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ABSTRACT

In this paper, we introduce a novel approach for systematically solving dataset
condensation problem in an efficient manner by exploiting the regularity in a given
dataset. Instead of condensing the dataset directly in the original input space,
we assume a generative process of the dataset with a set of learnable codes de-
fined in a compact latent space followed by a set of tiny decoders which maps
them differently to the original input space. By combining different codes and
decoders interchangeably, we can dramatically increase the number of synthetic
examples with essentially the same parameter count, because the latent space is
much lower dimensional and since we can assume as many decoders as necessary
to capture different styles represented in the dataset with negligible cost. Such
knowledge factorization allows efficient sharing of information between synthetic
examples in a systematic way, providing far better trade-off between compres-
sion ratio and quality of the generated examples. We experimentally show that
our method achieves new state-of-the-art records by significant margins on vari-
ous benchmark datasets, from low resolution datasets such as SVHN, CIFAR10,
CIFAR100, and TinyImageNet to ImageNet-Subset of resolution 224 x 224.

1 INTRODUCTION

Deep learning has been successful in numerous machine learning problems thanks to the recent
progress in parallel processing and the huge amount of real-world data collected from various
sources. However, for some machine learning applications it is required to repeatedly rehearse the
training process, such as for hyperparameter optimization (Bengio, 2000; Franceschi et al., 2017),
neural architecture search (Liu et al., 2018) and continual learning (Lopez-Paz & Ranzato, 2017).
In such cases, it requires prohibitive memory and computational cost to keep and rehearse all the
examples in huge datasets, giving rise to the need for compressing each dataset into a small set of
representative examples. The conventional approaches resort to selecting a coreset (Phillips, 2016;
Toneva et al., 2018; Borsos et al., 2020), but their assumption is limited as there may not exist
strongly representative examples in the original dataset (Zhao & Bilen, 2021) and they require solv-
ing combinatorial optimization problems (Borsos et al., 2020). Recent works thus focus on dataset
condensation (Wang et al., 2018; Zhao et al., 2021), which aim to directly parameterize and optimize
the synthetic dataset with gradient descent. They have shown to perform well compared to coreset
selection approaches and generate plausibly looking examples as well.

However, despite their great potential, most of the existing dataset condensation methodologies do
not focus on exploiting the regularity in the dataset, such as what the underlying data generating pro-
cess should be. They usually parameterize a set of synthetic examples directly in the input space and
minimize a distance between a real and a synthetic dataset in either the parameter (Zhao et al., 2021)
or feature space (Zhao & Bilen, 2022a). Such lack of assumptions on the underlying data generating
process prevents them from efficiently sharing knowledge among the synthetic examples. There-
fore, those approaches may require much larger space to capture the same amount of information
compared to the space required with a properly organized data generating process. This intuition
gives rise to a question about whether we can further improve the efficiency of dataset condensation
by exploiting the regularity in the given dataset.

To this end, we naturally assume that each datapoint is generated from a code in a compact latent
space followed by a sharable mapping function from the latent space to the original input space (i.e.
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Figure 1: (Left) Conventional dataset condensation approaches that directly parameterize the synthetic ex-
amples in input space. (Right) Our approach that parameterize latent codes and multiple decoders that can
generate much more number of examples with essentially the same parameter count.

decoder), both of which are learned in an end-to-end manner. In this way, we can dramatically in-
crease the number of generated synthetic examples with the same parameter count because the latent
space can be made to be much lower dimensional than the original input space, and also since we
can assume as many decoders as appropriate to capturing various styles represented in the dataset.
See Figure 1 for the concept. Note that the additional per-class parameter count introduced by the
decoders is negligible because those decoders are tiny and can be shared across all the synthetic
examples and classes. Furthermore, the knowledge is shared among the generated synthetic exam-
ples through the shared latent space and the set of shared decoders applicable to any latent codes
interchangeably, dramatically improving the trade-off between compression ratio and quality of the
synthetic dataset.

In algorithmic side, we show that the previous approaches that subsample synthetic examples for
computational efficiency (e.g. gradient matching (Zhao et al., 2021) or distribution matching (Zhao
& Bilen, 2022a)) produce biased gradients, preventing the synthetic examples from being diversified.
We further experimentally observe that subsampling of the real examples produce high-variance
gradients, preventing the model from finding a good solution. Those observations suggest that we
have to perform full batch training for both real and synthetic dataset. We thus adopt distribution
matching (Zhao & Bilen, 2022a) as it does not require expensive second order computations unlike
gradient matching (Zhao et al., 2021). We also prestore and reuse some of the information needed
to perform distribution matching for further improvement of the training efficiency.

We experimentally show that our method, which we name as Knowledge Factorization and Shar-
ing (KFS), achieves new state-of-the-art records on various benchmark datasets such as SVHN,
CIFAR10, CIFAR100, TinyImageNet and ImageNet-Subset with varying amount of parameters for
constructing a synthetic dataset. We also show that the synthetic examples generated from KFS
produce decent performances on network architectures that are different from what they have been
trained on (e.g. from ConvNet-3 to DenseNet-121 and EfficientNet-B0), and that it provides supe-
rior performance over various amount of training budget at evaluation time without overfitting. We
summarize the contribution of this paper as follows:

* We introduce KFS, a novel dataset condensation method which factorizes the synthetic data
generating process into a set of learnable latent codes and decoders, thereby dramatically
increasing the number of synthetic examples with a limited parameter count.

* We show that the modeling of the data generating process effectively allows knowledge
sharing between the synthetic examples such that they achieve far better trade-off between
the compression ratio versus the quality of the generated examples.

* We further show that the existing dataset condensation approaches suffer from biased and
high-variance gradients, and experimentally verify that full batch training significantly im-
proves the quality of the synthetic dataset.

* Our KFS achieves new state-of-the-art records in all datasets we consider, outperforming
the previous state-of-the-art by significant margins.

2 RELATED WORK

Dataset condensation. Wang et al. (2018) firstly introduced a differentiable approach to dataset
condensation problem through a bilevel optimization formulation. However, in their work only a
few inner-gradient steps are assumed for computational efficiency and additionally a shared initial-
ization is learned and entangled with the learned data. Zhao et al. (2021) overcome the limitation
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by matching the network weights and approximating the expensive bi-level optimization with short-
horizon approximation, resulting in gradient matching between real and synthetic examples for each
step. Zhao & Bilen (2021) further develop the idea by learning a differentiable Siamese networks
for augmenting the synthetic examples. Cazenavette et al. (2022) recently propose to match much
longer segments of learning trajectories, yielding competitive performances by guiding networks
to a more similar state. On the other hand, instead of matching the network weights, Zhao & Bilen
(2022a) match distributions of real and synthetic dataset in a feature space. Although they sometimes
show inferior performance to gradient matching, their approach is computationally more efficient as
they do not require to compute expensive second-order derivatives such as vector-Jacobian products
(VIPs) required by gradient matching. Similarly, Wang et al. (2022) propose to layer-wisely align
features with auxiliary discriminative loss and bi-level formulation for adjusting parameter updates.
On the other hand, Nguyen et al. (2020; 2021) propose to make use of the connection between in-
finitely wide neural networks and kernel ridge regression, but their approach requires hundreds of
GPUs for training. Perhaps the most relevant to our work is recently proposed IDC (Kim et al.,
2022). They generate various synthetic data from a single set of condensed examples by segmenting
and upscaling the condensed examples. Their approach can be seen as exploiting the regularity in
the dataset, for instance, spatially nearby pixels look similar to each other. Although they achieve
strong performances on many datasets, it is questionable whether the proposed generative process
is sophisticated enough to fully exploit the regularity in the dataset. In this work, we make a more
natural and general assumption on the data generating process, yielding new state-of-the-art records
on all the datasets we consider.

Generative models. Our work is closely related to deep generative models such as VAE (Kingma
& Welling, 2013) and GAN (Goodfellow et al., 2014). They maximize the likelihood of data by
learning a compact latent space and a shared decoder, similarly to our work. However, it is ques-
tionable whether maximizing the data likelihood would be sufficient for the target task such as
classification. Also, whereas it has been shown that modality is crucial for the performance of con-
densed dataset (Kim et al., 2022), they are known to suffer from the posterior collapse (or mode
collapse) problem (Razavi et al., 2019a). Van Den Oord et al. (2017) and Razavi et al. (2019b)
overcome the issue by proposing VQ-VAE that models discrete representations in the latent space.
The discreteness of the approach makes them closely related to the dataset condensation, but it is
questionable whether such generative models can outperform the recent dataset condensation ap-
proaches. For instance, Such et al. (2020) combine GAN with meta-learning to generate synthetic
examples, but they only slightly outperform Wang et al. (2018). Recently, Zhao & Bilen (2022b)
propose to combine a pre-trained GAN generator and dataset condensation learning objective for im-
proving the performance of downstream tasks. However, in addition to the large parameter count of
the pre-trained generator, they require additional parameters for learning the discrete codes, making
them not directly comparable under the conventional protocol of dataset condensation.

3 APPROACH

We next present our approach, Knowledge Factorization and Sharing (KFS), which efficiently fac-
torizes the data generating process into latent codes and decoders so that knowledge is effectively
shared among the synthetic examples generated.

3.1 KNOWLEDGE FACTORIZATION AND SHARING IN LATENT SPACE

Kim et al. (2022) observed that what determines the performance of condensed dataset is its modality
rather than resolution. We follow the same principle but aim to find even better trade-off between
increasing modality and preserving quality of synthetic examples.

Latent code - decoder factorization. Our approach starts from the assumption that the datapoints
lie in a compact latent space whose dimension can be much lower than that of the actual input space.
Thanks to its lower dimensionality, we can dramatically increase the number of datapoints given a
limited parameter count (e.g., the number of parameters used by synthetic images per each class).
We can also preserve the quality of the synthetic images to the extent to which the assumption holds,
which has been proven to be generally the case. The only space overhead is the additional parameters
for a tiny decoder that maps those latent codes into the input space. Note that this decoder can be
shared across all the datapoints and classes, and even if the decoder is relatively large we can flexibly
adjust the number of latent codes so that the total parameter counts are comparable.
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Let us take an illustrative example. Suppose we want to condense a dataset consisting of images of
shape 3x32x32 = 3072 (e.g. SVHN or CIFAR10). Instead of learning those 3072 parameters in the
pixel space, we instead learn much smaller codes in, say 12 x 4 x 4 = 192 dimensional latent space
and decode them back to the original pixel space with a shared decoder. Given the same parameter
count, this allows us to generate 16 times more number of images than the existing approaches
(192 x 16 = 3072). Note that the per-class parameter count of shared decoder is negligible. In the
above example, we could use a tiny 3-layer deconvolutional architecture with channels decreasing as
12 -+ 9 — 6 — 3 and 2 x 2 kernel, resulting in only 738 parameters in total. Since this decoder can
be shared across all classes, dividing it with the number of classes (e.g. 10) results in a negligible
amount of per-class parameter count (e.g. 73.8) compared to the actual image size.

Sharing various styles with multiple decoders. With the above factorization, we can now de-
couple the compressed expression of the instances from how to decode them back. This decoding
process can be thought of as adding details to the latent codes so that the decoded instances have
sufficient information in the original input space. For instance, given a compressed expression of a
car, the decoder may add in or supplement background details or colors to complete the image.

This insight implies that the number of decoders can be as many as the various styles that exist in the
actual dataset. For instance, given the same compressed expression of an airplane, the background
may be ocean, sky, forest, or sunset. By assuming multiple decoders, we could expect each of the
decoders to explain each of those distinct styles in the dataset respectively. Furthermore, since the
knowledge of how to add styles to the latent codes can be shared across all instances and classes,
we can dramatically increase the number of synthetic images without increasing parameter count
too much, similarly to Cartesian product between a pair of sets. For instance, if there are 8 shared
decoders and 16 latent codes for each of 10 classes, we can generate total 8 x 16 = 128 synthetic
images with only around 3131 parameter count for each class, which is less than 2% increase from
the parameter count of a single image 3 x 32 x 32 = 3072.

3.2 TRAINING WITH UNBIASED AND LOW-VARIANCE DISTRIBUTION MATCHING

Basically, our approach is compatible with any learning-based dataset condensation approaches that
allows differentiation w.r.t latent codes and decoder parameters by backpropagating through the
generated examples, such as gradient matching (Zhao et al., 2021) or distribution matching (Zhao &
Bilen, 2022a). In this paper, we propose to use distribution matching as it does not require expensive
vector-Jacobian products (VIPs) computations whereas gradient matching requires to compute VIP
for every training step.

Distribution matching. Here we introduce notations for further discussion. We denote a set of [V
real examples for each class ¢ = 1,...,C as X, = {x1,..., % n}. Similarly, a set of M latent
codes for each class cis ©, = {0.1,. .., 0.} and we collect them into © = {©4,...,O0¢}. Note
that the dimension of € is much lower than that of z. g(x) is a shared feature extractor which takes
x as an input. f(0; ¢4) is d-th decoder parameterized by ¢, that takes a latent code € as an input.
We assume there are D decoders and collect their parameters into ¢ = {¢1,...,¢p}. With these
notations, we consider the following empirical Maximum Mean Discrepancy (MMD) loss (Gretton
et al., 2012; Zhao & Bilen, 2022a).

2

1 C 1 1 N 1 D M
L(@a¢):52§ szlg(mc,n)_mdzz:lg(f(ec,m7¢d)) (1)
c= n—= =1 m= 2

Following Zhao & Bilen (2022a), we sample g(-) from random initializations rather than from a set
of pretrained networks, which is computationally more efficient and works well in practice.

Bias due to subsampling of synthetic examples. Zhao & Bilen (2022a) further approximate the
first term (i.e. mean of g(x) over n) and the second term (i.e. mean of g(f(6;¢)) over d and m)
by random subsampling for computational efficiency. However, whereas the gradient Vg 4L(0, ¢)
is unbiased w.r.t the random subsampling of indices of real data {n}"_, or classes {C}(?:[p the
gradient is actually biased w.r.t the random subsampling of indices of latent codes {m}*_, or
decoders {d}gzl. Specifically, suppose for simplicity we randomly sample a single pair of m ~

Uniform(1, M) and d ~ Uniform(1, D) and denote the corresponding loss as L. Then we can
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easily compute the bias of gradient E,,, 4[Ve L (0, $)] — Ve L (0, $) as
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2

D D M M

oz Y Y (i) <f<ec,m,;¢d,>>}.

d=1d'=1m=1m'=1

See Appendix D for the derivation. The above result suggests that the bias comes from ignoring
the interactions within the latent codes and within the decoders, respectively. The biased gradient
fails to minimize the inner product of the embeddings computed from different codes and decoders,
such as g(f(ec,m; (b))Tg(f(ec,m'; ¢)) and g(f(ac,m; ¢d))Tg(f(ec,m; ¢d’ ))’ preventing the codes and
decoders from being diversified. Intuitively, if we sample 8 € ©,, then each individual 6 will
try to explain the whole class set X, at a time without considering the existence of other codes
0’ € ©.\{0} due to the sampling. The same intuition holds for sampling the decoder f(-; ¢q).
Therefore, we should not sample m and d. However, despite of its importance, most of the recent
works do not consider correcting the bias (Zhao et al., 2021; Zhao & Bilen, 2021; 2022a; Cazenavette
et al., 2022; Wang et al., 2022; Kim et al., 2022).

Variance due to subsampling of real examples. We also found that random subsampling of real
examples is detrimental to performance due to large variance. Again, suppose for simplicity we
randomly sample a single index n ~ Uniform(1, V) independently for each class ¢ and denote the

corresponding loss as L. Then the variance of the gradient Var,, (Ve 4L(©, ¢)) is

e | XN | XN T
@ Z‘/;T N Zg(xc,n)g(xc,n)-r - <N Z xcn ) ( Zg l'cn ) Ve 3)
c=1 n=1

n=1

where V, = ﬁ 25:1 Z%:l Vo,69(f(0c,m; @a)). See Appendix E for the derivation. The middle
term in the big braces is nothing but the variance of embeddings of real examples g(x.) over
n =1,...,N. The problem is that since we sample g(-) from random initializations according to
the original distribution matching algorithm (Zhao & Bilen, 2022a), the variance of g(x. ) tends to
be very high compared to the discriminative power of the representation g(-) across the classes. We
empirically observe that such relatively high variance makes the gradient Vg 4L (0, ¢) too noisy
for the training process to find a good solution.

Full batch training. Based on the above analysis, we propose to perform full batch training for
both real and synthetic dataset for unbiased and low-variance training. In case of real dataset, we
basically need to compute the embedding mean of real examples % ij:l g(xc,n) across the classes
and random weights wy, ..., wg, with K denoting the total training steps. Instead of repeatedly
computing them for every experiment, we speed up our experiments by precomputing those means
once and storing them in an external device with the corresponding random weights, so that we can
quickly restore them for the later experiments. In case of synthetic dataset, we simply distribute
the classes over multiple GPUs and accumulate the gradients over all the processes. When the size
of each class is too large to fit in a single GPU, we compute the embedding mean over the whole
synthetic examples but backpropagate through only a subset of them for handling memory issue,
while keeping the gradient unbiased.

Discussion. Although the distribution matching objective in Eq. (1) works well in practice, it is
not clear why it should work with repeated sampling of ¢(-) from random initializations. A simple
explanation may be that for each class, a well-condensed synthetic dataset should lead to a similar
embedding mean to that of real dataset regardless of those random initializations. However, further
justification and understanding of the objective is required, which we leave as a future work.

4 EXPERIMENTS

We next experimentally validate the efficacy of KFS on various datasets and learning scenarios.

Datasets. We consider the following benchmark datasets such as SVHN (32x32) (Netzer et al.,
2011), CIFAR10 (32%x32) (Krizhevsky et al., 2009), CIFAR100 (32x32) (Krizhevsky et al., 2009),
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Table 1: Classification accuracies (%) on ConvNet-3. For our method, we report mean and standard devia-
tion over 15 evaluations (3 training runs and 5 evaluations for each run).

Dataset SVHN CIFARI10 CIFAR100 TinyImageNet
Images / Class 1 10 50 1 10 50 1 10 1 10
Param. / Class 3072 30720 153600 3072 30720 153600 3072 30720 12288 122880

Random 14.6+16 351441  709+09 | 144420 26.0+12 434+10 | 42403  14.6+05 14401 5.0+02

Herding 209+13  50.5+33  72.6+08 | 21.5+12  31.6+07 40.4+06 | 8.4+03  17.3+03 | 2.8+02  6.3+02

DC 31.2+14  76.1+06 82.3+03 | 28.3+05 44.9+05 53.9+05 | 12.8+03 25.2+03 - -
DSA 27.5+414  792+05 844404 | 28.8+07 52.1405 60.6+05 | 139403 32.3+03 - -
DM 20.3+21  73.5+10 84.2400 | 26.0+08 489406 63.0404 | 11.44+03 29.7+03 | 3.9+02 12.9+04

KIP to NN 57.3+01  75.0+01  80.5+0.1 | 499402 62.74+03 68.6+02 | 15.7+02  28.3+0.1 - -
CAFE + DSA | 429430 779+06 823+04 | 31.6+08 50.94+05 62.3+04 | 14.0+03 31.5+02 - -
Traj. Matching - - - 46.3+08  65.3+07 71.6+02 | 24.3+03 40.1+04 | 8.8+03  23.2+02

IDC 68.1+01  87.3+02 90.2+01 | 50.0404 67.5+05 74.5+0.1

- 44.8+02 - -
KFS (ours) 82.9+04 91.4+02 922401 | 59.8+05 72.0+03 75.0+02 | 40.0+05 50.6+02 | 22.7+02 27.8+02
Full dataset 95.4+0.1 84.8+0.1 56.2403 37.6404

Table 2: Cross architecture experiments. Conv3, RN10, and DN121 denote ConvNet-3, ResNet-10, and
DenseNet-121, respectively. We train on ConvNet-3 and evaluate on the three architectures.

Dataset Images / Class 1 10 50
Test Architecture | Conv3 RN10 DNI121 Conv3 RN10 DNI121 Conv3 RN10 DNI121
DSA 27.5+14 132410 133414 | 792405  19.5+15  23.1+19 | 844404 41.6+21  58.0+31
DM 203421 105428  13.6+10 | 73.5410 282+15 24.8+25 | 84.2400 54.7+13 584427
SVHN IDC 68.1+01  39.6+15 399420 | 87.3+02 833102 82.8+02 | 90.2+01 89.1+02  91.0+03
KFS (ours) 82.9+04 75.7+08 81.0+07 | 91.4+02 903102 89.7+02 | 92.2+01  90.9+02  90.2+02
Full dataset 95.4+01  93.8+05 89.1+08 | 954401 93.8+05 89.1+08 | 954401 93.8405 89.1+0s8
DSA 28.8+07  25.1+08 259418 | 52.1+05 31.4+09 32.9+10 | 60.6+05 49.0+07 53.4+08
DM 26.0+08 137416 129+18 | 489406 31.7+11  32.2+08 | 63.0404 49.1407 53.7+07
CIFAR10 IDC 50.0+04 41.9+06 39.8+12 | 67.5405 63.5+01 61.6+06 | 74.5401 724405 T1.8+06
KFS (ours) 59.8+05 47.0+t0s 49.5+13 | 72.0+03 70.3+03 71.4+o04 | 75.0+02 75.1+03 76.3+04
Full dataset 84.8+01 879402 90.5+t03 | 84.8+01 87.9+02 90.5+03 | 84.8+01 87.9+02 90.5+03

and TinyImageNet (64x64) (Le & Yang, 2015). Baselines. We consider coreset selection ap-
proaches such as Random and Herding. For dataset condensation approaches, we compare with gra-
dient (or trajectory) matching such as DC (Zhao et al., 2021), DSA (Zhao & Bilen, 2021), Trajectory
Matcing (Cazenavette et al., 2022), and IDC (Kim et al., 2022), as well as distribution matching such
as DM (Zhao & Bilen, 2022a) and CAFE (Wang et al., 2022). We also compare against KIP (Nguyen
et al.,, 2021). Experimental setup. For fair comparison, we use essentially the same parameter
count as the baselines. For instance, if there are 10 classes with “Images / Class” = 10 (in Table 1
and Table 2) and the image shape is 3 x32x 32, then the total per-class parameter count is 30720. In
this case our KFS assumes 16 codes of shape 12x4 x4 (such that 16x 12 x4 x4 = 30720) with the 8
decoders requiring only 73.8 additional parameters per class (see section 3.1). See Appendix A for
further details about the experimental setup.

Quantitative analysis. Table 1 shows the performance of the baselines and our KFS from each
dataset with varying number of images (or parameter count) per class. We can see that KFS outper-
forms all the previous methods by significant margins in all datasets and settings. KFS especially
performs well when the given parameter count per class is small. For instance, when “Images /
Class” = 1, KFS shows 14.8% and 9.8% performance improvements over IDC on SVHN and CI-
FAR10 respectively, the previous state-of-the-art recently introduced by Kim et al. (2022). This re-
confirms the observation from Kim et al. (2022) that increasing the modality in the synthetic dataset
is more important than polishing a few high-quality examples when the parameter count is limited.
However, KFS provides much higher modality (i.e. more number of synthetic examples) than IDC
with essentially the same parameter count because KFS can compress each instance far more tightly
by systematically factorizing and sharing the knowledge across the synthetic examples.

Cross-architecture generalization. Table 2 shows how the baselines and KFS perform when the
network architecture becomes different at the evaluation time (ResNet-10 and DenseNet-121) from
the one that used for condensation (ConvNet-3). We can see that the performance of KFS is more
robust to the change of network architectures. For instance, when “Images/Class” = 1 in SVHN
dataset, the performance drop of KFS is only 7.2% and 1.9% for ResNet-10 and DenseNet-121
respectively, whereas the drop is 28.5% and 28.2% for IDC. Such robustness means that the learned
synthetic examples from KFS are more natural as they are less specifically tailored to a specific
network architecture. Similarly, when “Images/Class” = 50 in CIFAR10 dataset, the performance of
KFS even improves as the architecture changes, while the performance of other baselines decreases.
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Figure 2: The evaluation results across various amount of budgets defined as the number of training steps
allowed for each evaluation. Batchsize is set to min (N, 256) where Niow is the number of all examples in
each synthetic dataset. We further provide wall-clock time analysis using online decoding in Figure 9.

) .

Figure 3: (Top row) Synthetic images (SVHN and CIFAR10) generated by varying latent codes while fixing
a decoder. (Bottom row) Synthetic images generated by varying decoders while fixing a code.

Training budgets at evaluation time. One may wonder whether the good performance of KFS is
solely due to the larger size of the synthetic dataset rather than the quality of each example, such that
KFS inherently requires much longer evaluation time than the baselines. To address this question,
we consider various amount of budget at evaluation time defined as total training steps allowed. In
Figure 2 we can clearly see that KFS provides significantly better performances than the baselines
across all range of budgets: from the limited budgets (100-500 training steps) to the longer training
steps (1K-20K steps), demonstrating that the quality of synthetic examples generated from KFS is
also comparable to or even better than that of the baselines. Interestingly, whereas the baselines
often suffer from overfitting (e.g., SVHN dataset), our KFS has no such issue hence can provide
more diverse options to users about how much longer to train their models for better performance.

Qualitative analysis. Figure 3 shows the visualization of the synthetic images generated from
KFS. We can see from the top row that KFS can generate various modes of the data distribution
by varing the learned latent codes while fixing a decoder. For instance, in SVHN dataset the digits
show various styles with different adjacent numbers, and in CIFAR10 dataset the orientations and
shapes of objects are diverse, demonstrating the ability of the latent codes to capture multi-modality
of each data distribution. We also fix a code and vary the decoders in the bottom row. The synthetic
examples show various backgrounds and styles of the objects such as strokes and colors. It clearly
shows how the factorization between latent codes and decoders allows KFS to efficiently share
knowledge between the synthetic examples.

ImageNet-Subset. We also experiment with ImageNet-Subset dataset (Deng et al., 2009; Tian
et al., 2020) which is of high resolution (224 x224). We used 10-classes version of the dataset. Ta-
ble 3 shows that our KFS outperforms all the baselines on all the settings and network architectures.
The results demonstrate that KFS is also effective for high-resolution images as well. The visualiza-
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Table 3: ImageNet-10 experiments. We train on ResNetAP-10 and evaluate on the three architectures.

Images / Class 1 10
Test Architecture | ResNetAP-10  ResNet-18  EfficientNet-BO | ResNetAP-10 ResNet-18  EfficientNet-BO
DSA - - - 52.7 44.1 48.3
DM - - - 52.3 41.7 45.0
IDC 60.5+0.5 55.8+04 55.2+13 72.8406 73.6+04 74.7+05
KFS (ours) 70.7+08 66.9+0.4 67.8+03 75.4+04 75.1+07 74.9+05
Full dataset 86.8+0.2 89.5+02 91.8+0.1 86.8+0.2 89.5+02 91.8+0.1

| an \ : A

AR S Rl
Figure 4: (First two) Synthetic images generated by varying latent codes while fixing a decoder. (Last two)
Synthetic images generated by varying decoders while fixing a code.

tion in Figure 4 shows that our method can effectively capture the modality of the dataset in terms
of both various latent codes and decoders. See Appendix B for the experimental setups.

Comparison to generative models. Note that our KFS aims to 80
model synthetic data generating process and hence is closely related to 72
deep generative models such as VAE (Kingma & Welling, 2013) and 64
GAN (Goodfellow et al., 2014). Therefore, we compare against VQ- §56
VAE (van den Oord et al., 2017) whose discrete representation of latent ;48
codes is similar to our KFS, and BigGAN (Brock et al., 2019) which is 40

—4— BigGAN

one of the state-of-the-art large-scale deep generative models. We con- 32 v
trol the parameter count of their decoders by varying the channel sizes. 245 106
Synthetic datasets are constructed by performing class-conditional an- Parameter Count
cestral sampling from the prior and decoder. Figure 5: Comparison

. .. . to generative models (CI-
Figure 5 shows that our KFS significantly outperforms those generative gAR|0).

models when the parameter count is limited and performs similarly to

BigGAN when the parameter count is larger. It is interesting to note that the performance of Big-
GAN significantly outperforms most of the existing dataset condensation methods such as distri-
bution matching (Zhao & Bilen, 2022a) in Figure 5, although BigGAN is not specifically tailored
to dataset condensation. The main advantage of existing dataset condensation methods is that the
number of samples in the synthetic dataset is comparably much smaller than the generative mod-
els, but we definitely need more research about whether we can further benefit from exploiting the
generative models for dataset condensation (Zhao & Bilen, 2022b).

Continual learning. Rehearsal- ConvNet-3 ResNet-10 DenseNet-121
based continual learning approaches
construct a compact subset of rep-
resentative examples the learner
has seen so far and train it with the
currently given examples to avoid
catastrophic forgetting (Rebuffi et al.,
2017). In this section, we explore

30 20
Whether the use Of dataset Conden- 20 40 60 80 100 20 40 60 80 10030 20 40 60 80 100
sation approaches can improve the # Classes # Classes # Classes

perf(?rmance of it by §nhancing the Figure 6: Continual learning experiments. “Real” is the upper-
quality and representativeness of .the bound that trains a model only with real examples.
subset.  Following Zhao & Bilen

(2022a), we consider class incremental learning scenario where for each of the 5 stages 20 classes
from the CIFAR-100 dataset are sequentially given. We condense a dataset only with the currently
available classes at each stage. Also, training is done only with the condensed dataset accumulated
thus far, not the real examples, following Joseph et al. (2021) and Kim et al. (2022). We use
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Figure 7: Bias and variance analysis on CIFAR10 dataset (“Image/Class” = 1). (a,b) corresponds to the
analysis of bias and (c,d) to variance. (a) Test accuracy and ¢>-norm of bias of gradient vs. the number of
decoder samples used for training. (b) Visualization of the decoders trained with various number of decoder
samples. (c¢) Test accuracy and trace of variance of gradient vs. batch size of real examples. Large trace means
that the gradient has high variance. (d) Convergence of training loss with various batch size of real examples.

ConvNet-3 for constructing the synthetic dataset and evaluate on ConvNet-3, ResNet-10, and
DenseNet-121. The baselines include Herding, DSA, and DM, and IDC.

Figure 6 shows the efficacy of our method in this continual learning scenario. Although KFS per-
forms similarly to IDC when the network architecture is ConvNet-3, KFS shows significantly better
performance when evaluating on different network architectures such as ResNet-10 and DenseNet-
121. Therefore, by using KFS, we can efficiently condense a dataset with a smaller network and
evaluate on larger networks without severe interference.

Ablation study. We perform ablation study in Figure 8 by varying the 7
number of decoders used for condensing a dataset. We use CIFAR10 72
dataset with “Image/Class” = 1 setting. We see that using more number 37

of decoders is clearly better for performance, demonstrating the impor- 3"

tance of capturing various styles and modalities in the dataset. f’:

67
Bias and variance analysis. Lastly, we analyze in Figure 7 the effect " e
of bias and variance of gradients due to subsampling of synthetic and real o
examples. Firstly, we see the effect of bias by controlling the number of L NCmber of decoders
decoder samples used for training. For instance, we may compute the Figure 8: Ablation study.
gradient at each iteration by subsampling only a few decoders instead of
using all the decoders, leading to a biased gradient. Figure 7(a) shows that the bias actually increases
as we subsample fewer number of decoders and it significantly deteriorates the test accuracy. This
is because the bias prevents the decoders from being diversified (see Eq. (2)). Figure 7(b) shows
that the synthetic examples generated from the decoders trained with fewer number of samples are
actually homogeneous across the decoders. Secondly, we analyze the effect of variance by varying
the batch size for the real examples. Figure 7(c) shows that the variance becomes higher as we
use smaller batch size, and test accuracy quickly gets worse accordingly. We further observe in
Figure 7(d) that this high variance makes the training loss to saturate quickly compared to when we
use larger or full batch size, preventing the model from finding a good solution.

5 CONCLUSION

In this paper, we introduced a novel method for solving dataset condensation problem in a system-
atic and efficient way. Instead of parameterizing synthetic examples directly in input space, we
proposed to fully exploit the regularity in a given dataset, such that we assume a generative process
of synthetic examples based on the factorization between latent codes and decoders. Based on it,
we showed how to increase the number of synthetic examples with essentially the same parame-
ter count by combining the codes and decoders interchangeably. We further demonstrated how the
knowledge is efficiently shared between synthetic examples with the framework, achieving superior
trade-off between compression ratio and quality of the synthetic examples. Potential future research
directions include scaling up the method to achieve or even surpass the performances of the full
dataset, and further developing the idea to multi-task or meta-learning setting where the goal is to
share knowledge of how to compress a dataset between multiple tasks.



Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

For reproducibility, we clearly stated all the experimental setups and hyperparameter configurations
in Section A and Section B. We also submit the code for running the main experiments in Table 1,
2, 3. All the numerical results have been obtained from running at least 3 evaluations. Further, we
will release our code and synthetic data to be publicly available after acceptance.
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A EXPERIMENTAL SETUP

We provide some additional information about the experimental setup for reproducing our results
on SVHN, CIFAR10, CIFAR100, and TinyImageNet.

Table 4: The architecture of Low-Resolution Decoder in pytorch style. H, W are height and weight of target
image. C's[:] is an array that determines channels of each convolutional block. Here the size of the latent codes
are assumed to be C's[2] x H/8 x W/8.

Output Size Layers

Cs[2] x H/8 x W/8  Latent Codes

Cs[l] x H/4 x W/4  ConvTranspose2d(Cs|2], Cs[1], kernel_size=2, stride=2, padding=0)
Cs[0] x H/2 x W/2 ConvTranspose2d(Cs[1], Cs[0], kernel_size=2, stride=2, padding=0)
3x HxW ConvTranspose2d(Cs[0], 3, kernel_size=2, stride=2, padding=0)

33X HXxW Sigmoid

Table 5: The architecture of High-Resolution Decoder in pytorch style. H, W are height and weight of target
image. C's[:] is an array that determines channels of each convolutional block. Here the size of the latent codes
are assumed to be C's[1] x H/4 x W/4.

Output Size Layers

Cs[l] x H/4 x W/4  Latent Codes

Cs[0] x H/2 x W/2 ConvTranspose2d(Cs[l], Cs|[0], kernel _size=2, stride=2, padding=0)
3x HxW ConvTranspose2d(Cs[0], 3, kernel_size=2, stride=2, padding=0)

3x HxW Sigmoid

Table 6: The hyperparameter configurations of KFS for each setting. “I/C” denotes “Image / Class”, where
“C” and “D” in C shape, # C, D type, and # D stand for Code and Decoder, respectively. “Low-R” refers to
the decoder in Table 4, and “High-R” refers to the decoder in Table 5. C's[:] denotes the array of channels, and
“O-P”” means over-parameterization.

Dataset (Shape) 1/C C Shape #C | DType #D D[] O-P. (%)

T [ 12x4x4 13 [ LowR 8 | [6,9,12] | 047%

SVHN (3 x 32 x 32) 10 | 12x4x4 160 | Low-R. 12 | [6,9.12] | 2.88%

50 | 12x8x8 200 | HighR. 16 | [6,12] | 0.38%

T [ 12x4x4 13 [ LowR 8 | [6,9,12] | 047%

CIFARIO (3% 32x32) | 10 | 12x4x4 160 | Low-R. 12 | [6.9.12] | 2.88%
50 | 12x8x8 200 | HighR. 16 | [6,12] | 0.38%

T | 12x4x4 16 [ LowR 8 | [6,9,12] | 1.92%

CIFARIOO (3 x 32 x32) | 15 | 12x4x4 160 | Low-R. 12 | [6.9.12] | 0.20%
CIFARTO0-CL (3 X 32 32) | 20 | 18x4x4 200 | LowR. 16 | [8,13,18] | 1.32%
. T | 12x8x8 16 | LowR. 8 | [6,9,12] | 0.24%
TinyImageNet (3 x 64 X 64) | 1 | 19, 16x 16 40 | HighR. 16 [[6, 12]] 0.02%

* See Table 4, 5 for detailed implementations of decoders.

* See Table 6 for code shape, the number of code, decoder type, the number of decoder,
channel sizes of decoders and corresponding proportion of over-parameterization on each
setting.

* We pre-train a single decoder using autoencoding objective for 2,000 steps with 256 mini-
batch. We use Adam optimizer (Kingma & Ba, 2014) with constant learning rate of 0.01.
After pre-training, the parameter of pre-trained decoder is copied to all the others.

* We train decoders and codes using the full distribution matching objective in Eq. (1) for
20,000 steps. We use Adam optimizer with constant learning rate of 0.01 and 0.1 for
decoders and latent codes, respectively.

* For continual learning (CIFAR100-CL), we first train decoders on phase O (i.e. the first
20 classes) and fix the decoders for other phases, while the latent codes are trained for
each stage. For each stage, we train decoders (phase 0) and latent codes Adam optimizer
for 20000 steps, where the initial learning rates are set to 0.01 and 0.1, respectively. The
learning rate is decayed for two times by the factor of 0.2 at 5000 and 15000-th iteration.

* We train classification models for 200 epochs with 256 mini-batch on our condensed
datasets. We use SGD with momentum optimizer, where the initial learning rate, mo-
mentum, and weight decay are set to 0.01, 0.9, and 0.0005, respectively. We decay the
learning rate by factor of 0.2 for two times at 133 and 166-th epoch.
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B EXPERIMENTAL SETUP (IMAGENET-SUBSET)

We provide some additional information about the experimental setup for reproducing our results
on ImageNet-Subset.

Table 7: The architecture of Low-Resolution Decoder in pytorch style. H, W are height and weight of target
image. C's[:] is an array that determines channels of each convolutional block. Here the size of the latent codes
are assumed to be C's[2] x H/8 x W/8.

Output Size Layers

Cs[2] x H/8 x W/8  Latent Codes

Cs[l] x H/4 x W/4  ConvTranspose2d(Cs|2], Cs[1], kernel_size=4, stride=2, padding=1)
Cs[0] x H/2 x W/2 ConvTranspose2d(Cs[1], Cs[0], kernel_size=4, stride=2, padding=1)
3xHxW ConvTranspose2d(Cs[0], 3, kernel_size=4, stride=2, padding=1)
3xHxW Sigmoid

Table 8: The architecture of High-Resolution Decoder in pytorch style. H, W are height and weight of target
image. C's[:] is an array that determines channels of each convolutional block. Here the size of the latent codes
are assumed to be C's[1] x H/4 x W/4.

Output Size Layers

Cs[1] x H/4 x W/4  Latent Codes

Cs[0] x H/2 x W/2 ConvTranspose2d(Cs[l], Cs|0], kernel_size=4, stride=2, padding=1)
3x HxW ConvTranspose2d(Cs|[0], 3, kernel_size=4, stride=2, padding=1)
3xHxW Sigmoid

Table 9: The hyperparameter configurations of KFS for ImageNet-Subset. “I/C” denotes “Image / Class”,
where “C” and “D” in C shape, # C, D type, and # D stand for Code and Decoder, respectively. “Low-R” refers
to the decoder in Table 7, and “High-R” refers to the decoder in Table 8. C's[:] denotes the array of channels,
and “O-P.” means over-parameterization.

IC | CShape #C | DType #D | Cs[] | O-P.(%)
T [3x28x28 64 | Low-R. 14 | [3,3,3] | 0.41%
10 | 6x56x56 80 | HighR. 14 | [4,6] | 0.05%

» See Table 7, 8 for detailed implementations of decoders.

* See Table 9 for code shape, the number of code, decoder type, the number of decoder,
channel sizes of decoders and corresponding proportion of over-parameterization on each
setting.

* We pre-train a single decoder using autoencoding objective for 2,000 steps with 256 mini-
batch. We use Adam optimizer (Kingma & Ba, 2014) with constant learning rate of 0.01.
After pre-training, the parameter of pre-trained decoder is copied to all the others.

* We train decoders and codes using the full distribution matching objective in Eq. (1) for
50,000 steps. We also use Adam optimizer with constant learning rate of 0.001 and 0.01
for decoders and latent codes, respectively. We decay the learning rates by factor of 0.2 for
three times at 30000, 42000, and 48000-th iteration.

* We train classification models for 200 epochs on our condensed datasets. The size of mini-
batch is set to 128, 64, and 64 for ResNetl0AP, ResNet18BN, and EfficientNet, respec-
tively. We use SGD with momentum optimizer, where the initial learning rate, momentum,
and weight decay are set to 0.01, 0.9, and 0.0005, respectively. We decay the learning rate
by factor of 0.2 for two times at 133 and 166-th epoch.
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C WALL-CLOCK TIME ANALYSIS
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D DERIVATION OF EQ. (2)
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E DERIVATION OF EQ. (3)

We want to compute
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Subtracting Eq. (6) from Eq. (7), we have
VaIn(Ve,q)E(@, ¢))

c C
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because g(z.,,) and g(z. ;) are independent of each other as we sample » independently for each
class.
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