Under review as submission to TMLR

TOFU: Towards Obfuscated Federated Updates by Encod-
ing Weight Updates into Gradients from Proxy Data

Anonymous authors
Paper under double-blind review

Abstract

Advances in Federated Learning and an abundance of user data have enabled rich collaborative
learning between multiple clients, without sharing user data. This is done via a central server that
aggregates learning in the form of weight updates. However, this comes at the cost of repeated ex-
pensive communication between the clients and the server, and concerns about compromised user
privacy. The inversion of gradients into the data that generated them is termed data leakage. En-
cryption techniques can be used to counter this leakage, but at added expense. To address these
challenges of communication efficiency and privacy, we propose TOFU, a novel algorithm which
generates proxy data that encodes the weight updates for each client in its gradients. Instead of
weight updates, this proxy data is now shared. Since input data is far lower in dimensional com-
plexity than weights, this encoding allows us to send much lesser data per communication round.
Additionally, the proxy data resembles noise, and even perfect reconstruction from data leakage at-
tacks would invert the decoded gradients into unrecognizable noise, enhancing privacy. We show
that TOFU enables learning with less than 1% and 7% accuracy drops on MNIST and on CIFAR-10
datasets, respectively. This drop can be recovered via a few rounds of expensive encrypted gradient
exchange. This enables us to learn to near-full accuracy in a federated setup, while being 4x and
6.6x more communication efficient than the standard Federated Averaging algorithm on MNIST
and CIFAR-10, respectively.

1 Introduction

Federated learning is the regime in which many devices have access to localized data and communicate with each,
other either directly or through a central node. The goal is to improve their learning abilities collaboratively, without
sharing data. Here, we focus on the centralized setting, in which each device or ‘client’ learns on the data available to
it and communicates the weight updates to a central node or ‘server’, which aggregates the updates it receives from all
the clients. The server propagates the aggregated update back to each client, thus enabling collaborative learning from
data available to all devices, without actually sharing the data. The abundance of user data has enabled rich complex
learning. However, this comes at the cost of increased computational or communication costs between the clients and
the server, and with increasing concerns about compromised user privacy. Privacy of user data is a growing concern,
and standard federated averaging techniques have been shown to be vulnerable to data leakage by inverting gradients
into the data that generated them (Zhu & Han, 2020; Geiping et al., 2020; Yin et al., 2021; Fowl et al., 2021; 2022).
Gradients can be encrypted to preserve privacy, but incurs further communication overhead. (Bonawitz et al., 2017).

In this work, we focus on the communication between the clients and the server, a critical point for both communication
and data leakage. Traditionally, in every communication round, each client shares its weight updates with the servers.
To enable complex learning, the models are getting larger, growing to many millions of parameters (Simonyan &
Zisserman, 2014; He et al., 2016). To put things in context, a VGG13 model has 9.4 million parameters, resulting
in 36 MB of data being shared per communication round, per device. Since each device only has limited data, the
number of rounds needed for the server to reach convergence are orders of magnitude more than those needed by the
individual clients, further heightening the communication cost and opportunities for privacy leaks. This cost quickly
grows prohibitive in resource constrained settings with limited bandwidth.

To address these concerns, we propose TOFU, a novel algorithm that works Towards Obfuscated Federated Updates,
outlined pictorially in Figure 1. Here, each client generates synthetic proxy data whose combined gradient captures
the weight update, and communicates this data instead of the weights. This mitigates two issues simultaneously. Data

Under review as submission to TMLR

Real minibatches of data create U

real

Synthetic data
generates g, |

Figure 1: A pictorial representation of our encoding. The loss landscape shown in blue is taken from Li et al. (2017), with the
starting point marked with a red circle. Each client learns on some minibatches of real data, shown on the top. The updates from
these minibatches are marked with red arrows. The final weight update to be encoded and communicated, U,.cq1, is shown in white.
We construct a limited set of synthetic data that generates gradients gsy» on the loss landscape, a weighted combination of which
results in Usy,,. The reconstruction algorithm optimizes these images and weights (denoted by o) to maximize the cosine similarity
between Usyn and Uycq:. The synthetic images are visualized on the left and resemble noise, obfuscating user data.

is much lower dimensional than gradients. For context, CIFAR-10 images only have 3072 pixels, and we show that
TOFU needs under 100 images to capture the weight updates well. Sending these images instead of the weight updates
for VGG13 results in an order of magnitude reduction in communicated costs per round. Additionally, the synthetic
data resembles noise, and existent techniques would invert the gradients to this noise rather than the true data, thus
enhancing privacy. To further improve communication efficiency and encourage the synthetic images to differ from
the true data distribution, we show that our method can approximate the gradient well even with images that are
downsampled by 4, or reduced to a single channel. The synthetic images are visualized in Figure 2.

Since our method approximates gradients to reduce communication costs and enhance privacy, it results in a slight
accuracy drop. We exchange proxy data for most of the communication rounds, which are tolerant to noisy updates.
Closer to convergence, updates are more precise and approximations are harmful. In these few communication rounds,
we recover any accuracy drop by sharing the true full weight updates. In this phase, care needs to be taken to ensure
privacy via expensive encryption techniques. Since this sensitive phase consists of far fewer communication rounds
than the non-sensitive learning phase, the overheard resulting from this is countered by the communication efficiency
achieved by sharing synthetic data instead of weight updates for most of the communication rounds. We show that we
need only 3 and 15 full weight update rounds for MNIST and CIFAR-10, respectively, to recover any drop in accuracy.

This proposed hybrid approach provides both communication efficiency and privacy, without any loss in accuracy. We
demonstrate TOFU on the CIFAR-10 dataset in single device setups and show that we can learn with 3% accuracy drop
while communicating 17x lesser parameters on average. We extend this to a federated setup, with data distributed in
an IID (Independent and Identically Distributed) fashion. We show that with a few additional rounds of full weight
update, we can learn to accuracies comparable to FedAvg while achieving up to 4.6 x and 6.8 x better communication
efficiency on MNIST and CIFAR-10, respectively. We emphasize that TOFU will result in increasing gains with
increasing complexity of the models, since the size of weight updates will grow but the image size stays constant.

2 Background

(McMabhan et al., 2017) pioneered the field of Federated Learning and proposed the first algorithm for distributed
private training, called FedAvg, which serves as our baseline. Here, only weight updates are shared with the server,
which aggregates updates from all clients and shares them back with each client. There are two research thrusts, that
depend on whether the local data present at any client is distributed in an IID fashion or not. We focus on the IID

Under review as submission to TMLR

(@

Figure 2: (a) True images sampled from the CIFAR-10 dataset. (b) Full-sized (32 x 32 x 3) synthetic images generated by TOFU.
(c) Synthetic Images generated by downsampling the number of channels (32 x 32 x 3). (d) Synthetic Images generated by
downsampling the height and width (16 x 16 x 3). The synthetic images encode the first round of weight exchange, corresponding
to the learning from 200 minibatches.

setting in this work and direct readers to (Kairouz et al., 2019) for a better survey on non-IID methods. We focus on
three key aspects in the IID setting: efficiency, privacy and accuracy, and discuss relevant works in each.

Efficiency Federated learning has two key areas of inefficiency: communication cost, both from client to server
(up-communication) and from server to client (down-communication), and computational cost. The most potential
for impact comes with decreasing client to server communication (Kairouz et al., 2019). In our work, we target both
up- and down-communication efficiency. Related works include quantization or sparsification of the weight updates
(Konecny et al., 2016), (Horvath et al., 2019), (Basu et al., 2019), (Alistarh et al., 2016). While they significantly
improve communication efficiency, there have been concerns raised (Kairouz et al., 2019) about their compatibility
with secure aggregation (Bonawitz et al., 2017) and differential privacy techniques (Abadi et al., 2016). Our method
can be thought of as an indirect compression, by encoding updates into proxy inputs. Our proxy images are amenable to
encryption, and can potentially be further quantized, resulting in additional savings. In this work, we focus on showing
that it is possible to encode gradients into synthetic fake-looking data and still enable learning. Other methods restrict
the structure of updates, such as to a low rank or a sparse matrix (Konecny et al., 2016), or split the final network
between the client and the server (He et al., 2020). We impose no constraints on learning, and focus on the standard
case where each client has a synchronized model and equal accuracy on queries from any other client’s dataset.

Privacy Recent methods such as Inverting Gradients (IG) (Geiping et al., 2020) and Deep Leakage from Gradients
(DLG) (Zhu & Han, 2020) have shown that gradients can be inverted into the training images that generated them,
violating user data privacy. GradInversion (Yin et al., 2021) improved upon IG by introducing better fidelity metrics in
the objective to recover images from federated scenarios with larger batch sizes, and more complex models and datasets
such as ResNets and ImageNet. This is cause for concern, and we circumvent by showing that our proxy data looks like
noise, and hence even perfect inversion by these techniques would only resemble noise. Fowl et al. (2021) show that
altering the model architectures minimally allows the server to obtain user data without solving complex optimization
problems. They also show that modifying only the larger linear layers can help recover user data. Methods to secure
gradients from attack involve encryption and differential privacy techniques that add additional computational expense

Under review as submission to TMLR

(Bonawitz et al., 2017), (Abadi et al., 2016). These methods are compatible with our proxy data, should the need for
extra encryption arise. Additionally, encrypting our proxy data will be less costly since standard encryption costs are
proportional to the size of the vector being encrypted (Bonawitz et al., 2017).

Accuracy Efforts to increase accuracy often focus on variance reduced Stochastic Gradient Descent (SGD) (Karim-
ireddy et al., 2019), (Yu et al., 2019) or on adaptive optimization and aggregation techniques (Reddi et al., 2020),
(Karimireddy et al., 2020). Astraea (Duan et al., 2019) reschedules client participation based on the KL divergence
of their data distribution in order to overcome data distribution imbalances to improve accuracy in federated settings.
Our method is orthogonal and compatible with such techniques.

Distillation Recently, there has been interest in one-shot federated learning, wherein there is only one communica-
tion round. An approach that is similar to ours, called DOSFL (Zhou et al., 2020) focuses on this setting. It is based on
the dataset distillation (Wang et al., 2018) technique, in which the entire dataset is distilled into synthetic data. DOSFL
uses this to distill the local data of each client and share that for one-shot learning. There are a few key differences
between our method for synthetic data generation and dataset distillation. We generate proxy data that aligns its gra-
dients to a desired weight update, whereas dataset distillation optimizes data for accuracy after learning on it. Dataset
Distillation shows very large drops in accuracy for CIFAR-10 dataset (~26%) versus our single device results (Section
4.1), which shows an average of 3% drop. DOSFL gets impressive results on MNIST, especially for a single round of
communication but does not show results on larger datasets like CIFAR-10, presumably due to the significant drop in
the baseline technique of dataset distillation. In parallel with the development of this work, (Cazenavette et al., 2022)
came up with an extension of dataset distillation that precomputes training trajectories from an expert and saves them
to guide the synthetic image creation. While the work overlaps with ours in concept, they focus on creating coresets
to make training efficient, and we focus on improving communication efficiency in federated learning.

3 Methodology

This section outlines the desired properties of the synthetic dataset, the algorithm to create it, and the tradeoff between
communication efficiency, privacy and accuracy.

3.1 Desiderata of the Synthetic Dataset

The generated synthetic dataset should have two properties - (a) it must be small in size in order to ensure communi-
cation efficiency and (b) it should not resemble the true data to ensure that data leakage attacks are unable to invert the
proxy gradients into real data, thus ensuring privacy of the real data. We discuss these in more detail next.

Communication Efficiency: Input data is much lower in dimensional complexity than gradients (for instance, 3072
parameters per image in CIFAR-10 compared to 9.4 million parameters for sending VGG13 weight updates). This
allows us to attain the first goal of efficient communication. We experimentally show that 64 images give us good
results, which allows us to send ~50x lesser data per communication round as compared to the weight updates of
VGGI13. For improving efficiency, we also experiment with images that have (a) the 3 channels reduced to a single
channel, replicated across all 3 channels, and (b) the height and width reduced by 2x, which is then upsampled with
their nearest neighbor values as part of pre-processing. This adds a savings of 3x and 4 X, respectively.

Enhanced Privacy from Data Leakage: To attain the goal of privacy, we rely on the high dimensional, non-linear
nature of neural networks to generate images that resemble noise to the human eye. We distill the weight update of a
client after learning on many minibatches into a single minibatch of synthetic images. Combining weighted gradients
is not the same as combining inputs, and we observe that condensing the learning from many images into a smaller
set results in images that visually do not conform to the true data distribution. The resulting weighted gradient we
generate is an approximation of the true weight update. This lossy compression buffers our gradient from data leakage
as can be observed from the results of performing the Inverting Gradients (IG) attack, (Geiping et al., 2020)) on our
images, shown in Figure 3. Even if IG attacks were to invert the images perfectly, the inverted images would still
look like noise, circumventing data leakage. We employ some additional tricks to encourage obscurity of generated
images. IG assumes availability of one-hot labels, or reconstructs one label per image. Instead, we use soft labels to
further discourage reconstruction. Additionally, we weigh the gradients differently into the combined final gradient
so that no true gradient is well represented. We distill the updates from a large number of minibatches (to the tune of

Under review as submission to TMLR

(b) Images recovered by IG attack on synthetic images

Figure 3: The top row visualizes actual synthetic images (zsy») generated by our algorithm. We show 5 randomly picked images
from a set of 32 images encoding a weight update at the 200"" communication round of VGG13 on CIFAR-10, Synfreq = 1 epoch.
The bottom row visualizes images recovered with the IG attack Geiping et al. (2020) on the decoded weight update. Neither sets
of images resemble CIFAR-10 images, visually obfuscating the user data and protecting it from leakage.

a whole epoch) down to just a handful of images. While this incurs an accuracy loss, it results in images that do not
resemble the real data distribution at all. Additionally, forcing a downsampling prior on the images, in either channels
or height and width, allows the image distribution to differ from the original one even more. These synthetic images
are visualized in Figure 2 at the beginning of training. We also visualize the synthetic images generated by TOFU in
the middle of the training process (epoch 200) and at maximum accuracy (epoch 400) in Supplementary section A.2.

Tradeoffs: The tradeoff cost associated is two-fold: a) the clients have added computational complexity to create the
synthetic data and b) the communication rounds needed for convergence increase since we introduce some error in the
weight updates. We emphasize that our method is better applied to use-cases where the clients have computational
resources but are limited in communication bandwidth or cost. Furthermore, communication efficiency has been
identified as the major efficiency bottleneck, with the potential for most impact (Kairouz et al., 2019). We account for
the latter tradeoff of increased communication rounds when reporting our final efficiency ratios.

3.2 Creating the Synthetic Dataset

We now detail the algorithm that distills the change in model parameters into a synthetic dataset during training.
Taking inspiration from the IG attack, we optimize synthetic data to align the resulting gradient direction with the true
weight update. To formalize, let this true weight update attained after a client learns on its true data be referred to as
U, eqai- We want to generate a synthetic dataset,

Dsyn = {(xsyn”ysynmasym); 1= lN}

where N is the number of images in the synthetic dataset. ., and y,,,, refer to the ith image and soft label
respectively. The goal of reconstruction is that the combined gradient obtained upon forward and back-propagating
all {Zyn,, Ysyn, } is aligned to the true weight update, U,..,;. Each synthetic datapoint generates a single gradient
direction, and with N datapoints in our synthetic dataset, we generate N different gradient directions. Tradition-
ally, if we were to treat these /N images as a minibatch, we would average the N gradients. However, we take a
weighted average of the gradients, allowing us to span a larger space. We jointly optimize these weights, referred to
as Qisyn,; Ei Qsyn, = 1, along with the images and soft label.

Next, we show that weighing the gradients of each image in the backward pass is the same as weighing the losses from
each image on the forward pass, since derivative and summation can be interchanged. Formally, let 6 be the weights
of the model, and ¢(x) the output of the model. Let the loss per synthetic datapoint, denoted by L(0(Zsyn,), Ysyn,),
be weighted by the respective sy, and summed into L,,, the overall loss of the synthetic dataset. Let the resulting

Under review as submission to TMLR

gradient from backpropagating L, be Us,,,. Backpropagating L., results in the desired weighted average of the
individual gradients per datapoint, as shown:

Lsyn = Z OfiL(e(xsyni)u ysynz) (l)
. VLSyn _ VL(G(xsynl)aysynl)
Usn =~ —Zijal <0 2

Standard cross entropy loss is used to calculate gradients from both the true and the synthetic data. The synthetic
data is optimized by minimizing the reconstruction loss, R%;,ss, Which is the cosine similarity between the true update
Us cai, and the synthetic update Uy, .

< Ureal : Us n >
Rloss - (1 - Y) (3)
||Ureal||2||Usyn||2

Since minimizing R;,ss only aligns the directions of gradients, we additionally send scaling values for each layer
from U, to scale up U,,,,. To avoid cluttering notation, we leave this out since it only adds extra parameters equal
to the number of layers. In addition, we also use soft labels instead of the hard labels used in the real dataset. This
provides more flexibility for the optimization algorithm to create a better alignment between synthetic and true updates,
and discourages attacks like IG, which rely on one-hot labels. We use Adam (Kingma & Ba, 2015) to optimize the
randomly initialized images to generate a gradient that aligns with the true weight updates. We use learning rates 0.1
for images, labels and as, for 1000 iterations, decayed by a factor of 0.1 at the 375t 625", and the 875" iteration.
For the downsampling experiments, since the network expects inputs of size 32 x 32 x 3, we replicate the single
channel along all dimension in the grayscale case, and perform nearest neighbor upsampling before feeding in the
images for the case with reduced image size.

3.3 TOFU: The Federated Learning Algorithm

We now put all the parts together and describe how we utilize the synthesized dataset to enable communication efficient
and private federated learning. All clients and the server have the same model initialization before the learning phase
starts. Every client first trains on its private local data for a few minibatches and determines the true weight update,
U, cai> as the difference between the starting and ending weights. This true weight update is encoded using synthetic
data (Dgyy,) as described in Section 3.2. D,,,, and then communicated in lieu of weight updates to the server. The
server decodes the information by performing a single forward and backward pass to get the encoded weight update.
The server repeats this for proxy data received from all clients and averages the decoded updates. To ensure efficiency
during down-communication as well, the server encodes its own weight update due to aggregation into proxy data,
and sends this back to all clients. The clients then update their local models by decoding this information. The process
is repeated until convergence. This is summarized in Algorithm 3 in Supplementary section A.1.

3.4 Efficiency-Privacy-Accuracy Tradeoff

The weight update statistics change with accumulation over different number of batches and convergence progress. We
now introduce the various hyperparameters that need to be tuned, and their effect on accuracy, privacy and efficiency.

Number of Synthetic Datapoints (Nimgs): The size of the synthetic dataset transmitted per communication round
has a direct impact on privacy, communication efficiency, and accuracy. While a larger synthetic dataset provides
better accuracy as the encoding will be closer to the true weight update, the communication efficiency of the algorithm
decreases since we have to communicate more data. We note that using 64-128 datapoints gives us the best empirical
results. We see larger approximation errors with smaller number of datapoints, buffering us more against attacks.

Synthesis Frequency (Synfreq): This denotes how many minibatches of weight updates should be accumulated by
the client before communicating with the server. In FedAvg, this is usually one epoch. A very large Synfreq results in
larger accuracy drops, since a large accumulated weight cannot be well represented by few synthetic images, but allows

Under review as submission to TMLR

for enhanced privacy due to larger approximations. However, it degrades efficiency since we have to communicate
more often per epoch.

Phases to Improve Accuracy (switch) In the initial phase of learning, the gradient step is quite error tolerant since
there is a strong direction of descent. For the single device experiments, after a few communication rounds for warm-
up, we empirically see better results by scaling the learning rate by the reconstruction error. This is implemented by
scaling Usyy, by (1-Rjoss), capturing the cosine similarity between the true and the synthetic update. This enables
small steps to be taken if the synthetic data could not approximate the true update well. For single-device experiments,
we switch from warm-up to this scaled learning rate phase at 200 communication rounds, and referred to it as switch; .
In the Federated setting, we did not notice much improvement from this switch empirically, and thus leave it out
for simplicity. However, we note that two sets of encoding are required now, for both up-communication and down-
communication, and hence, we see more accuracy drop than the single device case. To counter this, we end with a few
communication rounds of full weight update exchange to regain any accuracy loss. To ensure privacy, we recommend
expensive encryption of the weight updates here. Since it consists of very few rounds (under 15), we do not sacrifice
efficiency. We call the communication round where we switch to this final phase as switchy and mark it by a star
in the learning curves shown in Supplementary section A.3, and mention them in the corresponding hyperparameter
sections. The efficiency savings we report take into account these rounds of expensive full gradient exchange as well.
To summarize, for single device experiments, we have a brief warm-up phase of a few hundred communication rounds,
and then switch to scaling learning rate by reconstruction error. For the federated setup, we do not scale the learning
rate by communication round, and instead have a brief full weight update exchange phase of up to 15 communication
rounds at the end of training.

Experimenting with Image sizes: We want to encourage synthetic data to resemble the true data distribution even
lesser, while relying on our optimization algorithm to tune them to get a good match between the target gradient and
the synthetic gradient. To do this, and to further enhance efficiency, we experiment with enforcing two downsampling
priors on the synthetic images. The CIFAR-10 images are of size 32 x 32 x 3, and this is also the size of our synthetic
data. In one experiment, we downsample the number of channels in synthetic images from 3 to 1. The single channel
is replicated across the 3 dimensions before being fed into the network for synthetic gradient calculation. In the other
experiment, the synthetic images are sized 16 x 16 x 3 with the height and width upsampled to the correct size by
nearest neighbor upsampling before being fed into the network. We show a comparison of what the true images, the
synthetic full size images, the grayscale images, and the downsampled images look like in Figure 2. In Section 4.1,
we show that we can successfully learn with all three kinds of synthetic images with an average accuracy drop of 3%
for full sized synthetic images, 5% for single-channeled images and 3.5% for images with width and length halved.

4 Experimental Results and Discussion

In this section, we first demonstrate TOFU on a single device setup to show that privacy preserved learning with
only synthetic data is possible. This setup can be thought of as a federated setup with only 1 client and no down-
communication. We initialize two copies of the same network with the same weights. Network 1 represents the client,
and learns on real data for Synfreq number of batches, generating Nimgs number of synthetic datapoints to send to
Network 2, which emulates the server. Network 2 only learns on the synthetic data. Post communication, both the
networks have the same weights since Network 1 knows how the synthetic data is going to update Network 2 and
resets its own weights accordingly. For the single device experiments, we focus on getting the maximum accuracy
from purely synthetic data, and hence we do not employ the final phase of full weight update exchanges. We first show
the results of learning with similarly sized images as the real data, and then introduce priors that recreate the gradient
via single channel images and images with width and height downsampled by 2.

We then extend it to multiple clients in a federated setup. This has two encoding phases, the first carried out by
each client to transmit their updates to the server (up-communication), and the second carried out by the server after
aggregation from all clients (down-communication). Down-communication ensures that the weights of all clients and
the server remain in sync after the end of each communication round. The experiments for Federated setup include a
few rounds of full gradient exchange at the end in order to circumvent any accuracy drop, and the emphasis in these
experiments is on efficiency. All learning curves are shown in Supplementary section A.3.

Under review as submission to TMLR

Synthetic Original Grayscale Downsampled
Image Size 32x32x%3 32x32x1 16x16x%3
Max Acc (%) Comm Eff Max Acc (%) Comm Eff Max Acc (%) Comm Eff
Baseline Accuracy without using synthetic data: 88.6%
Nimgs Varying Nimgs @Synfreq =200
32 84.05 32x 81.24 97x 82.61 121 %
64 85.78 18 % 83.39 45 % 84.14 60 x
96 86.05 10x 83.63 31x 85.29 46 x
128 86.81 8x 84.09 23x 85.74 30x
Synfreq Varying Synfreq @Nimgs = 64
50 85.22 16x 82 55x 83.57 75
100 84.73 16x 82.73 45 84.18 64 x
200 85.78 18x 83.39 45 84.14 60x
400 85.76 15x% 83.19 47 x 84.61 64 x
1 epoch 84.79 19x 81.3 51x 84.62 64 x

Table 1: Single Device accuracies and efficiency ratios for a VGG13 model, CIFAR-10 dataset on synthetic data. Baseline accuracy
for learning on real data with the same hyperparameters is 88.6%, as shown in grey. The best accuracy setting for each set of
experiments for using only synthetic data is highlighted in bold. Communication rounds required to reach maximum accuracy are
shown in Supplementary section A.3.2. The network is trained with a batch-size of 64, with 782 minibatches making up an epoch.

4.1 Single Device Experiments

Setup We demonstrate our results on the CIFAR-10 dataset. It comprises of 50,000 training samples and 10,000
validation samples of 10 classes each. For all experiments, we use a VGG-13 (Simonyan & Zisserman, 2014) network.
We use an SGD optimizer with learning rates 0.02, decayed by 0.2 at the 250" and 400" epochs, with a mini-batch
size of 64 for a total of 500 epochs. The maximum baseline accuracy we achieve by training on real data is 88.6%.
In this section all non-baseline results are shown for learning on purely synthetic data, with varying Synfreq, Nimgs
and synthetic image sizes. More details are shown in Supplementary section A.3. The results are tabulated in Table
1. The efficiency shown is calculated as the ratio of parameters sent with synthetic data versus sending full gradients
for the corresponding Syn freq and Nimgs setting. We perform the warm up phase for all experiments for 200
communication rounds and then start to scale the learning rate by the reconstruction error. The hyperparameters are
tuned for the case of Synfreqg= 200 and Nimgs= 64 and are held constant for all the other single device experiments.
We show additional results for MNIST dataset in Supplementary section A.3.2.

Efficiency Calculation The number of parameters of each synthetic image is 3072 (32 x 32 x 3) if no prior is
enforced on the image, 1024 (32 x 32 x 1) if single-channeled images are synthesized, and 768 (16 x 16 x 3) if
downsampled images are synthesized. The size of each datapoint (image, label, « trio) in the synthetic dataset Dy,
is the sum of the size of the synthetic image + 10 (number of soft labels) + 1 (« per image). Hence the total size of
the synthetic dataset (Dy;,.) is the size of each data point multiplied with Nimgs. The communication efficiency (1)
is then calculated as:

_ Number of Model Parameters * Number of Baseline Communication Rounds

Dys;.e * Number of Synthetic Communication Rounds

Varying Nimgs Table 1 shows that increasing the synthetic dataset size improves accuracy, but reduces commu-
nication efficiency as we need to send more parameters per communication round. We achieve good accuracies by
learning on only synthetic data, with an average accuracy drop of 3%, 5.5% and 4% for synthetic images of original
size, grayscale images, and downscaled respectively across all considered Nimgs. For further experiments, we fix
Nimgs = 64 as a good trade-off point. The exchange frequency for both the baseline and the synthetic case for all
Nimgs is set as 200. Baseline training reaches full accuracy sooner than learning with synthetic data as expected, but
even after accounting for that, we are able to achieve upto 121 x more communication efficiency. The communication

Under review as submission to TMLR

rounds vary between experiments and are shown in Appendix section A.3.2. We also show the corresponding results
for MNIST in Appendix section A.3.2.

Varying Synfreq Here we show that whether we generate synthetic images to match a gradient as often as 50
minibatches or as late as once an epoch (updates from 782 minibatches), we can converge to a reasonable accuracy.
All simulations take similar number of epochs to converge, and are able to converge to very similar accuracies. In Table
1, we compare efficiency when the synthetic images are being communicated instead of the gradient, and we assume
that both of these are communicated as often as the mentioned Synfreq. However, as we see in the federated setup in
the next section, the frequency of communication can vary between the synthetic data and the real data. In those cases,
a lower Synfreq will result in a requirement for more communication rounds and hence achieve lesser communication
savings. The corresponding rounds for convergence for all experiments are mentioned in Supplementary section A.3.2.

Forcing a Prior on Synthetic Image Sizes Here, we experiment with enforcing images to not follow the same
distribution as the real dataset by constraining their size. In the first experiment, the synthetic images are constrained
to have a single channel (results in column 2 of Table 1) . In the second experiment, we constrain images to be half
the width and height (results in column 3 of Table 1). To be compatible with expected image size before being fed
into the network for gradient calculation, the grayscale images are duplicated across the 3 channels and the smaller
images are upsampled to the correct size by copying the nearest neighbors pixel value. The results show that we get
very low drop in accuracies from full sized images. The average accuracy drop from full sized synthetic images to
images with height and width halved is only 0.5% acrosss all experiments , and 2% to grayscale images. However we
can see that we get approximately 4x and 3x improvement in communication efficiency as a result of reducing the
number of parameters to be communicated or learned per image.

Discussion We successfully show that synthetic data can be used to learn, with small accuracy drops for CIFAR-10,
using only synthetic data. This drop is later recovered in the federated setup. For full size images, the average accuracy
drop from baseline is 3% at 17X communication efficiency. For grayscale images, we get an average accuracy drop
of 5% at 49x communication efficiency and 3.5% drop at 65x savings for images with width and height halved. We
also wish to mention reiterate that the larger the networks, the more the savings that can be achieved with our method,
since the size of updates will increase but the size of images remains constant.

4.2 Federated Learning Experiments

Setup We now discuss the federated experiments conducted on 5 and 10 clients for CIFAR-10 and MNIST, respec-
tively, with an IID distribution of data. This results in each client having 157 minibatches of size 64 image-label pairs
for CIFAR-10 and 97 minibatches of size 64 for MNIST. We compare with FedAvg (McMahan et al., 2017) as our
baseline, with exchanges happening once per epoch. We assume a participation rate of 1. The results are shown in
Table 2 for MNIST and Table 3 for CIFAR-10.

Efficiency Calculation In the case where full gradients are exchanged at the end in order to recover the accuracy, the
communication efficiency (n) is calculated by including the parameters used for exchanging the full gradients (Py.;):

Py = (Number of Model Parameters * Number of Full Gradient Exchanges)

_ Number of Model Parameters * Number of Baseline Communication Rounds

(Dsize * Number of Synthetic Communication Rounds) + Prun

Varying Synfreq and Nimgs We get the best results at a Synfreq equal to one local epoch for both datasets, similar to
FedAvg. We note that there is more variation in efficiency with varying Synfreq settings than single device experiments.
That is because in this case, our Federated baseline is fixed at a Synfreq of 1 epoch, irrespective of what the Synfreq of
synthetic images is. Increasing the synthetic dataset size (Nimgs) results in better or comparable accuracy but sends
more parameters per communication round. We get best accuracy for Nimgs = 96 for both datasets, seeing a drop
of 2% and 12% for MNIST and CIFAR-10, with 3.6 and 14.7x communication efficiency, respectively. We note
that the drop is more than what we see in single device, since each round incurs approximations from both up and
down-communications. We show that we can recover this drop almost completely in just 3 communication rounds for

Under review as submission to TMLR

MNIST, LeNet5, 10 Clients with IID distribution
Using Only + 3 Additional
Synthetic Data Rounds of FedAvg
Max. Comm. Max Comm.
Acc. (%) Eft. Acc. (%) Eff.
FEDAVG 98.91 1.0x - -
Nimgs Synfreq = 1 local epoch
32 95.39 6.9x 98.06 6.6x
64 96.06 4.2x 98.14 4.1x
96 96.77 3.6x 98.01 3.5x%
128 95.23 4.2x 98.07 4.1x
Synfreq Nimgs = 64
25 92.00 3.4x 98.29 3.3x
50 91.71 7.9% 98.19 7.5%
1 epoch 96.06 4.2 % 98.14 4.1x
2 epochs 95.52 3.1x 97.91 3.1x

Table 2: Accuracy and efficiency of the federated platform on MNIST. The baseline of FedAvg is shown in grey. The best accuracy
setting for each set of experiments for using only synthetic data is highlighted in bold.

MNIST and 15 rounds in CIFAR-10, still allowing for 3 — 6.6 x communication efficiency for MNIST and 5.4 — 8.8 x
for CIFAR-10, as seen in the last columns of Tables 2 and 3. Additionally, we realize that showing maximum accuracy
might skew communication efficiency in our benefit, since FedAvg reaches higher accuracy, which will naturally take
more communication rounds. To account for this, we also report communication efficiency at iso-accuracy in Tables 7
and 8 for MNIST and CIFAR-10, respectively in Supplementary section A.3. When we consider 72% as the baseline
accuracy for CIFAR-10, our efficiency of 5.4 — 8.8x reduces to 2.4 — 4.7x. This shows that our method is still
more efficient under stricter evaluation conditions. We found that the combination of Synfreq=1 epoch and Nimgs=64
provides a good trade-off point between communication efficiency and accuracy drop.

Enforcing a Prior on Synthetic Image Sizes We also experimented with restricting the optimization to generate
single-channeled images in the federated setup. Table 3 shows that generating 1-channeled images instead of 3-
channeled images provided communication efficiency at the cost of accuracy. Using only synthetic images provided
a communication efficiency of 46 — 117 x, however, with an accuracy drop of 17 — 25% from the FedAvg baseline.
However, this drop can be reduced to lesser than 1% with 15 additional rounds of full weight update exchange, while
still achieving communication efficiency of 8.9 — 10.1x.

Cost of Full Weight Update Exchange TOFU shares full weight updates for the last few epochs to regain full
accuracy, which need to be encrypted to ensure privacy. For a conservative estimate while ensuring privacy, we
assume that we need to encrypt all parameters sent during all communication rounds for both methods, including
synthetic data and full weight updates. Secure aggregation (Bonawitz et al., 2017), a commonly used protocol, shows
that the communication cost is O(n + k) for the client and O(nk + n?) for the server, where k is the dimension of
the vector being encrypted and n is the number of clients. Comparing the encryption cost between FedAvg and TOFU
for the same number of clients reduces to a ratio of the total parameters sent. This means that encryption retains the
cfficiency benefits of our method. The results show that TOFU can learn both MNIST and CIFAR-10, distributed in
an IID setup, with an average of ~4.6x and ~6.8x communication efficiency and less than an 1% average accuracy
drop.

5 Conclusion

In the standard federated learning algorithm, clients carry out local learning on their private datasets for some mini-
batches, and communicate their weight updates to a central server. The central server aggregates the weight updates

10

Under review as submission to TMLR

CIFAR-10, VGG13, 5 Clients with IID distribution
Using Only + 15 Additional
Synthetic Data Rounds of FedAvg
Max. Comm. Max Comm.
Acc. (%) Eff. Acc. (%) Eff.
FEDAVG 88.73 1.0x - -
Nimgs Synfreq = 1 local epoch
32 67.12 44.9x 87.29 8.8x
64 75.00 19.8x 88.30 7.1x
3 Channel 96 76.02 14.7x 88.39 6.3%
Synthetic
Tmages 128 76.00 10.6x 87.86 5.4x
Synfreq Nimgs = 64
50 63.03 18.0x 87.69 6.9x%
100 70.07 14.5x 87.26 6.3x
1 epoch 75.00 19.8x 88.30 7.1x
Nimgs Synfreq = 1 local epoch
32 63.26 117.0x 87.17 10.1x
64 69.04 58.9x 87.34 9.3x
I Channel 96 71.15 39.3x 87.60 8.6
Synthetic 128 71.04 46.1x 86.88 8.9x
Images - - . :
Synfreq Nimgs = 64
50 54.23 47.2x 87.57 8.9x%
100 65.08 47.2x 87.38 8.9x%
1 epoch 69.04 58.9x 87.34 9.3x

Table 3: Accuracy and efficiency on the federated platform on CIFAR-10. The baseline of FedAvg is shown in grey. Results for
additional 5 & 10 rounds are in Table 9, Supplementary section A.3.4. The best accuracy setting for each set of experiments for
using only synthetic data is highlighted in bold.

received from all clients, and communicates this update back to all clients. There are two major bottlenecks in this
procedure; it is communication inefficient and it is shown that gradient and weight updates can be inverted into the
data that generated them, violating user privacy. In this work, we introduce TOFU, a federated learning algorithm for
communication efficiency and to enhance protection against data leakage via gradients. We encode the weight updates
to be communicated into a weighted summation of the gradients of a much smaller set of proxy data. The proxy data
resembles noise and thus even perfect inversion from data leakage attacks will result in revealing this noise rather
than user data. Additionally, data is far lower in dimensional complexity than gradients, improving communication
efficiency. We also show that this proxy data can be downsampled in size from the original data that generated the
target gradients without much drop in accuracy, thus being even more efficient. Since proxy data only approximates
gradients, we observe a small drop in accuracy when learning only from this synthetic data. We show that the accuracy
can be recovered by a very few communication rounds of full weight updates. To ensure privacy in this phase, we
recommend encrypting the updates. Since these rounds are very few in comparison to the number of rounds where
we exchange synthetic data, we are still able to maintain communication efficiency. We show that we can learn the
MNIST dataset, distributed between 10 clients and the CIFAR-10 dataset, distributed between 5 clients to accuracies
comparable to FedAvg, with an average of ~4.6x and ~6.8x communication elficiency and less than an average 1%
accuracy drop, respectively. Availability of more data and compute capabilities has encouraged network sizes to grow.
Since input data usually is of fixed dimensions, the communication efficiency advantages of TOFU are expected to
grow with network size.

11

Under review as submission to TMLR

References

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep
learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’16, pp. 308-318, New York, NY, USA, 2016. Association for Computing Machinery.
ISBN 9781450341394. doi: 10.1145/2976749.2978318. URL https://doi.org/10.1145/2976749.2978318.

Dan Alistarh, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: randomized quantization for communication-
optimal stochastic gradient descent. CoRR, abs/1610.02132, 2016. URL http://arxiv.org/abs/1610.02132.

Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-sgd: Distributed sgd with quantization,
sparsification, and local computations, 2019.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel
Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-preserving machine learning. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS *17, pp.
1175-1191, New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450349468. doi:
10.1145/3133956.3133982. URL https://doi.org/10.1145/3133956.3133982.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu. Dataset distillation
by matching training trajectories. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022.

Moming Duan, Duo Liu, Xianzhang Chen, Yujuan Tan, Jinting Ren, Lei Qiao, and Liang Liang. Astraea: Self-
balancing federated learning for improving classification accuracy of mobile deep learning applications. In 2019
IEEE 37th international conference on computer design (ICCD), pp. 246-254. IEEE, 2019.

Liam Fowl, Jonas Geiping, Wojtek Czaja, Micah Goldblum, and Tom Goldstein. Robbing the fed: Directly obtaining
private data in federated learning with modified models. arXiv preprint arXiv:2110.13057, 2021.

Liam Fowl, Jonas Geiping, Steven Reich, Yuxin Wen, Wojtek Czaja, Micah Goldblum, and Tom Goldstein. De-
cepticons: Corrupted transformers breach privacy in federated learning for language models. arXiv preprint
arXiv:2201.12675, 2022.

Jonas Geiping, Hartmut Bauermeister, Hannah Drége, and Michael Moeller. Inverting gradients—how easy is it to
break privacy in federated learning? arXiv preprint arXiv:2003.14053, 2020.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Collaborative training of large
cnns on the edge. CoRR, abs/2007.14513, 2020. URL https://arxiv.org/abs/2007.14513.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp. 770778, 2016.

Samuel Horvath, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter Richtarik. Natural
compression for distributed deep learning. CoRR, abs/1905.10988, 2019. URL http://arxiv.org/abs/1905.10988.

Jinwoo Jeon, Kangwook Lee, Sewoong Oh, Jungseul Ok, et al. Gradient inversion with generative image prior.
Advances in neural information processing systems, 34:29898-29908, 2021.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, K. A.
Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G.L. D’Oliveira, Salim El Rouayheb,
David Evans, Josh Gardner, Zachary Garrett, Adria Gascon, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid
Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri
Joshi, Mikhail Khodak, Jakub Kone¢ny, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrede Lep-
oint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Ozgijr, Rasmus Pagh, Mariana Raykova, Hang
Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha
Suresh, Florian Tramer, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han
Yu, and Sen Zhao. Advances and open problems in federated learning. 2019. URL https://arxiv.org/abs/1912.04977.

12

Under review as submission to TMLR

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, and Ananda Theertha
Suresh. SCAFFOLD: stochastic controlled averaging for on-device federated learning. CoRR, abs/1910.06378,
2019. URL http://arxiv.org/abs/1910.06378.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, and
Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in federated learning. CoRR,
abs/2008.03606, 2020. URL https://arxiv.org/abs/2008.03606.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and Yann LeCun
(eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Jakub Kone¢ny, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: Strategies for improving communication efficiency. In NIPS Workshop on Private Multi-Party
Machine Learning, 2016. URL https://arxiv.org/abs/1610.05492.

Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss landscape of neural nets. CoRR,
abs/1712.09913, 2017. URL http://arxiv.org/abs/1712.09913.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pp. 1273-1282.
PMLR, 2017.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Kone¢ny, Sanjiv Kumar, and
H. Brendan McMahan. Adaptive federated optimization. CoRR, abs/2003.00295, 2020. URL https://arxiv.org/abs/
2003.00295.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distillation. CoRR, abs/1811.10959,
2018. URL http://arxiv.org/abs/1811.10959.

Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov. See through gradients:
Image batch recovery via gradinversion. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16337-16346, 2021.

Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient momentum sgd for
distributed non-convex optimization, 2019.

Yanlin Zhou, George Pu, Xiyao Ma, Xiaolin Li, and Dapeng Wu. Distilled one-shot federated learning. arXiv preprint
arXiv:2009.07999, 2020.

Ligeng Zhu and Song Han. Deep leakage from gradients. In Federated learning, pp. 17-31. Springer, 2020.

13

