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ABSTRACT

Large Language Models (LLMs) have revolutionized various domains, but they
face challenges when applied to highly specialized fields such as Operations Re-
search (OR). In this work, we present Evo-Step-Instruct, a novel framework that
progressively increases the complexity of generated problems using an evolution-
ary strategy, aimed at enhancing the capabilities of LLMs in optimization mod-
eling. Our framework integrates stepwise validation, which ensures real-time er-
ror detection and correction during data generation, thereby improving data qual-
ity and preventing error propagation. We fine-tune open-source LLMs, such as
LLaMA-3-8B and Mistral-7B, using the generated high-quality dataset, resulting
in a model, Evo-Step, that significantly outperforms baseline approaches on key
benchmarks including NL4OPT, MAMO, and IndustryOR. Through extensive ex-
periments, Evo-Step demonstrates superior performance, especially in handling
complex OR tasks, achieving a notable improvement of 17.01% in micro average
accuracy on difficult problems. Our approach represents a substantial advance-
ment in automating complex decision-making processes using LLM, showcasing
the potential of combining evolutionary problem generation with structured vali-
dation for fine-tuning LLMs.

1 INTRODUCTION

Operations Research (OR) is a valuable discipline for addressing complex decision-making prob-
lems, widely applied in fields such as economics, engineering, and computer science (Bertsimas
et al., 2019; Pereira et al., 2022; Belgacem et al., 2020). Effective implementation of OR involves
two essential steps: modeling real-world problems and solving them. Despite significant advance-
ments in solution techniques and the development of more efficient solvers, the construction of
appropriate models remains a considerable challenge. Such a task is labor-intensive and requires not
only domain-specific expertise but also a comprehensive understanding of modeling methodologies.
These dual requirements restrict the wider application of OR, particularly in real-world scenarios.

Recent developments in Large Language Models (LLMs) have enhanced the feasibility of automat-
ing optimization modeling. Approaches like Chain-of-Experts (CoE) Xiao et al. (2023) and Op-
tiMUS AhmadiTeshnizi et al. (2024) employ well-crafted prompts and multi-agent systems to en-
hance the construction of optimization models and corresponding programs. However, these ap-
proaches rely on general-purpose LLMs, which, though powerful, are not specifically tailored for
OR, limiting their effectiveness in addressing specialized challenges. Additionally, the need to up-
load sensitive data poses additional privacy concerns. In response, ORLM Tang et al. (2024) presents
an alternative by fine-tuning open-source LLMs using a dataset of 30K examples generated from
686 industry cases. While this improves the model’s performance for OR modeling, ORLM re-
mains semi-automated, requiring significant manual post-processing to achieve satisfactory results.
Moreover, its prompt design lacks the precision needed to manage problem complexity and diver-
sity, resulting in suboptimal outputs. Furthermore, modeling errors are not identified in real-time,
allowing inaccuracies to persist and propagate. While rule-based post-processing can address minor
errors, it often fails to rectify deeper logical and structural issues, further compromising data quality.

To address these limitations, we propose an approach from two primary perspectives. First, we
enhance the prompt design and introduce an evolution-based generation approach, as shown in Fig-
ure 1. This method incrementally increases the complexity and scope of the problems, allowing
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Figure 1: Examples of evolutionary strategies. Please note that we use ... to replace the repeat
words.

the dataset to retain varying levels of difficulty and breadth. This two-dimensional diversity plays
a crucial role in improving the model’s generalization capabilities, as WizardLM Xu et al. (2024)
suggested. Second, we incorporate a stepwise validation mechanism that performs real-time checks
throughout the generation process, effectively filtering out low-quality or erroneous data. This pre-
vents errors from entering and propagating through the seed dataset. We refer to this framework
as Evolutionary generation with Stepwise Validation for Optimization Modeling–Instruct (Evo-
Step-Instruct). Our framework eliminates the need for post-processing, enabling fully automated
generation while reducing API costs by utilizing only high-quality data for future iterations.

The generation process of Evo-Step-Instruct follows a similar approach to WizardLM but targets
more complex OR-specific tasks. Therefore, we design strategies tailored to the unique charac-
teristics of OR problems, including complex variable definitions and strict constraint implementa-
tion. These strategies are categorized into two types: depth and breadth. As illustrated in Figure 1,
depth evolution increases the complexity of the problem, while breadth evolution expands linguis-
tic diversity and problem scope. Together, these methods generate data covering a wide range of
complexities and coverage.

However, due to the complexity of modeling, current LLMs often struggle and lead to error prop-
agation. To mitigate this, we implement a stepwise validation mechanism that not only prevents
errors but also ensures that essential modeling techniques are accurately applied. Problems are first
validated by a description checker to review whether all key information is included. Then, solu-
tions are subjected to checks for variables, constraints, and programs, with feedback loops correcting
any identified issues. Moreover, advanced techniques, like the Big-M method, are verified through
specially designed checkers that guide the LLM step-by-step to confirm accurate implementation.

In order to evaluate the effectiveness of Evo-Step-Instruct, we collect 260 seed cases and gener-
ate nearly 4.5K examples. This data is then applied to train LLaMA-3-8B AI@Meta (2024) and
Mistral-7B Jiang et al. (2023), producing a model named Evo-Step. Furthermore, we manually re-
view benchmarks including NL4OPT Ramamonjison et al. (2023), MAMO Huang et al. (2024),
and IndustryOR Tang et al. (2024), correcting a large number of examples with error labels. Experi-
ments across these benchmarks indicate that our method outperforms existing approaches, achieving
a 6.07% improvement in the micro average and a 7.93% enhancement in the macro average. No-
tably, when focusing on more complex components, Evo-Step exhibits a more significant advantage,
attaining improvements of 17.01% and 12.26% in micro and macro averages, respectively. This sub-
stantial lead underscores our method’s capability to manage complex problems effectively.
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Our contributions are as follows:

• Introduction of advanced feedback mechanisms and real-time data updates, significantly reducing
error propagation, thereby eliminating the need for extensive manual post-processing.

• Development of Evo-Step-Instruct, a novel framework specifically designed to enhance the capa-
bilities of open-source LLMs for effectively modeling OR problems.

• Proposal of the Evo-Step model, which achieves state-of-the-art performance across several
benchmarks and particularly for complex problems, with additional manual corrections applied to
errors in established benchmarks such as NL4OPT, MAMO, and IndustryOR.

2 RELATED WORK

LLM-based Automated Modeling for Operations Research is an emerging field that leverages
LLMs to generate mathematical models for OR problems. Existing methods are generally catego-
rized into prompt-engineering and fine-tuning techniques. Approaches like Chain-of-Thought Wei
et al. (2022) and Reflexion Shinn et al. (2024) improve performance but are not specialized for OR.
More advanced methods, including OptiGuide Li et al. (2023a), Chain-of-Experts Xiao et al. (2023),
and OptiMUS AhmadiTeshnizi et al. (2024), employ multi-agent systems with ChatGPT to construct
models but encounter difficulties with complex OR problems due to ChatGPT’s limitations. ORLM
Tang et al. (2024), in contrast, utilizes a large dataset generated from industry cases and GPT-4,
coupled with rule-based post-processing, to improve outcomes. However, it lacks precise prompt
design and effective filtering mechanisms. Our framework addresses these limitations by incorpo-
rating evolutionary generation and real-time validation to control complexity and minimize errors,
thereby enhancing performance.

Data Augmentation improves LLM performance by generating synthetic datasets, often used when
real-world data is insufficient for complex tasksWang et al. (2022); An et al. (2023); Gandhi et al.
(2024); Oh et al. (2023); Xu et al. (2024); Pan et al. (2023); Zhou et al. (2024). In operations
research, data augmentation approaches like Prasath & Karande (2023); Li et al. (2023b) focus on
synthesizing optimization problems from natural language descriptions, but with limited complexity.
ORLM Tang et al. (2024) expands industry case datasets through modifications and rephrasings,
while ReSocratic Yang et al. (2024) takes a reverse data synthesis approach, generating optimization
scenarios from solutions. Among all these works, the closest to ours is Evol-Instruct Xu et al.
(2024), which uses evolutionary techniques to progressively generate instruction data. However, as
OR modeling presents unique challenges, we propose complementing evolutionary generation with
a stepwise validation mechanism to ensure accuracy and avoid error propagation in generated data.

3 METHOD

This section outlines the proposed approach. As depicted in Figure 2,the framework comprises
two primary components: generators and a stepwise validation mechanism. The specifics of the
generators are provided in Sec. 3.2, while the stepwise validation mechanism is detailed in Sec. 3.3.

3.1 PRELIMINARY

We start the evolution from a given initial dataset, denoted as D = (qi,mi)
K
i=1, where each instance

includes a problem description qi and its associated mathematical model and program mi. A qual-
ified qi must contain an objective function, constraints, and all relevant parameters with specified
numerical values. The model mi implements the constraints and objective functions defined in qi
and generates executable code. An example of the training data is provided in Appendix A.1. The
parameter K denotes the size of the initial seed dataset.

3.2 GENERATORS

In each iteration, a seed data point (qs,ms) is randomly sampled from the dataset. Subsequently,
the problem generator chooses a specific evolutionary strategy, denoted as fevo, to produce a new
problem description qn = fevo(qs). The foundational concept of the problem generator resides in
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Figure 2: The framework of Evo-Step-Instruct.

the implementation of the evolutionary strategies, facilitated through the prompting of LLMs. These
strategies can be broadly categorized into two types: depth evolution and breadth evolution.

Depth evolution enhances problem complexity by modifying existing conditions or introducing
new elements. In response to the specific characteristics of OR problems, three main approaches are
included: constraint modification, objective alteration, and parameter adjustment. These methods
incrementally raise the complexity while maintaining the problem’s logical integrity.

Figure 3: Prompt examples of depth evolution.

Constraint modification involves revising existing constraints or adding new ones to enhance the
problem, with the core principle being to ”modify constraints based on the given problem while
retaining its logical structure.” This ensures that the essential logic of the problem remains intact
as complexity increases. Similarly, objective alteration either modifies existing objectives or intro-
duces new ones, and we limit that the modifications cannot merely change to coefficients. Parameter
adjustment changes values or adds additional elements. These approaches, while tailored to specific
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contexts, follow the common principle of preserving the underlying structure. Together, they en-
hance the difficulty of the problem from various perspectives.

Nevertheless, the evolution process may lead to generated problems becoming so complex that they
exceed the processing capabilities of LLMs. To manage this, modifications to constraints or objec-
tives are limited to one at a time, with at most one entity being introduced by parameter adjustment.
This ensures a balanced dataset with problems of varying complexity and excludes excessively chal-
lenging examples, enhancing the model’s generalization capabilities. Figure 3 illustrates the prompt
of constraint modification, with additional prompts available in Appendix A.3.

Breadth evolution broadens topic coverage and diversity by transforming the seed example into a
different domain or by combining it with another example to create a novel scenario. Domain trans-
formation transfers the fundamental structure of the original problem to a new application domain,
while preserving its logical structure and constraints, thereby increasing linguistic and contextual
diversity. To ensure practical relevance, we define a list of domains as references. Alternatively,
the combination approach merges two distinct problems to create a new one, with the requirement
that the resulting problem belongs to a different domain and contains unique details. This approach
introduces more significant changes. To control the increased complexity, the new problem is re-
quired to be of a similar length to one of the original problems, maintaining manageable difficulty.
The prompt templates for breadth evolution are provided in Appendix A.4.

As depth and breadth evolution progress, the complexity, scope, and diversity of the generated data
expand, ensuring comprehensive coverage across multiple dimensions. Additionally, all evolution-
ary strategies are implemented using two-shot examples to maintain consistency.

Solution generator g produces a corresponding mathematical model and program mn for a valid
problem description qn. It generates mn = g(qn, qs,ms, evo) by using qs, ms and evolutionary
strategies as references. Since LLMs may struggle with complex models, we specifically embed the
instruction ”ensuring the format and structure are as consistent as possible with the provided qs and
ms” directly into the meta-prompt to enforce consistency.

3.3 STEPWISE VALIDATION MECHANISM

While the aforementioned generation methods can produce descriptions and solutions, the complex-
ity of OR problem modeling poses significant challenges for current LLMs, often resulting in issues
such as missing parameters, ambiguous objectives, or incorrect application of advanced optimiza-
tion techniques. Without sufficient supervision and error-correction mechanisms, such issues tend
to persist, gradually undermining dataset quality and negatively impacting model performance.

To address these challenges, we design a stepwise validation mechanism that performs checks
throughout the generation process, eliminating low-quality or erroneous data to maintain dataset
integrity. This mechanism comprises four checkers, each concentrating on a specific aspect: com-
pleteness of descriptions, definition of variables, implementation of constraints, and quality of pro-
gram. The description checker evaluates whether the generated qn contains all essential components.
If any element is missing, the checker provides feedback, prompting regeneration until validation is
successful or the maximum number of attempts is reached. Only after passing this check does the
solution generator proceed to produce the mathematical model and program.

Subsequently, additional checkers will cross-reference qn and mn to conduct assessments. For
decision variables, detailed and step-by-step instructions are offered, along with numerous examples
covering common variable types, enabling the checker to ensure the accurate definition of variables.

The constraint checker is responsible for confirming that constraints are formulated correctly and
aligned with the problem description. As illustrated in Figure 4, the checker follows a systematic
process, first identifying the constraints and then verifying their consistency with the problem’s re-
quirements, much like the variable validation process. While all constraints are rigorously reviewed,
particular attention is given to advanced techniques such as the Big-M method for absolute value
and K-way selection constraints. These examples serve as illustrations of specialized checks, with
other advanced techniques also applicable. Afterward, the program checker extracts and executes
the program, capturing outputs or errors, and providing feedback to the solution generator as needed.
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Figure 4: Prompt for constraint checker.

When errors are identified in mn, they are relayed back to the solution generator, accompanied by
the prompt: ”Please regenerate the solution based on the ’Error’. Ensure that the new solution
correctly addresses the problem while maintaining the same format and structure as the original
#Solution, with only the necessary corrections and improvements. No additional explanations are
required.” The revised solution is then subjected to further testing until it passes all validation stages.
If the maximum number of retries is reached, the problem will be discarded. This comprehensive
validation process ensures that both qn and mn are free from errors. Only data that successfully
pass all assessments will be integrated into the dataset D for future iterations. This approach mini-
mizes errors within D, thereby preventing the propagation of inaccuracies in future generations and
safeguarding the overall quality of the collected dataset. Details of the checkers and regeneration
process can be found in Appendix A.5

4 EXPERIMENT

This section provides a comprehensive assessment of our methods in comparison to baselines.

4.1 DATASET

We assess our method using a range of datasets, encompassing both simple datasets, such as
NL4OPT Ramamonjison et al. (2023) and MAMO EasyLP Huang et al. (2024), and more com-
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Table 1: Performance Comparison of Various Methods

Method NL4OPT MAMO MAMO IndustryOR Micro Avg Macro AvgEasyLP ComplexLP
GPT-3.5

Standard 13.06% 35.58% 10.90% 6.49% 24.64% 16.51%
CoT 33.06% 66.56% 13.27% 12.99% 46.67% 31.47%
Reflexion 43.67% 67.64% 14.22% 15.58% 49.79% 35.28%
CoE 52.24% 61.81% 17.06% 18.18% 49.03% 37.32%

GPT-4
Standard 72.65% 81.13% 24.64% 25.97% 65.74% 51.10%
CoT 76.73% 84.97% 29.86% 25.97% 69.62% 54.38%
Reflexion 78.78% 85.12% 36.02% 27.27% 71.05% 56.49%
CoE 76.73% 84.36% 40.28% 31.17% 71.48% 58.14%

Fine-tune
ORLM 78.37% 84.20% 38.39% 35.06% 71.65% 59.01%
Evo-Step-Mistral-7B 72.65% 82.06% 52.61% 40.26% 72.15% 61.90%
Evo-Step-LLaMA-3-8B 84.49% 85.28% 61.61% 36.36% 77.72% 66.94%

plex ones, including MAMO ComplexLP Huang et al. (2024) and IndustryOR Tang et al. (2024).
The answers have been manually revised where necessary, with all modifications thoroughly docu-
mented. A set of examples is included in Appendix A.2.

NL4OPT originates from the NL4Opt competition at NeurIPS 2022 and comprises 1,101 simple
linear programming problems, of which 289 are used for evaluation. We review the solutions and
correct 16 instances that contain inaccuracies.

MAMO contains two sub-datasets: EasyLP and ComplexLP. Where the easier one contains 652
simple linear programming problems and the other one includes 211 complex problems, all problems
are paired with their optimal solutions. We also reviewed these solutions, rectifying 78 inaccuracies.

IndustryOR consists of 100 complex OR problems. Notably, many problems in IndustryOR are
found to lack essential information or accurate numerical values, leading to the correction of 50
inaccuracies and the removal of 23 instances that do not meet the necessary modeling criteria.

4.2 BASELINES

To facilitate a thorough evaluation, we compare our method against several baselines.

Standard prompt directly prompt ChatGPT or GPT-4 Achiam et al. (2023) to generate solution.

CoT (Chain-of-Thought) Wei et al. (2022) is a prompting technique that encourages the model
to generate intermediate reasoning steps leading to the final solution. This method enhances the
model’s ability to articulate its thought process, potentially resulting in more accurate outputs.

Reflexion Shinn et al. (2024) is a strategy that involves multiple attempts to produce a solution,
where each attempt incorporates feedback regarding previous errors. The outputs generated are
refined based on the output of the program, promoting improved accuracy over successive iterations.

Chain-of-Experts (CoE) Xiao et al. (2023) is a multi-agent prompting framework that utilizes col-
laborative interactions among various LLMs, referred to as ”experts” in this context. This collabora-
tive model enhances problem-solving capabilities by incorporating the strengths of different models.

ORLM Tang et al. (2024) is a fine-tuned model for which we employ the checkpoint available on
Hugging Face 1. In addition to this, the release includes 3K training examples2, allowing us to utilize
this dataset in our ablation experiments to further fine-tune a LLaMA-3-8B model as a baseline.

In this experiment, to facilitate a fair comparison among all methods prompting the LLM, we es-
tablished the temperature parameter at 0, thereby standardizing output variability for prompt engi-

1https://huggingface.co/CardinalOperations/ORLM-LLaMA-3-8B/tree/main
2https://huggingface.co/datasets/CardinalOperations/

OR-Instruct-Data-3K/viewer
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neering tasks. For the fine-tuned model, we utilized greedy decoding within a zero-shot context,
selecting the top-1 completion as the resultant solution. In this context, GPT-3.5 refers to gpt-3.5-
turbo-1106, and GPT-4 refers to gpt-4-turbo-2024-04-09. Additionally, to avoid the influence of
specific solvers, we evaluated the results using both Gurobi Gurobi Optimization, LLC (2024) and
COPT Ge et al. (2022) solver languages separately for all prompt engineering methods and reported
only their optimal results.

4.3 DETAILS

To construct the dataset, we begin with an initial set of 260 examples and conduct 8,400 generation
iterations utilizing GPT-4-turbo-0409. This process yields 4464 examples for the training dataset.
Subsequently, this dataset is utilized to train LLaMA-3-8B AI@Meta (2024) and Mistral-7B Jiang
et al. (2023). We employ the widely used LLaMA-Factory training framework Zheng et al. (2024),
utilizing the Alpaca format template Taori et al. (2023). In this setup, the input consists of a fixed
prompt with a problem description, and the output is a solution that includes mathematical models
and the corresponding programs. The hyperparameters for each model backbone are listed in Ap-
pendix A.6. During inference, we employ greedy search in a zero-shot context, setting the maximum
generation length to 2,048 tokens.

4.4 METRIC

Considering the potential for minor discrepancies in numerical solutions, we define a comparison
rule to account for small inaccuracies. Let o represent the output of generated programs from differ-
ent methods, and g denote the ground truth. The comparison is governed by the following criterion:

∣∣∣∣o− g

g + ϵ

∣∣∣∣ ≤ 10−4, (1)

where ϵ is a sufficiently small number to avoid division errors.

When o and g satisfy Eq. 1, o and g are considered equal.

4.5 COMPARISON ANALYSIS

Figure 5: Performance comparison of various methods on easy and complex datasets.

As shown in the Table 1, Evo-Steps based on LLaMA-3-8B and Mistral-7B significantly outperform
baselines by a large margin. Especially the best-performing Evo-Step, trained on LLaMA-3-8B,
achieves state-of-the-art results on all benchmarks. This demonstrates its superior modeling capa-
bility. Notably, fine-tuned LLMs exceed the prompt engineering methods on average. However, the
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differences are less pronounced in the easier datasets, NL4OPT and MAMO EasyLP. The reason lies
in the straightforward modeling requirements of these problems, which primarily require the ability
to understand problem descriptions—a strength of models like ChatGPT and GPT-4. In contrast, for
datasets containing more complex problems, the performance of fine-tuned models significantly im-
proves, greatly exceeding that of prompt engineering methods. This indicates that fine-tuned models
possess enhanced modeling capabilities. A prominent example is MAMO ComplexLP, where the
performance advantage of Evo-Step-LLaMA-3-8B reaches 21.33%.

To emphasize the distinctions, we further analyze the results across both simple and complex
datasets. For simplicity, we select the prompt engineering method based on GPT-4 as the baseline
and the best-performing model from Evo-Step. As shown in Figure 5, nearly all methods perform
well on simple datasets, with most achieving over 80% accuracy, except for the Standard method.
The differences between methods on simple datasets are relatively minor. In contrast, the results
for complex datasets demonstrate that advanced prompt engineering techniques, such as Chain-of-
Experts (CoE), significantly outperform Standard, CoT, and Reflexion, though they still lag behind
our proposed methods. Notably, Evo-Step achieves an accuracy above 50%, significantly surpassing
existing methods and showcasing its superior modeling capabilities for complex problems. Given
the intricate nature of complex problem descriptions and the advanced techniques required, our
models exhibit a greater capacity to handle higher-order techniques.

4.6 ABLATION STUDY

We conduct an ablation analysis to explore the effectiveness of different evolutionary strategies and
the composition of the training data, while also facilitating a fair comparison between OR Instruct
and Evo-Step Instruct. For all experiments in the ablation study, we set the hyper-parameter to
the same and use LLaMA-3-8B as the backbone. Specific parameter settings can be found in the
Appendix A.6.

Table 2: Ablation Study on different evolutionary strategies

Method NL4OPT MAMO EasyLP MAMO ComplexLP IndustryOR
Evo-Step 77.55% 85.43% 36.02% 23.38%
w/o Constraint Modification 75.92% 85.58% 19.91% 15.58%
w/o Objective Alteration 77.55% 85.89% 25.12% 19.48%
w/o Parameter Adjustment 73.06% 83.59% 26.07% 22.08%
w/o Domain Transformation 73.88% 83.13% 20.38% 18.18%
w/o Combination 77.96% 85.12% 33.65% 22.08%

Study on different evolutionary strategies : Initially, we evaluate the survival rates of exam-
ples generated by various methods, yielding the following results: 1,716 for constraint modification,
1,242 for objective alteration, 2,123 for parameter adjustment, 2,077 for domain transformation, and
455 for combination. The higher survival rates for parameter adjustment and domain transforma-
tion can be attributed to their relative simplicity, making it easier for examples to pass evaluations.
Conversely, the combination is the most challenging, as it requires inputting two sets of descrip-
tions and solutions into the LLM, significantly increasing the likelihood of failure due to potential
misalignment. The other two methods, which introduce new elements, are also more prone to errors.

Then, we randomly sample 2,000 examples from datasets without specific methods and train
LLaMA-3-8B on this data. The results, presented in Table 2, indicate that excluding domain trans-
formation leads to the poorest performance, with a notable decline observed across all datasets,
underscoring its critical importance. While parameter adjustment significantly impacts performance
on simpler benchmarks, its effect on complex datasets is less pronounced. In contrast, both con-
straint modification and objective alteration exert a greater influence on complex datasets compared
to easier ones. Particularly for constraint modification, it introduces additional constraints and in-
creases the difficulty, facilitating the model’s ability to process more complex conditions.

Study on the components of training examples : As described in Sec. 3, each training example
includes a mathematical model and corresponding programs utilizing the COPT solver, though only
the program is used for problem-solving. To assess the impact of the mathematical model, we re-
move this component from the entire dataset and train LLaMA-3-8B. The results, presented in Table
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Table 3: Comparison of Evo-Step and Evo-Step without mathematical model

Method NL4OPT MAMO EasyLP MAMO ComplexLP IndustryOR
Evo-Step 84.49% 85.28% 61.61% 36.36%
Evo-Step-4.73M 81.22% 84.97% 50.24% 33.77%
w/o mathematical model-4.73M 80.00% 81.44% 45.97% 29.87%

3, reveal a significant performance drop upon the removal of the mathematical model. To further
mitigate the influence of token count (as data without the mathematical model contain fewer tokens),
we maintain a total of 4.73 million tokens across all datasets. Even with equivalent training sizes,
the dataset including the mathematical model consistently outperforms the one without it. This im-
provement can be ascribed to the mathematical model functioning similarly to the Chain-of-Thought
approach, providing a structured framework that guides the reasoning process in a systematic man-
ner, effectively bridging the problem description and the code solution. In its absence, the model
skips critical reasoning steps, leading to a significant reduction in performance.

Table 4: Comparison of Evo-Step and ORLM with 3K examples.

Method NL4OPT MAMO EasyLP MAMO ComplexLP IndustryOR Micro Avg Macro Avg
Evo-Step 78.37% 84.51% 44.08% 32.47% 72.66% 59.86%
ORLM 75.92% 88.19% 28.91% 25.97% 71.05% 54.75%

Comparison of OR-Instruct and Evo-Step Instruct :ORLM collects 686 industry cases and cre-
ates 30,000 examples using the OR-Instruct framework. Among these, 3,000 training examples are
made publicly available on Hugging Face. To assess the performance of OR-Instruct in comparison
to Evo-Step Instruct, we randomly select 3,000 examples for evaluation. Both datasets, each com-
prising 3,000 examples, are employed to train LLaMA-3-8B. As illustrated in Table 4, except for
MAMO EasyLP, our method uniformly outperforms ORLM, achieving a 1.61% improvement in mi-
cro average and a 5.11% enhancement in macro average. The gains on more complex datasets, such
as MAMO ComplexLP and IndustryOR, are even more pronounced. These advancements suggest
that Evo-Step Instruct possesses superior capabilities and generates higher-quality data, allowing
LLMs to more effectively address OR problems, particularly those of greater complexity.

5 CONCLUSION

In this paper, we present Evo-Step-Instruct, a novel framework that integrates evolutionary prob-
lem generation with a stepwise validation mechanism to improve the capabilities of LLMs in ad-
dressing complex OR problems. By incrementally increasing problem complexity and rigorously
validating generated data, Evo-Step-Instruct effectively prevents error propagation by eliminating
low-quality data in real-time, as opposed to post-processing, thereby ensuring full automation. The
fine-tuned model, Evo-Step, achieved significant performance improvements across benchmarks
such as NL4OPT, MAMO, and IndustryOR, particularly excelling in complex optimization tasks.
These results highlight the effectiveness of combining evolutionary strategies with structured vali-
dation to substantially enhance the modeling capabilities of LLMs.

Limitations: The proposed method faces difficulties in dealing with the wide variety of model-
ing techniques commonly used in OR, which limits its ability to handle the full range of possible
scenarios. Moreover, the performance of the approach has not been fully tested across all types of
OR problems. Finally, its broader application still needs to be tested in other fields to validate its
applicability and adaptability.
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A APPENDIX

A.1 EXAMPLE FOR TRAINING DATA

Figure 6: Examples of training data.

We use COPT Ge et al. (2022) as the default solver in our experiments.

A.2 EXAMPLES FOR MODIFICATIONS OF TEST SETS

NL4OPT, Entry #228 : Wrong variable definition

Problem: A macro-counting fitness guru only eats salmon and eggs. Each bowl of salmon contains
300 calories, 15 grams of protein, and 80 mg of sodium. Each bowl of eggs contains 200 calories,
8 grams of protein, and 20 mg of sodium. Since the fitness guru has a limit to how many eggs he
would like to eat, at most 40% of his meals can be eggs. The fitness guru needs to eat at least 2000
calories and 90 grams of protein. How many of each type of meal should he eat to minimize his
sodium intake?

Answer: 430.7692307692307

The answer is initially derived by treating the number of salmon and egg bowls as continu-
ous variables. However, since the number of bowls should be integers, the correct solution is
adjusted, and the actual answer is 460.
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MAMO EasyLP, Entry #216 : Incorrect Handling of Absolute Value Constraint

Problem: A retail manager is planning to allocate resources across three different departments: pur-
chasing (X), sales (Y), and logistics (Z). These departments have different cost per unit of resource
allocated, with $5 for X, $3 for Y, and $4 for Z. The objective is to minimize the total cost while
meeting certain operational constraints. The combined resources allocated to purchasing and sales
cannot exceed 1000 units due to budget limitations. Similarly, the combined resources allocated
to sales and logistics cannot exceed 800 units due to manpower availability. To ensure a balanced
operation, the difference in resource allocation between purchasing and logistics should be at least
200 units. Given that each department has specific bounds on resource allocation (Purchasing can
have up to 500 units, Sales up to 300 units, Logistics up to 200 units) and that allocations must be
whole numbers due to indivisible nature of the resources being allocated:What is the minimum total
cost required for this scenario? type of meal should he eat to minimize his sodium intake?

Answer: 1000

The initial solution was derived without successfully establishing an absolute value constraint for
”the difference in resource allocation between purchasing and logistics should be at least 200 units.”
Instead, only the constraint for one side (greater than or equal to 200) is retained, leading to an error.
That is ”model.addConstr(x - z ¿= 200, name=ResourceDifferenceConstraint)” in the program. The
correct solution, considering both sides of the absolute value constraint, yields an actual minimum
total cost of 800.

MAMO ComplexLP, Entry #216 : Incorrect Handling of Subtour Elimination

Problem: Imagine a logistics manager tasked with planning a delivery route for a truck that needs to
visit four different cities to distribute goods. The cities are identified numerically as 1, 2, 3, and 4.
The truck can start its journey from any of these cities but must travel to each city exactly once and
then return to the starting point. The objective is to arrange this route in such a way that the total
travel cost is minimized. The costs associated with traveling between the cities are as follows: The
cost to travel from City 1 to City 2 is 52 units, to City 3 is 89 units, and to City 4 is 11 units. From
City 2, it costs 52 units to reach City 1, 14 units to get to City 3, and 13 units to City 4. Traveling
from City 3, the costs are 89 units to City 1, 14 units to City 2, and 87 units to City 4. Lastly, from
City 4, it costs 11 units to go to City 1, 13 units to City 2, and 87 units to City 3. What is the
minimum total travel cost for the truck to visit each city exactly once and return to the starting city?

Answer: 50

The initial solution was derived without successfully establishing the subtour elimination
constraint for the Traveling Salesman Problem (TSP). As a result, subtours were not eliminated
properly, leading to an incorrect minimum total travel cost of 50 units. The correct solution,
ensuring that subtours are eliminated and all cities are visited exactly once, yields an actual
minimum total travel cost of 127 units.

IndustryOR, Entry #86: Missing Numerical Data

Problem: Fighter jets are important combat tools, but in order for them to be effective, there must
be enough pilots. Therefore, in addition to a portion of the produced fighter jets being used directly
for combat, another portion needs to be allocated for pilot training. It is known that the number
of fighter jets produced each year is aj (j=1,,n), and each fighter jet can train k pilots per year.
How should the production of fighter jets be allocated each year to maximize their contribution to
national defense over a period of n year?

There is no numerical value for all parameters.
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A.3 PROMPT TEMPLATES FOR DEPTH EVOLUTION

A.3.1 PROMPT TEMPLATES FOR OBJECTIVE ALTERATION

A.3.2 PROMPT TEMPLATES FOR PARAMETER ADJUSTMENT

A.4 PROMPT TEMPLATES FOR BREADTH EVOLUTION

A.4.1 PROMPT TEMPLATES FOR DOMAIN TRANSFORMATION
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A.4.2 PROMPT TEMPLATES FOR COMBINATION

A.5 PROMPT TEMPLATES FOR CHECKERS AND REGENERATION

A.5.1 PROMPT TEMPLATES FOR DESCRIPTION CHECKER
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A.5.2 PROMPT TEMPLATES FOR DECISION VARIABLE CHECKER
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A.5.3 PROMPT TEMPLATES FOR REGENERATING THE PROBLEM DESCRIPTION

A.5.4 PROMPT TEMPLATES FOR REGENERATING THE SOLUTION
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A.6 HYPER-PARAMETERS FOR TRAINING EVO-STEP AND BASELINES

All experiments are conducted on a single GPU server equipped with eight A100 GPUs, each with
40GB of memory. In experiment, we report the best results of all checkpoints. The maximum token
is limited to 2,500. The hyper-parameters for training Evo-Steps are as follows:

Table 5: Hyper-parameters for Training Evo-Steps.
Backbone BatchSize Per GPU Gradient Accumulation Learning rate Epochs
Mistral-7B 4 8 1.25×10−4 10
LLaMA-3-8B 4 8 1.25×10−4 12

Table 6: Hyper-parameters for ablation experiments.
BatchSize Per GPU Gradient Accumulation Learning rate Epochs
4 8 1.25×10−4 10
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