
Instant3dit: Multiview Inpainting for Fast Editing of 3D Objects

Amir Barda
Tel Aviv University, Israel
amirbarda@mail.tau.ac.il

Matheus Gadelha
Adobe Research, USA
gadelha@adobe.com

Vladimir G. Kim
Adobe Research, USA

vokim@adobe.com

Noam Aigerman
Université de Montréal, Canada
noam.aigerman@umontreal.ca

Amit H. Bermano
Tel Aviv University, Israel
amberman@mail.tau.ac.il

Thibault Groueix
Adobe Research, USA
groueix@adobe.com

Input

mesh + mask

25 sec.

“A bear holding a honey pot”

Gaussian Splat

“Bear with
wings”

Original

 Mesh

Input

mesh + mask

“An elven
warrior”

Original

 Mesh

25 sec.

“Man wearing a medieval helmet”

Mesh
Adaptive

Remeshing NeRF Mesh
Adaptive

Remeshing

Figure 1. Our method takes as input a 3D object along with a 3D mask (first column) and a text prompt, and uses our multiview inpainting
diffusion model to consistently paint the mask in four rendered views of the object. Off-the-shelf reconstructors can be used on the
multiview output to give an NeRF, a Gaussian Splat (second column), or a mesh (third column) that can be used along with adaptive
remeshing to ensure the unmasked region is exactly preserved e.g. topology, uvs, (fourth and fifth column). This feedforward approach is
orders of magnitude faster than previous works in generative 3D editing, taking just ≈ 3 seconds per multiview edit, then 0.7 seconds to
reconstruct a GS or a NeRF, 3 seconds for a mesh, and ≈ 20 seconds for optional mesh post-processing.

Abstract

We propose a generative technique to edit 3D shapes,
represented as meshes, NeRFs, or Gaussian Splats, in ≈ 3
seconds, without the need for running an SDS type of op-
timization. Our key insight is to cast 3D editing as a mul-
tiview image inpainting problem, as this representation is
generic and can be mapped back to any 3D representation
using the bank of available Large Reconstruction Models.
We explore different fine-tuning strategies to obtain both
multiview generation and inpainting capabilities within the
same diffusion model. In particular, the design of the in-
painting mask is an important factor of training an in-
painting model, and we propose several masking strate-
gies to mimic the types of edits a user would perform on
a 3D shape. Our approach takes 3D generative editing
from hours to seconds and produces higher-quality results
compared to previous works. project page: https://
amirbarda.github.io/Instant3dit.github.
io/

1. Introduction

Recent years have seen an explosion in AI-guided 3D gen-
erative techniques for creation and editing of 3D content, al-
lowing the user to control the generation process with often
as little as a single text prompt [4, 9, 10, 40, 48, 53]. While
text prompts provide an easy interface for novice users, they
lack fine control over the generation, such as generating
a specific object in a specific location over a pre-existing
3D model, e.g., make a bear hold a previously non-existent
honey pot (see Figure 1).

Thus, several recent works have focused on such local-
ized generation of 3D objects, namely 3D inpainting [6, 40,
48], i.e., filling-in masked-out content in a 3D object, con-
ditioned on a textual description of the desired fill-in, simi-
larly to 2D inpainting [8, 48]. Figure 1 shows several exam-
ples of such inpaintings produced by our method, where the
mask (made up of coarse 3D primitives) is highlighted in
purple color, the text prompt describing the target inpaint-
ing is written below, and the resulting inpainted 3D recon-

1

ar
X

iv
:2

41
2.

00
51

8v
1

 [
cs

.C
V

]
 3

0
N

ov
 2

02
4

https://amirbarda.github.io/Instant3dit.github.io/
https://amirbarda.github.io/Instant3dit.github.io/
https://amirbarda.github.io/Instant3dit.github.io/

structions are shown next to it.
Current 3D inpainting methods cannot be integrated into

production pipelines, as they suffer from two fundamental
issues: 1) long runtimes, and 2) low quality. We observe
these two issues can be explained by previous works’ re-
liance on optimization of the 3D model by distilling knowl-
edge from a generative model for 2D images via some vari-
ant of Score Distillation Sampling (SDS) [35]. Such an op-
timization process is extremely slow, as it relies on running
an image diffusion model over multiple renderings of the
3D object and back-propagating gradients, thus explaining
the first issue of slow runtimes. However, we argue that
it also lies at the root of the second issue, of degradation
in quality: as we show through extensive comparisons (see
Figure 6), this class of approaches significantly harms the
quality of the inpainting, as SDS-like optimization produces
inaccurate and fuzzy results. We attribute it to the fact ob-
served in the original DreamFision paper [35], which stated
that “2D image samples produced using SDS tend to lack
diversity” and “3D results exhibit few differences across
random seeds,” explaining this behavior with the tendency
to seek specific distribution modes regardless of the seed.
Thus, it stands to reason it will struggle to inpaint a region
of an existing object that is not one of those seeked modes.

In this paper, we propose an alternative approach to
3D inpainting that significantly improves the quality of the
inpainted results and the runtime of the process. Draw-
ing inspiration from previous works for fast 3D genera-
tion [24, 29, 50, 56], we eliminate both the above issues,
by turning the problem on its head: instead of directly op-
timizing a 3D object using, e.g., SDS, we instead train an
image generator to create 2D images of the inpainted 3D
object from canonical viewpoints, and then reconstruct the
newly-inpainted 3D object in a post-process, via either a
feed-forward prediction [24, 52, 56], or lightweight opti-
mization [29, 50]. By doing so we show we avoid both the
slow runtimes as well as issues with masking that arise from
approaches such as SDS when applied to 3D inpainting.

Adapting this multiview generation technique to the in-
painting problem leads to a core challenge: how to ensure
that the inpainting of masked region in the different 2D
generated image is 3D-consistent from different viewpoints
(otherwise, it does not represent a coherent 3D object that
can be reconstructed), while at the same time adhering to
the 3D mask painted over the original 3D object. Thus, fol-
lowing our observation above, our main technical contribu-
tion is designing a scheme to obtain a diffusion model that
provides multiview-consistent inpainting.

In order to achieve a multiview-consistent inpainting dif-
fuser, we devise a custom training strategy, along with a
novel dataset of 3D masks for 3D inpainting. Namely, we
produce multiview consistent masks, avoiding problems re-
sulting from occlusion (that our experiments validate is crit-

ical for performance). We design the dataset to support
three designated editing modes with different levels of gran-
ularity (see Section 3.2)

Finally, we craft a custom training strategy to leverage
the priors learned by pretrained text-conditioned image gen-
erators. We propose to start from a pretrained image in-
painter, and use our dataset and training regime to make it
multiview consistent. We provide extensive empirical evi-
dence to the specific design choices of our approach, e.g.,
compare our strategy with the opposite route – fine-tune a
multiview diffuser to perform inpainting.

We show through extensive experiments that our ap-
proach enables performing elaborate 3D editing using sim-
ple masking of a 3D region, rendering the object and the
mask from multiple views, running the inpainting model,
and using fast multiview reconstruction techniques to obtain
the edited 3D object (see Figure 1). Our approach is thus
agnostic to the underlying 3D representation, and we show
it supports meshes [52], Gaussian Splats [56] and Radiance
Fields [52]. Our experiments validate the speed of our mul-
tiview image-based representation and the higher quality of
the resulting inpainting compared to previous techniques.
To summarize, our contributions are:
• The first high-quality, fast method for 3D inpainting, en-

abling fast and localized generation on NeRFs, Gaussian
Splats and meshes.

• A 3D masking approach along with a novel training
dataset of masks for multiview inpainting, with three
types of masks corresponding to different edit modes.

• A finetuning strategy to efficiently leverage pretrained
representations, along with an empirical study of alter-
native training strategies for multiview inpainting.

2. Related Work

We position our work against other generative 3D editing
approaches and separately discuss multiview 3D generation
and inpainting. Closest to our approach are NeRFiller [48]
and the concurrent work MVInpainter [6].

3D Generative Editing. As we aim for a general tool, we
focus the discussion on category-agnostic approaches. The
literature can be organized by the core technique used to dis-
till the 2D generative prior - CLIP optimization [15, 21, 32],
Score-Distillation Sampling (SDS) [4, 8–10, 22, 25, 31, 33,
40, 58], Iterative Dataset Update (IDU) [16, 48] - or by the
type of representation targeted - meshes [4, 15, 21, 22, 32],
NeRFs [8, 16, 31, 33, 40, 48], or SDF [9, 10, 25, 58]. All
generative editing approaches take advantage of Text-to-
Image (T2I) models, whose prowess stems from the bil-
lions of text-image pairs available as training data. This
abundance of data does not extend to the 3d domain, with
the largest public datasets, Objaverse and Objaverse-XL
[11, 12], containing millions of meshes, with the vast ma-

2

Multiview

Consistent

Inpainting

3D asset +

3D mask

3 seconds

“An astronaut riding a rocking horse” NeRF/Mesh/GS

Reconstructor

Figure 2. Overview. Given a NeRF, a Gaussian Splat, or a mesh, the user draws a 3D mask to mark a region to be filled and provides a text
prompt to guide the generation. Instant3dit renders four canonical views of the masked object and uses our multiview inpainting network
to fill the mask. We use off-the-shelf 3D reconstructors to convert the multiview representation into a NeRF, a Gaussian Splat, or a mesh.

jority being very low-quality data.
The Score Distilation Sampling (SDS) loss, first defined

in [35], use T2I models as guidance for 3d generation, by
iteratively denoising renderings. SDS has multiple down-
sides : the denoised images lack consistency at different
iterations, and the optimization is therefore very noisy, re-
quiring careful parameter tuning to converge. Second, the
optimization typically takes around one hour to converge,
as it requires a lot of steps [4]. Combining SDS with Gaus-
sian Splatting partially alleviate this problem by making the
rendering operation in each step much faster, as shown in
GaussianDreamer [53], but is still not interactive (about 15
minutes per generation). Lastly, SDS produces saturated,
low-quality textures due to the high classifier-free guidance
used, even though recent variations alleviate this issue [30].

Iterative Dataset Update, first introduced in [16], is a
variant of SDS, taking multiple denoising steps to produce
a clean image, used for several optimization steps in a row.
NeRFiller [48] extends this approach for editing of NeRFs.

Compared to prior work, our approach does
not require an optimization to leverage the gen-
erative priorhttps://git.corp.adobe.com/pages/adobe-
research/mvgenfill-client/. We propose to perform the edit
using a multiview image grid to represent the 3D asset, with
a single diffusion inference. As a result, editing is orders
of magnitude faster (i.e. from hours to seconds) and more
stable (i.e. our approach always robustly produces a result
and does not require careful tuning of hyperparameters).
Lastly, several off-the-shelf LRM transformers [18] can
instantly convert our inpainted image grid to meshes [49],
NeRFs [24], or Gaussian Splats [56], making our editing
technique representation agnostic.

Multiview generative 3D. To encourage multiview 3D con-
sistency, several works have explored modifying the atten-
tion layers with cross-attention blocks to facilitate the ex-
change of information between views [27, 28, 42]. A sim-
pler approach consists of directly generating a 2x2 image

grid, without modifying the attention layers. In this case,
the exchange of information between view is done via self -
attention. This effectively trades resolution with consis-
tency, and can be achieved by conditionning a T2I model
on multiview depth [7, 44], or by fine-tuning on a dataset of
3D multiview renderings [24, 41, 45]. Unique3D [50] and
direct 2.5d [29] extend this approach to image grids of nor-
mals, and CRM [47] to canonical coordinate map. These
works have shown that adopting this representation to gen-
erate 3D shape is orders of magnitude faster than SDS, from
hours to seconds. In this work, we extend these ideas to 3D
editing, and explore fine-tuning strategies to get inpainting
and multiview generation in the same model. Of note, NeR-
Filler [48] proposes to inpaint a grid of 2x2 images with a
single-view inpainting model without fine-tuning it for mul-
tiview consistency. We compare against this baseline and
show the importance of fine-tuning the inpainting model.
Furthermore, NeRFiller relies on a more costly IDU opti-
mization, which requires about 30k steps.

Image inpainting. The ability to collect and annotate im-
ages at scale has fueled major progress in image inpaint-
ing. Current inpainting tools have a wide range of appli-
cations ranging from real photographs to illustrative draw-
ing [1, 39]. We refer the reader to the recent survey of Xi-
ang et al. [51]. In this paper, we are interested in lever-
aging these pre-trained priors to edit 3D assets. As dis-
cussed in the previous paragraph, the main challenge is
achieving multiview consistent results, as open-source mod-
els like Stable Diffusion [39] inpaint each frame indepen-
dently without 3D consistency. In this work, we propose
to teach multiview consistency to a single-view inpainting
network. As noted in Zeng et al. [55], the design of the
inpainting masks is a critical part of training an inpainting
model. The masks should resemble the type of masks that
users will draw at inference as closely as possible. How-
ever, how to apply that insight to 3D editing is not straight-
forward. We propose three masking strategies that address

3

different workflows in Section 3.2.
Concurrent work. Similarly observing that IDU and SDS

are unstable and lengthy optimizations, the recent approach
MVInpainter [6] adds a video priors to a single-view in-
painting model, via a LoRA [19], to encourage multiview
consistency. Their focus in on object insertion and removal
in captured 3D scenes, while ours in on 3D generative edit-
ing of objects, which leads us to different masking strategies
to train the inpainting model.

3. Method
The input to our system consists of tuples ⟨S,M, y⟩ repre-
senting a 3D shape S, a 3D mask region M , and a text de-
scription y – henceforth referred to as prompt. The goal of
our method is to create a new shape S′ whose areas covered
by M are modified to follow y.

Multiview representation. We propose to perform 3D in-
painting by inpainting multiple renderings of an object in a
view-consistent manner. Consider a rendering operator R
that renders a set of a shapes (a scene) S, from a viewpoint
π. We refer to Rc and Rb to indicate a rendering to a color
RGB image and a binary mask, respectively. Finally, we re-
fer to RU to indicate that we only render the visible pixels
belonging to the shape U while assuming U ∈ S.Using this
operator, we define the multiview representations as :

Ik(U, V) :=
⊕
π∈Π

RU
k [{U} ∪ {V };π] (1)

where
⊕

concatenates the images in a 2× 2 grid, k is ren-
dering modality (color or binary), and Π = {C(α, π

4)|α ∈
{0, π

2 , π, 3
π
2 }}; C(α, β) is a function that returns a view-

point configuration corresponding to a camera pointing at
the origin of the coordinate system and positioned on the
surface of a canonical sphere according to azimuth α and
elevation β. Using this operator, the input to our multiview
diffusion model is defined as Ic(S,M) and Ib(M,S). In-
tuitively, Ic(S,M) is just an image containing the visible
pixels of S in the scene {S}∪{M} rendered from multiple
views organized in a grid, and Ib(M,S) is binary rendering
of the visible pixels of M . An illustration of this represen-
tation is presented in Figure 3.

3D editing. Given Ic(S,M) and Ib(M,S), we propose to
use a diffusion model ϵθ to generate an inpainted multiview
representation Îc. From that, we can then use a posed mul-
tiview reconstruction process Φ to obtain the edited shape
Ŝ = Φ(Îc). Different choices for Φ yield different appli-
cations and tradeoffs. For example, we can have very fast
learning-based reconstruction from posed multiview images
using various representations, like NeRFs [24], meshes [49]
and gaussian splats [56]. We can also apply lightweight op-
timization routines based on differentiable rendering such

Figure 3. Multiview representation. We represent 3D shapes
multiview renderings. Editing is done using an image-based diffu-
sion model that operates on Ic(S,M) and Ib(M,S).

as ROAR [3], ISOMER [50] or Direct2.5d [29]. This class
of methods is usually slightly slower but has the additional
benefit of allowing us to carefully craft the optimization
procedure in order to achieve several desirable properties
like geometric regularization and preservation of the orig-
inal asset attributes – color, connectivity, UVs, and so on.
Figure 1 shows results using various types of reconstruc-
tors. We use NeRF-LRM [24] to compare against other
NeRF editing approaches in Table 1 and Figure 4. Gen-
erating an image with ϵθ takes about 3 seconds on an A100,
and the various reconstructors range from a few millisec-
onds [24, 56] to a few seconds [29, 49, 50].

In the rest of this section, we explain how to train the
diffusion model ϵθ for multiview generation (Section 3.1)
and inpainting (Section 3.2).

3.1. Background on Diffusion Models.

Training. During training, we sample an image x from the
dataset, with condition c (e.g. text, mask, or depth), a time
step t between 0 and T , and a noise ϵ ∼ N (0, I), injected to
x to create a noisy image x̃(t):

x̃(t) =
√

α(t) · x+
√

1− α(t) · ϵ, (2)

where α(t) controls the amount of noise to inject i.e. α(0) =
1 is no noise and α(T) = 0 is pure noise. A denoising unet
ϵθ is trained to denoise x̃(t) by minimizing:

Ldiff = w(t)||ϵθ(x̃(t); t, c)− x||2, (3)

where w(t) a scheme to scale the gradients according to t.
Once ϵθ is trained, ϵθ(x̃(t); t, c) is the projection of x̃(t) to
the manifold of images defined by the training dataset. De-
tails about the training procedure can be found in the sup-
plemental material.

Inference. We start from pure noise x̃(T) and follow the di-
rection of the manifold defined by ϵθ(x̃(t); t, c). There ex-
ists multiple samplers to discretize this trajectory into a dis-
crete number of steps. In practice, we use the Euler sched-
uler [20] and 29 steps.

Latent Diffusion. In this work, we use latent diffusion
models i.e. the diffusion happens in a 4-dimensional latent

4

space instead of RGB space, and a pretrained VQ-VAE [38]
encodes and decodes images from that space. Our method
is agnostic to this, so we keep the presentation general.

Multiview diffusion. To generate 2x2 consistent views, we
follow [24] and simply replace the training distribution with
a distribution of 2x2 images. While this approach would
yield poor result if it were trained from scratch, given the
scarcity of high-quality 3D data, it performs well if the
models are fine-tune from “foundation” text-to-image mod-
els, i.e. pre-trained on millions of images. To create the
dataset, we render a curated list [24] of 5K objects from
Objaverse [12], filtered for high-quality, and generate high-
quality captions yn for each 3D object with LLaVa [26]. We
now explain how to train for inpainting jointly.

Inpainting. The main specificity is that the condition c is
composed on the text prompt y, the base image with holes,
and the inpainting mask i.e. c = {y, Ic(S,M), Ib(M,S)}.
In practice, for latent models, Ic(S,M) is passed through
the encoder E of the VQ-VAE, concatenated with the down-
sampled version of the mask Ib(M,S), and the noisy latents
x̃(t), leading to a 9-channel tensor input to the denoising
unet ϵθ, along with the encoding of the text condition. Dur-
ing training, we randomly drop the mask 10% of the time,
falling back to multiview diffusion training.

3.2. Multi-View Inpainting Masks
Dataset creation. A key part of our method consists in
generating multiview masks that are 3D consistent. Thus,
the binary masks used for training our multiview inpainting
model are obtained by rendering 3D shapes; i.e. Ib(M,S).
Consider the example in Figure 3. Even though M is simply
an ellipsoid, its multiview representation Ib(M,S) is not –
it has the occlusions from its interaction with S. We em-
pirically demonstrate that 3D-aware masks and multiview
consistent images are crucial for better performance (see
Table 2). Our model is trained based on a set of shapes
D. For every shape S ∈ D, we create a set of 3D masks
MS . Using those, we can define our training dataset I as:

I :=

{ 〈
Ic(S,∅), Ic(S,M), Ib(M,S), yS

〉
where S∈D,M∈MS

}
(4)

where Ic(S,∅), Ic(S,M), Ib(M,S) are the color ground-
truth image, color input image, and binary input mask, re-
spectively. yS is a text prompt describing the shape S ob-
tained from a VLM model [26]. Since generating the masks
online would slow down training, we preprocess them of-
fline. In practice, we have |MS | = 30, containing equal
portions of 3 different kinds of masks. Considering that
|D| ≈ 5K, our multiview dataset I has ≈ 150K data
points. We will release our dataset upon publication.

A key remaining issue is how MS is created. As noted
in [55], the design of the training masks plays a central role

in training an inpainting model. The best performances are
naturally obtained when the distribution of training masks
closely follows the distribution of edits that users will make
at test time. We confirm this in our experiments with a sim-
ple ablation, where we naively use random 2D mask (see
Table 2). We thus propose three types of masks, correspond-
ing to three types of editing. The remaining of this section
will explain how each type of mask is created.

Type I: coarse edit. In
this setting, the inpainted
part of S is fully contained
inside M . M is computed
by randomly sampling a part of S and taking its convex
hull. To select such part, we randomly sample a plane pass-
ing through S, effectively splitting S into two parts, and we
select one part at random. More precisely, we start by sam-
pling a random point p inside the bounding box of S and
a random direction n. The plane P passing through p with
normal n is defined by {x ∈ R3|x ·p = p ·n}. M is defined
as the convex hull of all the face midpoints that are above
P i.e. {f = (v1, v2, v3)|f ∈ F, v1+v2+v3

3 · p >= p · n},
where F denotes the list of faces. To avoid Z-fighting dur-
ing rendering between S and M , we scale M by 20% while
keeping its center of mass the same, ensuring it completely
envelopes the part of S above P .

Type II: mesh sculpting.
This type of mask is de-
signed to represent a more
precise edit where the user
expects content to be created in a portion of space similar to
the mask. It requires more expertise and time from the user
than Type I, but also provides more precise control over the
generated content. As we can see in the illustration to the
right, M is a tight fit over S – no volume inside M is not
also inside S. To generate these masks, we sample a plane
P , as in Type I masks, and select all the faces that have
their midpoint above P i.e. M = {f = (v1, v2, v3)|f ∈
F, v1+v2+v3

3 · p >= p · n}.

Type III: surface editing.
We aim to support local
texture modifications, where
the user selects a surface
patch and prompts Instant3dit to modify its texture. There
are various ways to generate this type of mask if we as-
sume that the meshes have good triangulation. Unfortu-
nately, this is typically not the case for shape datasets.
Thus, propose a simple heuristic that works for any trian-
gle soup. We sample a vertex p in S, then several cylin-
ders with elliptical bases of varying sizes, all centered on
p (depicted in purple). The number of cylinders is uni-
formly sampled between 3 and 6, the revolution axis is

5

sampled on the unit sphere, the height and radii are sam-
pled between 0.1 and 0.3. We call this volume C. Fi-
nally select all the faces whose midpoint falls within C i.e.
M = {f = (v1, v2, v3)|f ∈ F, v1+v2+v3

3 ∈ C} (depicted
in red).

4. Experiments
In this section, we describe our novel multiview inpainting
benchmark, which we use to compare several baselines and
run ablations.

Benchmark. We hold out 500 2x2 multiview images and
their synthetic multiview masks from the training set to
create our benchmark. We condition all inpainting on
BLIP [23] captions,and ensure no training object is present
in the benchmark. We then evaluate how well different
methods inpaint all the views.

Evaluation Metrics. To evaluate the quality of multiview
inpainting, we use three types of metrics: measuring prompt
adherence, multiview consistency, and visual quality. To
measure prompt adherence, we use CLIP [36] similarity
score between the generated 2x2 multiview image and the
text prompt. We follow previous work [34] and use two
models, CLIP-ViT-L-14 (ClipL) and CLIP-ViT-BigG-14
(ClipG), for encoding. To measure 3D consistency we
reconstruct NeRF from the sparse inpainted views [24],
and re-render from same camera angles as the input sparse
views. We then compare the NeRF renderings to generated
inpainted images using various image similarity scores:
SSIM [46], LPIPS [57] and DreamSim [13]. Finally, we
measure visual quality using FID score [17] comparing to a
distribution of held-out images.

Comparison to Baselines. We use these metrics to
compare our method (Table 1, bottom) to several baseline
alternatives (Table 1, top). As there are no off-the-shelf
multiview consistent inpainting methods, we couple
different image diffusion techniques with blended dif-
fusion [2] to inpaint the multiview image. We try two
different architectures from the commonly used SDXL
diffusion model [34], SDXL (as-is) and SDXL-inpainting
(fine-tuned on 2D inpainting task). Both SDXL baselines
perform poorly on multiview consistency since they are
not explicitly trained to complete images consistently and,
in the case of SDXL-inpainting, are only trained with 2D
image masks. Finally we test Instant3D [24] coupled with
blended diffusion. Since this architecture is trained for 3D
reconstruction it achieves a better multiview consistency,
however, our method still outperforms this baseline with
respect to all other metrics. See Figure 4 for some example
results produced with baselines and our method.

Ablating Diffusion Backbones. Our method can be

Method Prompt Adherence Multi-view consistency Visual quality

ClipL↑ ClipG↑ SSIM↑ LPIPS↓ DreamSim↓ FID↓

SDXL [34] 28.63 42.58 0.874 0.065 0.134 127.0
SDXL-inpaiting [34] 27.57 41.33 0.857 0.064 0.137 159.5
Instant3D [24] 28.78 43.06 0.892 0.044 0.102 120.0

ablations from different diffusion backbones (our final method is at the bottom)

Ours (SD 1.5-inpainting) 27.79 41.33 0.719 0.09 0.599 128.3
Ours (SD 2.0-inpainting) 27.59 41.23 0.729 0.096 0.589 124.5
Ours (Instant3D) 28.57 42.50 0.894 0.043 0.097 121.1
Ours (SDXL-inpainting) 29.01 43.48 0.894 0.045 0.100 118.4

Table 1. Multiview text-to-image inpainting. This table demon-
strates quantitative performance of several baselines and ablations
of our method, with respect to metrics that capture prompt adher-
ence, multiview consistency, and visual quality. Results are color-
coded worst and best , with best highlighted in bold.

Instant3DSDXL

p1

p2

p3

SDXL-inpainting OursMask

p4

Original

Figure 4. Comparison to baselines. We show different inpainting
results from different baselines; our multiview inpainting method
offers the highest quality while maintaining consistency.

fine-tuned from any image diffusion model, and thus we
further evaluate how performance changes with respect
to different backbones (Table 1, bottom section). Unsur-
prisingly, weaker backbones with fewer parameters (SD
1.5, SD 2.0) [38] lead to inferior performance and very
poor multiview consistency. Using Instant3D [24] gives
the best multiview consistency, but fine-tuning does not
seem to improve visual quality and prompt adherence.
Our method fine-tunes from SDXL-inpainting [34], and
generally learns to better adhere to the prompt with high
visual fidelity. We believe this observation is consistent
with insights from prior works [24, 48] that show that
existing diffusion models already have some implicit
understanding of multiview images and can be fine-tuned
for 3D consistency with little training data. Inpainting, on
the other hand, is a more challenging task, and thus, it is
easier to fine-tune a model that was trained at scale for an
inpainting task (SDXL-inpainting) to create a multiview
consistent image. See supplemental material for qualitative
examples.

Ablating Masks.
The key ingredient in our training data is the three types

of multiview consistent masks. To evaluate the importance
of training masks, we ablate on different types of masks,
and fine-tune SDXL-inpainting model using only one mask
type.

Each row in Table 2 is trained with a different type of
mask: Random 2D follows prior 2D inpainting work [38]

6

Method Type I Type II Type III I+II+III User Generated

FID↓ ClipG↑

Random 2D 145.4 129.6 102.3 131.1 24.22
Type I 131.2 128.6 102.3 121.3 26.24
Type II 170.9 122.6 101.7 128.2 25.53
Type III 193.0 148.1 99.05 142.2 24.2
I+II+III 130.0 124.9 100.0 118.4 26.5

Table 2. Mask ablation. We ablate the choice of 3D masks used
during training (rows), and evaluate on different subsets of the
benchmark containing only some types of masks (columns).

sampling mask independently per image (see inset),
Type I only uses coarse 3D blobs,

Type II uses large surface selections,
Type III uses local surface patches (see
Section 3.2). Finally, the bottom row
is our method trained with all types of
masks.

To compare these different techniques, we split our
benchmark into single-mask vs all-masks data, and compute
FID score for each test subset (see columns in Table 2). Un-
surprisingly, there is a strong bias in the diagonal, indicating
that training on a particular type of mask helps inpainting it
at inference time. We note, however, that simple random
rectangular masks perform substantially worse. Our fine-
tuning on all mask types offers the best performance on ar-
bitrary masks at inference time.

We further take 15 user-generated masks and inpaint
them to evaluate how well different types of training masks
generalize to real use-cases. We found that our multi-mask
training offers the highest Clip-similarity of inpainted
results to the user prompts, unfortunately FID score is
not meaningful for such a small sample size. We refer
the reader to supplemental material where we provide
qualitative inpainting results for user-generated masks,
demonstrating that multi-mask training data yields the
highest inpainting quality.

Generalization to Novel Camera Angles. We note that
unlike Instant3d [24], the inpainting model adapts its out-
put to the orientation of the non-masked region, indi-
cating an ability to generalize to unseen azimuth angles.
We quantify this by offset-
ting the 2x2 camera posi-
tions by 16 equally spaced az-
imuth offsets from 0 to 337.5
degrees, generating 500 im-
ages for each offset (using the
same models as in our bench-
mark). See how evaluation
metrics change for different
azimuth offsets in the inset.

The FID, ClipL, and ClipG scores remain consistent

“Cow wearing a gold necklace” “a goldfish riding a bicycle”

Figure 5. Failure Cases. Typical failure cases include failure to
adhere to the prompt for thin masks or large masks, which have
little inductive bias from the unmasked area.

throughout. This adaptability is crucial for inpainting, as
the orientation of the unmasked portion is unknown be-
forehand. Fine-tuning follows [24], with multiview renders
and masks at fixed angles for each object. Remarkably, the
fine-tuned model generalizes to unseen camera orientations
and FOV angles, likely due to the strong inductive bias
from the masked image and prior knowledge from the
baseline diffusion model. We show some visual examples
in the supplementary.

Limitations. Our multiview inpainting might ignore thin
masks (a behavior also observed in 2D inpainting models)
(Figure 5, left). Additionally, due to training renders having
only a white background, we find that in some cases without
existing inductive bias for the mask, the network prefers to
generate a white background at the expense of aligning with
the prompt (Figure 5, right). These cases can usually be
resolved by choosing a different random seed.

5. Applications
While the main contribution of our work is the multiview
consistent inpainting method, which can be trivially
complemented with a large reconstruction model (LRM) to
infer the full 3D shape from the completed views. In this
section we explore applications of our technique for editing
various neural and traditional 3D representations. We also
developed an interactive application where users can load
their own 3D shapes, create masks with basic primitives
and visualize the results of our method. More information
about this application can be found in supplemental.

NeRF Editing. Given an input NeRF, user’s mask and a
prompt, we use our multiview inpainting to generate the
edited views. These views are used as input to the LRM
from Instant3D [24] to create the modified representation.
We show a few edits in Figure 2 (our result is on the right).
In addition to our method we show results for several alter-
native techniques that allow editing NeRFs. Vox-E [40] and
MVEdit [8] do not allow for a user-provided mask, and in-
stead infer the area to be edited using the attention weights
from the prompt, which may result in undesirable changes
in texture and geometry throughout the object in areas the
user would like to keep unchanged. Progressive3d [10]
and NeRFFiller [48] struggle with multiview consistency,

7

“
A

c
e
n
t
a
u
r
”

“
A

k
a
n
g
a
r
o
o

w
i
t
h

b
o
x
i
n
g

g
l
o
v
e
s
”

“
A

c
o
w

w
i
t
h

a

c
o
w
b
o
y

h
a
t
”

“
A

h
u
m
a
n

s
k
u
l
l

w
i
t
h

b
u
n
n
y

e
a
r
s
”

NeRFiller
~294s

Ours
~3s

Progressive3d
~11490s

MVEdit
~599s

Original Vox-E
~2695s

Masked

Figure 6. Application: NeRF editing. We compare our method
(rightmost column) to other methods that allow editing NeRFs, by
rendering a front-facing view of the 3D edited asset for all meth-
ods. Note that the only method that takes arbitrary masks as input
is NeRFiller [48], we also conduct an informal user study with 15
users choosing between our output and NeRFiller for 208 pairs of
results. We found that users prefer our method in 86% of the cases.
We report average timing for all methods, and confirm Instant3dit
is substantially faster than other alternatives.

as they rely on 2D diffusion models for SDS and IDU, re-
spectively. This may result in incorrectly positioned edits,
as in the case of the centaur example. Note that our ap-
proach is also significantly faster than all existing timelines
and produces results in seconds rather than minutes.

We further conduct an informal user preference study be-
tween our method and the closest approach that can also
inpaint multiview masks, NeRFiller [48]. We showed the
masked input and the prompt to 15 users and asked them
to choose between two outputs (see supplemental for exact
verbiage). Out of 208 pairs, the users preferred our method
in 180 cases (86%) vs 28 (14%) for NeRFiller.

Since our multiview inpainting is not tied to any par-
ticular 3D representation, our method can also be used to
edit Gaussian Splats (GS) by simply using an appropriate
LRM [56], see the supplementary for GS editing examples.

Mesh Editing. For the users that work on traditional mesh
representation, we propose using MeshLRM [49] with an
adaptive remeshing layer [3] that uses the LRM result as a
guidance. This leads to a fast and fully controllable mesh
editing pipeline that is guaranteed to preserve the original
mesh attributes (e.g., UVs, rigging) and triangulation in
the unedited parts of the mesh [4]. We noticed that the
guidance meshes tend to be over-smoothed due to the rel-
atively low resolution of the LRM’s triplane. To maintain
fine details, we use a normal estimator [14] directly on the
diffusion output and use the normals as targets in the vertex
optimization. See Figure 7, supplemental figures, and a
video for mesh editing examples.

Original Edited

“..holding
a sword”

“a roman
soldier”

..“with
armored legs”

Mesh-LRM

Figure 7. Application: mesh editing. Each of the 3 edits shown
is performed locally on the original mesh, only modifying regions
selected by the user. Locality is achieved by running the ROAR [3]
geometry optimization, which takes 20 extra seconds per edit.

|

“A cow
wearing a

blue
robber
mask”

“A Horse
with an

ornamental
rug on its

back”

“A
goldfish”

Figure 8. Application: texture editing. Our method can be used
to modify texture on a user-selected region. In this case, we run
through our NeRF editing pipeline, but only sample colors from
the NeRF in the selected region.

Texture Editing. The user can use our method to edit sur-
face texture details. We use NeRF-LRM to reconstruct a
3D representation and back-project the colors to the user-
selected mesh region. Starting with an auto-generated tex-
ture from previous work [37] (Fig. 8, first column), the user
labels a mask (second column) to either add new texture
elements (facemask, saddle) or fix artifacts in the texture
(goldfish exhibiting inconsistent left-right colors due to lack
of multiview consistency in the previous texturing method).

6. Conclusion

We introduced Instant3dit, a multiview inpainting diffusion
model, and show its application to fast and localized editing
of 3D assets. We propose three types of inpainting masks to
train the model, corresponding to three types of user edits,
and plan to release this dataset. We justify our training strat-
egy and choice of 3d masks by measuring a comprehensive
set of metrics: prompt adherence, 3d consistency of the gen-
erated content, and generation quality. Instant3dit shows
superior quality to the contemporary 3D editing pipelines
and is orders of magnitude faster, running as fast as a single

8

image generation using diffusion.
We see clear opportunities to improve this tool further.

First, several approaches such as DMD [54] distill diffu-
sion models into one-step or few-step models, which would
make Instant3dit run in a fraction of a second and bring a
truly interactive editing experience. Second, video diffusion
model [5, 43] have shown remarkable 3D consistency and
visual quality, which can be harnessed to improve the qual-
ity of 3D generation further, although, in terms of speed,
they are currently much slower than text-to-image models.

References
[1] Adobe Inc. Adobe photoshop. 3
[2] Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended

diffusion for text-driven editing of natural images. CVPR,
2022. 6

[3] Amir Barda, Yotam Erel, Yoni Kasten, and Amit H.
Bermano. Roar: Robust adaptive reconstruction of shapes
using planar projections. arXiv preprint arXiv:2307.00690,
2023. 4, 8

[4] Amir Barda, Vladimir G. Kim, Noam Aigerman, Amit H.
Bermano, and Thibault Groueix. Magicclay: Sculpting
meshes with generative neural fields. SIGGRAPH Asia,
2024. 1, 2, 3, 8

[5] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue,
Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luh-
man, Eric Luhman, et al. Video generation models as world
simulators. https://openai.com/research/, 2024. 9

[6] Chenjie Cao, Chaohui Yu, Yanwei Fu, Fan Wang, and Xi-
angyang Xue. Mvinpainter: Learning multi-view consis-
tent inpainting to bridge 2d and 3d editing. arXiv preprint
arXiv:2408.08000, 2024. 1, 2, 4

[7] Duygu Ceylan, Valentin Deschaintre, Thibault Groueix,
Rosalie Martin, Chun-Hao Huang, Romain Rouffet,
Vladimir Kim, and Gaëtan Lassagne. Matatlas: Text-
driven consistent geometry texturing and material assign-
ment. arXiv preprint arXiv:2404.02899, 2024. 3

[8] Hansheng Chen, Ruoxi Shi, Yulin Liu, Bokui Shen, Ji-
ayuan Gu, Gordon Wetzstein, Hao Su, and Leonidas Guibas.
Generic 3d diffusion adapter using controlled multi-view
editing. arXiv preprint arXiv:2403.12032, 2024. 1, 2, 7

[9] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fan-
tasia3d: Disentangling geometry and appearance for high-
quality text-to-3d content creation. ICCV, 2023. 1, 2

[10] Xinhua Cheng, Tianyu Yang, Jianan Wang, Yu Li, Lei
Zhang, Jian Zhang, and Li Yuan. Progressive3d: Progres-
sively local editing for text-to-3d content creation with com-
plex semantic prompts. ICLR, 2024. 1, 2, 7

[11] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo,
Oscar Michel, Aditya Kusupati, Alan Fan, Christian Laforte,
Vikram Voleti, Samir Yitzhak Gadre, Eli VanderBilt, Anirud-
dha Kembhavi, Carl Vondrick, Georgia Gkioxari, Kiana
Ehsani, Ludwig Schmidt, and Ali Farhadi. Objaverse-xl: A
universe of 10m+ 3d objects. NeurIPS, 2023. 2

[12] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,
Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana

Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse:
A universe of annotated 3d objects. CVPR, 2023. 2, 5

[13] Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy
Chai, Richard Zhang, Tali Dekel, and Phillip Isola. Dream-
sim: Learning new dimensions of human visual similarity
using synthetic data. NeurIPS, 2023. 6

[14] Xiao Fu, Wei Yin, Mu Hu, Kaixuan Wang, Yuexin Ma, Ping
Tan, Shaojie Shen, Dahua Lin, and Xiaoxiao Long. Geowiz-
ard: Unleashing the diffusion priors for 3d geometry estima-
tion from a single image. ECCV, 2024. 8

[15] William Gao, Noam Aigerman, Groueix Thibault, Vladimir
Kim, and Rana Hanocka. Textdeformer: Geometry manipu-
lation using text guidance. SIGGRAPH, 2023. 2

[16] Ayaan Haque, Matthew Tancik, Alexei Efros, Aleksander
Holynski, and Angjoo Kanazawa. Instruct-nerf2nerf: Edit-
ing 3d scenes with instructions. CVPR, 2023. 2, 3

[17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. arXiv preprint arXiv:1706.08500, 2018. 6

[18] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou,
Difan Liu, Feng Liu, Kalyan Sunkavalli, Trung Bui, and Hao
Tan. Lrm: Large reconstruction model for single image to
3d. ICLR. 3

[19] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank
adaptation of large language models. ICLR, 2021. 4

[20] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. NeurIPS, 2022. 4

[21] Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky,
and Popa Tiberiu. Clip-mesh: Generating textured meshes
from text using pretrained image-text models. SIGGRAPH
Asia, 2022. 2

[22] Hyunwoo Kim, Itai Lang, Noam Aigerman, Thibault
Groueix, Vladimir G. Kim, and Rana Hanocka. Meshup:
Multi-target mesh deformation via blended distillation. 3DV,
2024. 2

[23] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
Blip: Bootstrapping language-image pre-training for uni-
fied vision-language understanding and generation. In ICLR,
2022. 6

[24] Jiahao Li, Hao Tan, Kai Zhang, Zexiang Xu, Fujun
Luan, Yinghao Xu, Yicong Hong, Kalyan Sunkavalli, Greg
Shakhnarovich, and Sai Bi. Instant3d: Fast text-to-3d
with sparse-view generation and large reconstruction model.
ICLR, 2024. 2, 3, 4, 5, 6, 7

[25] Yuhan Li, Yishun Dou, Yue Shi, Yu Lei, Xuanhong Chen, Yi
Zhang, Peng Zhou, and Bingbing Ni. Focaldreamer: Text-
driven 3d editing via focal-fusion assembly. AAAI, 2024. 2

[26] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. NeurIPS, 2023. 5

[27] Yuan Liu, Cheng Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie
Liu, Taku Komura, and Wenping Wang. Syncdreamer: Gen-
erating multiview-consistent images from a single-view im-
age. ICLR, 2023. 3

9

[28] Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu,
Zhiyang Dou, Lingjie Liu, Yuexin Ma, Song-Hai Zhang,
Marc Habermann, Christian Theobalt, et al. Wonder3d: Sin-
gle image to 3d using cross-domain diffusion. CVPR, 2024.
3

[29] Yuanxun Lu, Jingyang Zhang, Shiwei Li, Tian Fang, David
McKinnon, Yanghai Tsin, Long Quan, Xun Cao, and Yao
Yao. Direct2.5: Diverse text-to-3d generation via multi-view
2.5d diffusion. CVPR, 2024. 2, 3, 4

[30] Artem Lukoianov, Haitz Sáez de Ocáriz Borde, Kristjan
Greenewald, Vitor Campagnolo Guizilini, Timur Bagautdi-
nov, Vincent Sitzmann, and Justin Solomon. Score distilla-
tion via reparametrized ddim. NeurIPS, 2024. 3

[31] Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and
Daniel Cohen-Or. Latent-nerf for shape-guided generation of
3d shapes and textures. CVPR, 2023. 2

[32] Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and
Rana Hanocka. Text2mesh: Text-driven neural stylization
for meshes. CVPR, 2022. 2

[33] Aryan Mikaeili, Or Perel, Mehdi Safaee, Daniel Cohen-Or,
and Ali Mahdavi-Amiri. Sked: Sketch-guided text-based 3d
editing. ICCV, 2023. 2

[34] Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. Sdxl: Improving latent diffusion models
for high-resolution image synthesis. ICLR, 2024. 6

[35] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. ICLR,
2023. 2, 3

[36] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. ICML, 2021. 6

[37] Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes,
and Daniel Cohen-Or. Texture: Text-guided texturing of 3d
shapes. SIGGRAPH, 2023. 8

[38] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. CVPR, 2022. 5, 6

[39] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. CVPR, 2022. 3

[40] Etai Sella, Gal Fiebelman, Peter Hedman, and Hadar
Averbuch-Elor. Vox-e: Text-guided voxel editing of 3d ob-
jects. CVPR, 2023. 1, 2, 7

[41] Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu,
Chao Xu, Xinyue Wei, Linghao Chen, Chong Zeng, and Hao
Su. Zero123++: a single image to consistent multi-view dif-
fusion base model. arXiv preprint arXiv:2310.15110, 2023.
3

[42] Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li,
and Xiao Yang. Mvdream: Multi-view diffusion for 3d gen-
eration. ICLR, 2024. 3

[43] Genmo Team. Mochi 1. GitHub repository, 2024. 9
[44] Christina Tsalicoglou, Fabian Manhardt, Alessio Tonioni,

Michael Niemeyer, and Federico Tombari. Textmesh: Gen-

eration of realistic 3d meshes from text prompts. 3DV, 2024.
3

[45] Peng Wang and Yichun Shi. Imagedream: Image-prompt
multi-view diffusion for 3d generation. arXiv preprint
arXiv:2312.02201, 2023. 3

[46] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing, 2004. 6

[47] Zhengyi Wang, Yikai Wang, Yifei Chen, Chendong Xiang,
Shuo Chen, Dajiang Yu, Chongxuan Li, Hang Su, and Jun
Zhu. Crm: Single image to 3d textured mesh with convolu-
tional reconstruction model. CoRR, 2024. 3

[48] Ethan Weber, Aleksander Holynski, Varun Jampani, Saurabh
Saxena, Noah Snavely, Abhishek Kar, and Angjoo
Kanazawa. Nerfiller: Completing scenes via generative 3d
inpainting. CVPR, 2024. 1, 2, 3, 6, 7, 8

[49] Xinyue Wei, Kai Zhang, Sai Bi, Hao Tan, Fujun Luan,
Valentin Deschaintre, Kalyan Sunkavalli, Hao Su, and Zex-
iang Xu. Meshlrm: Large reconstruction model for high-
quality mesh. arXiv preprint arXiv:2404.12385, 2024. 3, 4,
8

[50] Kailu Wu, Fangfu Liu, Zhihan Cai, Runjie Yan, Hanyang
Wang, Yating Hu, Yueqi Duan, and Kaisheng Ma. Unique3d:
High-quality and efficient 3d mesh generation from a single
image. arXiv preprint arXiv:2405.20343, 2024. 2, 3, 4

[51] Hanyu Xiang, Qin Zou, Muhammad Ali Nawaz, Xianfeng
Huang, Fan Zhang, and Hongkai Yu. Deep learning for im-
age inpainting: A survey. Pattern Recognition, 2023. 3

[52] Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang,
Shenghua Gao, and Ying Shan. Instantmesh: Efficient 3d
mesh generation from a single image with sparse-view large
reconstruction models. arXiv preprint arXiv:2404.07191,
2024. 2

[53] Taoran Yi, Jiemin Fang, Junjie Wang, Guanjun Wu, Lingxi
Xie, Xiaopeng Zhang, Wenyu Liu, Qi Tian, and Xinggang
Wang. Gaussiandreamer: Fast generation from text to 3d
gaussians by bridging 2d and 3d diffusion models. CVPR,
2024. 1, 3

[54] Tianwei Yin, Michael Gharbi, Richard Zhang, Eli Shecht-
man, Frédo Durand, William T. Freeman, and Taesung Park.
One-step diffusion with distribution matching distillation.
CVPR, 2024. 9

[55] Yu Zeng, Zhe L. Lin, Jimei Yang, Jianming Zhang, Eli
Shechtman, and Huchuan Lu. High-resolution image in-
painting with iterative confidence feedback and guided up-
sampling. ECCV, 2020. 3, 5

[56] Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao,
Kalyan Sunkavalli, and Zexiang Xu. Gs-lrm: Large recon-
struction model for 3d gaussian splatting. ECCV, 2024. 2, 3,
4, 8

[57] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. CVPR, 2018. 6

[58] Jingyu Zhuang, Chen Wang, Lingjie Liu, Liang Lin, and
Guanbin Li. Dreameditor: Text-driven 3d scene editing with
neural fields. SIGGRAPH Asia, 2023. 2

10

	. Introduction
	. Related Work
	. Method
	. Background on Diffusion Models.
	. Multi-View Inpainting Masks

	. Experiments
	. Applications
	. Conclusion

