed, irrespective of the sequence in which they are
completed. For Sequential-move, each sub task is a move task. For Make-line, the task
requires arranging all five balls b1, . . . , b5 in a sequential horizontal line. A specific sub-task
involves aligning each pair of consecutive balls, bi and bi+1, horizontally. For the sub-task,
the angle deviation from the horizontal line should be less than π

6 . For Make-circle, the
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objective is to arrange all additional balls surrounding the green ball, where each individual
task involves placing one of the other balls adjacent to the green ball. The criterion for
”adjacent” is defined as having a distance d < 0.325 between the two balls.

D.3.3 BABYAI

• Goto, Go-wall, Go-center: the agent reaches the desired position.

• Pickup: the target object is picked up.

• Open: the door is opened.

• Put-next, Put-line, Put-pile: the three objects form the desired shape.

• Open-go, Open-pick, Open-lock: the task can be divided into two sub tasks. So the task is
considered to be complete if two sub task is completed in correct order.

D.3.4 LIBERO

• Pick: the task is considered completed if the robot gripper is close enough to the target
object and the position of the target object is changed compared with the last state. In these
tasks, completion judgment can be formally written as dt < ϵ and ∥Postobj−Post+1

obj ∥22 > 0,
where ϵ varies with different objects.

• Reach: the task is considered completed if the robot gripper is close enough to the target
object. For Place tasks, the task is considered completed if the object is close enough to
the target position. In these tasks, completion judgment can be formally written as dt < ϵ,
where ϵ varies with different objects.

• Pick-out: the task is considered completed if the object is far enough from the object’s initial
position. In these tasks, completion judgment can be formally written as dt > ϵ.

• For complex tasks in which the agent accomplishes different sub-tasks sequentially, the task
is considered completed if each sub-task is completed in given order.

D.3.5 MUJOCO

• Jump: the robot completes a jump operation in the right direction. The correctness of
direction can be judged by the symbol of cumulative distance in x-coordinate.

• Run and Run-faster: the cumulative distance in x-coordinate exceeds a pre-defined maximum
distance value. In these tasks, completion judgment can be formally written as

∑t
i=1 di >

dmax, where dmax varies with different tasks. For Run-faster tasks, dmax is a larger value
compared with that in Run tasks.

• Run-forward-then-backward and Run-backward-then-forward: the robot completes both run
forward and run backward operations.

• Jump-in-place: the robot completes a jump operation without a large cumulative distance in
x-coordinate. In this task, completion judgment can be formally written as

∑t
i=1 di < dmin.

D.4 NATURAL LANGUAGE INSTRUCTIONS FOR DIFFERENT TASKS

In this section, we present the natural language instructions for all tasks in ImagineBench for readers’
reference. Note that here we only present partial natural language instructions for each task for
better reading purpose. Please check the full instruction list in our open-sourced codebase.

D.4.1 META-WORLD

Training We use 20 different natural language expressions as training goals generated by ChatGPT
to express different target configuration.

• Reach task

1. Relocate the gripper to the designated spot.
2. Position the gripper at the intended location.
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• Push task
1. Employ the gripper to propel the target object towards its designated location.
2. Utilize the gripper to advance the target object to its intended position.

• Pick-place task
1. Employ the gripper to seize the designated item and transfer it to the specified position.
2. Utilize the gripper for grasping the desired object and relocating it to the designated

spot.
• Button-press task

1. Utilize the gripper to firmly depress the button.
2. Apply pressure with the gripper to activate the button.

• Door-unlock task
1. Employ the gripper to turn the door’s unlocking mechanism.
2. Utilize the gripper to manipulate the lock and open the door.

• Door-open task
1. Utilize the gripper to grasp the door handle and pull it open.
2. Employ the gripper to grip the door handle and swing it outward.

• Window-open
1. Employ the clamping tool to pry the window open.
2. Utilize the grabbing device for window aeration.

• Faucet-open
1. Employ the gripping tool to turn the faucet on.
2. Utilize the clamp to twist the tap open.

• Coffee-push
1. Employ the gripper to nudge the coffee beneath the coffee machine.
2. Utilize the gripper to slide the coffee under the coffee machine.

• Coffee-button-press
1. Utilize the gripper to depress the button on the coffee machine.
2. Employ the gripper to push down the button of the coffee machine.

Rephrasing We use 20 different natural language expressions as the novel goals generated by
ChatGPT to express different target configuration.

• Reach task
1. I’m dissatisfied with the gripper’s current location; kindly adjust it to reach the desired

position.
2. The gripper’s current placement doesn’t suit me; could you relocate it to the target

position?
• Push task

1. The current location of the target object isn’t satisfactory to me; please utilize the
gripper to nudge it to the target position.

2. I’m not pleased with where the target object is currently situated; could you employ
the gripper to guide it to the intended position?

• Pick-place task
1. I have a negative sentiment towards the current placement of the object of interest;

therefore, I intend to utilize the gripper mechanism to lift it and relocate it to the desired
destination.

2. The current arrangement of the designated item is unsatisfactory to me, prompting me
to employ the gripper for the purpose of relocating it to the specified destination.

• Button-press task
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1. I have a displeasure towards the inactive state of the button; therefore, I intend to utilize
the gripper to apply pressure and activate it in order to open it.

2. The current state of the button being inactive is not to my liking, prompting me to use
the gripper to press it and initiate its function of opening.

• Door-unlock task

1. I despise when the door is locked; could you employ the gripper to unlock it?
2. I loathe it when the door is locked; kindly utilize the gripper to release it?

• Door-open task

1. I detest when the door is closed; could you utilize the gripper to open it, please?
2. I can’t stand it when the door is closed; kindly employ the gripper to open it for me?

• Window-open task

1. I dislike it when the window is shut; could you kindly employ the gripper to unlatch it?
2. I have a strong aversion to the closed window; would you mind utilizing the gripper to

open it?

• Faucet-open task

1. I dislike it when the faucet is shut; could you kindly utilize the gripper to turn it on?
2. I have a strong aversion to the closed faucet; would you mind employing the gripper to

open it?

• Coffee-push task

1. I despise the coffee’s current location; utilize the gripper to shift it to the desired spot.
2. The coffee’s present placement irks me; employ the gripper to relocate it to its intended

position.

• Coffee-button-press task

1. I believe the coffee machine shouldn’t be switched off; utilize the gripper to press its
button and activate it.

2. I disagree with the coffee machine being off; employ the gripper to push its button and
power it up.

Easy We use 20 different natural language expressions as the novel goals generated by ChatGPT to
express different target configuration. Natural language instruction can be one of the following:

• Reach-wall task

1. Adjust the gripper’s position to reach the designated target, keeping in mind the
obstructing wall.

2. Maneuver the gripper towards the desired location, taking into consideration the
presence of a barrier.

• Push-wall task

1. Employ the gripper to propel the target object towards the designated location, noting
the nearby wall obstructing the path.

2. Utilize the gripper to push the target object towards its destination, recognizing the
presence of a wall blocking the middle of the path.

• Pick-place-wall task

1. Utilize the gripper apparatus to grasp the designated object and transfer it to the
intended position, notwithstanding the obstruction posed by a wall at the target site.

2. Employ the gripper mechanism to seize the desired item and relocate it to the specified
spot, recognizing the hindrance presented by a wall obstructing the target destination.

• Button-press-wall task

1. Employ the gripper to depress the button, yet a wall has emerged, obstructing access.
2. Utilize the gripper for pushing the button, only to encounter an impediment in the form

of a wall.
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• Door-lock task

1. Utilize the gripper to secure the door shut.
2. Employ the gripper to fasten the door securely.

• Door-close task

1. Employ the gripper to shut the door.
2. Utilize the gripper to seal the door.

• Window-close task

1. Utilize the gripper to shut the window.
2. Employ the gripper to seal the window.

• Faucet-close task

1. Utilize the gripper to shut off the faucet.
2. Employ the gripper to seal the faucet.

Hard We use 20 different natural language expressions as the novel goals generated by ChatGPT to
express different target configuration. Natural language instruction can be one of the following:

• Make-coffee task

1. Utilize the gripper to position the coffee mug beneath the coffee machine nozzle,
ensuring proper alignment.

2. Employ the gripper mechanism to slide the coffee cup into place beneath the coffee
machine’s dispenser.

• Locked-door-open task

1. Would you kindly unlock and open the door using the gripper?
2. Please utilize the gripper to unlock and then open the door.

• Hammer task

1. Utilize the gripper to grasp the hammer and strike the nail at the designated spot.
2. Employ the gripper for seizing the hammer and driving the nail into the target location.

• Soccer task

1. Utilize the gripper to propel the football into the goal at the designated spot.
2. Employ the gripper mechanism to push the football into the goal at the specified

location.

D.4.2 CLEVR-ROBOT

Training/Rephrasing We use 40 different natural language expressions as the novel goals generated
by ChatGPT to express different target configuration. For example, if we take a goal configuration
such as “red ball and blue ball”, its corresponding natural language instruction can be one of the
following:

• I can’t stand the red ball ahead of the blue one. Could you switch the positions of them?

• The sight of the red ball ahead of the blue one bothers me. Can we reverse their order?

• I really dislike how the red ball is positioned in front of the blue ball. Could you exchange
their places?

• It annoys me to see the red ball in front of the blue ball. Can we swap them around?

• Seeing the red ball ahead of the blue ball fills me with frustration. Let’s switch them.

• The placement of the red ball in front of the blue ball is something I detest. Can you flip
them?

Easy In easy task, the agent needs to move one ball to a specific direction. The natural language goal
can be one of the following:
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• Move the ball backward, it’s red.
• Push the red ball in reverse.
• Back up the red ball, please.
• Shift the red ball backwards.
• Can you move the red ball backwards?
• Retract the red ball, moving it backwards.

Hard We designed 4 types of completed unseen tasks: combination of two simple tasks, combination
of three simple tasks, object arrangement task, and object collection task.

• Natural language sentence patterns used in combination of simple tasks (Using “red ball
behind blue ball” as goal configuration):

1. Push the red ball behind the blue ball.
2. Move the red ball behind the blue ball.

• Combination of two simple tasks: Push the red ball behind the blue ball and move the green
ball behind the purple ball.

• Combination of three simple tasks: Push the red ball behind the blue ball and move the
green ball to the left of the purple ball and keep the cyan ball in front of the red ball.

• Object arrangement task
1. Place the balls horizontally, lining them up from left to right, in the order of red, blue,

green, purple, and cyan.
2. Set up the balls in a row from left to right, with red, blue, green, purple, and cyan in

sequence.
• Object collection task

1. Position all the other balls around the green ball, considering it as the circle’s focal
point.

2. Use the green ball as the nucleus of the circle, arranging the rest around it.

D.4.3 BABYAI

Training We use 40 different natural language expressions as training goals generated by ChatGPT to
express different target configuration. For example, if we take a goal configuration such as “red ball,
blue key, green door”, its corresponding natural language instruction can be one of the following:

• Goto task
1. go to the red ball.
2. move to the red ball.
3. head toward the red ball.
4. walk to the red ball.
5. proceed to the red ball.
6. navigate to the red ball.

• Open task
1. open the green door.
2. please open the green door.
3. could you open the green door?
4. unlock and open the green door.
5. push the green door open.
6. pull open the green door.

• Pickup task
1. pick up the red ball.
2. grab the red ball.
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3. pick up the ball that is red.
4. retrieve the red ball.
5. lift the red ball.
6. take hold of the red ball.

• Put-next task
1. put the red ball next to the blue key.
2. place the red ball beside the blue key.
3. move the red ball close to the blue key.
4. set the red ball adjacent to the blue key.
5. position the red ball near the blue key.
6. arrange the red ball alongside the blue key.

Rephrasing We use 10 different natural language expressions as the novel goals generated by
ChatGPT to express different target configuration. For example, if we take a goal configuration such
as “red ball, blue key, green door”, its corresponding natural language instructions can be one of the
following:

• Goto task
1. proceed in the vicinity of the red ball.
2. move yourself toward the direction of the red ball.

• Open task
1. leave the green door open.
2. push the green door to open it fully.
3. let the green door remain open.
4. move aside the green door to open it.
5. permit the green door to stay ajar.
6. manipulate the green door into an open state.

• Pickup task
1. grip the red ball.
2. snag hold of the red ball.
3. clasp the red ball.
4. reach over and take the red ball.
5. obtain and hold the red ball.
6. gather the red ball into your hands.

• Put-next task
1. position the red ball right alongside the blue key.
2. ensure the red ball is closely placed beside the blue key.
3. make the red ball sit immediately next to the blue key.
4. arrange the red ball neatly beside the blue key.
5. move the red ball so that it is perfectly adjacent to the blue key.

Easy

• Open-go task
– open the door, then goto any object.

• Open-pick task
– open the door, then pick up any object.

• Go-wall task
– goto the side of the wall.

• Go-center task
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– goto the center of the room.

Hard

• Open-lock task

– pick up the key, then open the door.

• Put-line task

– put the three items in a line.

• Put-pile task

– gather the three items into a pile.

D.4.4 LIBERO

Training We use 20 different natural language expressions as training goals generated by ChatGPT
to express different target configuration. For example, if we take a goal configuration such as
“alphabet soup”, its corresponding natural language instruction can be one of the following:

• Pick task

1. Employ the gripper to seize the alphabet soup.
2. Utilize the gripper for grasping the alphabet soup.

• Place task

1. Transfer the alphabet soup to the basket.
2. Shift the alphabet soup to the basket.
3. Position the alphabet soup to the basket.
4. Move the alphabet soup to the basket.
5. Place the alphabet soup to the basket.
6. Relocate the alphabet soup to the basket.

Rephrasing We use 10 different natural language expressions as novel goals generated by ChatGPT
to express different target configuration. For example, if we take a goal configuration such as
“alphabet soup”, its corresponding natural language instruction can be one of the following:

• Pick task

1. Employ the gripper tool to clasp the alphabet soup.
2. Utilize the gripping mechanism to hold the alphabet soup.

• Place task

1. Transport the alphabet soup to the basket.
2. Insert the alphabet soup into the basket.

Easy In easy task, the agent needs to complete some unseen manipulation tasks. For example, if we
take a goal configuration such as “alphabet soup, cream cheese”, its corresponding natural language
instruction can be the following:

• Pick-and-place task

– Employ the gripper to seize the alphabet soup and transfer the alphabet soup to the
basket.

• Pcik-and-place-unseen task

– Employ the gripper to seize the alphabet soup and transfer the alphabet soup to the
cream cheese.

• Reach task

– Employ the gripper to get close to the alphabet soup.
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Hard We design 3 types of unseen and complex tasks: combination of two simple tasks (Sequential-
pick-and-place), high-level language comprehension task (Pick-and-place-aside, Sequential-pick-
and-place-all) and safe task (Pick-out). For example, if we take a goal configuration such as
“alphabet soup, cream cheese” for combination of two easy tasks, “alphabet soup, cream cheese,
salad dressing” for high-level language comprehension task and “alphabet soup” for safe task, its
corresponding natural language instruction can be the following:

• Sequential-pick-and-place task

– Employ the gripper to seize the alphabet soup and transfer the alphabet soup to the bas-
ket. Then employ the gripper to seize the cream cheese and transfer the cream cheese
to the basket.

• Pick-and-place-aside task

– Employ the gripper to seize the alphabet soup and transfer the alphabet soup to the
other side.

• Sequential-pick-and-place-all task

– Employ the gripper to seize something and transfer it to the basket one by one until the
alphabet soup, cream cheese and salad dressing are all in the basket.

• Pick-out task

– The basket is on fire, employ the gripper to seize the alphabet soup in the basket and
transfer the alphabet soup out of the basket.

D.4.5 MUJOCO

Training We use 10 different natural language expressions as training goals generated by ChatGPT
to express different target configuration. Natural language instruction can be one of the following:

• Jump-forward task

1. Jump a step forward.

• Jump-backward task

1. Jump a step backward.
2. Jump a step back.

• Run-forward task

1. Run forward.
2. Run ahead.

• Run-backward task

1. Run backward.
2. Run back.

Rephrasing We use 10 different natural language expressions as novel goals generated by ChatGPT
to express different target configuration. Natural language instruction can be one of the following:

• Jump-forward task

1. Jump a step forth.
2. Jump one step ahead.

• Jump-backward task

1. Jump one step backward.
2. Jump one step back.

• Run-forward task

1. Speed forward.
2. Speed ahead.

• Run-backward task
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1. Speed backward.
2. Speed back.

Easy In easy task, the agent needs to complete some novel locomotion tasks. Natural language
instruction can be one of the following:

• Run-forward-fast task
– Move forward faster.

• Run-backward-fast task
– Move backward faster.

Hard We design 2 types of unseen and complex tasks: combination of two simple run tasks (Run-
forward-then-backward, Run-backward-then-forward) and high-level language comprehension task
(Jump-in-place). Natural language instruction can be one of the following:

• Run-forward-then-backward task
– Move forward and slow down. Move backward.

• Run-backward-then-forward task
– Move backward and slow down. Move forward.

• Jump-in-place task
– Jump in the original position.

E IMPLEMENTATION DETAILS

E.1 INTRODUCTION TO THE CODEBASE

ImagineBench The ImagineBench codebase is a benchmark for evaluating reinforcement learning
algorithms that train the policies using both real data and imaginary rollouts from LLMs. In
ImagineBench codebase, we provide offline RL algorithms in imagineBench/algo directory, 5
environments for evaluation in imagineBench/envs directory, evalution method in imagineBench
/evaluations.py and data processing method in imagineBench/utils.py.

Dataset After getting Metaworld environment using imagine_bench.make(), both real data and
imaginary rollouts are available with env.get_dataset() function. Here is an example for getting
Metaworld real and rephrase dataset:

1 import imagine_bench
2

3 # Optional task_level: [’real’, ’rephrase’, ’easy’, ’hard’].
4 env = imagine_bench.make(’MetaWorld-v0’, level=’rephrase’)
5 real_data, imaginary_rollout_rephrase = env.get_dataset(level="

rephrase")
6

7 # Or you can use the dataset with other task levels.
8 env = imagine_bench.make(’MetaWorld-v0’, level=’easy’)
9 real_data, imaginary_rollout_easy = env.get_dataset(level="easy")

Training We provide an example for offline RL training with d3rlpy using MuJoCo environment and
its rephrase dataset:

1 import d3rlpy
2 import imagine_bench
3 from imagine_bench.utils import LlataEncoderFactory,

make_d3rlpy_dataset
4 from imagine_bench.evaluations import CallBack
5 env = imagine_bench.make(’MuJoCo-v0’, level=’rephrase’)
6 env_eval = imagine_bench.make(’MuJoCo-v0’, level=’rephrase’)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

7 real_data, imaginary_rollout_rephrase = env.get_dataset(level="
rephrase")

8 dataset = make_d3rlpy_dataset(real_data,
imaginary_rollout_rephrase)

9

10 agent = d3rlpy.algos.TD3PlusBCConfig(
11 actor_encoder_factory=LlataEncoderFactory(feature_size

=256, hidden_size=256),
12 critic_encoder_factory=LlataEncoderFactory(

feature_size=256, hidden_size=256),
13 ).create(device="cuda:0")
14

15 callback = CallBack()
16 callback.add_eval_env(env_dict={’rephrase’: env_eval}, eval_num

=10)
17

18 agent.fit(
19 dataset=dataset,
20 n_steps=500000,
21 experiment_name="mujoco",
22 epoch_callback=callback.EvalCallback,
23 )

Reproducibility Here is an example for reproduce our result on BabyAI environment using bc
algorithm and rephrase dataset:

1 python imagine_bench/train.py --algo bc --env BabyAI-v0 --ds_type
rephrase

E.2 PROMPTS FOR LLM SUPERVISED FINE-TUNING

• Dynamics prediction: You are an expert in identifying environmental dynamics change.
Current state is [st], after executing action [at], we get next state: [ANSWER].

• Rollout to goal translation: Translate the state/action rollout to textual goal.\n Roll-
out:[ROLLOUT]\n Goal: [ANSWER].

• Goal to rollout translation: Translate the textual goal to state/action rollout.\n Goal:[G].\n
Rollout: [ANSWER]

Here, [ANSWER] is the content that LLM should generate.

F ADDITIONAL RESULTS AND ANALYSIS

F.1 MORE EXAMPLES OF THE LLM-IMAGINARY ROLLOUTS

We present additional examples of the LLM-imaginary rollouts in in Fig. 8. The rendered figures show
that while the imaginary rollouts can reflect the object manipulation for simple goals, the consistency
between the rollouts and the goals reduces when the goal becomes more complicated. This results
call for better usage of the real rollouts to fine-tune LLM to generate high-quality imaginary rollouts.

F.2 OVERALL COMPARISON OF OFFLINE RL BASELINES

We present overall comparison of offline RL baselines in Tab. 14, as a reference for algorithm
selection in future application.
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(a) Success case1. Goal: Employ the gripper to seize the alphabet_soup and transfer the alphabet_soup to the basket.

(b) Success case2. Goal: Employ the gripper to seize the cream_cheese and transfer the cream_cheese to the basket.

(c) Failure case1. Goal: Employ the gripper to seize the salad_dressing and transfer the salad_dressing to the basket. Then 
employ the gripper to seize the cream_cheese and transfer the cream_cheese to the basket.

(d) Failure case2. Goal: Employ the gripper to seize something and transfer it to the basket one by one until the 
alphabet_soup, cream_cheese and salad_dressing are all in the basket.

Figure 8: Examples of the LLM-imaginary rollouts for novel goals. The figures are obtained by
rendering the states in LLM-imaginary rollouts.

F.3 RESULTS WITH LLAMA-2-7B AS GENERATION MODEL

F.4 TRAINING WITH DIFFERENT RATIOS OF IMAGINARY ROLLOUTS

We further investigate whether imaginary rollouts facilitate the acquisition of novel skills. To achieve
this, we conduct ablation study on the ratios of the imaginary rollouts used for offline RL training,
on BabyAI (rephrasing). As shown in Fig. 10, with larger amount of imaginary rollouts, different
algorithms tend to get higher scores. This result serves as evidence that LLM-imaginary rollouts can
effectively improve the performance on the novel tasks.

G BROADER IMPACT STATEMENT

The development of RLIM holds potential for advancing adaptable and sample-efficient AI systems,
with applications covering robotics, autonomous systems, and assistive technologies. By reducing
reliance on costly real-world interaction data, RLIM could democratize access to advanced AI
training, enabling smaller organizations and researchers to innovate in resource-constrained settings.
The introduction of ImagineBench, an open-source benchmark, accelerates progress by standardizing
evaluation across diverse tasks, from robotic manipulation to navigation. However, challenges such as
computational costs from LLM fine-tuning and risks of synthetic data biases—which may propagate
into deployed systems—warrant careful consideration. Ethical concerns around autonomous decision-
making and environmental impacts of large-scale model training further underscore the need for
responsible development. By addressing these challenges, RLIM could pave the way for safer, more
generalizable AI agents capable of rapid adaptation in dynamic real-world environments, while its
emphasis on instruction-following aligns with human-centric AI design, enhancing accessibility for
non-expert users.
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Llama-2-7B Train Rephrase Easy Hard
BC 65.96 ± 15.07 50.74 ± 17.13 35.22 ± 29.60 12.74 ± 11.28

BCQ 45.36 ± 19.68 42.08 ± 17.34 26.42 ± 19.87 11.56 ± 14.00

CQL 43.34 ± 21.41 37.28 ± 20.88 19.00 ± 10.14 11.74 ± 11.43

PRDC 42.57 ± 27.97 31.73 ± 22.90 31.20 ± 36.97 20.47 ± 11.46

TD3+BC 40.70 ± 30.21 28.03 ± 19.17 28.00 ± 30.37 16.83 ± 13.06

COMBO 27.87 ± 29.44 22.13 ± 27.27 21.77 ± 24.78 19.93 ± 10.50

SAC 5.40 ± 2.10 7.85 ± 4.25 16.70 ± 8.30 1.20 ± 0.80

Qwen-3-4B Train Rephrase Easy Hard
BC 67.78 ± 16.64 51.04 ± 17.98 25.96 ± 8.70 9.90 ± 12.23

BCQ 47.56 ± 16.25 43.04 ± 16.03 29.48 ± 20.59 8.62 ± 10.15

CQL 36.04 ± 22.77 35.78 ± 22.38 16.32 ± 12.68 9.64 ± 12.20

PRDC 40.40 ± 29.81 27.83 ± 23.21 32.07 ± 40.05 11.40 ± 11.25

TD3+BC 38.67 ± 29.98 30.47 ± 27.15 35.40 ± 44.76 14.27 ± 13.97

COMBO 45.20 ± 29.60 33.00 ± 24.86 16.87 ± 11.54 18.60 ± 13.40

SAC 5.25 ± 0.45 8.40 ± 2.70 16.70 ± 8.30 1.40 ± 1.30

Table 14: Overall comparison of offline RL baselines, with imaginary rollouts generated by Llama-2-
7B (first table) and Qwen-3-4B (second table).

H USE OF LLMS

In this work, LLMs were used in two ways: (1) Pre-trained LLM (Qwen-3-4B-Instruct-2507 and
Llama-2-7b-chat-hf) was fine-tuned on environment-collected rollouts to generate synthetic imaginary
rollouts for novel tasks, as described in Section 4.2; (2) Publicly available LLM services were used for
language polishing and grammatical refinement of the manuscript. The authors take full responsibility
for all content, including the generated rollouts and the final text.
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Figure 9: Success rate bars of different methods on various levels of goals, with imaginary rollouts
generated by Llama-2-7B. The x-axis denotes the offline RL algorithm, and the y-axis denotes the
success rate. ’w/ IR’ stands for training with both real and imaginary rollouts. The success rate is
averaged over the last five checkpoints, and the error bars are the half standard deviation over three
seeds. We provide the results for Qwen-3-4B in Sec. 5.2.
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Figure 10: Success rate bars of different methods trained on various ratios imaginary rollouts. The
x-axis denotes the ratio of used imaginary offline RL data, and the y-axis denotes the success rate for
completing various natural language goals. The success rate is calculated based on the average of the
last five checkpoints, and the error bars stand for the half standard deviation over three random seeds.
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