
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EVO-STEP: EVOLUTIONARY GENERATION AND STEP-
WISE VALIDATION FOR OPTIMIZING LLMS IN OR

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have revolutionized various domains, but they
face challenges when applied to highly specialized fields such as Operations Re-
search (OR). In this work, we present Evo-Step-Instruct, a novel framework that
progressively increases the complexity of generated problems using an evolution-
ary strategy, aimed at enhancing the capabilities of LLMs in optimization mod-
eling. Our framework integrates stepwise validation, which ensures real-time er-
ror detection and correction during data generation, thereby improving data qual-
ity and preventing error propagation. We fine-tune open-source LLMs, such as
LLaMA-3-8B and Mistral-7B, using the generated high-quality dataset, resulting
in a model, Evo-Step, that significantly outperforms baseline approaches on key
benchmarks including NL4OPT, MAMO, and IndustryOR. Through extensive ex-
periments, Evo-Step demonstrates superior performance, especially in handling
complex OR tasks, achieving a notable improvement of 17.01% in micro average
accuracy on difficult problems. Our approach represents a substantial advance-
ment in automating complex decision-making processes using LLM, showcasing
the potential of combining evolutionary problem generation with structured vali-
dation for fine-tuning LLMs.

1 INTRODUCTION

Operations Research (OR) is a valuable discipline for addressing complex decision-making prob-
lems, widely applied in fields such as economics, engineering, and computer science (Bertsimas
et al., 2019; Pereira et al., 2022; Belgacem et al., 2020). Effective implementation of OR involves
two essential steps: modeling real-world problems and solving them. Despite significant advance-
ments in solution techniques and the development of more efficient solvers, the construction of
appropriate models remains a considerable challenge. Such a task is labor-intensive and requires not
only domain-specific expertise but also a comprehensive understanding of modeling methodologies.
These dual requirements restrict the wider application of OR, particularly in real-world scenarios.

Recent developments in Large Language Models (LLMs) have enhanced the feasibility of automat-
ing optimization modeling. Approaches like Chain-of-Experts (CoE) Xiao et al. (2023) and Op-
tiMUS AhmadiTeshnizi et al. (2024) employ well-crafted prompts and multi-agent systems to en-
hance the construction of optimization models and corresponding programs. However, these ap-
proaches rely on general-purpose LLMs, which, though powerful, are not specifically tailored for
OR, limiting their effectiveness in addressing specialized challenges. Additionally, the need to up-
load sensitive data poses additional privacy concerns. In response, ORLM Tang et al. (2024) presents
an alternative by fine-tuning open-source LLMs using a dataset of 30K examples generated from
686 industry cases. While this improves the model’s performance for OR modeling, ORLM re-
mains semi-automated, requiring significant manual post-processing to achieve satisfactory results.
Moreover, its prompt design lacks the precision needed to manage problem complexity and diver-
sity, resulting in suboptimal outputs. Furthermore, modeling errors are not identified in real-time,
allowing inaccuracies to persist and propagate. While rule-based post-processing can address minor
errors, it often fails to rectify deeper logical and structural issues, further compromising data quality.

To address these limitations, we propose an approach from two primary perspectives. First, we
enhance the prompt design and introduce an evolution-based generation approach, as shown in Fig-
ure 1. This method incrementally increases the complexity and scope of the problems, allowing

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Examples of evolutionary strategies. Please note that we use ... to replace the repeat
words.

the dataset to retain varying levels of difficulty and breadth. This two-dimensional diversity plays
a crucial role in improving the model’s generalization capabilities, as WizardLM Xu et al. (2024)
suggested. Second, we incorporate a stepwise validation mechanism that performs real-time checks
throughout the generation process, effectively filtering out low-quality or erroneous data. This pre-
vents errors from entering and propagating through the seed dataset. We refer to this framework
as Evolutionary generation with Stepwise Validation for Optimization Modeling–Instruct (Evo-
Step-Instruct). Our framework eliminates the need for post-processing, enabling fully automated
generation while reducing API costs by utilizing only high-quality data for future iterations.

The generation process of Evo-Step-Instruct follows a similar approach to WizardLM but targets
more complex OR-specific tasks. Therefore, we design strategies tailored to the unique charac-
teristics of OR problems, including complex variable definitions and strict constraint implementa-
tion. These strategies are categorized into two types: depth and breadth. As illustrated in Figure 1,
depth evolution increases the complexity of the problem, while breadth evolution expands linguis-
tic diversity and problem scope. Together, these methods generate data covering a wide range of
complexities and coverage.

However, due to the complexity of modeling, current LLMs often struggle and lead to error prop-
agation. To mitigate this, we implement a stepwise validation mechanism that not only prevents
errors but also ensures that essential modeling techniques are accurately applied. Problems are first
validated by a description checker to review whether all key information is included. Then, solu-
tions are subjected to checks for variables, constraints, and programs, with feedback loops correcting
any identified issues. Moreover, advanced techniques, like the Big-M method, are verified through
specially designed checkers that guide the LLM step-by-step to confirm accurate implementation.

In order to evaluate the effectiveness of Evo-Step-Instruct, we collect 260 seed cases and gener-
ate nearly 4.5K examples. This data is then applied to train LLaMA-3-8B AI@Meta (2024) and
Mistral-7B Jiang et al. (2023), producing a model named Evo-Step. Furthermore, we manually re-
view benchmarks including NL4OPT Ramamonjison et al. (2023), MAMO Huang et al. (2024),
and IndustryOR Tang et al. (2024), correcting a large number of examples with error labels. Experi-
ments across these benchmarks indicate that our method outperforms existing approaches, achieving
a 6.07% improvement in the micro average and a 7.93% enhancement in the macro average. No-
tably, when focusing on more complex components, Evo-Step exhibits a more significant advantage,
attaining improvements of 17.01% and 12.26% in micro and macro averages, respectively. This sub-
stantial lead underscores our method’s capability to manage complex problems effectively.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Our contributions are as follows:

• Introduction of advanced feedback mechanisms and real-time data updates, significantly reducing
error propagation, thereby eliminating the need for extensive manual post-processing.

• Development of Evo-Step-Instruct, a novel framework specifically designed to enhance the capa-
bilities of open-source LLMs for effectively modeling OR problems.

• Proposal of the Evo-Step model, which achieves state-of-the-art performance across several
benchmarks and particularly for complex problems, with additional manual corrections applied to
errors in established benchmarks such as NL4OPT, MAMO, and IndustryOR.

2 RELATED WORK

LLM-based Automated Modeling for Operations Research is an emerging field that leverages
LLMs to generate mathematical models for OR problems. Existing methods are generally catego-
rized into prompt-engineering and fine-tuning techniques. Approaches like Chain-of-Thought Wei
et al. (2022) and Reflexion Shinn et al. (2024) improve performance but are not specialized for OR.
More advanced methods, including OptiGuide Li et al. (2023a), Chain-of-Experts Xiao et al. (2023),
and OptiMUS AhmadiTeshnizi et al. (2024), employ multi-agent systems with ChatGPT to construct
models but encounter difficulties with complex OR problems due to ChatGPT’s limitations. ORLM
Tang et al. (2024), in contrast, utilizes a large dataset generated from industry cases and GPT-4,
coupled with rule-based post-processing, to improve outcomes. However, it lacks precise prompt
design and effective filtering mechanisms. Our framework addresses these limitations by incorpo-
rating evolutionary generation and real-time validation to control complexity and minimize errors,
thereby enhancing performance.

Data Augmentation improves LLM performance by generating synthetic datasets, often used when
real-world data is insufficient for complex tasksWang et al. (2022); An et al. (2023); Gandhi et al.
(2024); Oh et al. (2023); Xu et al. (2024); Pan et al. (2023); Zhou et al. (2024). In operations
research, data augmentation approaches like Prasath & Karande (2023); Li et al. (2023b) focus on
synthesizing optimization problems from natural language descriptions, but with limited complexity.
ORLM Tang et al. (2024) expands industry case datasets through modifications and rephrasings,
while ReSocratic Yang et al. (2024) takes a reverse data synthesis approach, generating optimization
scenarios from solutions. Among all these works, the closest to ours is Evol-Instruct Xu et al.
(2024), which uses evolutionary techniques to progressively generate instruction data. However, as
OR modeling presents unique challenges, we propose complementing evolutionary generation with
a stepwise validation mechanism to ensure accuracy and avoid error propagation in generated data.

3 METHOD

This section outlines the proposed approach. As depicted in Figure 2,the framework comprises
two primary components: generators and a stepwise validation mechanism. The specifics of the
generators are provided in Sec. 3.2, while the stepwise validation mechanism is detailed in Sec. 3.3.

3.1 PRELIMINARY

We start the evolution from a given initial dataset, denoted as D = (qi,mi)
K
i=1, where each instance

includes a problem description qi and its associated mathematical model and program mi. A qual-
ified qi must contain an objective function, constraints, and all relevant parameters with specified
numerical values. The model mi implements the constraints and objective functions defined in qi
and generates executable code. An example of the training data is provided in Appendix A.1. The
parameter K denotes the size of the initial seed dataset.

3.2 GENERATORS

In each iteration, a seed data point (qs,ms) is randomly sampled from the dataset. Subsequently,
the problem generator chooses a specific evolutionary strategy, denoted as fevo, to produce a new
problem description qn = fevo(qs). The foundational concept of the problem generator resides in

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: The framework of Evo-Step-Instruct.

the implementation of the evolutionary strategies, facilitated through the prompting of LLMs. These
strategies can be broadly categorized into two types: depth evolution and breadth evolution.

Depth evolution enhances problem complexity by modifying existing conditions or introducing
new elements. In response to the specific characteristics of OR problems, three main approaches are
included: constraint modification, objective alteration, and parameter adjustment. These methods
incrementally raise the complexity while maintaining the problem’s logical integrity.

Figure 3: Prompt examples of depth evolution.

Constraint modification involves revising existing constraints or adding new ones to enhance the
problem, with the core principle being to ”modify constraints based on the given problem while
retaining its logical structure.” This ensures that the essential logic of the problem remains intact
as complexity increases. Similarly, objective alteration either modifies existing objectives or intro-
duces new ones, and we limit that the modifications cannot merely change to coefficients. Parameter
adjustment changes values or adds additional elements. These approaches, while tailored to specific

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

contexts, follow the common principle of preserving the underlying structure. Together, they en-
hance the difficulty of the problem from various perspectives.

Nevertheless, the evolution process may lead to generated problems becoming so complex that they
exceed the processing capabilities of LLMs. To manage this, modifications to constraints or objec-
tives are limited to one at a time, with at most one entity being introduced by parameter adjustment.
This ensures a balanced dataset with problems of varying complexity and excludes excessively chal-
lenging examples, enhancing the model’s generalization capabilities. Figure 3 illustrates the prompt
of constraint modification, with additional prompts available in Appendix A.3.

Breadth evolution broadens topic coverage and diversity by transforming the seed example into a
different domain or by combining it with another example to create a novel scenario. Domain trans-
formation transfers the fundamental structure of the original problem to a new application domain,
while preserving its logical structure and constraints, thereby increasing linguistic and contextual
diversity. To ensure practical relevance, we define a list of domains as references. Alternatively,
the combination approach merges two distinct problems to create a new one, with the requirement
that the resulting problem belongs to a different domain and contains unique details. This approach
introduces more significant changes. To control the increased complexity, the new problem is re-
quired to be of a similar length to one of the original problems, maintaining manageable difficulty.
The prompt templates for breadth evolution are provided in Appendix A.4.

As depth and breadth evolution progress, the complexity, scope, and diversity of the generated data
expand, ensuring comprehensive coverage across multiple dimensions. Additionally, all evolution-
ary strategies are implemented using two-shot examples to maintain consistency.

Solution generator g produces a corresponding mathematical model and program mn for a valid
problem description qn. It generates mn = g(qn, qs,ms, evo) by using qs, ms and evolutionary
strategies as references. Since LLMs may struggle with complex models, we specifically embed the
instruction ”ensuring the format and structure are as consistent as possible with the provided qs and
ms” directly into the meta-prompt to enforce consistency.

3.3 STEPWISE VALIDATION MECHANISM

While the aforementioned generation methods can produce descriptions and solutions, the complex-
ity of OR problem modeling poses significant challenges for current LLMs, often resulting in issues
such as missing parameters, ambiguous objectives, or incorrect application of advanced optimiza-
tion techniques. Without sufficient supervision and error-correction mechanisms, such issues tend
to persist, gradually undermining dataset quality and negatively impacting model performance.

To address these challenges, we design a stepwise validation mechanism that performs checks
throughout the generation process, eliminating low-quality or erroneous data to maintain dataset
integrity. This mechanism comprises four checkers, each concentrating on a specific aspect: com-
pleteness of descriptions, definition of variables, implementation of constraints, and quality of pro-
gram. The description checker evaluates whether the generated qn contains all essential components.
If any element is missing, the checker provides feedback, prompting regeneration until validation is
successful or the maximum number of attempts is reached. Only after passing this check does the
solution generator proceed to produce the mathematical model and program.

Subsequently, additional checkers will cross-reference qn and mn to conduct assessments. For
decision variables, detailed and step-by-step instructions are offered, along with numerous examples
covering common variable types, enabling the checker to ensure the accurate definition of variables.

The constraint checker is responsible for confirming that constraints are formulated correctly and
aligned with the problem description. As illustrated in Figure 4, the checker follows a systematic
process, first identifying the constraints and then verifying their consistency with the problem’s re-
quirements, much like the variable validation process. While all constraints are rigorously reviewed,
particular attention is given to advanced techniques such as the Big-M method for absolute value
and K-way selection constraints. These examples serve as illustrations of specialized checks, with
other advanced techniques also applicable. Afterward, the program checker extracts and executes
the program, capturing outputs or errors, and providing feedback to the solution generator as needed.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: Prompt for constraint checker.

When errors are identified in mn, they are relayed back to the solution generator, accompanied by
the prompt: ”Please regenerate the solution based on the ’Error’. Ensure that the new solution
correctly addresses the problem while maintaining the same format and structure as the original
#Solution, with only the necessary corrections and improvements. No additional explanations are
required.” The revised solution is then subjected to further testing until it passes all validation stages.
If the maximum number of retries is reached, the problem will be discarded. This comprehensive
validation process ensures that both qn and mn are free from errors. Only data that successfully
pass all assessments will be integrated into the dataset D for future iterations. This approach mini-
mizes errors within D, thereby preventing the propagation of inaccuracies in future generations and
safeguarding the overall quality of the collected dataset. Details of the checkers and regeneration
process can be found in Appendix A.5

4 EXPERIMENT

This section provides a comprehensive assessment of our methods in comparison to baselines.

4.1 DATASET

We assess our method using a range of datasets, encompassing both simple datasets, such as
NL4OPT Ramamonjison et al. (2023) and MAMO EasyLP Huang et al. (2024), and more com-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance Comparison of Various Methods

Method NL4OPT MAMO MAMO IndustryOR Micro Avg Macro AvgEasyLP ComplexLP
GPT-3.5

Standard 13.06% 35.58% 10.90% 6.49% 24.64% 16.51%
CoT 33.06% 66.56% 13.27% 12.99% 46.67% 31.47%
Reflexion 43.67% 67.64% 14.22% 15.58% 49.79% 35.28%
CoE 52.24% 61.81% 17.06% 18.18% 49.03% 37.32%

GPT-4
Standard 72.65% 81.13% 24.64% 25.97% 65.74% 51.10%
CoT 76.73% 84.97% 29.86% 25.97% 69.62% 54.38%
Reflexion 78.78% 85.12% 36.02% 27.27% 71.05% 56.49%
CoE 76.73% 84.36% 40.28% 31.17% 71.48% 58.14%

Fine-tune
ORLM 78.37% 84.20% 38.39% 35.06% 71.65% 59.01%
Evo-Step-Mistral-7B 72.65% 82.06% 52.61% 40.26% 72.15% 61.90%
Evo-Step-LLaMA-3-8B 84.49% 85.28% 61.61% 36.36% 77.72% 66.94%

plex ones, including MAMO ComplexLP Huang et al. (2024) and IndustryOR Tang et al. (2024).
The answers have been manually revised where necessary, with all modifications thoroughly docu-
mented. A set of examples is included in Appendix A.2.

NL4OPT originates from the NL4Opt competition at NeurIPS 2022 and comprises 1,101 simple
linear programming problems, of which 289 are used for evaluation. We review the solutions and
correct 16 instances that contain inaccuracies.

MAMO contains two sub-datasets: EasyLP and ComplexLP. Where the easier one contains 652
simple linear programming problems and the other one includes 211 complex problems, all problems
are paired with their optimal solutions. We also reviewed these solutions, rectifying 78 inaccuracies.

IndustryOR consists of 100 complex OR problems. Notably, many problems in IndustryOR are
found to lack essential information or accurate numerical values, leading to the correction of 50
inaccuracies and the removal of 23 instances that do not meet the necessary modeling criteria.

4.2 BASELINES

To facilitate a thorough evaluation, we compare our method against several baselines.

Standard prompt directly prompt ChatGPT or GPT-4 Achiam et al. (2023) to generate solution.

CoT (Chain-of-Thought) Wei et al. (2022) is a prompting technique that encourages the model
to generate intermediate reasoning steps leading to the final solution. This method enhances the
model’s ability to articulate its thought process, potentially resulting in more accurate outputs.

Reflexion Shinn et al. (2024) is a strategy that involves multiple attempts to produce a solution,
where each attempt incorporates feedback regarding previous errors. The outputs generated are
refined based on the output of the program, promoting improved accuracy over successive iterations.

Chain-of-Experts (CoE) Xiao et al. (2023) is a multi-agent prompting framework that utilizes col-
laborative interactions among various LLMs, referred to as ”experts” in this context. This collabora-
tive model enhances problem-solving capabilities by incorporating the strengths of different models.

ORLM Tang et al. (2024) is a fine-tuned model for which we employ the checkpoint available on
Hugging Face 1. In addition to this, the release includes 3K training examples2, allowing us to utilize
this dataset in our ablation experiments to further fine-tune a LLaMA-3-8B model as a baseline.

In this experiment, to facilitate a fair comparison among all methods prompting the LLM, we es-
tablished the temperature parameter at 0, thereby standardizing output variability for prompt engi-

1https://huggingface.co/CardinalOperations/ORLM-LLaMA-3-8B/tree/main
2https://huggingface.co/datasets/CardinalOperations/

OR-Instruct-Data-3K/viewer

7

https://huggingface.co/CardinalOperations/ORLM-LLaMA-3-8B/tree/main
https://huggingface.co/datasets/CardinalOperations/OR-Instruct-Data-3K/viewer
https://huggingface.co/datasets/CardinalOperations/OR-Instruct-Data-3K/viewer

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

neering tasks. For the fine-tuned model, we utilized greedy decoding within a zero-shot context,
selecting the top-1 completion as the resultant solution. In this context, GPT-3.5 refers to gpt-3.5-
turbo-1106, and GPT-4 refers to gpt-4-turbo-2024-04-09. Additionally, to avoid the influence of
specific solvers, we evaluated the results using both Gurobi Gurobi Optimization, LLC (2024) and
COPT Ge et al. (2022) solver languages separately for all prompt engineering methods and reported
only their optimal results.

4.3 DETAILS

To construct the dataset, we begin with an initial set of 260 examples and conduct 8,400 generation
iterations utilizing GPT-4-turbo-0409. This process yields 4464 examples for the training dataset.
Subsequently, this dataset is utilized to train LLaMA-3-8B AI@Meta (2024) and Mistral-7B Jiang
et al. (2023). We employ the widely used LLaMA-Factory training framework Zheng et al. (2024),
utilizing the Alpaca format template Taori et al. (2023). In this setup, the input consists of a fixed
prompt with a problem description, and the output is a solution that includes mathematical models
and the corresponding programs. The hyperparameters for each model backbone are listed in Ap-
pendix A.6. During inference, we employ greedy search in a zero-shot context, setting the maximum
generation length to 2,048 tokens.

4.4 METRIC

Considering the potential for minor discrepancies in numerical solutions, we define a comparison
rule to account for small inaccuracies. Let o represent the output of generated programs from differ-
ent methods, and g denote the ground truth. The comparison is governed by the following criterion:

∣∣∣∣o− g

g + ϵ

∣∣∣∣ ≤ 10−4, (1)

where ϵ is a sufficiently small number to avoid division errors.

When o and g satisfy Eq. 1, o and g are considered equal.

4.5 COMPARISON ANALYSIS

Figure 5: Performance comparison of various methods on easy and complex datasets.

As shown in the Table 1, Evo-Steps based on LLaMA-3-8B and Mistral-7B significantly outperform
baselines by a large margin. Especially the best-performing Evo-Step, trained on LLaMA-3-8B,
achieves state-of-the-art results on all benchmarks. This demonstrates its superior modeling capa-
bility. Notably, fine-tuned LLMs exceed the prompt engineering methods on average. However, the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

differences are less pronounced in the easier datasets, NL4OPT and MAMO EasyLP. The reason lies
in the straightforward modeling requirements of these problems, which primarily require the ability
to understand problem descriptions—a strength of models like ChatGPT and GPT-4. In contrast, for
datasets containing more complex problems, the performance of fine-tuned models significantly im-
proves, greatly exceeding that of prompt engineering methods. This indicates that fine-tuned models
possess enhanced modeling capabilities. A prominent example is MAMO ComplexLP, where the
performance advantage of Evo-Step-LLaMA-3-8B reaches 21.33%.

To emphasize the distinctions, we further analyze the results across both simple and complex
datasets. For simplicity, we select the prompt engineering method based on GPT-4 as the baseline
and the best-performing model from Evo-Step. As shown in Figure 5, nearly all methods perform
well on simple datasets, with most achieving over 80% accuracy, except for the Standard method.
The differences between methods on simple datasets are relatively minor. In contrast, the results
for complex datasets demonstrate that advanced prompt engineering techniques, such as Chain-of-
Experts (CoE), significantly outperform Standard, CoT, and Reflexion, though they still lag behind
our proposed methods. Notably, Evo-Step achieves an accuracy above 50%, significantly surpassing
existing methods and showcasing its superior modeling capabilities for complex problems. Given
the intricate nature of complex problem descriptions and the advanced techniques required, our
models exhibit a greater capacity to handle higher-order techniques.

4.6 ABLATION STUDY

We conduct an ablation analysis to explore the effectiveness of different evolutionary strategies and
the composition of the training data, while also facilitating a fair comparison between OR Instruct
and Evo-Step Instruct. For all experiments in the ablation study, we set the hyper-parameter to
the same and use LLaMA-3-8B as the backbone. Specific parameter settings can be found in the
Appendix A.6.

Table 2: Ablation Study on different evolutionary strategies

Method NL4OPT MAMO EasyLP MAMO ComplexLP IndustryOR
Evo-Step 77.55% 85.43% 36.02% 23.38%
w/o Constraint Modification 75.92% 85.58% 19.91% 15.58%
w/o Objective Alteration 77.55% 85.89% 25.12% 19.48%
w/o Parameter Adjustment 73.06% 83.59% 26.07% 22.08%
w/o Domain Transformation 73.88% 83.13% 20.38% 18.18%
w/o Combination 77.96% 85.12% 33.65% 22.08%

Study on different evolutionary strategies : Initially, we evaluate the survival rates of exam-
ples generated by various methods, yielding the following results: 1,716 for constraint modification,
1,242 for objective alteration, 2,123 for parameter adjustment, 2,077 for domain transformation, and
455 for combination. The higher survival rates for parameter adjustment and domain transforma-
tion can be attributed to their relative simplicity, making it easier for examples to pass evaluations.
Conversely, the combination is the most challenging, as it requires inputting two sets of descrip-
tions and solutions into the LLM, significantly increasing the likelihood of failure due to potential
misalignment. The other two methods, which introduce new elements, are also more prone to errors.

Then, we randomly sample 2,000 examples from datasets without specific methods and train
LLaMA-3-8B on this data. The results, presented in Table 2, indicate that excluding domain trans-
formation leads to the poorest performance, with a notable decline observed across all datasets,
underscoring its critical importance. While parameter adjustment significantly impacts performance
on simpler benchmarks, its effect on complex datasets is less pronounced. In contrast, both con-
straint modification and objective alteration exert a greater influence on complex datasets compared
to easier ones. Particularly for constraint modification, it introduces additional constraints and in-
creases the difficulty, facilitating the model’s ability to process more complex conditions.

Study on the components of training examples : As described in Sec. 3, each training example
includes a mathematical model and corresponding programs utilizing the COPT solver, though only
the program is used for problem-solving. To assess the impact of the mathematical model, we re-
move this component from the entire dataset and train LLaMA-3-8B. The results, presented in Table

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Comparison of Evo-Step and Evo-Step without mathematical model

Method NL4OPT MAMO EasyLP MAMO ComplexLP IndustryOR
Evo-Step 84.49% 85.28% 61.61% 36.36%
Evo-Step-4.73M 81.22% 84.97% 50.24% 33.77%
w/o mathematical model-4.73M 80.00% 81.44% 45.97% 29.87%

3, reveal a significant performance drop upon the removal of the mathematical model. To further
mitigate the influence of token count (as data without the mathematical model contain fewer tokens),
we maintain a total of 4.73 million tokens across all datasets. Even with equivalent training sizes,
the dataset including the mathematical model consistently outperforms the one without it. This im-
provement can be ascribed to the mathematical model functioning similarly to the Chain-of-Thought
approach, providing a structured framework that guides the reasoning process in a systematic man-
ner, effectively bridging the problem description and the code solution. In its absence, the model
skips critical reasoning steps, leading to a significant reduction in performance.

Table 4: Comparison of Evo-Step and ORLM with 3K examples.

Method NL4OPT MAMO EasyLP MAMO ComplexLP IndustryOR Micro Avg Macro Avg
Evo-Step 78.37% 84.51% 44.08% 32.47% 72.66% 59.86%
ORLM 75.92% 88.19% 28.91% 25.97% 71.05% 54.75%

Comparison of OR-Instruct and Evo-Step Instruct :ORLM collects 686 industry cases and cre-
ates 30,000 examples using the OR-Instruct framework. Among these, 3,000 training examples are
made publicly available on Hugging Face. To assess the performance of OR-Instruct in comparison
to Evo-Step Instruct, we randomly select 3,000 examples for evaluation. Both datasets, each com-
prising 3,000 examples, are employed to train LLaMA-3-8B. As illustrated in Table 4, except for
MAMO EasyLP, our method uniformly outperforms ORLM, achieving a 1.61% improvement in mi-
cro average and a 5.11% enhancement in macro average. The gains on more complex datasets, such
as MAMO ComplexLP and IndustryOR, are even more pronounced. These advancements suggest
that Evo-Step Instruct possesses superior capabilities and generates higher-quality data, allowing
LLMs to more effectively address OR problems, particularly those of greater complexity.

5 CONCLUSION

In this paper, we present Evo-Step-Instruct, a novel framework that integrates evolutionary prob-
lem generation with a stepwise validation mechanism to improve the capabilities of LLMs in ad-
dressing complex OR problems. By incrementally increasing problem complexity and rigorously
validating generated data, Evo-Step-Instruct effectively prevents error propagation by eliminating
low-quality data in real-time, as opposed to post-processing, thereby ensuring full automation. The
fine-tuned model, Evo-Step, achieved significant performance improvements across benchmarks
such as NL4OPT, MAMO, and IndustryOR, particularly excelling in complex optimization tasks.
These results highlight the effectiveness of combining evolutionary strategies with structured vali-
dation to substantially enhance the modeling capabilities of LLMs.

Limitations: The proposed method faces difficulties in dealing with the wide variety of model-
ing techniques commonly used in OR, which limits its ability to handle the full range of possible
scenarios. Moreover, the performance of the approach has not been fully tested across all types of
OR problems. Finally, its broader application still needs to be tested in other fields to validate its
applicability and adaptability.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. Optimus: Scalable optimization modeling
with (mi) lp solvers and large language models. arXiv preprint arXiv:2402.10172, 2024.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, Jian-Guang Lou, and Weizhu Chen. Learning
from mistakes makes llm better reasoner. arXiv preprint arXiv:2310.20689, 2023.

Ali Belgacem, Kadda Beghdad-Bey, Hassina Nacer, and Sofiane Bouznad. Efficient dynamic re-
source allocation method for cloud computing environment. Cluster Computing, 23(4):2871–
2889, 2020.

Dimitris Bertsimas, Jack Dunn, and Nishanth Mundru. Optimal prescriptive trees. INFORMS Jour-
nal on Optimization, 1(2):164–183, 2019.

Saumya Gandhi, Ritu Gala, Vijay Viswanathan, Tongshuang Wu, and Graham Neubig. Better syn-
thetic data by retrieving and transforming existing datasets. arXiv preprint arXiv:2404.14361,
2024.

Dongdong Ge, Qi Huangfu, Zizhuo Wang, Jian Wu, and Yinyu Ye. Cardinal optimizer (copt) user
guide. arXiv preprint arXiv:2208.14314, 2022.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. Mamo: a mathematical
modeling benchmark with solvers. arXiv preprint arXiv:2405.13144, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Beibin Li, Konstantina Mellou, Bo Zhang, Jeevan Pathuri, and Ishai Menache. Large language
models for supply chain optimization. arXiv preprint arXiv:2307.03875, 2023a.

Qingyang Li, Lele Zhang, and Vicky Mak-Hau. Synthesizing mixed-integer linear programming
models from natural language descriptions. arXiv preprint arXiv:2311.15271, 2023b.

Seokjin Oh, Su Ah Lee, and Woohwan Jung. Data augmentation for neural machine translation
using generative language model. arXiv preprint arXiv:2307.16833, 2023.

Yan Pan, Davide Cadamuro, and Georg Groh. Data-augmented task-oriented dialogue response gen-
eration with domain adaptation. In Proceedings of the 37th Pacific Asia Conference on Language,
Information and Computation, pp. 96–106, 2023.

João Luiz Junho Pereira, Guilherme Antônio Oliver, Matheus Brendon Francisco, Sebastiao Simoes
Cunha Jr, and Guilherme Ferreira Gomes. A review of multi-objective optimization: methods
and algorithms in mechanical engineering problems. Archives of Computational Methods in En-
gineering, 29(4):2285–2308, 2022.

Ganesh Prasath and Shirish Karande. Synthesis of mathematical programs from natural language
specifications. arXiv preprint arXiv:2304.03287, 2023.

Rindranirina Ramamonjison, Timothy Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan Ghad-
dar, Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou, et al. Nl4opt com-
petition: Formulating optimization problems based on their natural language descriptions. In
NeurIPS 2022 Competition Track, pp. 189–203. PMLR, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://www.gurobi.com
https://www.gurobi.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhengyang Tang, Chenyu Huang, Xin Zheng, Shixi Hu, Zizhuo Wang, Dongdong Ge, and Benyou
Wang. Orlm: Training large language models for optimization modeling. arXiv preprint
arXiv:2405.17743, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
Fu, Tao Zhong, Jia Zeng, Mingli Song, et al. Chain-of-experts: When llms meet complex opera-
tions research problems. In The Twelfth International Conference on Learning Representations,
2023.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow com-
plex instructions. In The Twelfth International Conference on Learning Representations, 2024.

Zhicheng Yang, Yinya Huang, Wei Shi, Liang Feng, Linqi Song, Yiwei Wang, Xiaodan Liang, and
Jing Tang. Benchmarking llms for optimization modeling and enhancing reasoning via reverse
socratic synthesis. arXiv preprint arXiv:2407.09887, 2024.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372.

Kun Zhou, Beichen Zhang, Jiapeng Wang, Zhipeng Chen, Wayne Xin Zhao, Jing Sha, Zhichao
Sheng, Shijin Wang, and Ji-Rong Wen. Jiuzhang3. 0: Efficiently improving mathematical reason-
ing by training small data synthesis models. arXiv preprint arXiv:2405.14365, 2024.

12

http://arxiv.org/abs/2403.13372

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 EXAMPLE FOR TRAINING DATA

Figure 6: Examples of training data.

We use COPT Ge et al. (2022) as the default solver in our experiments.

A.2 EXAMPLES FOR MODIFICATIONS OF TEST SETS

NL4OPT, Entry #228 : Wrong variable definition

Problem: A macro-counting fitness guru only eats salmon and eggs. Each bowl of salmon contains
300 calories, 15 grams of protein, and 80 mg of sodium. Each bowl of eggs contains 200 calories,
8 grams of protein, and 20 mg of sodium. Since the fitness guru has a limit to how many eggs he
would like to eat, at most 40% of his meals can be eggs. The fitness guru needs to eat at least 2000
calories and 90 grams of protein. How many of each type of meal should he eat to minimize his
sodium intake?

Answer: 430.7692307692307

The answer is initially derived by treating the number of salmon and egg bowls as continu-
ous variables. However, since the number of bowls should be integers, the correct solution is
adjusted, and the actual answer is 460.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

MAMO EasyLP, Entry #216 : Incorrect Handling of Absolute Value Constraint

Problem: A retail manager is planning to allocate resources across three different departments: pur-
chasing (X), sales (Y), and logistics (Z). These departments have different cost per unit of resource
allocated, with $5 for X, $3 for Y, and $4 for Z. The objective is to minimize the total cost while
meeting certain operational constraints. The combined resources allocated to purchasing and sales
cannot exceed 1000 units due to budget limitations. Similarly, the combined resources allocated
to sales and logistics cannot exceed 800 units due to manpower availability. To ensure a balanced
operation, the difference in resource allocation between purchasing and logistics should be at least
200 units. Given that each department has specific bounds on resource allocation (Purchasing can
have up to 500 units, Sales up to 300 units, Logistics up to 200 units) and that allocations must be
whole numbers due to indivisible nature of the resources being allocated:What is the minimum total
cost required for this scenario? type of meal should he eat to minimize his sodium intake?

Answer: 1000

The initial solution was derived without successfully establishing an absolute value constraint for
”the difference in resource allocation between purchasing and logistics should be at least 200 units.”
Instead, only the constraint for one side (greater than or equal to 200) is retained, leading to an error.
That is ”model.addConstr(x - z ¿= 200, name=ResourceDifferenceConstraint)” in the program. The
correct solution, considering both sides of the absolute value constraint, yields an actual minimum
total cost of 800.

MAMO ComplexLP, Entry #216 : Incorrect Handling of Subtour Elimination

Problem: Imagine a logistics manager tasked with planning a delivery route for a truck that needs to
visit four different cities to distribute goods. The cities are identified numerically as 1, 2, 3, and 4.
The truck can start its journey from any of these cities but must travel to each city exactly once and
then return to the starting point. The objective is to arrange this route in such a way that the total
travel cost is minimized. The costs associated with traveling between the cities are as follows: The
cost to travel from City 1 to City 2 is 52 units, to City 3 is 89 units, and to City 4 is 11 units. From
City 2, it costs 52 units to reach City 1, 14 units to get to City 3, and 13 units to City 4. Traveling
from City 3, the costs are 89 units to City 1, 14 units to City 2, and 87 units to City 4. Lastly, from
City 4, it costs 11 units to go to City 1, 13 units to City 2, and 87 units to City 3. What is the
minimum total travel cost for the truck to visit each city exactly once and return to the starting city?

Answer: 50

The initial solution was derived without successfully establishing the subtour elimination
constraint for the Traveling Salesman Problem (TSP). As a result, subtours were not eliminated
properly, leading to an incorrect minimum total travel cost of 50 units. The correct solution,
ensuring that subtours are eliminated and all cities are visited exactly once, yields an actual
minimum total travel cost of 127 units.

IndustryOR, Entry #86: Missing Numerical Data

Problem: Fighter jets are important combat tools, but in order for them to be effective, there must
be enough pilots. Therefore, in addition to a portion of the produced fighter jets being used directly
for combat, another portion needs to be allocated for pilot training. It is known that the number
of fighter jets produced each year is aj (j=1,,n), and each fighter jet can train k pilots per year.
How should the production of fighter jets be allocated each year to maximize their contribution to
national defense over a period of n year?

There is no numerical value for all parameters.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.3 PROMPT TEMPLATES FOR DEPTH EVOLUTION

A.3.1 PROMPT TEMPLATES FOR OBJECTIVE ALTERATION

A.3.2 PROMPT TEMPLATES FOR PARAMETER ADJUSTMENT

A.4 PROMPT TEMPLATES FOR BREADTH EVOLUTION

A.4.1 PROMPT TEMPLATES FOR DOMAIN TRANSFORMATION

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.4.2 PROMPT TEMPLATES FOR COMBINATION

A.5 PROMPT TEMPLATES FOR CHECKERS AND REGENERATION

A.5.1 PROMPT TEMPLATES FOR DESCRIPTION CHECKER

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.5.2 PROMPT TEMPLATES FOR DECISION VARIABLE CHECKER

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.5.3 PROMPT TEMPLATES FOR REGENERATING THE PROBLEM DESCRIPTION

A.5.4 PROMPT TEMPLATES FOR REGENERATING THE SOLUTION

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.6 HYPER-PARAMETERS FOR TRAINING EVO-STEP AND BASELINES

All experiments are conducted on a single GPU server equipped with eight A100 GPUs, each with
40GB of memory. In experiment, we report the best results of all checkpoints. The maximum token
is limited to 2,500. The hyper-parameters for training Evo-Steps are as follows:

Table 5: Hyper-parameters for Training Evo-Steps.
Backbone BatchSize Per GPU Gradient Accumulation Learning rate Epochs
Mistral-7B 4 8 1.25×10−4 10
LLaMA-3-8B 4 8 1.25×10−4 12

Table 6: Hyper-parameters for ablation experiments.
BatchSize Per GPU Gradient Accumulation Learning rate Epochs
4 8 1.25×10−4 10

19

	Introduction
	Related Work
	Method
	Preliminary
	Generators
	Stepwise Validation Mechanism

	Experiment
	Dataset
	Baselines
	Details
	Metric
	Comparison Analysis
	Ablation Study

	Conclusion
	Appendix
	Example for training data
	Examples for modifications of test sets
	Prompt Templates for Depth Evolution
	Prompt Templates for objective alteration
	Prompt Templates for parameter adjustment

	Prompt Templates for Breadth Evolution
	Prompt Templates for Domain transformation
	Prompt Templates for combination

	Prompt Templates for checkers and regeneration
	Prompt Templates for description checker
	Prompt Templates for decision variable checker
	Prompt Templates for regenerating the problem description
	Prompt Templates for regenerating the solution

	Hyper-parameters for Training Evo-Step and baselines

