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Abstract

Seeking causal explanations in panel (or longitudinal/multivariate time-series)
data is a difficult problem of both academic and industrial importance. Although
there exists a large amount of literature on forward causal inference, where the
treatment/outcome/covariates variables are well-defined, it is unclear how to answer
the reverse question: which covariates have effects on the outcome? In this paper,
we set forth our expedition on this reverse question from the first principles. We
formulate the precise problem definition in terms of causal patterns and causal
paths, and propose a linear-time greedy meta algorithm that makes use of forward
causal inference estimators. We further identify a set of optimality conditions under
which the proposed algorithm is able to find the optimal causal path. To substantiate
our greedy algorithm, we propose a generalized version of the synthetic control
estimator by fitting both synthetic treatments and controls by conditioning on the
partial causal paths. Promising results on on synthetic datasets demonstrate the
potential of our method.

1 Introduction

Time-series data are ubiquitous and important in various scientific and business domains spanning
longitudinal data analysis, econometrics, epidemiology, cloud computing, supply chain management,
labor planning, to name a few (see e.g., Petropoulos et al. [2022] and Benidis et al. [2022] for a
comprehensive overview and relevant applications). There is a growing interest on drawing causal
inference on time-series data, apart from being an interesting and important research problem on its
own, a causal understanding of the underlying mechanisms will facilitate the construction of more
robust and generalizable solutions. Causal inference itself has a long history and has become the
working horse in many applied research fields such as econometrics, political science, clinical trials,
to name a few (see, e.g., Neyman [1923], Fisher [1958], Rubin [1974], Robins [1986], Abadie and
Gardeazabal [2003], Imbens and Rubin [2015]), and much effort has been devoted to time-series/panel
data (see e.g., Robins [1986], Robins et al. [2000], Bojinov et al. [2021]). There has been an interest in
moving from reasoning about effects-of-cause to causes-of-effect, see, e.g., Gelman [2011], Gelman
and Imbens [2013]. The term “reverse causal inference” coined by Gelman and Imbens, refer to the
problems of this flavor that can be viewed as the inverse of the conventional (forward) causal queries.
Although being of great theoretical and practical importance, literature on reverse causal inference
usually focuses on the philosophical aspect of the question (see e.g., Dawid et al. [2016]). It has been
an intriguing open question of how to formalize and investigate this problem in a practical manner.

In this work, we provide our answer to this question by formulating the reverse causal inference
problem through the notions of causal patterns and causal paths (Section 2). Under this formulation,
reverse causal inference is equivalent to identifying and estimating the causal patterns. As exact
identification requires examining exponentially many combinations of patterns (in both time and the
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number of covariates), we propose to use a greedy linear-time algorithm whose solution becomes exact
under a set of “monotonicity” conditions. Given that the core of our procedure solves a subproblem
of forward causal inference, our method can be flexibly combined with any good causal estimator,
such as the inverse-propensity weighted (IPW) estimator and synthetic control (SC) estimator (see
e.g., Abadie and Gardeazabal [2003], Abadie et al. [2010, 2015]). We propose to use a generalized
synthetic control estimator, and tested it on synthetic datasets.

Contributions. (1) We give a novel precise formulation of the reversal causal inference problem
through causal patterns and causal paths. (2) We propose a linear-time meta algorithm for finding
causal paths and derive optimality conditions. (3) We propose a generalized version of the synthetic
control estimator, and demonstrate its benefit on synthetic experiments.

1.1 Related Work

Reverse Causal Inference and Causal Evidence. Although huge literature exists for “forward”
causal queries as discussed above, it is only recently when practitioners started to contemplate reverse
causal inference in applied fields, see, e.g., Gelman [2011], Gelman and Imbens [2013], Dawid
et al. [2016], Imbens [2020], where one is interested in identifying the causes of effects instead of
evaluating effects of causes. On top of several subtle differences, this problem is also relevant to
graphical causal models pioneered by Robins [1986], Pearl [1995], Pearl and Mackenzie [2018].
Nonetheless, much of the recent focus is on distinguishing the “directions of causality” as discussed
in Peters et al. [2012], see, e.g., Imbens [2020] for a thorough comparison between these two different
approaches for causal inference.

Causal inference in panel data and time-varying treatments. Propensity score-based methods
and marginal models are used in various scientific domain Rubin [1974], Rosenbaum and Rubin
[1983], Robins [1986], Cole and Hernan [2008], Vansteelandt and Joffe [2014]. Inverse probability
weighted methods are sensitive to specification, and even if ground truth is known, the estimator
itself may suffer instability issues, and does not cope well with high-dimensional covariates Viviano
and Bradic [2021], Khan and Nekipelov [2022]. Bojinov and Shephard [2019], Bojinov et al. [2021]
adopted a design-based approach by assuming the treatment assignment mechanisms are known and
studied the properties of inverse probability weighted estimators when the lag parameter is known
(especially when it is either zero or one). Similar in spirit, Viviano and Bradic [2021] proposed
a dynamic covariate balancing by considering a linear model. In the econometrics communities,
there is much effort in drawing causal inference on policy evaluations in panel data. Commonly
used methods include difference-in-difference (DiD), synthetic control (SC) Abadie and Gardeazabal
[2003], Abadie et al. [2010, 2015], two-way fixed-effect (TWFE) modeling, to name a few. See, e.g.,
Athey et al. [2021] for a unified framework formulated as matrix completion problems and Imbens
[2022] for a introduction. Along these lines of research, SC methods are most relevant to our problem
in spirit where the treated group is usually few and one constructs a “synthetic control group” from
the untreated group that best mimics the treated unit when the intervention had not taken place. See
e.g., Doudchenko and Imbens [2017], Abadie [2021] for a recent introduction and progresses.

Inference. Inference is usually performed to test Fisher’s sharp null of no-effect Fisher [1958] or to
test Neymann’s weak null of no average effect Neyman [1923]. Exact inference under randomization
can be performed for design-based experiments Bojinov et al. [2021], Bottmer et al. [2021] or under
outcome modelling. Inference is more subtle for SC on the effect on the single treated unit, as such
usually the average effect over time horizon or over units are studied. The recent work Athey et al.
[2021] referrs to the former as the horizontal regression and the latter vertical regression and studied
their properties under the matrix completion literature.

2 Preliminaries and Setup

2.1 Background and Notations

We use capital letters to denote potentially multivariate time-series. For each study unit i ∈ [N ],
we assume there exists a covariate time-series Xi,t ∈ X and an outcome time-series Yi,t ∈ Y for
t ∈ [T ]. We write Zi,t for unobserved covariates. For example, each unit may correspond to a cloud
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computing instance, Yi,t is the network latency of the i-th instance at time t, Xi,t can be one kind of
telemetry of the instance such as CPU usage or memory usage, and Zi,t is some unobserved variable
of the instance such as internal state of the applications that are running on this particular instance. We
focus on the case where all time-series are dichotomized, i.e., binary-valued X = Y = {0, 1}, though
our method and analysis can be extended to the more general case where Xi,t may be multivariate
and takes more values. We omit the unit index i when making general statements for all units. We
use the colon in the indices to select a slice (both ends inclusive) along that index, for example,
Yi,1:t = (Yi,1, . . . , Yi,t), and use the shorthand notation Ȳi,t for Yi,1:t. We also put a superscript
on observations such as Y obs to emphasize its non-random nature. Without loss of generality, we
assume Yi,t takes place instantaneously after Xi,t and Zi,t but before Xi,t+1 and Zi,t+1 for all i and
t. We view the potential-outcomes Yi,t as functions of both observed covariates X̄i,t and unobserved
covariates Z̄i,t, as well as its past history Ȳi,t−1. When only partial information is available, Yi,t may
contain randomness arisen from other variables. For example, we view Y1,2(X̄1,2) as a fixed random
function dependent on Y1,1 and Z̄1,2.

Causal inference revolves around making comparisons between potential-outcomes at different
treatment levels, which is in essence a missing data problem [Neyman, 1923, Fisher, 1958]. For
example, when the treatment is known and when there is only contemptuous effect (i.e., Yi,t is only
affected by Xi,t, a common assumption made to simplify theoretical analysis e.g., in Arkhangelsky
et al. [2021]), the potential-outcomes Yi,t is a function of Xi,t and we write Yi,t(1) and Yi,t(0) for
the potential-outcomes under Xi,t = 1 and 0, respectively. Here one is usually interested in studying
the treatment effect for unit i at time t defined as

τi,t = Yi,t(1)− Yi,t(0) (1)

and perform hypothesis test on no effect across all units (i.e., Fisher’s sharp null) or estimating an
average treatment effect (e.g., average over the temporal or unit axis, or both). Specifically in the SC
literature, usually one focuses on the case when the treated units are few, e.g., a single treated unit,
and wishes to estimate

τ1,t = Y1,t(1)− Y1,t(0) = Y obs
1,t − Y1,t(0) (2)

where we assume the first unit is the single treated unit whose observed outcome is by assumption the
potential-outcome under treatment. This setup is particularly appealing for comparative case studies
where potential-outcomes under treatment for other units may not always be well-defined, see e.g.,
west Germany reunificaiton study Abadie and Gardeazabal [2003].

This canonical setup in SC literature closely mirrors our problem of causal explanation: the units
that exhibit abnormal behaviors is few (compared with few treated units); estimation of τ1,t is also
of interest on top of inferences on average effects; units may not be comparable in the sense that
exchangeability assumption may fail. Furthermore, the most significant complication is one does not
know a priori whether there exists “multiple levels” of treatments when dynamic treatment effects
are possible. To this ends, we first set up definitions that fasciliate our exposition.

2.2 Partial and Complete Covariate Paths

The first complication for drawing reverse causal inference lies in the fact that compared with forward
causal queries, the plausible answers may not be unique or even exist. As such we first define the
history up to time t asHt := X t, and writeHt =

⋃t
s=1Ht as the set of (partial or complete) covariate

paths. Note that not all paths x ∈ Ht := X t is realizable (has non-zero probability of being observed
in the population) as we allow arbitrary dependency of Yi,t′ on Xi,1:t′ for any t′ ≤ t. For example,
in Figure 1, when T = 3, (1, 1) is a partial covariate path and (1, 1, 1) is a complete covariate
path. We further define for each index t, the intervention A(s, a; X̄i,t) = (X̄i,s−1, a,Xi,s+1:t) for
any s ≤ t and use the shorthand notation A(s, X̄i,t) = A(s, 1−Xi,s; X̄i,t). In other words, these
interventions alter the s-th component of the covariate series at time t, and leave everything else
unchanged. We use the notation ∪ to define path concatenation, i.e., if for some t ≤ T , ω ∈ Ht then
ω′ = (ω, a) = ω ∪ {a} ∈ Ht+1 with ω′s = ωs for s ≤ t and ωt+1 = a. With these definitions, at any
time t, the potential-outcomes can be viewed as a random function taking an element inHt (or more
generally, any ordered subset of X T ) as an argument where the randomness arises from the other
(observed or unobserved) covariates that may affect it.

With these definitions, at any time t, the potential outcome can be viewed as a function taking an
element inHt as an argument. We denote the observed outcome by Y obs

i,t , which connects with the
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potential outcome via the consistency assumption Y obs
i,t =

∑
x∈Ht

1{x=Xobs
i,1:t}Yi,t(x), where Xobs

i,t

is the observed outcome at time t. We overload the notation x = y to return false whenever x
and y are of different dimensions. A concrete example in our problem for the outcome series Y is
the indicator of presence of anomalies at each time step and X the metrics and other time-varying
auxiliary information we collect. We summarize our assumptions below.
Assumption 2.1 (Assumptions). We assume for all i ∈ [N ] and t ∈ [T ] the following assump-
tions. 1. Unconfoundedness: Xi,t ⊥ Ȳi,T |{X̄i,t−1, Z̄i,t−1}. 2. Non-anticipation: Yi,t(·) ∈
Fi,t := σ ({Xi,1:t, Zi,1:t, Yi,1:t−1}). 3. Consistency: Y obs

i,t ∼
∑

x∈Ht
1{x=X̄obs

i,t}Yi,t(x). 4.
Individualistic/No-interference: Fi,t ⊥ Fj,s for all i 6= j and t, s ∈ [T ].
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Figure 1: Example of causal paths (the subtree start-
ing with X1 = 0 is omitted). Here P(X1 = 1) = 1/2
and all conditional probabilities that are not 1

2
are

marked on the edge. The potential outcomes are such
that Y1 = Y2 = 0 and Y3 = 1{X1:3∈{(1,1,1),(1,0,1)}}.

Remark. Note that the set of assumptions are
similar in spirit to those usually made in the lit-
erature Robins [1986], Bojinov and Shephard
[2019], Viviano and Bradic [2021]. Compar-
ing with the work studying effect estimation
in time-varying/dynamic treatments, our for-
mulation have the several most distinctive fea-
tures: (1) we do not explicitly specify which
component of Xi,t(·) are the “treatment” and
which are “covariates;” instead, there might be a
non-trivial pattern/dependency among them that
jointly serve as the most causally relevant expla-
nation for the anomaly. (2) we treat the outcome
as a function of (partial and complete) covari-
ate paths, which allows us to specify covariates
after the intervention time or averaging over all
paths therein (which requires an exponentially
many paths and manually selected weights), as
are usually done in e.g., Bojinov and Shephard
[2019].

3 The Reverse Causal Inference Problem

3.1 Problem Formulation via Causal Paths

We have used “causal” several times in the colloquial sense so far, yet it avoids confusion and is
more illuminating when we formally define what do we mean by “causation:” we say X “causes”
Y or X “has an effect on” Y or X “provides causally relevant explanations” for Y if (1) with
every pre-treatment (covariates that occur prior to X) controlled, X and Y are correlated; and (2)
X precedes Y in time. This perspective dates back to the very first works on causation Neyman
[1923], Fisher [1958] and was inherited by the potential-outcomes framework and adopted by causal
practitioners in various fields. We formulate our problem of reverse causal query as below.

Problem 3.1 (Reverse causal inference). Given covariate time-series Xt and (observed)
outcome series Yt, obtain the set Ω ⊂ [T ] such that XΩ := {Xt : t ∈ Ω} provides causal
explanations for YT in the sense that the change of any covariate XΩ indexed by Ω from 1 to
0 leads to the change in the potential-outcome.

The nature of this problem that multiple causes are plausible precludes putting assumption on the
necessity between the change in XΩ and the change in the potential outcome. We use the following
example to illustrate the rationale behind.
Example 3.2. Suppose T = 3, Y1 = Y2 = 0 and Y3 = 1{X1:3∈{(1,1,1),(1,0,1)}}, then Ω = {1, 3},
and changing either X1 or X3 results a change in Y3. However, when there is a change in Y3, it is not
necessary that the change was due to X1 (or X3).

Note that in this definition, we are essentially concerned with finding combinations of 1’s in the
covariate series that jointly have an effect on the outcome while treating 0’s as “reference levels.” The
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condition for the set Ω in the problem statement is made precise in the following definition of causal
patterns.
Definition 3.3 (Causal patterns). Given a set Ω ⊂ [T ], we write XΩ ∈ X |Ω| to be a subset of X̄T

such that Xs = 1 if s ∈ Ω and Xs is left undetermined otherwise. We say Ω is a set of causal patterns
if the potential outcomes

YT (XΩ) 6= YT (A(s,XΩ)), ∀s ∈ Ω (3)
differ when applying intervention As on any index s ≤ t in the set.

In Example 3.2, the set Ω = {1, 3} (which selects the first and the third covariates, X1 and X3)
satisfies the above definition. Note that depending on different modelling choices, the expression
YT (XΩ) can be viewed as either a fixed quantity or a random variable. In latter case the non-equality
should be interpreted in the sense of random variables (e.g., in the almost sure sense). Note that in
Definition 3.3, XΩ is a subset of X1:T that may contain “holes” in the middle. It is more convenient
to work with an alternative definition in terms of covariate paths.
Definition 3.4 (Causal paths). Fix s ≤ T , we say ω ∈ Hs = X s is an s-causal path for YT if{

P(YT = 1|X1:s = ω) > 0 and
P(YT = 1|X1:s = ω) > P(YT = 1|X1:s = A(s, ω)).

(4)

In other words, ω defines a causal path from t = 0 to t = s if the potential outcome along this path
has a higher probability (over the randomness in the future covariates and unobserved covariates) of
being positive and intervening the end point of this path reduces this probability. For example, in
Example 3.2, with s = 2, neither (1, 0) nor (1, 1) is a causal path but when s = 3, both (1, 0, 1) and
(1, 1, 1) are causal paths.

As causal paths need not to be unique, we study their qualities through the following notion of
globally and locally maximal probable causal paths, and we will study a weaker version of the reverse
causal inference that attempts to find the globally maximal probable causal path.
Definition 3.5. Given s ≤ T , an s-causal path ω per Definition 3.4 is maximal probable if{

ω ∈ argmaxω∈Cs P(YT = 1|X1:s = ω),

Cs := {ω ∈ Hs : ω is an s-causal path}. (5)

We say a path ω∗ is globally maximal probable if ω∗ satisfies Definition 3.5 with s = T ; we say a
path ω̂ is locally maximal probable if for any s ∈ [T − 1], ω̄s+1 maximizes over the same conditional
probability conditioning that X̄s = ω̄s.

3.2 Optimality Condition for Local Causal Paths

Algorithm 1
Input: Sample set {(Xi,t, Yi,t) : i ∈ [N ], t ∈ [T ]}.
Output: Causal path ω.
1: ω ← ∅
2: for t ∈ [1..T ] do
3: if Switch-Condition then
4: ω ← ω ∪ {1}
5: else
6: ω ← ω ∪ {0}
7: end if
8: end for

Algorithm 1: Here the Switch-Condition can be (1)
P(YT = 1|X̄t = (ω, 1)) ≥ P(YT = 1|X̄t = (ω, 0))
for the deterministic case; (2) The test of τ̄i,t = 0 is
rejected for a prescribed level α.

Definition 3.5 provides a way of quantifying the
“quality” of different causal paths, and studying
global maximal probable causal path provides a
reasonable way towards the reverse causal infer-
ence problem. Nonetheless, exact identification
of the global maximal probable causal path re-
quires examination of exponentially many paths.
In practice, the local maximal probable path can
be found efficiently (to be discussed shortly),
but it could be arbitrarily bad (measured by the
conditional probability P(YT = 1|X̄T = ω̂)),
as shown in the following theorem.
Theorem 3.6 (Hardness of the problem). Fix T ,
suppose

ε := min
2≤t≤T,a,x̄

P(Xt = a|X̄t−1 = x̄) > 0.

(6)
Let ω∗ and ω̂ be a global and local maximal probable causal path, then we have

P(YT = 1|X̄T = ω̂)

P(YT = 1|X̄T = ω∗)
≥
(

ε

1− ε

)1+ T2

2

, (7)
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0 0 0 0 0 0 0 1
1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1
1 0 1 1 0 1 0 1
0 1 0 1 1 0 0 0
1 0 0 0 0 0 0 1

Yi,t

Xi,t

t T

(a) Ground truth XΩ (shaded in orange).

0 0 0 0 0 ∗ ∗ ?
1 0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗
1 0 1 1 0 ∗ ∗ ∗
0 1 0 0 1 ∗ ∗ ∗
1 0 0 0 ∗ ∗ ∗ ∗

Yi,t

Xi,t

t T

(b) Condition on the partial path (shaded
in blue) and decide whether to add the next
covariate (shaded in red).

0 0 0 0 0 ∗ ∗ ?
1 0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗
1 0 1 1 0 ∗ ∗ ∗
0 1 0 0 1 ∗ ∗ ∗
1 0 0 0 1 ∗ ∗ ∗

Yi,t

Xi,t

t T

(c) Repeat this procedure while iterating
according to the temporal order until a
complete path is constructed.

Figure 2: Illustration of the linear-time meta algorithm where the covariate series is multivariate. (a)
Suppose the ground truth XΩ for the effect on Yi,T consists of the covariates shaded in orange (hence any path
containing it is a causal path). (b) The meta algorithm starts from the very beginning and iteratively decides
whether to add covariate Xs (marked in red) given the partial path already identified (an example of such path is
shaded in blue). The complexity of this procedure is linear in the total number of covariates. (c) Repeat this
process while iterating according to the temporal order until all covariates are decided (thus a complete path is
constructed).

where the inequality becomes equality in the worse-case scenario.

The proof is done by analyzing the structure of the covariate paths and is deffered to the Appendix.
This theorem suggests that a greedy algorithm could result to an arbitrarily bad path if we could
choose the path weights adversarial. We now investigate conditions on on the assignment mechanism
P(Xt+1 = 1|X̄t = x) that would make locally maximal probable causal path more desirable. To
that end, we consider the scenario where all causal paths satisfy a form of a “monotonicity condition”
under which the greedy algorithm is optimal.
Definition 3.7 (Monotonic paths). We say the causal paths are monotonic if

P(YT = 1|X̄T = ω̂) ≥ P(YT = 1|X̄T = ω̂′) (8)
implies that

P(YT = 1|X̄s = ω̂1:s) ≥ P(YT = 1|X̄s = ω̂′1:s) (9)
for all s ∈ [T ].
Theorem 3.8 (Optimality condition). When all causal paths are monotonic, the greedy procedure
returns the globally maximally probable causal path.

Proof. Suppose the greedy path ω̂ differ from the global maximal path ω∗, inspecting the child node
of their lowest common ancestor implies a contradiction with the monotonicity assumption.

Note that the monotonic paths condition include the important case of Bernoulli random trials (where
Xt’ s are iid Bernoulli- 1

2 random variables), which is itself an important model in the literature (e.g.,
Bojinov et al. [2021]).

4 Estimation via Generalized Synthetic Control

In this section, we substantiate Algorithm 1 by providing estimators for causal estimands that can be
used to implement the Switch-Condition in the meta algorithm.

4.1 The Impulse Effect Estimand

To substantiate the Switch-Condition in the meta algorithm, based on our discussion in Section 2,
we consider the following estimand evaluating the impulse effect at each covariate and timestamp t on
the outcome at time T conditioning on the history seen so far, while being oblivious to the covariates
between t+ 1 to T :

τi,t = Yi,T (A(t, 1; X̄i,t))− Yi,T (A(t, 0; X̄i,t)). (10)

We define the average effect as τ̄t = 1
N

∑N
i=1 τi,t. Now given a partial causal path ω ∈ Hs for s < T ,

Algorithm 1 decides whether Xs+1 should be 1 or 0 in the complete causal path by examining
τi,t(ω) = Yi,T (ω ∪ {1})− Yi,T (ω ∪ {0}), (11)
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where, recall that we use ∪ notation to denote path concatenation.

Remark. The rationale behind choosing this estimand is to ensure no post-treatments/mediators
are adjusted Rosenbaum [1984]. Through enumerating all combinations of covariate-time indices,
we are evaluating the direct effect from each covariate. Compared with causal estimands on time-
series proposed by Bojinov and Shephard [2019], Bojinov et al. [2021], our formulation allows for
identifying specific patterns in multivariate series that serve as a cause for the outcome, and can be
extended into an online algorithm.

4.2 A Generalized Synthetic Control Estimator

Outcome modeling is done by directly modelling the outcome on the treatment and pre-treatment
variables. In our setup, it amounts to modelling the outcome on the past history:

µi,t = E[Yi,t|X̄i,t] (12)

for treatment Di and covariates Xi. For any s ≤ t, given partial path ω ∈ Hs, we use the shorthand
notation µi,t(ω) to denote E[Yi,t|X̄i,s = ω]. Synthetic control type estimators is one good choice
for this problem as the problem setups are similar: the units that exhibit abnormal behaviors is few
(compared with few treated units); and estimation of τ1,t is also of interest on top of inferences on
average effects; units may not be comparable in the sense that the exchangeability assumption may
fail. The SC method then aims at finding the weights w = (w1, . . . , wN ) such that

τ1,t = Y1,t(X
obs
1,t )− Y1,t(0) ≈ w1Y1,t(X

obs
1,t )−

n∑
i=2

wiY
obs
i,t . (13)

The weights are usually selected according to pre-treatments and are constrained as

w = argmin
∥∥X̄1,t − X̄2:N,tw2:N

∥∥2

2
, w ∈

w1 = 1,

N∑
j=2

wj = 1

 , (14)

where we wrote X̄2:N,t = (X̄i,t)
N
i=2 ∈ X t×(N−1) for the matrix with X̄i,t for 2 ≤ i ≤ N as its

columns. We will consider a generalization of the SC method to estimate Equation (11): given
a partial path ω ∈ Hs, we fit both “synthetic treatment” µ̂s+1(ω ∪ {1}) and “synthetic control”
µ̂s+1(ω ∪ {0}) on a “hypothetical unit” (say with unit index i = 0) with X̄0,s = ω using two donor
pools D1 = {j : Xobs

j,s+1 = 1} and D0 = {j : Xobs
j,s+1 = 0} respectively. For example, we fit

µ̂s+1(ω ∪ {1}) =
∑

j∈D0
wjY

obs
j,s+1 via

w = argmin
∥∥ω − X̄D0,sw

∥∥2

2
, w ∈

w ∈ R|D0| :
∑
j∈D0

wj = 1

 , (15)

where X̄D0,t similarly denotes the matrix with X̄i,s for s ∈ D0 as its columns. We then form the
generalized SC estimator for Equation (11) given time t ≤ T and partial path ω ∈ Ht−1 aŝ̄τ t(ω) = µ̂t(ω ∪ {1})− µ̂t(ω ∪ {0}). (16)

The rationale is that as we refine the causal path, there might be no unit that has the exact partial path.

Theoretical studies of the properties of SC estimators in the literature usually adopts the linear factor
model (see e.g., Abadie et al. [2010]). Analogously, we study a generalized version of the linear
factor model. The full details and the proof are postponed to the appendix, and the proof is similar to
that in Abadie et al. [2010].
Theorem 4.1. Suppose at time T0, there are N = N0 +N1 units among which N0 are treated (i.e.,
Xi,T0 = 1), fix T0 ≤ T , assume the potential-outcomes follows a general form of the linear factor
model

Yj,t = Yj,T (X̄j,t) = δt + u>t Xj,1:t + λ>t Zj,1:t +

Kt∑
k=1

τ
(t)
k 1{

X̄j,t=ω
(t)
k

} + εjt, (17)

where δt is known, ε is the noise, and ut and λt are known. Under regularity conditions on λt, ut,
ε and assume SC fits are perfectly well, which are given in the Appendix, the SC estimators are
consistent and asymptotically normal.
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Figure 3: Causal path probability (p̂) found by various methods versus the true value p on the synthetic
dataset with various time period T and background noise q. Lines of different color and style correspond to
different background noise level q; black dotted lines correspond to results correspond to a random classifier
((p + 0.5)/8). Note that any causal path has a conditional probability no less than 0.5 by construction. We
observe that the baseline SC (solid blue lines) is not able to identify causal paths while the proposed generalized
SC (GSC) improves the performance significantly. However, as time horizon T becomes larger, it is harder to
GSC to identiy global causal paths.

5 Empirical Studies

We now test our method on a synthetic dataset. Although the dataset is fairly simple, it helps to
illustrate the challenges of the problem and fascilates the comparison of different methods.

5.1 Setup and Synthetic Dataset

Pattern x (1,0,1) (1,0,0) Other
Assignment Prob 1

12
1
6

1
8

Table 1: Assignment mechanism (pattern and the asso-
ciated assignment probability) in the synthetic dataset.

We consider a generalization of the model in
Figure 1. Given T , we consider a set of patterns
of length l = 3 that starts at T − d (d ≥ l)
with Yt = 0 for all t 6= T . That is, there is an
anomaly at YT only if certain patter emerges at

time T − d. Consider the assignment probability mechanism in Table 1 and the outcome model as
YT = Z11{XT−d−l−1:T−d=(1,1,1)} + Z21{XT−d−l−1:T−d=(1,0,1)} for independent Bernoulli random

variables Z1∼Ber(1/2) and Z2∼Ber(p) for some parameter p. Finally, we sample Xj
iid∼Ber(q) for

a fixed parameter q, which models the background noise due of the covariate series. We experiment
with both the case where the time horizon is short (T = 8 or T = 15) and is moderately long
(T = 100), we set d = 3 in the first case and d = 30 in the latter. In both cases, we experiment over
p ∈ {0.5, 0.75, 1} and q ∈ {0.01, 0.1, 0.5}. Note that by construction, the globally maximal probable
causal path has the conditional probability P(Yi,T = 1|Xi,T−d−l−1:T−d) = p. For each parameter
configuration, we generate N = 500 units on which we compute the optimal causal path ω and record
the mean outcome probability EZ [YT |ω]. We repeat this procedure for m = 50 independent runs.
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5.2 Methods and Evaluation

We compare the following methods. Point causal estimand using SC (SC). Here we directly apply
synthetic control to estimate the effect of each covariate Xt to YT for t ≤ T by fitting SC of
a randomly chosen unit with Xi,t = 1 and estimate τ̄t. In this way, the baseline has the same
computational complexity with the generalized SC estimator. and 0 otherwise.

Generalized SC (GSC). Here we apply Algorithm 1 with the generalized SC estimator introduced
in Section 4.2 and append 1 to the partial path if the estimate is positive.

Evaluation. We use the true conditional probability P(YT = 1|X̄T = ω̂), which is known from
dataset construction, to evaluate different methods by computing the average conditional probabilities
p̂ of causal paths found over independent runs. In our synthetic dataset, the perfect algorithm should
have p̂OPT = max{0.5, p} while a random algorithm will have p̂random = (0.5 + p)/8 since we are
focusing on the pattern of length 3.

5.3 Simulation Results and Discussions

Baseline method performs poorly. We observe that in Figure 3, the baseline method, where we fit
SC on point effect without adjusting for dependencies among covariates, performs poorly, though the
synthetic dataset seems simple. This suggests that unlike forward causal inference problems, reverse
causal inference is harder and much care needs to be taken when performing identification.

GSC identifies the a maximal probable causal path reasonably well. We observe that the Greedy-
SC method is able to identify the globally probable causal path reasonably well as the GSC estimates
is consistently above 0.5, indicating a causal path is returned.

GSC fails to identify global causal paths when the time horizon T becomes larger. As we
increase the time horizon T from 8 to 15 and to 100, we note the it is gradually harder for GSC
to find a global causal path (while still outputting a local causal path, in contrast to the vanilla SC
estimator). This issue can be alleviated through constructing a doubly-robust version of the
GSC estimator, which we discuss in a following-up work.

Effects of p and q on the difficulty of the problem. We observe all estimators have comparable
performances as we vary the background noise level q, indicating q kis not a decisive factor that
governs the difficulty of the problem.

6 Concluding Remarks and Broader Impacts

In this paper, we give a precise formulation of the reverse causal inference problem through causal
patterns and causal paths. We propose to use a linear-time approximate procedure that can be flexibly
combined with any causal estimator for this purpose and analyze its optimality conditions. We
propose to use a generalized synthetic control estimator for this problem. There are several avenues
for future work, for example, we only attempted to find causal paths but not causal patterns, which is
more difficult. As reverse causal inference is a challenging problem, we hope our expositions could
cast new lights into the community and inspire the practitioners.
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A Miscellaneous Proofs

A.1 Proof of Theorem 3.6

Proof. For ease of notation, write f(ω1:s) = P(YT = 1|X̄1:s = ω1:s) and f(ω) = f(ω1:T ). First consider the
case where there are only two causal paths and let T −K − 1 ≥ 0 be the time index of the lowest common
ancestor of ω∗ and ω̂. Note that when K = 1, ω̂ cannot be worse than ω∗, hence it suffices to consider the cases
for 2 ≤ K < T . We have

f(ω̂1:T−K) =
∑

ω′∈XK

f((ω̂1:T−K , ω
′))P((ω̂T−K , ω

′)|ω̂1:T−K−1)

≤ (2(1− ε))K−1f(ω̂),

(18)

where the factor 2 arises as in the worst case there are
∣∣XK−1

∣∣ = 2K−1 choices for ω′. Similarly,

f(ω∗1:T−K) ≥ εK−1f(ω∗) (19)

by leaving out every path that is not ω∗. But by construction

f(ω̂1:T−K) ≥ f(ω∗1:T−K), (20)

hence

f(ω̂) ≥
(

ε

2(1− ε)

)K−1

f(ω∗), (21)

for any K ∈ [T − 1]. In general when there are multiple causal paths, let ω∗ be the path that has higher
probability than ω̂ which has the lowest common ancestor, and iteratively applying the above reasoning, we see
that

f(ω̂)

f(ω∗)
≥

T−1∏
K=2

(
ε

1− ε

)K

≥
(

ε

1− ε

)1+ T2

2

, (22)

thus completing the proof.

A.2 Proof of Theorem 4.1

Proposition A.1 (Formal). Given N = N0 + N1 units among which N0 are treated, fix T0 ≤ T , assume
{ut}T0

t=1 and {λt}T0
t=1 are known, writing

Λ := (λt)
T0
t=1 ∈ RMz×T0 , U := (ut)

T0
t=1 ∈ RMx×T0 , (23)

if ΛΛ> is non-singular, εi,t is independent with {Xi,t, Zi,t} for all i. Suppose we fit SC (or synthetic treatment)
for all units whence there exists weights {wij}Ni,j such that

∑N
j=1 wij = 0, wii = 1, ∀i ∈ [N ],∑N
j=1 wijYj,s(X̄j,s) =

∑N
j=1 wijYj,T (X̄j,s) = 0 ∀j ∈ [N ], s ∈ [T0 − 1],∑N

j=1 wijX̄j,T0−1 = 0 ∀j ∈ [N ],

(24)

then

τ̂ SC
i,t =

N∑
j=1

wjYj,t (25)

is a consistent estimator for τi,t, and consequently,

̂̄τ SC
t :=

1

N

N∑
i=1

τ̂ SC
i,t (26)

is a consistent estimator for the ATE τ̄t. In fact, we have

Bias(̂̄τ SC
t ) ≤ C1/p

p

(
c2Mx

ξ

)
ρ1/p max

{
m̄

1/p
p

T
1−1/p
0

,
m̄2

T
1/2
0

}
, (27)

where Cp is a universal constant that depends only on p, ρN := max{N0, N1}/N , and m̄p :=

maxj T
−1
0

∑N
j=1 |εjt|

p.

Proof. First consider the case where there is only a single unit under treatment at time T0 ≤ T , which we
assume without loss of generality to be the first unit:

Y obs
1,T = Y1,T (1), (28)
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then the error rt at time t ≤ T0 satisfies

rt :=

N∑
j=1

wjYj,t = Y1,t −
N∑

j=2

wjYj,t

= u>t
∑
j

wjX̄j,t + λ>t
∑
j

wjZ̄j,t +
∑
j

wjεj,t.

(29)

Write r = (rt)
T0
t=1 ∈ RT0 , Y i = (Yi,t)

T0
t=1 ∈ RT0 , then

r̄T0 =

N∑
j=1

wj Ȳj,T0 = U>
∑
j

wjX̄j,T0 + Λ>
∑
j

wjZ̄j,T0 +
∑
j

wj ε̄j,T0 . (30)

Thus

rt = λ>t Λ′
∑
j

wj Ȳj,T0 + (u>t − λtΛ
′U>)

∑
j

wjX̄j,T0 +
∑
j

wjεj,t − λ>t Λ′
∑
j

wj ε̄j,T0 , (31)

where we write Λ′ := (ΛΛ>)−1Λ. Now taking expectation with respect to the randomness in εj,T and those in
Y j , recall that w1 = 1 is fixed, hence the only non-zero term is

λtΛ
′
∑
j≥2

wj ε̄j,T0 =

N∑
j=1

wj

T0∑
s=1

λ>t

(
T0∑
i=1

λiλ
>
i

)−1

λsεj,s (32)

since the condition Equation (24) may introduces correlation between ε̄j,t. Write

µs := λ>t

(
T0∑
i=1

λiλ
>
i

)−1

λs, ε′j :=

T0∑
s=1

µsεj,s, (33)

we have by Cauchy-Schwarz inequality

|µs|2 ≤

λ>t
(

T0∑
i=1

λiλ
>
i

)−1

λt

λ>s
(

T0∑
i=1

λiλ
>
i

)−1

λs

 (34)

since we have assumed ΛΛ> to be non-singular, hence so is (ΛΛ>)−1. Now assume further that

λmin

(
1

T0

T0∑
s=1

λsλ
>
s

)
≥ ξ > 0, ∀T0 ≤ T, (35)

and |λsk| ≤ c for all s ∈ [T0] and k ∈ [MX ], then

|µs|2 ≤
(
c2Mx

T0ξ

)2

. (36)

By Hölder’s inequality,
N∑

j=2

wj

∣∣ε′j∣∣ ≤
(

N∑
j=2

∣∣ε′j∣∣p
)1/p

, (37)

and

E
N∑

j=2

wj

∣∣ε′j∣∣ ≤
(
E

N∑
j=2

∣∣ε′j∣∣p
)1/p

, (38)

where we assume the p-moment of εjs exists. Applying Rosenthal’s inequality yields

E
∣∣ε′j∣∣p ≤ Cp

(
c2Mx

ξ

)p

max

{
1

T p−1
0

m̄p,j ,

(
1

T0
m̄2,j

)p/2
}

(39)

where we write

m̄p,j =
1

T0

T0∑
s=1

E |εj,s|p , (40)

and Cp is an absolute constant that only depends on p. Thus

E |rt| ≤ C1/p
p

(
c2Mx

ξ

)
N1/p max

{
m̄

1/p
p

T
1−1/p
0

,
m̄2

T
1/2
0

}
, (41)
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where m̄p = maxj m̄p,j .

In the general case, assume there are N0 treated units and N1 untreated such that N = N0 +N1. We then fit SC
for each treated units and similarly synthetic treatments for each untreated units. Write ρN := max{N0, N1}/N ,
which we assume 0 < ρN < 1, then we have by applying the above result,

Bias(̂̄τ SC
t ) ≤ C1/p

p

(
c2Mx

ξ

)
ρ1/p max

{
m̄

1/p
p

T
1−1/p
0

,
m̄2

T
1/2
0

}
. (42)
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