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ABSTRACT

Cooperative perception, which fuses sensory information from multiple agents
to enhance individual agent’s perception ability, has emerged as a promising ap-
proach to overcome the limitations of single-agent line-of-sight sensing. How-
ever, a significant challenge lies in economically deploying sensors across agents
while minimizing communication costs and maintaining strong perception per-
formance. To address this challenge, we propose CoM-V2I, a novel framework
for Communication-efficient Multimodal Vehicle-to-Infrastructure (V2I) cooper-
ative perception. In CoM-V2I, the road infrastructure is equipped with a high-
resolution LiDAR sensor, while vehicles are fitted with cost-effective multi-view
cameras to balance performance with economic feasibility. We introduce a resid-
ual vector quantization-based codebook representation method to improve com-
munication efficiency by compressing bird’s eye view (BEV) feature maps into
lightweight indices before transmission. We also propose a codebook pruning
method that reduces codebook size by removing low-importance code vectors and
combining high-similarity ones, thereby decreasing communication costs with
minimal impact on perception performance. Furthermore, we propose a mul-
tiscale fusion mechanism that progressively integrates multimodal BEV feature
maps from the infrastructure and vehicles, which have different spatial resolutions
in a coarse-to-fine manner. Experimental results on the V2X-Real and V2X-Sim
datasets demonstrate that the proposed CoM-V2I framework outperforms existing
baselines in terms of perception accuracy and communication efficiency.

1 INTRODUCTION

The efficiency of transportation systems has improved significantly with recent advances in ma-
chine learning for autonomous driving (Yin et al., 2025). Perception is a key component of this
advancement, which is the process of interpreting raw data from onboard sensors, e.g., LiDAR,
cameras, and radar, to create a structured and machine-readable representation of the surrounding
environment (Kiran et al., 2021). However, perception systems based on a single agent face several
challenges, especially a limited perceptual range and vulnerability to occlusions (Li et al., 2024). To
overcome this bottleneck, cooperative perception (CP) has emerged as a promising solution that en-
ables an agent to broaden its perceptual area by fusing perceptual information from other connected
agents via vehicle-to-everything (V2X) communication (Chen et al., 2019a). Early CP methods
were primarily based on 3D point cloud data from LiDAR and can be broadly divided into three
categories: early, late, and intermediate fusion (Arnold et al., 2022). Intermediate fusion became
the mainstream approach in subsequent research, as it allows for the transmission of rich feature
representations with low communication costs (Prakash et al., 2021). Despite its effectiveness, the
high cost of LiDAR has been a significant limitation to its widespread adoption in vehicular CP sys-
tems. For this purpose, transformer-based methods like BEVFormer (Li et al., 2025) and cross view
transformer (CVT) (Zhou & Krähenbühl, 2022) have been developed to generate bird’s-eye-view
(BEV) representations from multi-view cameras, achieving 60% to 70% of the performance of their
LiDAR-based counterparts. Furthermore, multi-view camera-based CP has been shown to offer an
acceptable trade-off between performance and cost (Xu et al., 2022a). To improve the scalability of
CP beyond systems limited to homogeneous sensors, recent studies have begun to focus on multi-
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modal CP (Xiang et al., 2023) and on scenarios involving various types of agents, such as vehicles
and road infrastructures (Zhou et al., 2025), while several critical issues remain. A primary chal-
lenge is achieving a favorable trade-off between cost and performance in multi-modal CP among
heterogeneous agents.

Communication efficiency is another critical issue in CP, as high transmission latency can signifi-
cantly deteriorate performance by causing pose errors that disrupt the feature fusion process (Han
et al., 2023). Many studies aim to reduce communication costs through feature filtering and selec-
tion techniques (Yang et al., 2023b; Liu et al., 2020; Yang et al., 2023a; Hu et al., 2022). Shannon’s
theorem suggests that acceptable communication latency can be maintained if the transmitted fea-
tures are compressed sufficiently to fit within the reduced channel capacity caused by channel fading
(Tang et al., 2025). Codebook-based approaches can effectively compress transmitted features by
representing them with compact index matrices (Hu et al., 2024). However, a single codebook has
limited representational capacity, thus more efficient representation methods with low-latency are
urgently needed for CP.

Cross-view
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Vehicle Multi-view images Multi-view features
BEV feature maps

Index matrices

⋯

⋯
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Figure 1: The overall framework of CoM-V2I.

To address the above challenges, we propose CoM-V2I, a novel multi-modal CP framework among
road infrastructures and vehicles. The proposed framework is illustrated in Fig. 1. For economic
consideration, we deploy a high-precision and expensive LiDAR only on the infrastructure, while
equipping all vehicles with more affordable multi-view cameras. Point clouds and images are pro-
cessed into BEV feature maps by their respective pipelines. A codebook encoder, composed of
multiple codebooks, is used to represent the camera-based BEV feature maps as compact indices
recursively via residual vector quantization (RVQ), incorporating a codebook pruning method that
shortens indices via decreasing code vectors to reduce communication costs. The infrastructure then
reconstructs the transmitted features using a shared decoder, implements a multiscale fusion method
to all BEV feature maps and outputs predictions using task-oriented heads. The main contributions
of this paper are as follows.

• We propose the CoM-V2I framework for multimodal CP cross vehicles and the infrastruc-
ture with efficient communication via residual codebook representation. A multiscale fu-
sion strategy is developed and incorporated into the CoM-V2I for combining BEV feature
maps of various modalities and resolutions.

• We devise an effective codebook pruning method that optimizes communication costs by
reducing representation indices through removing low-importance code vectors and merg-
ing those with high similarity.

• We conduct extensive experiments and ablation studies on the V2X-Real and V2X-Sim
datasets. The results demonstrate the state-of-the-art performance of our proposed CoM-
V2I framework and the effectiveness of our codebook pruning method.

2 RELATED WORK

Birds eye view representation. BEV representation aims to reconstruct the surrounding environ-
ment into a machine-readable format from a top-down perspective using sensor data, e.g., point
clouds and images(Reiher et al., 2020b). Early works were primarily LiDAR-based, projecting
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3D point clouds onto a 2D BEV grid to accelerate processing, as seen in methods like PIXOR
(Yang et al., 2018) and PointPillars (Lang et al., 2019), while the high cost of LiDAR has limited
its widespread application. Consequently, recent research has focused on generating BEV repre-
sentations from more economical multi-view cameras (Zhao et al., 2024). This has led to a vari-
ety of approaches, including geometric methods like Inverse Perspective Mapping (IPM) (Reiher
et al., 2020a), depth-based techniques such as Lift-Splat-Shoot (LSS) (Philion & Fidler, 2020), and
more recent Transformer-based architectures like BEVFormer (Li et al., 2025) and CVT (Zhou &
Krähenbühl, 2022). To leverage the strengths of both sensors, multi-modal fusion methods have
been developed to combine LiDAR and camera features using either convolutional neural networks
(CNNs) (Liu et al., 2023b; Cai et al., 2023) or Transformers (Li et al., 2022b; Bai et al., 2022). How-
ever, the challenge of effectively fusing features with different spatial resolutions has been under-
explored in prior work. In this paper, we propose a novel multiscale fusion method specifically
designed to address this gap.

Cooperative perception. CP aims to improve the perception quality and range of an agent by fusing
sensory information from multiple connected vehicles and road infrastructures (Liu et al., 2023a).
Early works primarily focused on LiDAR-based CP, sharing information via early, intermediate, or
late fusion strategies (Chen et al., 2019b; Wang et al., 2020; Rawashdeh & Wang, 2018). Among
these, intermediate fusion became the mainstream approach due to its favorable trade-off between
performance and communication costs. Driven by cost-efficiency and recent advances in camera-
based methods, subsequent research has explored sharing BEV feature maps constructed from multi-
view images (Xu et al., 2022a; Song et al., 2024). This has also broadened the scope of CP to include
multi-modal data across both homogeneous and heterogeneous agents (Xiang et al., 2023; Zhou
et al., 2025). A key challenge in CP is communication latency, which can degrade performance by
causing issues like pose errors (Lei et al., 2022). To mitigate this, many recent works aim to reduce
communication costs via message filtering and selection (Yang et al., 2023b;a; Hu et al., 2022). A
more advanced approach, proposed in Codefilling, uses a shared codebook to represent features,
transmitting only compact indices instead of the full feature maps (Hu et al., 2024). However, a
known limitation of single-codebook methods is code underutilization, where many code vectors are
rarely used, which can diminish the model’s representational ability. In this paper, we address this
issue by proposing a codebook pruning method applied to a residual vector quantization framework,
enhancing representational ability while further reducing communication costs.

3 METHODOLOGY

We consider a V2X communication system illustrated in Fig. 1 where a central infrastructure ex-
tracts BEV feature maps from its LiDAR point cloud, while multiple vehicles generate correspond-
ing feature maps from multi-view camera images. Then vehicles progressively encode their features
into several index matrices using a residual quantization method with multiple codebooks, and trans-
mit these indices to the infrastructure. Subsequently, the infrastructure decodes the shared feature
maps and fuses the camera-based BEV feature maps with its own LiDAR-based ones via a multi-
scale fusion method. Finally, these fused feature maps are processed through an output head, and
the infrastructure broadcasts the final perception results back to the connected vehicles.

3.1 V2I MULTIMODAL COOPERATIVE PERCEPTION FRAMEWORK

Camera pipeline: Vehicles are equipped with multiple cameras in various orientations that includes
positions and optical parameters defined by extrinsic and intrinsic matrices. Each camera captures
an image I ∈ RH[i]×W[i]×3, where H[i] and W[i] are the image height and width, and 3 represents the
RGB channels. A ResNet-34 (He et al., 2016) backbone is used to extract image features at multiple
scales, which are then input into the CVT module. Within the CVT module, learnable BEV map
embeddings function as queries Q, while the multi-view features serve as the keys K and values
V , which are combined with a positional embedding that is calculated from the camera’s extrinsic
and intrinsic matrices. The final BEV feature map F[v] ∈ RH[v]×W[v]×C with C channel is obtained
after several cross-view transform and downsampling operations.

LiDAR pipeline: The infrastructure is installed a LiDAR sensor to capture raw point clouds data,
then preprocesses this data to a BEV map within a defined range. A PIXOR (Yang et al., 2018)
backbone is used to process this BEV map, converting it into a 2D pseudo-image by flattening
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the height dimension. This process projects the original data into a BEV feature map, denoted as
F[r] ∈ RH[r]×W[r]×C . Here, H[r], W[r] and C represent the height, width, and channels of the
feature map, respectively.

3.2 CODEBOOK TRAINING AND PRUNING

BEV Feature BEV FeatureMultilayer indices

Residual vector quantization Dequantization

Shared codebooks

Codebook 1
1 2 L
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Figure 2: The process of residual codebook training.

To efficiently transmit the BEV feature map F[v] from the vehicle with low communication costs, we
employ a residual quantization method derived from the Vector Quantized Variational Autoencoder
(VQ-VAE) (Van Den Oord et al., 2017). This approach uses multiple codebooks to progressively
encode the feature map into a set of compact index matrices. The objective of this process is to
approximate the continuous vectors in the feature map using a finite set of learnable vectors (i.e.,
codes) from shared codebooks. Then the infrastructure reconstructs the BEV feature map from
transmitted index matrices based on shared codebooks.

3.2.1 CODEBOOK TRAINING

Codebook learning is an effective vector quantization method that enhances representational ability
by training a codebook from a finite set of vectors. However, this approach is prone to code un-
derutilization, where many codes are rarely or never selected during the quantization process (Wu
& Yu, 2019). RVQ is a promising solution to break through the limitations of a single codebook,
which aims to train multiple codebooks for approximating feature vectors recursively (Lee et al.,
2022). As illustrated in Fig. 2, the residual quantization process involves vehicles and the infras-
tructure sharing a set of N codebooks D = {D[n]}Nn=1 for quantization and dequantization BEV
feature maps, respectively. Each codebook D[n] ∈ RC×L consists of L code vectors that denoted
as D[n]l, l ∈ [1, L]. The objective for the first codebook D[n] is to minimize the Euclidean distance
between the BEV feature vector F[v]h,w at h-th and w-th position with the nearest code vector D[n]l∗ ,
written as,

Q(F[v]h,w;D[n]) = D[n]l∗ , where l∗ = argmin
l∈1,...,L

∥F[v]h,w − D[n]l∥22, (1)

where Q(F[v]h,w;D[n]) denotes the result of feature vector F[v]h,w quantized by the codebook D[n].
In residual quantization, this process is applied iteratively. The initial residual term is set to the input
feature vector, r[1] = F[v]h,w. At each stage n, the current residual term r[n] is quantized and the
subsequent residual term r[n+1] is computed as the remaining quantization error, expressed as,

r[n+1] = r[n] −Q(r[n];D[n]), (2)

for n = 1, 2, · · · , N . After N stages, the original feature vector F[v]h,w is represented by a set of N
indices {l∗[1], l

∗
[2], · · · , l

∗
[N ]}. Consequently, the entire BEV feature map F[v] is compressed into an

integer tensor of indices Z ∈ {1, · · · , L}H[v]×W[v]×N . This dramatically reduces the amount of data
to be transmitted, as N ≪ C and integer indices can be encoded with fewer bits than floating-point
vectors. Upon receiving the index tensor Z, the infrastructure reconstructs the BEV feature vector
F̂[v]h,w for each h and w position by summing the corresponding code vectors from each of the N
codebooks, as follows,

F̂[v]h,w =

N∑
n=1

D[n]Zh,w,n
, ∀ Zh,w,n ∈ {1, · · · , L}. (3)
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The training objective is to minimize the discrepancy between the original feature map F[v]h,w and
the quantized map F̂[v]h,w by optimizing the codebooks to minimize the quantization residual term
at each stage. Thus, the commitment loss for codebook training could be formulated as,

Lcmt =

H[v]∑
h=1

W[v]∑
w=1

∥F[v]h,w − sg
[ N∑
n=1

D[n]Zh,w,n

]
∥, ∀ Zh,w,n ∈ {1, · · · , L}, (4)

where sg[·] denotes the stop-gradient operator, which prevents gradients from flowing back through
the quantization process (Wu & Flierl, 2020). To sum up, the residual codebook representation
offers two key advantages: i) It enables communication efficiency by transmitting low-bitrate integer
indices instead of high-precision floating-point vectors; ii) It avoids code underutilization in the
training for a single and large codebook by using multiple and smaller codebooks that are utilized
more effectively.

3.2.2 CODEBOOK PRUNING

To further reduce the codebook size after training, which enables a more compact feature represen-
tation with fewer indices. We propose a codebook pruning method that involves two iterative steps:
removing code vectors with low importance and combining highly similar code vectors. The im-
portance score sl of the codebook D[n]l is defined as its usage frequency across all feature vectors,
written as,

sl =

H[v]∑
h=1

W[v]∑
w=1

1condition

(
Fh,w = D[n]l

)
, (5)

where 1condition(·) is the indicator function. A code vector D[n]l will be removed from the codebook
D[n] if it with the minimum importance score among the codebook. Furthermore, the similarity
ea,b between code vectors D[n]a,D[n]b ∈ D[n] could be evaluated by cosine similarity, i.e., ea,b =
(D[n]a · D[n]b)/(∥D[n]a∥∥D[n]b∥). The pair with the maximum similarity score is replaced by a
single new code, D[n]c, computed as their average D[n]c = (D[n]a + D[n]b)/2. These removal and
combination operations are performed iteratively until the number of code vectors in the codebook
reaches a specified minimum, which serves as the stopping condition.

3.3 MULTISCALE FEATURE FUSION

Self attention
block

Self attention
block

Self attention
block

LiDAR BEV featureDownsample n-1

⋯

⋯ ⋯

Downsample n

Concatenate Concatenate
fused feature n-1

Concatenate
fused feature n

Camera BEV 
feature

Output

Figure 3: The process of multiscale feature fusion.

To conserve communication costs, vehicles significantly downsample their camera-based BEV fea-
ture maps F[v] ∈ RH[v]×W[v]×C with a lower resolution, while it is challenge to directly fuse BEV
feature maps with different spatial resolutions. To this end, we propose a multiscale fusion method
that operates in a coarse-to-fine manner, as illustrated in Fig. 3. The LiDAR-based BEV feature map
is progressively downsampled by a ratio of λ at each stage, until its spatial resolutions match those
of the camera-based BEV feature map F[v] from the vehicle. The fusion process begins at concate-
nating these BEV feature maps and input to the self attention block for fusion, which consists of self
attention, 3D convolution and upsamle modules. In self attention module, the concatenated feature
are linearly projected into Q, K, and V tensors to produce a fused feature map F[f,m] at stage m,
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calculated as

F[f,m] = softmax(
QKT

√
σ

)V ∈ R
H[r]
λm ×

W[r]
λm ×C , (6)

where σ is the key vector dimension used for scaling. A 3D convolutional module is applied to
F[f,m] to refine and align the aggregated feature maps for subsequent computation. The resulting
feature maps is then upsampled by the ratio λ and concatenated with the intermediate LiDAR-based
feature map F[r] from the corresponding scale. Then the concatenated feature map serves as the
input for the self attention block in the next stage. This progressive fusion process is repeated m
stages, moving from the coarsest to the finest resolution to produce the full-resolution fused feature
map.

3.4 LOSS FUNCTION

The final output of CoM-V2I is determined by a task-specific head, such as one for segmentation or
detection.

Segmentation task: To handle class imbalance on map segmentation, we calculate the classification
loss Lcls using a weighted Cross-Entropy metric to measure the difference between the predicted
segmentation map P ∈ RH×W×K and the ground-truth map Y ∈ RH×W×K with a weight ωk

applied to each of the K classes, expressed as,

Lcls = −
H∑

h=1

W∑
w=1

K∑
k=1

ωkYh,w,k log(P)h,w,k. (7)

The total loss for the segmentation task Lseg is a weighted sum of the classification loss Lcls and the
codebook commitment loss Lcmt, that is,

Lseg = α1Lcls + α2Lcmt, (8)

where α1 and α2 are balancing weights.

Detection task: In contrast, the object detection task requires predicting various attributes for each
bounding box, such as its dimensions (e.g., height, width, length) and heading angle. We use
Smooth-L1 metric to calculate the regression loss Lreg for these attributes. By incorporating this
regression component with weight α3, the total loss Ldet for detection task could be written as

Ldet = α1Lcls + α2Lcmt + α3Lreg. (9)

4 EXPERIMENTS

Datasets and baselines. We evaluate the effectiveness of the proposed CoM-V2I framework on
the real-world V2X-Real dataset (Xiang et al., 2024) for object detection and the simulated V2X-
Sim dataset (Li et al., 2022a) for map segmentation. To comprehensively assess our contributions,
we compare our method against baselines organized into three groups: i) V2I cooperation frame-
work. To evaluate the overall multi-modal strategy, we compare against foundational approaches,
including Camera-only, LiDAR-only, and LiDAR2cam. ii) Communication efficiency. We compare
proposed codebook-based communication method with Where2comm, How2comm, Codefilling,
and Fullcomm baselines. iii) Multiscale fusion. To validate our fusion mechanism, we compare it
against other state-of-the-art methods, such as V2I-Coop, HM-ViT, CoarseFusion, and BEVFusion.
The details of these baselines are listed on Appendix A.1.2.

Experimental settings. During training for each frame, we designate the infrastructure as the ego-
agent and only consider vehicles that are within a 60m communication range. We use ResNet-34
and PIXOR as the backbones for processing camera images and LiDAR point clouds, respectively.
The camera-based BEV feature map is constructed from multi-view images by the FAX module (Xu
et al., 2022a), resulting in a resolution of 32× 32× 128. In contrast, the LiDAR-based BEV feature
map has a higher resolution of 128 × 128 × 128. The residual vector quantization process em-
ploys three codebooks, each containing 128 code vectors. All models were trained using the Adam
optimizer with a cosine annealing learning rate scheduler for 100 epochs and 2 batchsize. Prior to
evaluating the model’s performance, we pre-compute and cache all camera-based BEV feature maps
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from the entire dataset to accelerate the inference of codebook pruning. For the detection task, we
use Average Precision (AP) calculated at Intersection over Union (IoU) thresholds of 0.3, 0.5, and
0.7. For the segmentation task, we evaluate performance using the mean Intersection over Union
(mIoU) between the predicted map and the ground-truth map.

4.1 QUALITATIVE EVALUATIONS

Table 1: Performance comparison of CoM-V2I with other methods on two tasks.

Method Modality† Detection (AP)‡ Segmentation (mIoU)#

AP@0.3 AP@0.5 AP@0.7 Vehicle Road Lane

Camera-only(Xu et al., 2022a) IC + VC 42.71 29.52 15.34 10.97 51.87 21.19
LiDAR-only(Wang et al., 2020) IL + VL 71.79 63.71 38.05 21.18 88.27 76.79
LiDAR2cam IC + VL 63.07 60.18 47.62 15.78 76.61 51.32

Where2comm(Hu et al., 2022) IL + VC 70.92 68.65 56.66 62.49 87.42 74.27
How2comm(Yang et al., 2023a) IL + VC 70.14 68.15 55.18 61.42 91.87 74.46
Codefilling(Hu et al., 2024) IL + VC 62.87 62.12 55.35 54.75 90.97 76.64
Fullcomm IL + VC 70.49 68.96 58.11 63.52 92.10 77.37

HM-ViT(Xiang et al., 2023) IL + VC 63.11 59.52 46.21 59.07 92.48 70.29
V2I-Coop(Zhou et al., 2025) IL + VC 69.89 65.46 52.75 55.52 91.78 72.06
BEVFusion(Liu et al., 2023b) IL + VC 67.43 63.42 46.28 18.26 87.42 66.04
CoarseFusion IL + VC 69.48 66.37 52.15 39.18 90.75 77.07

CoM-V2I IL + VC 71.25 69.14 58.66 63.56 91.70 77.56
† IC: Infrastructure Camera; IL: Infrastructure LiDAR; VC: Vehicle Camera; VL: Vehicle LiDAR.
‡ “AP@0.3”, “AP@0.5”, and “AP@0.7” represent the AP at IoU thresholds of 0.3, 0.5, and 0.7.
# The mIoU is adopted for evaluating the segmentation task.

To fairly compare different baselines, we divided them into three groups described above. For
framework, only input sources are different among compared baselines. For communication effi-
ciency, compression methods for BEV feature maps are various. For fusion startegy, only fusion
method are different. The FAX (Xu et al., 2022a) module and the PIXOR module are adopted in
all baselines to represent the BEV feature maps of the cameras and LiDAR. As shown in Tab. 1,
all LiDAR involved methods outperform the camera-only method, which highlights the limitation
of purely camera-based CP. The LiDAR-only method achieves the highest AP at an IoU threshold
of 0.3, though its performance drops at the stricter thresholds of 0.5 and 0.7. In the communica-
tion efficiency comparison, our CoM-V2I method achieves the best performance, matching or even
surpassing the Fullcomm baseline (which transmits uncompressed features). This result indicates
that our residual vector quantization-based approach effectively enhances feature representation. Re-
garding the fusion strategy, our multiscale method outperforms both fine-grained and coarse-grained
fusion baselines, achieving a competitive trade-off between performance and communication cost.
In summary, CoM-V2I obtains the highest AP at the 0.5 and 0.7 IoU thresholds for object detection
and the best mIoU for the vehicle and lane segmentation classes.

4.2 COMMUNICATION COSTS

Fig. 4 compares our proposed CoM-V2I with other communication-efficient methods, evaluating
the trade-off between communication costs and performance. The performance of all algorithms
drops significantly without the camera-based BEV feature maps, which highlights the importance
of CP. Our CoM-V2I method exhibits two key advantages. i) achieves the best performance across
all three IoU thresholds at similar communication costs, with an AP improvement of 1% to 6% over
other methods. ii) significantly reduces communication costs while maintaining competitive per-
formance, especially outperforming the baseline that without an efficient communication strategy.
This strong performance can be attributed to the effective feature representation from our residual
vector quantization, while the proposed codebook pruning further decreases communication costs
by removing less-utilized and combining high-similarity code vectors. A detailed analysis of the
mean absolute error (mAE) between the original and quantized BEV feature maps, along with their
corresponding communication costs and performance, is provided in Tab. 5 in Appendix A.2.
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Figure 4: AP and mIoU for the vehicle class versus communication costs. The communication
costs for CoM-V2I and Codefilling is calculated by H[v] ×W[v] ×

∑N
n=1⌈log2(|D[n]|)⌉, where | · |

denotes the size of D[n]. For Where2comm and How2comm, costs is determined by multiplying
their respective compression ratios by the size of the original BEV feature map. To make the scale
smooth, we use a cost of 1024 to represent no feature maps are transmitted.

4.3 QUALITATIVE RESULTS

(a) Codefilling (b) How2comm (c) Where2comm (d) Fullcomm (e) CoM-V2I

Figure 5: Qualitative comparison of two scenarios from the V2X-Real dataset, where a different
infrastructure is designated as the ego agent in each case. Red bounding boxes represent the ground
truth, while blue bounding boxes represent the predictions.

Fig. 5 presents a qualitative comparison of several communication-efficient baselines. The results
highlight two common failure modes in existing methods. Some methods, such as Codefilling,
produce accurate bounding boxes for detected objects but fail to identify all objects. In contrast,
other methods, like How2comm, detect almost all objects, but their predicted bounding boxes suffer
from localization inaccuracies. Our CoM-V2I method successfully bounds all objects while also
predicting their relevant attributes with high precision. Additional qualitative results, including map
segmentation, are shown in Appendix A.3.

4.4 ABLATION RESULTS

Table 2: Performance comparison with and without codebook pruning. The model without pruning
were trained from scratch with the defined codebook size, while with pruning started with three
large, pre-trained codebooks of 128 code vectors that was subsequently pruned to the target size.

✗ 2, 2, 2 67.34 66.16 56.62 60.98 90.92 68.95
✓ 2, 2, 2 70.82▲ 3.48 68.58▲ 2.42 58.16▲ 1.54 63.52▲ 2.54 91.74▲ 0.82 75.69▲ 6.74

✗ 4, 4, 4 69.91 67.68 57.50 61.87 91.56 73.32
✓ 4, 4, 4 71.03▲ 1.12 68.87▲ 1.19 58.34▲ 0.84 63.52▲ 1.65 91.74▲ 0.18 75.69▲ 2.37

Codebook
pruning

Codebook
size

Detection Segmentation

AP@0.3 AP@0.5 AP@0.7 Vehicle Road Lane
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Pruning efficiency. Tab. 2 presents a performance comparison between codebooks created via
pruning versus those trained from scratch. Based on our finding in Fig. 4 that pruned codebooks
achieve competitive performance at small sizes, we focus this analysis on codebooks with just 4 and
2 code vectors. Pruning codebooks are derived by pruning a large, pre-trained codebook (originally
with 128 code vectors), while unpruned versions are trained from scratch with the smaller target
size. The results demonstrate that the pruning method outperforms the training from scratch method
with achieving AP improvement of approximately 0.01 to 0.02 at each IoU threshold.

Vehicles disconnection. In the inference pro-
cess, the transmitted BEV feature maps from
vehicles are zeroed out in proportional samples
according to the ‘vehicles disconnected ratio’.
Tab. 3 shows the AP results at various vehi-
cle disconnection ratios. The performance de-
grades slightly with the disconnected ratio in-
creases. For instance, as the disconnection ra-
tio increases from 0.1 to 0.9, the AP drops by
only 5% at the stricter 0.5 and 0.7 IoU thresh-

Table 3: Robustness to vehicle disconnection.

Ratio AP@0.3 AP@0.5 AP@0.7
0.1 70.63▼ 0.57 68.68▼ 0.42 58.45▼ 0.15

0.3 69.07▼ 2.13 67.51▼ 1.59 57.52▼ 1.08

0.5 67.74▼ 3.46 66.39▼ 2.71 56.26▼ 2.34

0.7 66.11▼ 5.09 65.03▼ 4.07 55.20▼ 3.40

0.9 65.08▼ 6.12 64.05▼ 5.05 54.67▼ 3.93

olds. This trend highlights the robustness of CoM-V2I to communication failures from individual
vehicles.
BEV feature channels and resolutions. We evaluate the performance of CoM-V2I with different
feature channels and resolutions, as shown in Tab. 4. The results indicate that AP at each IoU thresh-
old decreases as the number of channel is reduced, which demonstrates that the representational
capacity of residual quantization method diminishes with fewer channels. While the performance
drop is slight at the 0.3 IoU threshold, it becomes more significant (approximately 0.1) at the stricter
0.7 threshold. Regarding feature resolution, the model maintains competitive performance even as
the resolution is reduced, with AP dropping by only 0.01 to 0.02 at the 0.3 and 0.5 IoU thresholds.
This trend demonstrates that our multiscale fusion method can effectively handle BEV feature maps
of various resolutions.

Table 4: Ablation study on BEV feature channels and resolutions. For the channel evaluation,
the camera-based and LiDAR-based BEV feature map resolutions are fixed at 32 × 32 and 128 ×
128, respectively. For the resolution evaluation, the number of channels is fixed at 128, while the
resolution of the camera-based BEV feature maps is varied.

32 67.31 63.87 48.20
64 68.43 64.81 52.64
96 69.91 67.67 56.13
128 71.25 69.14 58.66

Channels AP@0.3 AP@0.5 AP@0.7

8× 8 69.41 67.29 58.15
16× 16 69.79 67.91 58.25
32× 32 71.25 69.14 58.66
64× 64 70.08 67.23 57.54

Resolutions AP@0.3 AP@0.5 AP@0.7

5 CONCLUSION AND DISCUSSION

In this paper, we introduced CoM-V2I, an economical and communication-efficient V2I coopera-
tive perception framework. To enhance economic viability, we proposed a multimodal cooperation
paradigm where the infrastructure is equipped with a high-cost LiDAR, while vehicles use more
affordable cameras. We introduced a codebook pruning method for residual vector quantization
to significantly decrease communication costs. Furthermore, to handle the low-resolution features
transmitted by vehicles for bandwidth conservation, we presented a multiscale fusion method ca-
pable of fusing multi-modal BEV feature maps at various resolutions. Experiments on both the
real-world V2X-Real and simulated V2X-Sim datasets demonstrate that CoM-V2I outperforms pre-
vious state-of-the-art methods on both detection and segmentation tasks.

Limitation and future work. The results from Tab. 3 reveal that the performance of CoM-V2I
not drops dramatically when BEV feature maps from vehicles transmitted fail. However, a key
limitation is its reliance on the central infrastructure due to performance drops significantly if the
infrastructure is disconnected during inference, as illustrated in Appendix A.2. In the future, we plan
to address this by recovering lost feature maps from the infrastructure for enhancing the robustness.
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A.1 IMPLEMENTATION DETAILS

A.1.1 DATASETS

V2X-Real dataset (Xiang et al., 2024) comprises 5772 training, 1253 test, and 717 validation
frames. These frames were collected from 63 diverse scenarios involving a total of two infras-
tructures and two vehicles, with each frame containing data from both infrastructures and at least
one vehicle. Every agent is equipped with a LiDAR sensor, providing a point cloud, and either 2 or
4 cameras that collectively offer a 360◦ horizontal field of view.

V2X-Sim dataset (Li et al., 2022a) is based on the nuScenes format and contains 100 driving scenes
with 100 frames each (Caesar et al., 2020). Every frame includes one infrastructure and up to five
vehicles. Each agent is equipped with a LiDAR sensor and multiple cameras deployed surrounding
the agent. To facilitate training with the OpenCOOD toolkit (Xu et al., 2022b), which natively
supports the V2X-Real format, we reorganized the V2X-Sim dataset’s structure to match that of
V2X-Real. In addition, we divided 80 scenes for training and 20 scenes for validation and inference.

A.1.2 BASELINES

We organize compared baselines into three groups to evaluate the different aspects of our framework.

• Modality in framework: i) Camera-only. Vechiles represent BEV feature maps based on
images from 4 multi-view cameras, while the infrastructure is equipped with 2 multi-view
cameras (Xu et al., 2022a). ii) LiDAR-only. All agents use point cloud data from the Li-
DAR to CP with a consistent range of [−51.2,−51.2,−3, 51.2, 51.2, 3] meters (Wang et al.,
2020). iii) LiDAR2cam. The infrastructure only adopts multi-view cameras for CP, while
vehicles use their LiDAR sensors. For a fair comparison, our proposed communication and
fusion methods are applied to all modality baselines.

• Communication efficiency: i) Where2comm. Camera-based BEV feature maps are com-
pressed into spatial confidence maps by filtering out non-critical feature vectors (Hu et al.,
2022). ii) How2comm. A mutual information-aware communication mechanism and a
spatial-channel filtering method are used to compress BEV feature maps (Yang et al.,
2023a). iii) Fullcomm. This baseline does not employ any communication efficiency mech-
anism. iv) Codefilling. A single codebook is trained to represent BEV feature maps and
transmits a compact index matrix (Hu et al., 2024). The fusion method and modality for
these baselines are aligned with the CoM-V2I.

• Fusion strategy: i) HM-ViT. The camera-based BEV feature map is upsampled to a 128×
128 × 128 resolution to align with the LiDAR-based feature map for same scale fusion
(Xiang et al., 2023). ii) V2I-Coop. A cross-attention mechanism is used for feature fusion,
followed by local and global self-attention modules (Zhou et al., 2025). iii) CoarseFusion.
The LiDAR-based BEV feature map is downsampled to a 32 × 32 × 128 resolution to
facilitate coarse-grained feature fusion between modalities. iv) BEVFusion. BEV feature
maps are first resized to a uniform height and width, then concatenated along the channel
dimension and passed through convolutional layers for fusion (Liu et al., 2023b). The
proposed communication method are performed for each baseline.

A.1.3 TRANING STRATEGY

Following previous works (Xu et al., 2022a; Xiang et al., 2023), all models are trained using the
AdamW optimizer with a cosine annealing scheduler and a learning rate of 2× 10−4. For the object
detection task, we train models for 100 epochs with a batch size of 2. Within the classification
loss, we apply weights of 1.0 for negative samples and 25.0 for positive samples. The total loss
components Lcls, Lcmt, and Lreg are balanced with weights α1, α2, and α3 set to 5.0, 2.0 and 1.0,
respectively. For the map segmentation task, models are trained for 80 epochs with a batch size of 1.
We employ a focal loss (Lin et al., 2017) for the classification loss Lcls to address class imbalance.
The balancing weights α1 and α2 set to 2.0 and 5.0, respectively.
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A.2 ADDITIONAL ABLATION STUDIES

Reconstruction errors for BEV feature maps. Tab. 5 represents the AP and mIoU is only slightly
reduced even with a higher mAE in feature reconstruction, which demonstrates that many vectors in
the original features are redundant. The codebook pruning method effectively removes less utilized
codes vectors without a significant loss in performance.

Table 5: Performance of CoM-V2I in various mAE and communication costs. The mAE is used for
evaluating the difference between the original and quantized camera-based BEV feature map.

Costs
(bits)

Object detection Map segmentation

mAE AP@0.3 AP@0.5 AP@0.7 mAE Vehicle Road Lane

21504 1.20× 10−3 71.25 69.14 58.66 2.30× 10−6 63.56 91.77 75.56

15360 1.37× 10−3 71.23 69.14 58.63 3.80× 10−6 63.54 91.75 75.69

9216 2.20× 10−3 71.16 69.06 58.55 2.06× 10−5 63.52 91.74 75.69

6144 3.31× 10−3 71.03 68.87 58.34 2.42× 10−5 63.52 91.74 75.69

3072 6.93× 10−3 70.82 68.58 58.16 9.50× 10−5 63.52 91.74 75.69

0 - 64.49 63.51 54.10 - 59.51 90.36 74.41

Component analysis. The results in Tab.
6 demonstrate that both our codebook prun-
ing and multiscale fusion methods improve
model performance. Specifically, compared
to a baseline with a single codebook, incor-
porating RVQ improves the AP by 8%, 4%,
and 2% at IoU thresholds of 0.3, 0.5, and
0.7, respectively. Furthermore, applying our
codebook pruning strategy maintains perfor-
mance comparable to that of the original full

Table 6: Component ablation. “Prune” and “MSF”
refer to codebook pruning and multiscale fusion.

70.45 63.42 41.79
✓ 71.25 69.14 58.66

✓ 69.78 62.94 41.40
✓ ✓ 70.82 68.58 58.16

MSF Prune AP@0.3 AP@0.5 AP@0.7

codebook with lower communication costs. In the end, the multiscale fusion method achieves 14%
improvement in AP at IoU 0.7.

Infrastructure disconnection. In contrast
to the robustness of vehicle disconnection,
COM-V2I is more sensitive to losing the in-
frastructure’s BEV feature maps, which are
zeroed out based on the ‘infrastructure dis-
connection ratio’. As shown in Tab. 7, the
AP drops by approximately 12% at each IoU
threshold for every 0.2 increase in the in-
frastructure disconnection ratio. Despite this,
even when the disconnection ratio still sur-
passes that of the camera-only method, as

Table 7: AP under various infrastructure disconnec-
tion ratios.

Ratio AP@0.3 AP@0.5 AP@0.7
0.1 64.68▼ 6.52 62.55▼ 6.55 54.33▼ 4.27

0.3 52.01▼ 19.19 50.32▼ 18.78 44.59▼ 14.01

0.5 38.45▼ 32.75 36.87▼ 32.32 33.31▼ 25.29

0.7 25.52▼ 45.68 24.04▼ 45.06 22.26▼ 36.34

0.9 13.09▼ 58.11 11.81▼ 57.29 9.74▼ 48.86

shown on Tab. 1. This demonstrates that LiDAR and camera fusion method offers an effective
trade-off between system cost and reliability.

A.3 VISUALIZATION

Object detection. Fig. 6 shows the visual comparison of object detection between CoM-V2I and
other baselines on V2X-Real dataset. CoM-V2I outperforms others on precisely bounding all objects
and predicting relevant attributes.

Map segmentation. Qualitative results for the map segmentation task on the V2X-Sim dataset are
shown in Fig. 7. The visualizations demonstrate that CoM-V2I accurately segments the vehicle
class across various driving scenes.
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(a) Camera-only (b) LiDAR-only (c) LiDAR2cam (d) Fullcomm

(e) BEVFusion (f) CoarseFusion (g) HM-ViT (h) V2I-Coop

(i) Codefilling (j) How2comm (k) Where2comm (l) CoM-V2I

Figure 6: Visual results of all baselines in object detection. The Red and blue bounding boxes
represent the ground truth and prediction, respectively.
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(a) GroundTruth (b) Camera-only (c) LiDAR-only (d) LiDAR2cam (e) Fullcomm

(f) GroundTruth (g) BEVFusion (h) CoarseFusion (i) HM-ViT (j) V2I-Coop

(k) GroundTruth (l) Codefilling (m) How2comm (n) Where2comm (o) CoM-V2I

Figure 7: Qualitative results for map segmentation. The white, orange and blue color map represent
vehicle, road and lane classes, respectively.
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