

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COM-V2I: COMMUNICATION-EFFICIENT MULTI-MODAL COOPERATIVE PERCEPTION VIA CODEBOOK PRUNING AND MULTISCALE FUSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Cooperative perception, which fuses sensory information from multiple agents to enhance individual agent's perception ability, has emerged as a promising approach to overcome the limitations of single-agent line-of-sight sensing. However, a significant challenge lies in economically deploying sensors across agents while minimizing communication costs and maintaining strong perception performance. To address this challenge, we propose CoM-V2I, a novel framework for Communication-efficient Multimodal Vehicle-to-Infrastructure (V2I) cooperative perception. In CoM-V2I, the road infrastructure is equipped with a high-resolution LiDAR sensor, while vehicles are fitted with cost-effective multi-view cameras to balance performance with economic feasibility. We introduce a residual vector quantization-based codebook representation method to improve communication efficiency by compressing bird's eye view (BEV) feature maps into lightweight indices before transmission. We also propose a codebook pruning method that reduces codebook size by removing low-importance code vectors and combining high-similarity ones, thereby decreasing communication costs with minimal impact on perception performance. Furthermore, we propose a multiscale fusion mechanism that progressively integrates multimodal BEV feature maps from the infrastructure and vehicles, which have different spatial resolutions in a coarse-to-fine manner. Experimental results on the V2X-Real and V2X-Sim datasets demonstrate that the proposed CoM-V2I framework outperforms existing baselines in terms of perception accuracy and communication efficiency.

1 INTRODUCTION

The efficiency of transportation systems has improved significantly with recent advances in machine learning for autonomous driving (Yin et al., 2025). Perception is a key component of this advancement, which is the process of interpreting raw data from onboard sensors, e.g., LiDAR, cameras, and radar, to create a structured and machine-readable representation of the surrounding environment (Kiran et al., 2021). However, perception systems based on a single agent face several challenges, especially a limited perceptual range and vulnerability to occlusions (Li et al., 2024). To overcome this bottleneck, cooperative perception (CP) has emerged as a promising solution that enables an agent to broaden its perceptual area by fusing perceptual information from other connected agents via vehicle-to-everything (V2X) communication (Chen et al., 2019a). Early CP methods were primarily based on 3D point cloud data from LiDAR and can be broadly divided into three categories: early, late, and intermediate fusion (Arnold et al., 2022). Intermediate fusion became the mainstream approach in subsequent research, as it allows for the transmission of rich feature representations with low communication costs (Prakash et al., 2021). Despite its effectiveness, the high cost of LiDAR has been a significant limitation to its widespread adoption in vehicular CP systems. For this purpose, transformer-based methods like BEVFormer (Li et al., 2025) and cross view transformer (CVT) (Zhou & Krähenbühl, 2022) have been developed to generate bird's-eye-view (BEV) representations from multi-view cameras, achieving 60% to 70% of the performance of their LiDAR-based counterparts. Furthermore, multi-view camera-based CP has been shown to offer an acceptable trade-off between performance and cost (Xu et al., 2022a). To improve the scalability of CP beyond systems limited to homogeneous sensors, recent studies have begun to focus on multi-

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969

108 3D point clouds onto a 2D BEV grid to accelerate processing, as seen in methods like PIXOR
 109 (Yang et al., 2018) and PointPillars (Lang et al., 2019), while the high cost of LiDAR has limited
 110 its widespread application. Consequently, recent research has focused on generating BEV repre-
 111 sentations from more economical multi-view cameras (Zhao et al., 2024). This has led to a vari-
 112 ety of approaches, including geometric methods like Inverse Perspective Mapping (IPM) (Reiher
 113 et al., 2020a), depth-based techniques such as Lift-Splat-Shoot (LSS) (Philon & Fidler, 2020), and
 114 more recent Transformer-based architectures like BEVFormer (Li et al., 2025) and CVT (Zhou &
 115 Krähenbühl, 2022). To leverage the strengths of both sensors, multi-modal fusion methods have
 116 been developed to combine LiDAR and camera features using either convolutional neural networks
 117 (CNNs) (Liu et al., 2023b; Cai et al., 2023) or Transformers (Li et al., 2022b; Bai et al., 2022). How-
 118 ever, the challenge of effectively fusing features with different spatial resolutions has been under-
 119 explored in prior work. In this paper, we propose a novel multiscale fusion method specifically
 120 designed to address this gap.

121 **Cooperative perception.** CP aims to improve the perception quality and range of an agent by fusing
 122 sensory information from multiple connected vehicles and road infrastructures (Liu et al., 2023a).
 123 Early works primarily focused on LiDAR-based CP, sharing information via early, intermediate, or
 124 late fusion strategies (Chen et al., 2019b; Wang et al., 2020; Rawashdeh & Wang, 2018). Among
 125 these, intermediate fusion became the mainstream approach due to its favorable trade-off between
 126 performance and communication costs. Driven by cost-efficiency and recent advances in camera-
 127 based methods, subsequent research has explored sharing BEV feature maps constructed from multi-
 128 view images (Xu et al., 2022a; Song et al., 2024). This has also broadened the scope of CP to include
 129 multi-modal data across both homogeneous and heterogeneous agents (Xiang et al., 2023; Zhou
 130 et al., 2025). A key challenge in CP is communication latency, which can degrade performance by
 131 causing issues like pose errors (Lei et al., 2022). To mitigate this, many recent works aim to reduce
 132 communication costs via message filtering and selection (Yang et al., 2023b;a; Hu et al., 2022). A
 133 more advanced approach, proposed in Codefilling, uses a shared codebook to represent features,
 134 transmitting only compact indices instead of the full feature maps (Hu et al., 2024). However, a
 135 known limitation of single-codebook methods is code underutilization, where many code vectors are
 136 rarely used, which can diminish the model’s representational ability. In this paper, we address this
 137 issue by proposing a codebook pruning method applied to a residual vector quantization framework,
 138 enhancing representational ability while further reducing communication costs.

3 METHODOLOGY

141 We consider a V2X communication system illustrated in Fig. 1 where a central infrastructure ex-
 142 tracts BEV feature maps from its LiDAR point cloud, while multiple vehicles generate correspond-
 143 ing feature maps from multi-view camera images. Then vehicles progressively encode their features
 144 into several index matrices using a residual quantization method with multiple codebooks, and trans-
 145 mit these indices to the infrastructure. Subsequently, the infrastructure decodes the shared feature
 146 maps and fuses the camera-based BEV feature maps with its own LiDAR-based ones via a multi-
 147 scale fusion method. Finally, these fused feature maps are processed through an output head, and
 148 the infrastructure broadcasts the final perception results back to the connected vehicles.

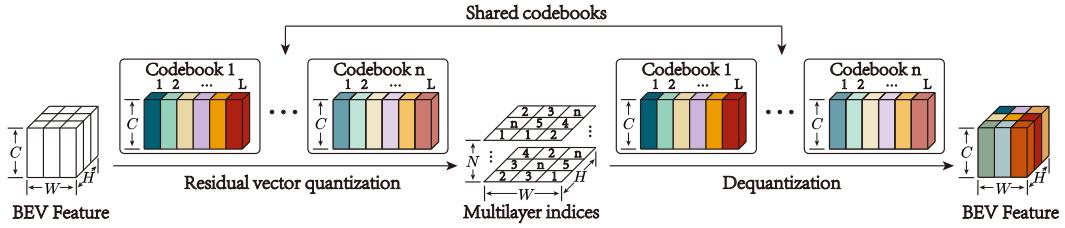
3.1 V2I MULTIMODAL COOPERATIVE PERCEPTION FRAMEWORK

151 **Camera pipeline:** Vehicles are equipped with multiple cameras in various orientations that includes
 152 positions and optical parameters defined by extrinsic and intrinsic matrices. Each camera captures
 153 an image $\mathbf{I} \in \mathbb{R}^{H_{[i]} \times W_{[i]} \times 3}$, where $H_{[i]}$ and $W_{[i]}$ are the image height and width, and 3 represents the
 154 RGB channels. A ResNet-34 (He et al., 2016) backbone is used to extract image features at multiple
 155 scales, which are then input into the CVT module. Within the CVT module, learnable BEV map
 156 embeddings function as queries \mathbf{Q} , while the multi-view features serve as the keys \mathbf{K} and values
 157 \mathbf{V} , which are combined with a positional embedding that is calculated from the camera’s extrinsic
 158 and intrinsic matrices. The final BEV feature map $\mathbf{F}_{[v]} \in \mathbb{R}^{H_{[v]} \times W_{[v]} \times C}$ with C channel is obtained
 159 after several cross-view transform and downsampling operations.

160 **LiDAR pipeline:** The infrastructure is installed a LiDAR sensor to capture raw point clouds data,
 161 then preprocesses this data to a BEV map within a defined range. A PIXOR (Yang et al., 2018)
 backbone is used to process this BEV map, converting it into a 2D pseudo-image by flattening

162 the height dimension. This process projects the original data into a BEV feature map, denoted as
 163 $\mathbf{F}_{[r]} \in \mathbb{R}^{H_{[r]} \times W_{[r]} \times C}$. Here, $H_{[r]}$, $W_{[r]}$ and C represent the height, width, and channels of the
 164 feature map, respectively.
 165

166 3.2 CODEBOOK TRAINING AND PRUNING



167 Figure 2: The process of residual codebook training.
 168

169 To efficiently transmit the BEV feature map $\mathbf{F}_{[v]}$ from the vehicle with low communication costs, we
 170 employ a residual quantization method derived from the Vector Quantized Variational Autoencoder
 171 (VQ-VAE) (Van Den Oord et al., 2017). This approach uses multiple codebooks to progressively
 172 encode the feature map into a set of compact index matrices. The objective of this process is to
 173 approximate the continuous vectors in the feature map using a finite set of learnable vectors (i.e.,
 174 codes) from shared codebooks. Then the infrastructure reconstructs the BEV feature map from
 175 transmitted index matrices based on shared codebooks.

176 3.2.1 CODEBOOK TRAINING

177 Codebook learning is an effective vector quantization method that enhances representational ability
 178 by training a codebook from a finite set of vectors. However, this approach is prone to code un-
 179 derutilization, where many codes are rarely or never selected during the quantization process (Wu
 180 & Yu, 2019). RVQ is a promising solution to break through the limitations of a single codebook,
 181 which aims to train multiple codebooks for approximating feature vectors recursively (Lee et al.,
 182 2022). As illustrated in Fig. 2, the residual quantization process involves vehicles and the infras-
 183 tructure sharing a set of N codebooks $\mathbb{D} = \{\mathbf{D}_{[n]}\}_{n=1}^N$ for quantization and dequantization BEV
 184 feature maps, respectively. Each codebook $\mathbf{D}_{[n]} \in \mathbb{R}^{C \times L}$ consists of L code vectors that denoted
 185 as $\mathbf{D}_{[n]l}$, $l \in [1, L]$. The objective for the first codebook $\mathbf{D}_{[n]}$ is to minimize the Euclidean distance
 186 between the BEV feature vector $\mathbf{F}_{[v]h,w}$ at h -th and w -th position with the nearest code vector $\mathbf{D}_{[n]l^*}$,
 187 written as,

$$188 Q(\mathbf{F}_{[v]h,w}; \mathbf{D}_{[n]}) = \mathbf{D}_{[n]l^*}, \text{ where } l^* = \operatorname{argmin}_{l \in 1, \dots, L} \|\mathbf{F}_{[v]h,w} - \mathbf{D}_{[n]l}\|_2^2, \quad (1)$$

189 where $Q(\mathbf{F}_{[v]h,w}; \mathbf{D}_{[n]})$ denotes the result of feature vector $\mathbf{F}_{[v]h,w}$ quantized by the codebook $\mathbf{D}_{[n]}$.
 190 In residual quantization, this process is applied iteratively. The initial residual term is set to the input
 191 feature vector, $\mathbf{r}_{[1]} = \mathbf{F}_{[v]h,w}$. At each stage n , the current residual term $\mathbf{r}_{[n]}$ is quantized and the
 192 subsequent residual term $\mathbf{r}_{[n+1]}$ is computed as the remaining quantization error, expressed as,
 193

$$194 \mathbf{r}_{[n+1]} = \mathbf{r}_{[n]} - Q(\mathbf{r}_{[n]}; \mathbf{D}_{[n]}), \quad (2)$$

195 for $n = 1, 2, \dots, N$. After N stages, the original feature vector $\mathbf{F}_{[v]h,w}$ is represented by a set of N
 196 indices $\{l_{[1]}^*, l_{[2]}^*, \dots, l_{[N]}^*\}$. Consequently, the entire BEV feature map $\mathbf{F}_{[v]}$ is compressed into an
 197 integer tensor of indices $\mathbf{Z} \in \{1, \dots, L\}^{H_{[v]} \times W_{[v]} \times N}$. This dramatically reduces the amount of data
 198 to be transmitted, as $N \ll C$ and integer indices can be encoded with fewer bits than floating-point
 199 vectors. Upon receiving the index tensor \mathbf{Z} , the infrastructure reconstructs the BEV feature vector
 200 $\hat{\mathbf{F}}_{[v]h,w}$ for each h and w position by summing the corresponding code vectors from each of the N
 201 codebooks, as follows,

$$202 \hat{\mathbf{F}}_{[v]h,w} = \sum_{n=1}^N \mathbf{D}_{[n]} \mathbf{z}_{h,w,n}, \quad \forall \mathbf{z}_{h,w,n} \in \{1, \dots, L\}. \quad (3)$$

The training objective is to minimize the discrepancy between the original feature map $\mathbf{F}_{[v]h,w}$ and the quantized map $\hat{\mathbf{F}}_{[v]h,w}$ by optimizing the codebooks to minimize the quantization residual term at each stage. Thus, the commitment loss for codebook training could be formulated as,

$$\mathcal{L}_{\text{cmt}} = \sum_{h=1}^{H_{[v]}} \sum_{w=1}^{W_{[v]}} \|\mathbf{F}_{[v]h,w} - \text{sg}\left[\sum_{n=1}^N \mathbf{D}_{[n]} \mathbf{z}_{h,w,n}\right]\|, \forall \mathbf{z}_{h,w,n} \in \{1, \dots, L\}, \quad (4)$$

where $\text{sg}[\cdot]$ denotes the stop-gradient operator, which prevents gradients from flowing back through the quantization process (Wu & Flierl, 2020). To sum up, the residual codebook representation offers two key advantages: i) It enables communication efficiency by transmitting low-bitrate integer indices instead of high-precision floating-point vectors; ii) It avoids code underutilization in the training for a single and large codebook by using multiple and smaller codebooks that are utilized more effectively.

3.2.2 CODEBOOK PRUNING

To further reduce the codebook size after training, which enables a more compact feature representation with fewer indices. We propose a codebook pruning method that involves two iterative steps: removing code vectors with low importance and combining highly similar code vectors. The importance score s_l of the codebook $\mathbf{D}_{[n]l}$ is defined as its usage frequency across all feature vectors, written as,

$$s_l = \sum_{h=1}^{H_{[v]}} \sum_{w=1}^{W_{[v]}} \mathbf{1}_{\text{condition}}(\mathbf{F}_{h,w} = \mathbf{D}_{[n]l}), \quad (5)$$

where $\mathbf{1}_{\text{condition}}(\cdot)$ is the indicator function. A code vector $\mathbf{D}_{[n]l}$ will be removed from the codebook $\mathbf{D}_{[n]}$ if it with the minimum importance score among the codebook. Furthermore, the similarity $e_{a,b}$ between code vectors $\mathbf{D}_{[n]a}, \mathbf{D}_{[n]b} \in \mathbf{D}_{[n]}$ could be evaluated by cosine similarity, i.e., $e_{a,b} = (\mathbf{D}_{[n]a} \cdot \mathbf{D}_{[n]b}) / (\|\mathbf{D}_{[n]a}\| \|\mathbf{D}_{[n]b}\|)$. The pair with the maximum similarity score is replaced by a single new code, $\mathbf{D}_{[n]c}$, computed as their average $\mathbf{D}_{[n]c} = (\mathbf{D}_{[n]a} + \mathbf{D}_{[n]b}) / 2$. These removal and combination operations are performed iteratively until the number of code vectors in the codebook reaches a specified minimum, which serves as the stopping condition.

3.3 MULTISCALE FEATURE FUSION

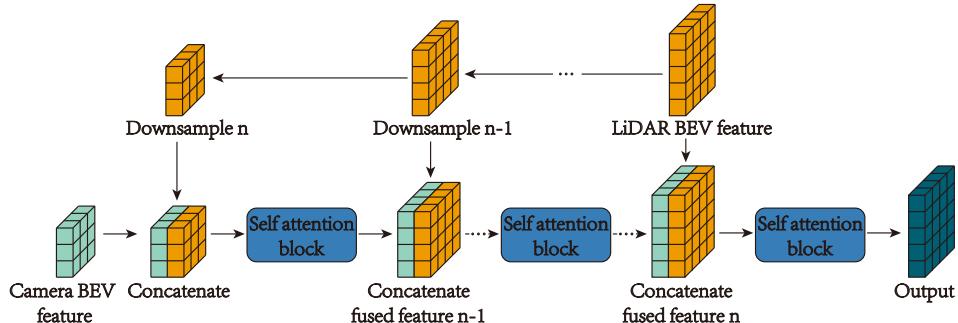


Figure 3: The process of multiscale feature fusion.

To conserve communication costs, vehicles significantly downsample their camera-based BEV feature maps $\mathbf{F}_{[v]} \in \mathbb{R}^{H_{[v]} \times W_{[v]} \times C}$ with a lower resolution, while it is challenge to directly fuse BEV feature maps with different spatial resolutions. To this end, we propose a multiscale fusion method that operates in a coarse-to-fine manner, as illustrated in Fig. 3. The LiDAR-based BEV feature map is progressively downsampled by a ratio of λ at each stage, until its spatial resolutions match those of the camera-based BEV feature map $\mathbf{F}_{[v]}$ from the vehicle. The fusion process begins at concatenating these BEV feature maps and input to the self attention block for fusion, which consists of self attention, 3D convolution and upsample modules. In self attention module, the concatenated feature are linearly projected into Q , K , and V tensors to produce a fused feature map $\mathbf{F}_{[f,m]}$ at stage m ,

270 calculated as

$$271 \quad \mathbf{F}_{[f,m]} = \text{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{\sigma}}\right)\mathbf{V} \in \mathbb{R}^{\frac{H[r]}{\lambda^m} \times \frac{W[r]}{\lambda^m} \times C}, \quad (6)$$

273 where σ is the key vector dimension used for scaling. A 3D convolutional module is applied to
 274 $\mathbf{F}_{[f,m]}$ to refine and align the aggregated feature maps for subsequent computation. The resulting
 275 feature maps is then upsampled by the ratio λ and concatenated with the intermediate LiDAR-based
 276 feature map $\mathbf{F}_{[r]}$ from the corresponding scale. Then the concatenated feature map serves as the
 277 input for the self attention block in the next stage. This progressive fusion process is repeated m
 278 stages, moving from the coarsest to the finest resolution to produce the full-resolution fused feature
 279 map.

280 **3.4 LOSS FUNCTION**

281 The final output of CoM-V2I is determined by a task-specific head, such as one for segmentation or
 282 detection.

283 **Segmentation task:** To handle class imbalance on map segmentation, we calculate the classification
 284 loss \mathcal{L}_{cls} using a weighted Cross-Entropy metric to measure the difference between the predicted
 285 segmentation map $\mathbf{P} \in \mathbb{R}^{H \times W \times K}$ and the ground-truth map $\mathbf{Y} \in \mathbb{R}^{H \times W \times K}$ with a weight ω_k
 286 applied to each of the K classes, expressed as,

$$287 \quad \mathcal{L}_{\text{cls}} = - \sum_{h=1}^H \sum_{w=1}^W \sum_{k=1}^K \omega_k \mathbf{Y}_{h,w,k} \log(\mathbf{P})_{h,w,k}. \quad (7)$$

288 The total loss for the segmentation task \mathcal{L}_{seg} is a weighted sum of the classification loss \mathcal{L}_{cls} and the
 289 codebook commitment loss \mathcal{L}_{cmt} , that is,

$$290 \quad \mathcal{L}_{\text{seg}} = \alpha_1 \mathcal{L}_{\text{cls}} + \alpha_2 \mathcal{L}_{\text{cmt}}, \quad (8)$$

291 where α_1 and α_2 are balancing weights.

292 **Detection task:** In contrast, the object detection task requires predicting various attributes for each
 293 bounding box, such as its dimensions (e.g., height, width, length) and heading angle. We use
 294 Smooth-L1 metric to calculate the regression loss \mathcal{L}_{reg} for these attributes. By incorporating this
 295 regression component with weight α_3 , the total loss \mathcal{L}_{det} for detection task could be written as

$$296 \quad \mathcal{L}_{\text{det}} = \alpha_1 \mathcal{L}_{\text{cls}} + \alpha_2 \mathcal{L}_{\text{cmt}} + \alpha_3 \mathcal{L}_{\text{reg}}. \quad (9)$$

304 **4 EXPERIMENTS**

305 **Datasets and baselines.** We evaluate the effectiveness of the proposed CoM-V2I framework on
 306 the real-world V2X-Real dataset (Xiang et al., 2024) for object detection and the simulated V2X-
 307 Sim dataset (Li et al., 2022a) for map segmentation. To comprehensively assess our contributions,
 308 we compare our method against baselines organized into three groups: i) V2I cooperation frame-
 309 work. To evaluate the overall multi-modal strategy, we compare against foundational approaches,
 310 including Camera-only, LiDAR-only, and LiDAR2cam. ii) Communication efficiency. We compare
 311 proposed codebook-based communication method with Where2comm, How2comm, Codefilling,
 312 and Fullcomm baselines. iii) Multiscale fusion. To validate our fusion mechanism, we compare it
 313 against other state-of-the-art methods, such as V2I-Coop, HM-ViT, CoarseFusion, and BEVFusion.
 314 The details of these baselines are listed on Appendix A.1.2.

315 **Experimental settings.** During training for each frame, we designate the infrastructure as the ego-
 316 agent and only consider vehicles that are within a $60m$ communication range. We use ResNet-34
 317 and PIXOR as the backbones for processing camera images and LiDAR point clouds, respectively.
 318 The camera-based BEV feature map is constructed from multi-view images by the FAX module (Xu
 319 et al., 2022a), resulting in a resolution of $32 \times 32 \times 128$. In contrast, the LiDAR-based BEV feature
 320 map has a higher resolution of $128 \times 128 \times 128$. The residual vector quantization process em-
 321 ploys three codebooks, each containing 128 code vectors. All models were trained using the Adam
 322 optimizer with a cosine annealing learning rate scheduler for 100 epochs and 2 batchsize. Prior to
 323 evaluating the model’s performance, we pre-compute and cache all camera-based BEV feature maps

324 from the entire dataset to accelerate the inference of codebook pruning. For the detection task, we
 325 use Average Precision (AP) calculated at Intersection over Union (IoU) thresholds of 0.3, 0.5, and
 326 0.7. For the segmentation task, we evaluate performance using the mean Intersection over Union
 327 (mIoU) between the predicted map and the ground-truth map.

329 4.1 QUALITATIVE EVALUATIONS

332 Table 1: Performance comparison of CoM-V2I with other methods on two tasks.

334 Method	335 Modality [†]	336 Detection (AP) [‡]			337 Segmentation (mIoU) [#]		
		338 AP@0.3	339 AP@0.5	340 AP@0.7	341 Vehicle	342 Road	343 Lane
336 Camera-only(Xu et al., 2022a)	337 IC + VC	42.71	29.52	15.34	10.97	51.87	21.19
337 LiDAR-only(Wang et al., 2020)	338 IL + VL	71.79	63.71	38.05	21.18	88.27	76.79
338 LiDAR2cam	339 IC + VL	63.07	60.18	47.62	15.78	76.61	51.32
339 Where2comm(Hu et al., 2022)	340 IL + VC	70.92	68.65	56.66	62.49	87.42	74.27
340 How2comm(Yang et al., 2023a)	341 IL + VC	70.14	68.15	55.18	61.42	91.87	74.46
341 Codefilling(Hu et al., 2024)	342 IL + VC	62.87	62.12	55.35	54.75	90.97	76.64
342 Fullcomm	343 IL + VC	70.49	68.96	58.11	63.52	92.10	77.37
343 HM-ViT(Xiang et al., 2023)	344 IL + VC	63.11	59.52	46.21	59.07	92.48	70.29
344 V2I-Coop(Zhou et al., 2025)	345 IL + VC	69.89	65.46	52.75	55.52	91.78	72.06
345 BEVFusion(Liu et al., 2023b)	346 IL + VC	67.43	63.42	46.28	18.26	87.42	66.04
346 CoarseFusion	347 IL + VC	69.48	66.37	52.15	39.18	90.75	77.07
347 CoM-V2I	348 IL + VC	71.25	69.14	58.66	63.56	91.70	77.56

349 [†] IC: Infrastructure Camera; IL: Infrastructure LiDAR; VC: Vehicle Camera; VL: Vehicle LiDAR.

349 [‡] “AP@0.3”, “AP@0.5”, and “AP@0.7” represent the AP at IoU thresholds of 0.3, 0.5, and 0.7.

349 [#] The mIoU is adopted for evaluating the segmentation task.

351 To fairly compare different baselines, we divided them into three groups described above. For
 352 framework, only input sources are different among compared baselines. For communication effi-
 353 ciency, compression methods for BEV feature maps are various. For fusion startegy, only fusion
 354 method are different. The FAX (Xu et al., 2022a) module and the PIXOR module are adopted in
 355 all baselines to represent the BEV feature maps of the cameras and LiDAR. As shown in Tab. 1,
 356 all LiDAR involved methods outperform the camera-only method, which highlights the limitation
 357 of purely camera-based CP. The LiDAR-only method achieves the highest AP at an IoU threshold
 358 of 0.3, though its performance drops at the stricter thresholds of 0.5 and 0.7. In the communica-
 359 tion efficiency comparison, our CoM-V2I method achieves the best performance, matching or even
 360 surpassing the Fullcomm baseline (which transmits uncompressed features). This result indicates
 361 that our residual vector quantization-based approach effectively enhances feature representation. Re-
 362 garding the fusion strategy, our multiscale method outperforms both fine-grained and coarse-grained
 363 fusion baselines, achieving a competitive trade-off between performance and communication cost.
 364 In summary, CoM-V2I obtains the highest AP at the 0.5 and 0.7 IoU thresholds for object detection
 365 and the best mIoU for the vehicle and lane segmentation classes.

366 4.2 COMMUNICATION COSTS

368 Fig. 4 compares our proposed CoM-V2I with other communication-efficient methods, evaluating
 369 the trade-off between communication costs and performance. The performance of all algorithms
 370 drops significantly without the camera-based BEV feature maps, which highlights the importance
 371 of CP. Our CoM-V2I method exhibits two key advantages. i) achieves the best performance across
 372 all three IoU thresholds at similar communication costs, with an AP improvement of 1% to 6% over
 373 other methods. ii) significantly reduces communication costs while maintaining competitive per-
 374 formance, especially outperforming the baseline that without an efficient communication strategy.
 375 This strong performance can be attributed to the effective feature representation from our residual
 376 vector quantization, while the proposed codebook pruning further decreases communication costs
 377 by removing less-utilized and combining high-similarity code vectors. A detailed analysis of the
 378 mean absolute error (mAE) between the original and quantized BEV feature maps, along with their
 379 corresponding communication costs and performance, is provided in Tab. 5 in Appendix A.2.

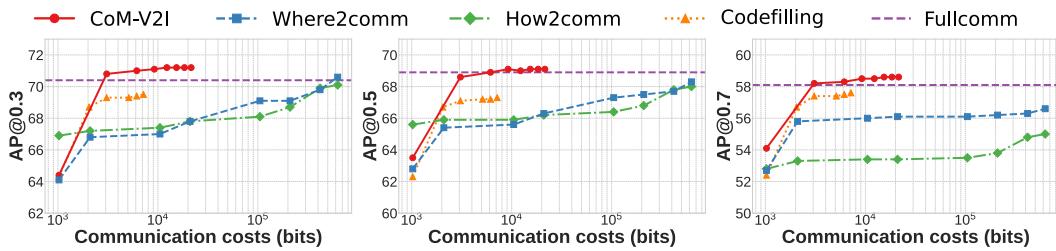


Figure 4: AP and mIoU for the vehicle class versus communication costs. The communication costs for CoM-V2I and Codefilling is calculated by $H_{[v]} \times W_{[v]} \times \sum_{n=1}^N \lceil \log_2(|D_{[n]}|) \rceil$, where $|\cdot|$ denotes the size of $D_{[n]}$. For Where2comm and How2comm, costs is determined by multiplying their respective compression ratios by the size of the original BEV feature map. To make the scale smooth, we use a cost of 1024 to represent no feature maps are transmitted.

4.3 QUALITATIVE RESULTS

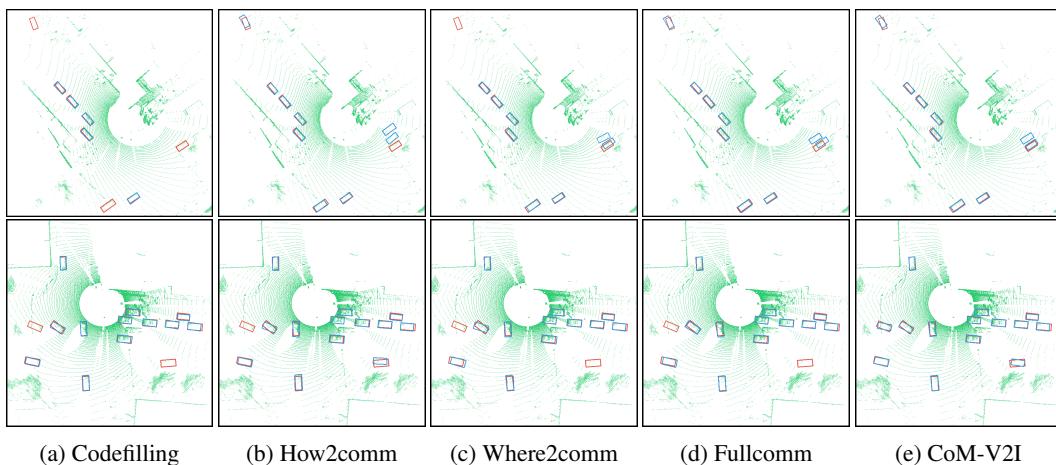


Figure 5: Qualitative comparison of two scenarios from the V2X-Real dataset, where a different infrastructure is designated as the ego agent in each case. Red bounding boxes represent the ground truth, while blue bounding boxes represent the predictions.

Fig. 5 presents a qualitative comparison of several communication-efficient baselines. The results highlight two common failure modes in existing methods. Some methods, such as Codefilling, produce accurate bounding boxes for detected objects but fail to identify all objects. In contrast, other methods, like How2comm, detect almost all objects, but their predicted bounding boxes suffer from localization inaccuracies. Our CoM-V2I method successfully bounds all objects while also predicting their relevant attributes with high precision. Additional qualitative results, including map segmentation, are shown in Appendix A.3.

4.4 ABLATION RESULTS

Table 2: Performance comparison with and without codebook pruning. The model without pruning were trained from scratch with the defined codebook size, while with pruning started with three large, pre-trained codebooks of 128 code vectors that was subsequently pruned to the target size.

Codebook pruning	Codebook size	Detection			Segmentation		
		AP@0.3	AP@0.5	AP@0.7	Vehicle	Road	Lane
✗	2, 2, 2	67.34	66.16	56.62	60.98	90.92	68.95
✓	2, 2, 2	70.82 ▲ 3.48	68.58 ▲ 2.42	58.16 ▲ 1.54	63.52 ▲ 2.54	91.74 ▲ 0.82	75.69 ▲ 6.74
✗	4, 4, 4	69.91	67.68	57.50	61.87	91.56	73.32
✓	4, 4, 4	71.03 ▲ 1.12	68.87 ▲ 1.19	58.34 ▲ 0.84	63.52 ▲ 1.65	91.74 ▲ 0.18	75.69 ▲ 2.37

Pruning efficiency. Tab. 2 presents a performance comparison between codebooks created via pruning versus those trained from scratch. Based on our finding in Fig. 4 that pruned codebooks achieve competitive performance at small sizes, we focus this analysis on codebooks with just 4 and 2 code vectors. Pruning codebooks are derived by pruning a large, pre-trained codebook (originally with 128 code vectors), while unpruned versions are trained from scratch with the smaller target size. The results demonstrate that the pruning method outperforms the training from scratch method with achieving AP improvement of approximately 0.01 to 0.02 at each IoU threshold.

Vehicles disconnection. In the inference process, the transmitted BEV feature maps from vehicles are zeroed out in proportional samples according to the ‘vehicles disconnected ratio’. Tab. 3 shows the AP results at various vehicle disconnection ratios. The performance degrades slightly with the disconnected ratio increases. For instance, as the disconnection ratio increases from 0.1 to 0.9, the AP drops by only 5% at the stricter 0.5 and 0.7 IoU thresholds. This trend highlights the robustness of CoM-V2I to communication failures from individual vehicles.

BEV feature channels and resolutions. We evaluate the performance of CoM-V2I with different feature channels and resolutions, as shown in Tab. 4. The results indicate that AP at each IoU threshold decreases as the number of channel is reduced, which demonstrates that the representational capacity of residual quantization method diminishes with fewer channels. While the performance drop is slight at the 0.3 IoU threshold, it becomes more significant (approximately 0.1) at the stricter 0.7 threshold. Regarding feature resolution, the model maintains competitive performance even as the resolution is reduced, with AP dropping by only 0.01 to 0.02 at the 0.3 and 0.5 IoU thresholds. This trend demonstrates that our multiscale fusion method can effectively handle BEV feature maps of various resolutions.

Table 4: Ablation study on BEV feature channels and resolutions. For the channel evaluation, the camera-based and LiDAR-based BEV feature map resolutions are fixed at 32×32 and 128×128 , respectively. For the resolution evaluation, the number of channels is fixed at 128, while the resolution of the camera-based BEV feature maps is varied.

Channels	AP@0.3	AP@0.5	AP@0.7	Resolutions	AP@0.3	AP@0.5	AP@0.7
32	67.31	63.87	48.20	8×8	69.41	67.29	58.15
64	68.43	64.81	52.64	16×16	69.79	67.91	58.25
96	69.91	67.67	56.13	32×32	71.25	69.14	58.66
128	71.25	69.14	58.66	64×64	70.08	67.23	57.54

5 CONCLUSION AND DISCUSSION

In this paper, we introduced CoM-V2I, an economical and communication-efficient V2I cooperative perception framework. To enhance economic viability, we proposed a multimodal cooperation paradigm where the infrastructure is equipped with a high-cost LiDAR, while vehicles use more affordable cameras. We introduced a codebook pruning method for residual vector quantization to significantly decrease communication costs. Furthermore, to handle the low-resolution features transmitted by vehicles for bandwidth conservation, we presented a multiscale fusion method capable of fusing multi-modal BEV feature maps at various resolutions. Experiments on both the real-world V2X-Real and simulated V2X-Sim datasets demonstrate that CoM-V2I outperforms previous state-of-the-art methods on both detection and segmentation tasks.

Limitation and future work. The results from Tab. 3 reveal that the performance of CoM-V2I not drops dramatically when BEV feature maps from vehicles transmitted fail. However, a key limitation is its reliance on the central infrastructure due to performance drops significantly if the infrastructure is disconnected during inference, as illustrated in Appendix A.2. In the future, we plan to address this by recovering lost feature maps from the infrastructure for enhancing the robustness.

486 REFERENCES
487

488 Eduardo Arnold, Mehrdad Dianati, Robert de Temple, and Saber Fallah. Cooperative perception
489 for 3d object detection in driving scenarios using infrastructure sensors. *IEEE Transactions on*
490 *Intelligent Transportation Systems*, 23(3):1852–1864, 2022.

491 Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun Chen, Hongbo Fu, and Chiew-Lan Tai.
492 Transfusion: Robust lidar-camera fusion for 3d object detection with transformers. In *Proceedings*
493 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1090–
494 1099, June 2022.

495 Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
496 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
497 autonomous driving. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
498 *Recognition (CVPR)*, June 2020.

499 Hongxiang Cai, Zeyuan Zhang, Zhenyu Zhou, Ziyin Li, Wenbo Ding, and Jiuhsua Zhao. Bev-
500 fusion4d: Learning lidar-camera fusion under bird’s-eye-view via cross-modality guidance and
501 temporal aggregation. *arXiv preprint arXiv:2303.17099*, 2023.

502

503 Qi Chen, Xu Ma, Sihai Tang, Jingda Guo, Qing Yang, and Song Fu. F-cooper: feature based
504 cooperative perception for autonomous vehicle edge computing system using 3d point clouds. In
505 *Proceedings of the 4th ACM/IEEE Symposium on Edge Computing*, SEC ’19, pp. 88–100, New
506 York, NY, USA, 2019a. ISBN 9781450367332.

507 Qi Chen, Sihai Tang, Qing Yang, and Song Fu. Cooper: Cooperative perception for connected
508 autonomous vehicles based on 3d point clouds. In *2019 IEEE 39th International Conference on*
509 *Distributed Computing Systems (ICDCS)*, pp. 514–524, 2019b.

510 Yushan Han, Hui Zhang, Huifang Li, Yi Jin, Congyan Lang, and Yidong Li. Collaborative percep-
511 tion in autonomous driving: Methods, datasets, and challenges. *IEEE Intelligent Transportation*
512 *Systems Magazine*, 15(6):131–151, 2023.

513

514 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
515 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
516 770–778, 2016.

517 Yue Hu, Shaoheng Fang, Zixing Lei, Yiqi Zhong, and Siheng Chen. Where2comm:
518 Communication-efficient collaborative perception via spatial confidence maps. *Advances in neu-*
519 *ral information processing systems*, 35:4874–4886, 2022.

520 Yue Hu, Juntong Peng, Sifei Liu, Junhao Ge, Si Liu, and Siheng Chen. Communication-efficient
521 collaborative perception via information filling with codebook. In *Proceedings of the IEEE/CVF*
522 *Conference on Computer Vision and Pattern Recognition*, pp. 15481–15490, 2024.

523

524 B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
525 mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. *IEEE*
526 *transactions on intelligent transportation systems*, 23(6):4909–4926, 2021.

527 Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Point-
528 pillars: Fast encoders for object detection from point clouds. In *Proceedings of the IEEE/CVF*
529 *conference on computer vision and pattern recognition*, pp. 12697–12705, 2019.

530 Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
531 generation using residual quantization. In *Proceedings of the IEEE/CVF Conference on Computer*
532 *Vision and Pattern Recognition*, pp. 11523–11532, 2022.

533

534 Zixing Lei, Shunli Ren, Yue Hu, Wenjun Zhang, and Siheng Chen. Latency-aware collaborative
535 perception. In *European Conference on Computer Vision*, pp. 316–332. Springer, 2022.

536 Hongyang Li, Chonghao Sima, Jifeng Dai, Wenhui Wang, Lewei Lu, Huijie Wang, Jia Zeng, Zhiqi
537 Li, Jiazhi Yang, Hanming Deng, Hao Tian, Enze Xie, Jiangwei Xie, Li Chen, Tianyu Li, Yang Li,
538 Yulu Gao, Xiaosong Jia, Si Liu, Jianping Shi, Dahua Lin, and Yu Qiao. Delving into the devils
539 of bird’s-eye-view perception: A review, evaluation and recipe. *IEEE Transactions on Pattern*
Analysis and Machine Intelligence, 46(4):2151–2170, 2024.

540 Yiming Li, Dekun Ma, Ziyan An, Zixun Wang, Yiqi Zhong, Siheng Chen, and Chen Feng. V2x-
 541 sim: Multi-agent collaborative perception dataset and benchmark for autonomous driving. *IEEE*
 542 *Robotics and Automation Letters*, 7(4):10914–10921, 2022a.

543 Yingwei Li, Adams Wei Yu, Tianjian Meng, Ben Caine, Jiquan Ngiam, Daiyi Peng, Junyang Shen,
 544 Yifeng Lu, Denny Zhou, Quoc V. Le, Alan Yuille, and Mingxing Tan. Deepfusion: Lidar-camera
 545 deep fusion for multi-modal 3d object detection. In *Proceedings of the IEEE/CVF Conference on*
 546 *Computer Vision and Pattern Recognition (CVPR)*, pp. 17182–17191, June 2022b.

547 Zhiqi Li, Wenhui Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Qiao Yu, and Jifeng
 548 Dai. Bevformer: Learning bird’s-eye-view representation from lidar-camera via spatiotemporal
 549 transformers. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 47(3):2020–
 550 2036, 2025.

551 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
 552 object detection. In *Proceedings of the IEEE international conference on computer vision*, pp.
 553 2980–2988, 2017.

554 Si Liu, Chen Gao, Yuan Chen, Xingyu Peng, Xianghao Kong, Kun Wang, Runsheng Xu, Wentao
 555 Jiang, Hao Xiang, Jiaqi Ma, et al. Towards vehicle-to-everything autonomous driving: A survey
 556 on collaborative perception. *arXiv preprint arXiv:2308.16714*, 2023a.

557 Yen-Cheng Liu, Junjiao Tian, Nathaniel Glaser, and Zsolt Kira. When2com: Multi-agent perception
 558 via communication graph grouping. In *Proceedings of the IEEE/CVF Conference on computer*
 559 *vision and pattern recognition*, pp. 4106–4115, 2020.

560 Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, Daniela L Rus, and Song
 561 Han. Bevfusion: Multi-task multi-sensor fusion with unified bird’s-eye view representation. In
 562 *2023 IEEE international conference on robotics and automation (ICRA)*, pp. 2774–2781. IEEE,
 563 2023b.

564 Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding images from arbitrary camera rigs
 565 by implicitly unprojecting to 3d. In *Computer Vision–ECCV 2020: 16th European Conference,*
 566 *Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16*, pp. 194–210. Springer, 2020.

567 Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-modal fusion transformer for end-to-
 568 end autonomous driving. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 569 *Pattern Recognition (CVPR)*, pp. 7077–7087, June 2021.

570 Zaydoun Yahya Rawashdeh and Zheng Wang. Collaborative automated driving: A machine
 571 learning-based method to enhance the accuracy of shared information. In *2018 21st International*
 572 *Conference on Intelligent Transportation Systems (ITSC)*, pp. 3961–3966, 2018.

573 Lennart Reiher, Bastian Lampe, and Lutz Eckstein. A sim2real deep learning approach for the trans-
 574 formation of images from multiple vehicle-mounted cameras to a semantically segmented image
 575 in bird’s eye view. In *2020 IEEE 23rd International Conference on Intelligent Transportation*
 576 *Systems (ITSC)*, pp. 1–7, 2020a.

577 Lennart Reiher, Bastian Lampe, and Lutz Eckstein. A sim2real deep learning approach for the trans-
 578 formation of images from multiple vehicle-mounted cameras to a semantically segmented image
 579 in bird’s eye view. In *2020 IEEE 23rd International Conference on Intelligent Transportation*
 580 *Systems (ITSC)*, pp. 1–7, 2020b.

581 Rui Song, Runsheng Xu, Andreas Festag, Jiaqi Ma, and Alois Knoll. Fedbevt: Federated learning
 582 bird’s eye view perception transformer in road traffic systems. *IEEE Transactions on Intelligent*
 583 *Vehicles*, 9(1):958–969, 2024.

584 Tao Tang, Chaokun Zhang, Gong Chen, and Jinlong E. Rocoooper: Robust cooperative perception
 585 under vehicle-to-vehicle communication impairments. In *IEEE INFOCOM 2025 - IEEE Confer-
 586 ence on Computer Communications*, pp. 1–10, 2025.

587 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*
 588 *neural information processing systems*, 30, 2017.

594 Tsun-Hsuan Wang, Sivabalan Manivasagam, Ming Liang, Bin Yang, Wenyuan Zeng, and Raquel
 595 Urtasun. V2vnet: Vehicle-to-vehicle communication for joint perception and prediction. In
 596 *Computer vision–ECCV 2020: 16th European conference, Glasgow, UK, August 23–28, 2020, proceedings, part II 16*, pp. 605–621. Springer, 2020.
 597

598 Hanwei Wu and Markus Flierl. Vector quantization-based regularization for autoencoders. *Proceed-
 599 ings of the AAAI Conference on Artificial Intelligence*, 34(04):6380–6387, Apr. 2020.
 600

601 Ze-bin Wu and Jun-qing Yu. Vector quantization: a review. *Frontiers of Information Technology &
 602 Electronic Engineering*, 20(4):507–524, 2019.
 603

604 Hao Xiang, Runsheng Xu, and Jiaqi Ma. Hm-vit: Hetero-modal vehicle-to-vehicle cooperative
 605 perception with vision transformer. In *Proceedings of the IEEE/CVF international conference on
 606 computer vision*, pp. 284–295, 2023.

607 Hao Xiang, Zhaoliang Zheng, Xin Xia, Runsheng Xu, Letian Gao, Zewei Zhou, Xu Han, Xinkai
 608 Ji, Mingxi Li, Zonglin Meng, et al. V2x-real: a largs-scale dataset for vehicle-to-everything
 609 cooperative perception. In *European Conference on Computer Vision*, pp. 455–470. Springer,
 610 2024.

611 Runsheng Xu, Zhengzhong Tu, Hao Xiang, Wei Shao, Bolei Zhou, and Jiaqi Ma. Cobevt:
 612 Cooperative bird’s eye view semantic segmentation with sparse transformers. *arXiv preprint
 613 arXiv:2207.02202*, 2022a.
 614

615 Runsheng Xu, Hao Xiang, Xin Xia, Xu Han, Jinlong Li, and Jiaqi Ma. Opv2v: An open bench-
 616 mark dataset and fusion pipeline for perception with vehicle-to-vehicle communication. In *2022
 617 International Conference on Robotics and Automation (ICRA)*, pp. 2583–2589, 2022b.

618 Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time 3d object detection from point clouds.
 619 In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pp. 7652–
 620 7660, 2018.
 621

622 Dingkang Yang, Kun Yang, Yuzheng Wang, Jing Liu, Zhi Xu, Rongbin Yin, Peng Zhai, and Lihua
 623 Zhang. How2comm: Communication-efficient and collaboration-pragmatic multi-agent percep-
 624 tion. *Advances in Neural Information Processing Systems*, 36:25151–25164, 2023a.

625 Kun Yang, Dingkang Yang, Jingyu Zhang, Hanqi Wang, Peng Sun, and Liang Song. What2comm:
 626 Towards communication-efficient collaborative perception via feature decoupling. In *Proceedings
 627 of the 31st ACM international conference on multimedia*, pp. 7686–7695, 2023b.
 628

629 Hongbo Yin, Xiaoge Huang, Chengchao Liang, Bin Cao, and Mu Zhou. Secure and efficient data
 630 sharing for internet of vehicles: A hierarchical blockchain enabled asynchronous federated learn-
 631 ing approach. *IEEE Transactions on Vehicular Technology*, pp. 1–16, 2025.

632 Junhui Zhao, Jingyue Shi, and Li Zhuo. Bev perception for autonomous driving: State of the art and
 633 future perspectives. *Expert Systems with Applications*, 258:125103, 2024. ISSN 0957-4174.
 634

635 Brady Zhou and Philipp Krähenbühl. Cross-view transformers for real-time map-view semantic
 636 segmentation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
 637 nition*, pp. 13760–13769, 2022.

638 Xiaobo Zhou, Chuanan Wang, Qi Xie, and Tie Qiu. V2i-coop: Accurate object detection for con-
 639 nected automated vehicles at accident black spots with v2i cross-modality cooperation. *IEEE
 640 Transactions on Mobile Computing*, 24(3):2043–2055, 2025.
 641

642

643 **A APPENDIX**

644 **LLM USAGE DECLARATION**

645 We acknowledge the use of a Large Language Model (LLM) for assistance with grammar, phrasing,
 646 and LaTeX formatting.

648 A.1 IMPLEMENTATION DETAILS
649650 A.1.1 DATASETS
651652 **V2X-Real dataset** (Xiang et al., 2024) comprises 5772 training, 1253 test, and 717 validation
653 frames. These frames were collected from 63 diverse scenarios involving a total of two infra-
654 structures and two vehicles, with each frame containing data from both infrastructures and at least
655 one vehicle. Every agent is equipped with a LiDAR sensor, providing a point cloud, and either 2 or
656 4 cameras that collectively offer a 360° horizontal field of view.657 **V2X-Sim dataset** (Li et al., 2022a) is based on the nuScenes format and contains 100 driving scenes
658 with 100 frames each (Caesar et al., 2020). Every frame includes one infrastructure and up to five
659 vehicles. Each agent is equipped with a LiDAR sensor and multiple cameras deployed surrounding
660 the agent. To facilitate training with the OpenCOOD toolkit (Xu et al., 2022b), which natively
661 supports the V2X-Real format, we reorganized the V2X-Sim dataset’s structure to match that of
662 V2X-Real. In addition, we divided 80 scenes for training and 20 scenes for validation and inference.663
664 A.1.2 BASELINES
665666 We organize compared baselines into three groups to evaluate the different aspects of our framework.
667668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
• **Modality in framework:** i) Camera-only. Vechiles represent BEV feature maps based on images from 4 multi-view cameras, while the infrastructure is equipped with 2 multi-view cameras (Xu et al., 2022a). ii) LiDAR-only. All agents use point cloud data from the LiDAR to CP with a consistent range of $[-51.2, -51.2, -3, 51.2, 51.2, 3]$ meters (Wang et al., 2020). iii) LiDAR2cam. The infrastructure only adopts multi-view cameras for CP, while vehicles use their LiDAR sensors. For a fair comparison, our proposed communication and fusion methods are applied to all modality baselines.
• **Communication efficiency:** i) Where2comm. Camera-based BEV feature maps are compressed into spatial confidence maps by filtering out non-critical feature vectors (Hu et al., 2022). ii) How2comm. A mutual information-aware communication mechanism and a spatial-channel filtering method are used to compress BEV feature maps (Yang et al., 2023a). iii) Fullcomm. This baseline does not employ any communication efficiency mechanism. iv) Codefilling. A single codebook is trained to represent BEV feature maps and transmits a compact index matrix (Hu et al., 2024). The fusion method and modality for these baselines are aligned with the CoM-V2I.
• **Fusion strategy:** i) HM-ViT. The camera-based BEV feature map is upsampled to a $128 \times 128 \times 128$ resolution to align with the LiDAR-based feature map for same scale fusion (Xiang et al., 2023). ii) V2I-Coop. A cross-attention mechanism is used for feature fusion, followed by local and global self-attention modules (Zhou et al., 2025). iii) CoarseFusion. The LiDAR-based BEV feature map is downsampled to a $32 \times 32 \times 128$ resolution to facilitate coarse-grained feature fusion between modalities. iv) BEVFusion. BEV feature maps are first resized to a uniform height and width, then concatenated along the channel dimension and passed through convolutional layers for fusion (Liu et al., 2023b). The proposed communication method are performed for each baseline.

A.1.3 TRANING STRATEGY

Following previous works (Xu et al., 2022a; Xiang et al., 2023), all models are trained using the AdamW optimizer with a cosine annealing scheduler and a learning rate of 2×10^{-4} . For the object detection task, we train models for 100 epochs with a batch size of 2. Within the classification loss, we apply weights of 1.0 for negative samples and 25.0 for positive samples. The total loss components \mathcal{L}_{cls} , \mathcal{L}_{cmt} , and \mathcal{L}_{reg} are balanced with weights α_1 , α_2 , and α_3 set to 5.0, 2.0 and 1.0, respectively. For the map segmentation task, models are trained for 80 epochs with a batch size of 1. We employ a focal loss (Lin et al., 2017) for the classification loss \mathcal{L}_{cls} to address class imbalance. The balancing weights α_1 and α_2 set to 2.0 and 5.0, respectively.

702 A.2 ADDITIONAL ABLATION STUDIES
703704 **Reconstruction errors for BEV feature maps.** Tab. 5 represents the AP and mIoU is only slightly
705 reduced even with a higher mAE in feature reconstruction, which demonstrates that many vectors in
706 the original features are redundant. The codebook pruning method effectively removes less utilized
707 codes vectors without a significant loss in performance.708 Table 5: Performance of CoM-V2I in various mAE and communication costs. The mAE is used for
709 evaluating the difference between the original and quantized camera-based BEV feature map.
710

712 Costs (bits)	713 Object detection				714 Map segmentation			
	715 mAE	716 AP@0.3	717 AP@0.5	718 AP@0.7	719 mAE	720 Vehicle	Road	Lane
21504	1.20×10^{-3}	71.25	69.14	58.66	2.30×10^{-6}	63.56	91.77	75.56
15360	1.37×10^{-3}	71.23	69.14	58.63	3.80×10^{-6}	63.54	91.75	75.69
9216	2.20×10^{-3}	71.16	69.06	58.55	2.06×10^{-5}	63.52	91.74	75.69
6144	3.31×10^{-3}	71.03	68.87	58.34	2.42×10^{-5}	63.52	91.74	75.69
3072	6.93×10^{-3}	70.82	68.58	58.16	9.50×10^{-5}	63.52	91.74	75.69
0	-	64.49	63.51	54.10	-	59.51	90.36	74.41

721
722 **Component analysis.** The results in Tab. 6 demonstrate that both our codebook pruning
723 and multiscale fusion methods improve
724 model performance. Specifically, compared
725 to a baseline with a single codebook, incor-
726 porating RVQ improves the AP by 8%, 4%,
727 and 2% at IoU thresholds of 0.3, 0.5, and
728 0.7, respectively. Furthermore, applying our
729 codebook pruning strategy maintains per-
730 formance comparable to that of the original full
731 codebook with lower communication costs. In the end, the multiscale fusion method achieves 14%
732 improvement in AP at IoU 0.7.
733734 **Infrastructure disconnection.** In contrast
735 to the robustness of vehicle disconnection,
736 COM-V2I is more sensitive to losing the
737 infrastructure’s BEV feature maps, which are
738 zeroed out based on the ‘infrastructure dis-
739 connection ratio’. As shown in Tab. 7, the
740 AP drops by approximately 12% at each IoU
741 threshold for every 0.2 increase in the
742 infrastructure disconnection ratio. Despite this,
743 even when the disconnection ratio still sur-
744 passes that of the camera-only method, as
745 shown on Tab. 1. This demonstrates that LiDAR and camera fusion method offers an effective
746 trade-off between system cost and reliability.

747 A.3 VISUALIZATION

748 **Object detection.** Fig. 6 shows the visual comparison of object detection between CoM-V2I and
749 other baselines on V2X-Real dataset. CoM-V2I outperforms others on precisely bounding all objects
750 and predicting relevant attributes.751 **Map segmentation.** Qualitative results for the map segmentation task on the V2X-Sim dataset are
752 shown in Fig. 7. The visualizations demonstrate that CoM-V2I accurately segments the vehicle
753 class across various driving scenes.
754755 Table 6: Component ablation. ‘‘Prune’’ and ‘‘MSF’’
refer to codebook pruning and multiscale fusion.

MSF	Prune	AP@0.3	AP@0.5	AP@0.7
		70.45	63.42	41.79
✓		71.25	69.14	58.66
	✓	69.78	62.94	41.40
✓	✓	70.82	68.58	58.16

Table 7: AP under various infrastructure discon-
nection ratios.

Ratio	AP@0.3	AP@0.5	AP@0.7
0.1	64.68 <small>▼ 6.52</small>	62.55 <small>▼ 6.55</small>	54.33 <small>▼ 4.27</small>
0.3	52.01 <small>▼ 19.19</small>	50.32 <small>▼ 18.78</small>	44.59 <small>▼ 14.01</small>
0.5	38.45 <small>▼ 32.75</small>	36.87 <small>▼ 32.32</small>	33.31 <small>▼ 25.29</small>
0.7	25.52 <small>▼ 45.68</small>	24.04 <small>▼ 45.06</small>	22.26 <small>▼ 36.34</small>
0.9	13.09 <small>▼ 58.11</small>	11.81 <small>▼ 57.29</small>	9.74 <small>▼ 48.86</small>

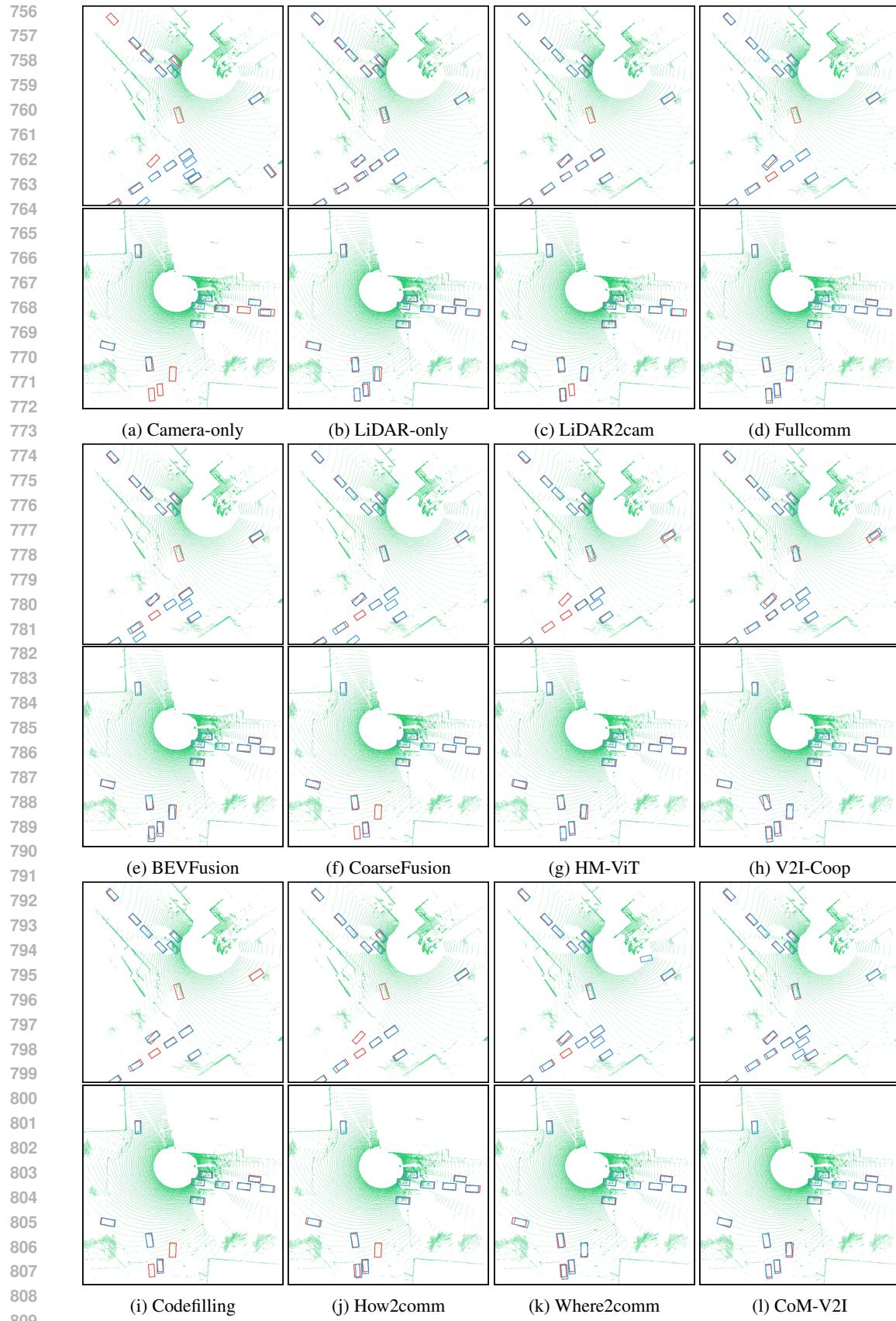


Figure 6: Visual results of all baselines in object detection. The **Red** and **blue** bounding boxes represent the **ground truth** and **prediction**, respectively.

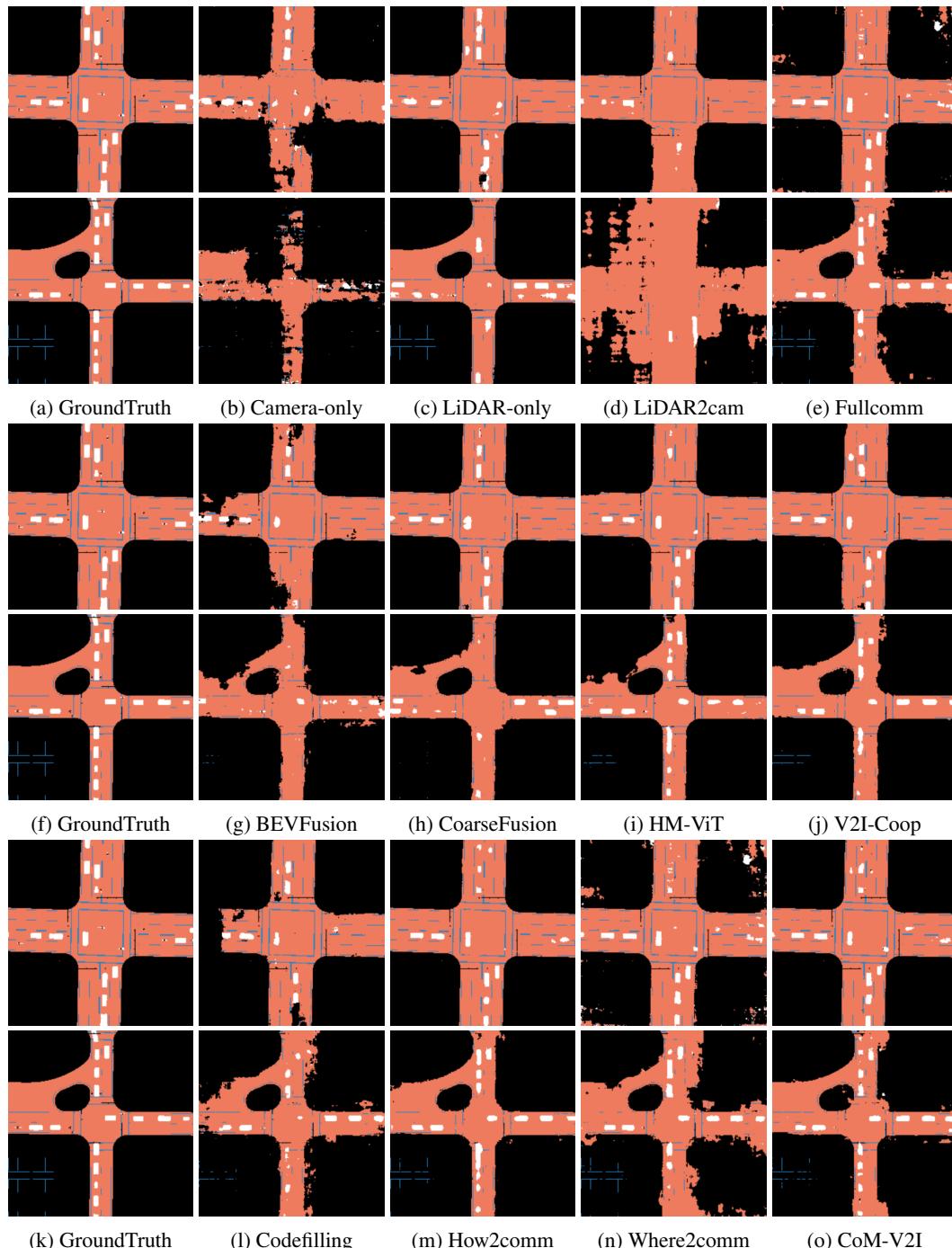


Figure 7: Qualitative results for map segmentation. The white, orange and blue color map represent vehicle, road and lane classes, respectively.