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ABSTRACT

The rapid advancement of Large Language Models (LLMs) has intensified the
demand for efficient methodologies that balance model performance with hardware
constraints, particularly GPU memory limitations. Quantization has emerged as
a prominent technique for model compression, with QLoRA demonstrating the
potential of low-rank matrices for quantization error compensation by integrat-
ing LoRA-based efficient fine-tuning. However, even LoRA fine-tuning requires
substantial resources for models with tens or hundreds of billions of parameters.
In this work, we explore low-rank matrix compensation for quantization errors
without global LoRA fine-tuning, employing Alternating Least Squares (ALS)
to better model and solve the optimization problem. We introduce a novel ap-
proach that refines low-rank matrix modeling by incorporating activation values
and optimizing them directly through ALS, particularly under low-bit quantiza-
tion conditions. Furthermore, we revisit the quantization interval partitioning in
Round-to-Nearest (RTN) methods by introducing scaling factors that transform
the discontinuous truncation function into a continuous optimization problem,
thereby enhancing quantization performance through more rational interval adjust-
ment. Extensive experimental evaluations support our theoretical contributions.
Our research reveals how low-rank matrices can effectively capture the intrinsic
information of large models, overcoming limitations of traditional SVD-based
approaches. Comprehensive experiments across standard benchmarks consistently
show that our method outperforms state-of-the-art quantization techniques, pro-
viding a principled, data-driven framework for understanding low-rank structure’s
role in quantization error compensation. This advancement represents a significant
step toward practical LLM deployment, offering more efficient and effective model
compression strategies.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable progress in recent years, demonstrating
unparalleled proficiency across various language tasks, such as Natural Language Understanding
(NLU) and Natural Language Generation (NLG). Despite their effectiveness, the sheer number
of parameters, often in the millions or billions, poses significant challenges in terms of hardware
requirements and computational resources for deployment. Consequently, there is a pressing need
to compress these models effectively without compromising their performance. Among the various
compression techniques, Quantization and low-rank adaptation (LoRA) are two pivotal techniques
in the realm of model optimization, especially for large-scale models with billions of parameters.
These techniques aim to enhance computational efficiency and reduce resource consumption while
maintaining model performance.

In our research, we begin by reassessing quantization methods that primarily determine the quanti-
zation range based on extreme values, such as the Round-to-Nearest (RTN) method. Our analysis
reveals that applying an appropriate scaling to these extreme values can significantly tackle the issue
of outliers that deviate from the main distribution. This adjustment ensures that the quantization
interval, set by these extreme values, more closely aligns with the distribution pattern of the majority
of the data. Furthermore, it reduces the sensitivity of the weight matrix to variations caused by
outliers. This minor enhancement proves particularly beneficial in low-bit quantization scenarios,
typically involving 3 to 4 bits.
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However, merely making this adjustment is insufficient, as a significant amount of information
is lost during low-bit quantization. Consequently, we focus on how to efficiently compensate for
this quantization error. The potential of low-rank matrices for efficient error compensation has
been revealed in the efficient fine-tuning of LoRA, and there have been relevant extensions to the
field of quantization. However, existing methods primarily initialize the low-rank matrix based on
Singular Value Decomposition (SVD) of the quantization error of the weight matrix. For quantization
problems, the impact of input values must be taken into account. Therefore, we propose employing the
Alternating Least Squares (ALS) method to directly address the problem of linear layer quantization
optimization. This approach enables the low-rank matrix to achieve a better compensation effect by
modeling the error of the weight matrix more accurately.

On the other hand, previous work on LoRA has predominantly focused on fine-tuning the entire
model. Although this approach saves a considerable amount of computational resources compared to
full fine-tuning, it still poses a significant resource overhead for models with tens or even hundreds
of billions of parameters. In our work, we introduce the ALS-LoRA method, which combines the
theoretical compensation methods outlined earlier with further extraction of interactive information
through layer-wise fine-tuning. This allows us to obtain a low-rank matrix with a good compensation
effect without performing full-model LoRA, thereby greatly conserving computational resources and
also aiding our further understanding of the compensation process of low-rank matrices.

In summary, our contributions are threefold:

1. Enhanced Quantization by a Scaling Mechanism: We enhance quantization performance
by introducing a scaling mechanism that effectively handles outlier values and better aligns
quantization intervals with the value distribution. This improvement significantly reduces
information loss in RTN-based quantization methods.

2. Optimized Low-rank Matrices Estimation with ALS: We propose using the Alternating
Least Squares (ALS) method for initializing low-rank matrices in LoRA. Unlike traditional
Singular Value Decomposition (SVD)-based methods, ALS directly addresses the problem
of linear layer quantization optimization, achieving superior compensation effects without
the need for total LoRA fine-tuning.

3. More Resource-Efficient LoRA Quantization: We introduce the ALS-LoRA method,
which combines theoretical compensation with only layerwise-finetuning. This approach
significantly reduces computational overhead compared to full-model LoRA fine-tuning,
making it highly efficient for large models with billions of parameters.

2 RELATED WORK

2.1 WEIGHT ONLY QUANTIZATION FOR LLMS

In the domain of weight quantization for LLMs, a substantial body of research is emerging, encompass-
ing both Quantization-Aware Training (QAT) and Post-Training Quantization (PTQ) methodologies.
QAT approaches, such as LLM-QAT (Liu et al., 2023) and EfficientQAT (Chen et al., 2025), simulate
the quantization and dequantization processes during training. This enables the model to learn how
to compensate for quantization-induced errors, thereby reducing quantization noise. However, as
the number of parameters in large models grows, QAT becomes increasingly resource-intensive.
In contrast, PTQ is far more cost-effective. Notable PTQ strategies include GPTQ (Frantar et al.,
2023) and GPTAQ (Li et al., 2025), which leverage Hessian matrices, AWQ (Lin et al., 2024) and
SpQR (Dettmers et al., 2023b) that address outliers with special treatment, Quarot (Ashkboos et al.,
2024) and SpinQuant (Liu et al., 2025) that employ rotation matrices, and AQLM (Egiazarian et al.,
2024) and VPTQ (Liu et al., 2024b) that rely on Vector Quantization. Additionally, there are hybrid
methods that require only partial adjustment of training parameters, such as the low-rank matrix-based
QLoRA (Dettmers et al., 2023a) method. This research landscape underscores the ongoing efforts to
optimize the trade-offs between quantization accuracy and computational efficiency, particularly for
large-scale models where the stakes of resource allocation are high.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 LOW-RANK ADAPTATION(LORA)

The fine-tuning of Large Language Models (LLMs) is often hampered by the prohibitive computa-
tional and memory costs associated with Full Fine-Tuning (FFT). Parameter-Efficient Fine-Tuning
(PEFT) has emerged as a dominant paradigm to address this challenge. Among various PEFT strate-
gies, LoRA (Hu et al., 2021) is a widely recognized parameter-efficient fine-tuning (PEFT) method
in the domain of LLMs. It approximates the update of a pretrained weight matrix W ∈ Rm× n

by the product of two low-rank matrices A ∈ Rm× r , B ∈ Rn× r , where rank r ≪ min(m,n).
This approach allows for significant improvements in fine-tuning performance while controlling the
increase in the number of trainable parameters, and introduces no additional inference latency. The
success of the original LoRA has spurred a prolific line of research into its enhancements and variants.
AdaLoRA (Zhang et al., 2023) accounts for the importance of modules by introducing an adaptive
budget allocation scheme, which dynamically assigns higher ranks to more critical weight matrices to
improve the efficiency of the parameters. Tied-LoRA (Renduchintala et al., 2024) introduce weight
tying to further reduce the complexity. DoRA (Liu et al., 2024a)decouples the pre-trained weight
into magnitude and direction components, applying low-rank update solely to the direction. Notably,
LoRA has been effectively combined with other compression techniques. QLoRA (Dettmers et al.,
2023a)integrates 4-bit double quantization with LoRA. The performance of these methods is often
sensitive to the choice of the rank hyperparameter, which requires tedious manual tuning. Moreover,
the theoretical underpinnings of why the low-rank assumption holds so effectively across diverse
tasks are not yet fully understood.

2.3 ALTERNATING LEAST SQUARES (ALS)

The Alternating Least Squares (ALS) algorithm, known for its strong optimization capabilities, is
extensively utilized in recommendation systems and natural language processing. The foundational
ALS algorithm has been continuously improved through a series of research efforts focused on
increasing its robustness, scalability, and applicability. For example, in recommendation systems,
ALS is used to handle large-scale user-item interaction matrices, employing low-rank factorization
to capture the underlying relationships between users and items (Clark et al., 2018). In natural
language processing, ALS is also applied to topic models, such as Latent Dirichlet Allocation (LDA),
to discover latent topics within a collection of documents (Blei et al., 2003). The use of ALS for
low-rank matrix recovery has been introduced (Haldar & Hernando, 2009). However, its potential for
direct quantization error minimization has not been explored in the area of Large Language Model
(LLM) quantization. Our work bridges this gap by reintroducing ALS to more effectively address the
low-rank quantization compensation problem.

3 METHOD

In this section, we delve deeper into our ALS-LoRA quantization method, which primarily comprises
three key components: the optimized RTN quantization foundation, the computation of the com-
pensatory low-rank matrix, and the synergistic enhancement of the low-rank matrix’s compensatory
capabilities through layerwise-finetuning.

3.1 LOW RANK MATRIX OPTIMIZATION PROBLEM

We begin by modeling the optimization problem for the quantization error matrix of a linear layer.
Given a pre-trained weight matrix W ∈ Rm× n, a N -bit quantized weight matrix Q ∈ Rm× n,
and low-rank matrices A ∈ Rm× r and B ∈ Rn× r with rank r ≪ min(m,n), the objective can
be formulated as minimizing the quantization error through the following optimization problem:

min
Ŵ
∥W − Ŵ ∥22 = min

A,B
∥WX − (Q+ABT )X∥22 = min

A,B
∥∆WX −ABTX∥22 (1)

where ∆W = W −Q represents the quantization error. The main goal of Equation(1) is to minimize
this error by optimizing over the low-rank matrices A and B. This optimization process aims to
maximize the compensation for the quantization error.

3
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3.2 SCALING MECHANISM

For the N-bit Round to Nearest quantization, the quantization and dequantization processes can be
described as follows:

Qz,s(W ) = round
(
W

s
+ z

)
= Wq (2)

Q−1
z,s(Wq) = s(Wq − z) (3)

where the quantization scale is s = (Wmax −Wmin)/(2
N − 1), and the zero-point is z = −Wmin/s.

According to the principle of RTN, the quantization scale s is primarily determined byWmax and
Wmin, which means it is mainly influenced by the extreme values at both ends of the weight matrix
distribution.However, the majority of parameters in the weight matrix are concentrated in a narrower
range, with only a few outliers that significantly affect the quantization interval division, leading to
greater precision loss for the central values. Therefore, we propose introducing a scaling factor η to
adjust Wmax and Wmin. enabling the calculated interval to better approximate the distribution of the
majority of parameters. Yet, the weight matrix is more sensitive to these outliers than to other values
in the middle of the distribution. Thus, an excessively small η would lead to precision degradation
rather than improvement. Consequently, η needs to be chosen as an appropriate value within the
range (0, 1), which can be easily implemented through a step-by-step search method.

Although quantile-based truncation methods exist for quantization interval processing, they primarily
rely on discontinuous truncation functions that can cause significant abrupt changes around outlier
values, adversely affecting overall error. In contrast, our introduced scaling factor enables continuous
adjustment of boundary values, achieving a better balance between errors in the central distribution
and those from outliers. Furthermore, as demonstrated in Section4.1, this adjustment approach proves
effective not only in RTN quantization but also in other quantization methods that require boundary
interval configuration.

Subsequently, we can further refine the quantization intervals by incorporating the low-rank compen-
sation matrices A and B. Similar to LoftQ (Li et al., 2023), we initialize matrices A and B using the
first r singular vectors obtained from SVD. We then refine A, B, and the RTN quantization through
Alternating Optimization to achieve improved performance. Specifically, we perform SVD on the
quantization error to acquire the top r singular vectors, which serve as the initial values for A and B .
Concurrently, we update the quantization scheme to accommodate the updates to A and B . This
process is detailed in Algorithm 1.

Algorithm 1 Adjust Quantization Scale and Init A , B

1: Require: Full precision weight matrix W , quantization bit N , scaling factor η, rank r, number
of iterations T .

2: Initialize A, B← 0, 0
3: for epoch τ in T do
4: Calculate Wmax Wmin ←W −ABT

5: Wmax = η ×Wmax , Wmin = η ×Wmin
6: Quantization scale s, zero-point z←Wmax, Wmin
7: Wq ← s, z
8: Calculate dequantization weight matrix and error Q←Wq, s, z, ∆W ←W −Q
9: A, B← SV D(∆W ), r

10: end for
11: Return N -bit quantization weight matix Wq , Init Low-rank matrices A, B

3.3 ALTERNATING LEAST SQUARES (ALS) OPTIMIZATION

Unlike the previous method that used SVD decomposition to fit ∆W with matrices A and B, we
employ Alternating Least Squares (ALS) to directly solve Equation(1). To enhance the robustness of
the fit, we added a regularization term to Equation(1) and then formulated the optimization problem

4
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as follows:

ℓ = ∥∆WX −ABTX∥22 + λ(∥A∥22 + ∥BTX∥22)
= tr[∆WXXT∆W T −∆WXXTBAT −ABTXXT∆W T+

ABTXXTBAT + λ(AAT +BTXXTB)] (4)

∂ℓ

∂A
= −∆WHB +ABTHB + 2λA (5)

∂ℓ

∂B
= −H∆W TA+HBATA+ λHB (6)

where H = 2XXT is mathematically referred to as the Hessian matrix, which can be estimated
using calibration data. The parameter λ denotes the regularization coefficient, typically assigned a
small value (e.g., 1× 10−5).

The ALS method is fundamentally about reformulating the original optimization problem into two
interdependent convex quadratic programming subproblems. This is achieved by iteratively fixing one
matrix while optimizing the other. These alternating steps continue iteratively until A and B reach
stable values, which represent the final solution to the optimization problem. The iterative nature of
this method capitalizes on the convexity of the subproblems, ensuring that each iteration results in an
improvement in the objective function, ultimately leading to a solution that minimizes the overall
error.To expedite convergence, we utilize the values obtained in Algorithm 1 as the initialization for
the ALS algorithm.

To optimize matrix A while holding matrix B constant, we set Equation (5) to zero:

A = ∆WHB(BTHB + 2λI)−1 (7)

Similarly, to optimize matrix B while keeping matrix A fixed, we set Equation (6) to zero:

B = ∆W TA(ATA+ λI)−1 (8)

Algorithm2 provides a comprehensive summary of the procedure outlined in this subsection.

Algorithm 2 ALS for Low-Rank Matrix Estimation of A and B

1: Require: Quantization error ∆W , Hessian matrix H , input value X , scaling factor λ, number
of iterations T .

2: Initialize A, B← Algorithm 1
3: Initialize best error ϵ0 ← 0
4: for epoch τ in T do
5: Fix B and update A: A← ∆WHB(BTHB + 2λI)−1

6: Fix A and update B: B ← ∆W TA(ATA+ λI)−1

7: Calculate current mean squared error: ϵ← 1
n

∑n
i=1(∆WX −ABTX)2i

8: if ϵ < ϵ0 and ϵ0 > 0 then
9: Update best error: ϵ0 ← ϵ

10: else if ϵ ≥ ϵ0 then
11: Early break.
12: end if
13: end for
14: Return Low-rank matrices A, B

3.4 LAYERWISE-FINETUNING

In Section 3.3, we computed the low-rank compensation matrices A and B for individual linear
modules using the Alternating Least Squares (ALS) method. To further enhance the ability of
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these low-rank matrices to capture relationships between different linear modules within the same
transformer layer, while also balancing reduced resource consumption and maintained performance,
we can implement additional layer-wise fine-tuning. The experiments in Section 4.3.2 demonstrate
that this serves as an effective additional improvement to further enhance the compensation effect of
the low-rank matrices.

4 EXPERIMENTS

Models and Datasets: Our evaluation framework employs three large language models: Llama3.1-
8B (AI, 2023), Mistral-7B (Jiang et al., 2023), and Llama-30B (Touvron et al., 2023). Model
performance is assessed using two key metrics: perplexity (PPL) and accuracy (Acc). For perplexity
evaluation, we utilize the Wikitext2 (Merity et al., 2016) and C4 (Raffel et al., 2019) datasets, while
accuracy is measured on the ARC-Challenge (ARC-c) and ARC-Easy (ARC-e) (Clark et al., 2018)
benchmarks.

4.1 EFFECT OF SCALING FACTOR η

Table 1: Effect of scaling factor η.

Bits η Wiki2(↓) Bits η Wiki2((↓) Bits quantile Wiki2(↓)

FP16/16 - 5.65 FP16/16 - 5.65 FP16/16 - 5.65

RTN/4

1.0 7.62

RTN/3

1.0 750.69

RTN(cmp)/3

1.0 750.69
0.9 6.95 0.9 178.15 0.99998 534.88
0.8 6.73 0.8 89.12 0.99995 407.73
0.7 6.73 0.7 32.08 0.99990 222.49
0.6 7.03 0.6 13.93 0.99985 177.66
0.5 8.70 0.5 19.82 0.99982 171.47
0.4 173.72 0.4 454.38 0.99980 6159.86

Had/4

1.0 7.03

Had/3

1.0 1089.94

Had(cmp)/3

1.0 1089.94
0.9 6.69 0.9 63.57 0.9998 104.72
0.8 6.49 0.8 30.21 0.9996 52.84
0.7 6.34 0.7 13.94 0.9995 43.57
0.6 6.49 0.6 10.36 0.9994 35.96
0.5 7.32 0.5 11.16 0.9992 29.53
0.4 75.17 0.4 461.03 0.9991 33.47

PoT/4

1.0 7.68

PoT/3

1.0 1240.03

PoT(cmp)/3

1.0 1240.03
0.9 7.56 0.9 164.64 0.99995 265.94
0.8 7.53 0.8 64.33 0.99990 141.62
0.7 6.94 0.7 18.43 0.99988 88.94
0.6 7.78 0.6 13.36 0.99985 56.99
0.5 7.44 0.5 12.28 0.99982 109.97
0.4 7.40 0.4 130.88 0.99980 593.90

In this section, we present our experimental findings, which were primarily conducted using the
Llama3.1-8B model. The performance of the quantized model was evaluated using Perplexity (PPL)
as the test metric on the Wikitext2 dataset. The objective of these experiments is to illustrate that
selecting an appropriate scaling factor, denoted as η, can markedly improve the efficacy of the
quantization process. Furthermore, in addition to the basic Round to Nearest (RTN) method, we also
assessed the impact of applying the scaling factor η to other techniques. These included an enhanced
version of RTN that employs Hadamard rotation matrix transformations to mitigate outliers (Tseng
et al., 2024), as well as a non-uniform quantization method known as PoT (Miyashita et al., 2016),
which is based on powers of two.

The results are presented in Table 1, where the first three columns from the left represent 4-bit
quantization with scaling factor η, the middle three columns represent 3-bit quantization with scaling
factor η, and the last three columns represent the traditional 3-bit quantization method using direct tail
truncation based on quantiles, which is compared with the middle three columns. For each scenario,
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Figure 1: 4-bit quantization PPL changes with
different η.
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Figure 2: 3-bit quantization PPL changes with
different η.

we tested the RTN method, the Hadamard-improved RTN, and the non-uniform Power-of-Two (PoT)
quantization. Figure 1 and Figure 2 illustrate the variations in PPL as the scaling factor η is adjusted
under 4-bit and 3-bit quantization scenarios, respectively. The results indicate that after applying an
appropriate scaling factor η, all three methods—4-bit and 3-bit quantizations—showed significant
improvements over the original quantization results, with particularly notable enhancements for
3-bit quantization, where PPL could be reduced to a few tenths or even a hundredth of the original
value. Additionally, the results demonstrate that across a relatively wide range of η values, there is
consistently good performance, which is more convenient for practical engineering applications and
parameter tuning. When comparing the methods using η scaling with those using quantile truncation
for 3-bit quantization, it is evident that quantile truncation is highly sensitive to the setting of the
quantile and does not effectively preserve information about outliers, resulting in a noticeably inferior
performance compared to the η scaling method.

Overall, the experimental results suggest that adjusting the scaling factor method does not require
additional storage and has low computational overhead, making it a promising approach for improving
low-bit quantization in interval-based segmentation.

4.2 QUANTIZATION PERFORMANCE

During the evaluation of our ALS-LoRA quantization approach, we utilized the Round to Nearest
(RTN) quantization model as our primary baseline to assess the low-bit quantization performance on
the Llama3.1-8B, Mistral-7B, and Llama-30B models. This included evaluating the compensation
effects at 4-bit, 3-bit, and 2-bit levels. In our experimental setup, for 4-bit and 3-bit RTN, we
employed per-channel quantization, while for 2-bit, we used per-group quantization with group sizes
of 32 and 64. For ALS-LoRA, the scaling factor η was set to 0.8 for 4-bit quantization on both
Llama3.1-8B and Mistral-7B, and to 0.6 for 3-bit and 2-bit quantization. For Llama-30B, η was set
to 0.9 for 4-bit quantization and 0.8 for 3-bit quantization. The rank of low-rank matrices was 32.
The calibration dataset required for ALS-LoRA consisted of 128 samples randomly selected from the
Wikitext2 dataset, and the layer-wise fine-tuning was performed for 3 epochs. In terms of testing,
we primarily measured two metrics: Perplexity (PPL) and Accuracy. PPL was assessed using the
Wikitext2 and C4 datasets, while Accuracy was evaluated using the question-answering datasets
ARC-Challenge (ARC-c) and ARC-Easy (ARC-e). The results were recorded in Table 2.

The findings clearly demonstrate that ALS-LoRA has outperformed the baseline significantly. In the
case of 4-bit quantization, ALS-LoRA’s PPL on Wikitext2 is within 0.5 of that achieved by FP16, and
its accuracy is within 5%, indicating an effective compensation. For 3-bit quantization, ALS-LoRA
offers even greater compensation compared to RTN, potentially reducing the PPL to a fraction or even
a tenth of its original value. The table results show that ALS-LoRA exhibits strong compensation
capabilities for both 4-bit, 3-bit, and 2-bit quantization. For instance, when quantizing the Llama
3.1-8B model at 3 bits, ALS-LoRA reduces the PPL on Wikitext2 from 750.7 to 7.1, a decrease to a
little over one percent of the original value. Similarly, for 2-bit quantization, the PPL on Wikitext2 is
dramatically reduced from 4346.10 to 10, a reduction of several orders of magnitude. These results
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underscore the robustness and effectiveness of ALS-LoRA in enhancing the performance of quantized
models, particularly in low-bit scenarios.

In summary, the ALS-LoRA method has shown good compensation effects across different quantiza-
tion bit numbers and model sizes. In low-bit quantization scenarios, especially for large language
models, it provides an effective strategy for compensating quantization errors, allowing for a reduction
in model size while maintaining performance as much as possible. This is particularly significant for
deploying large language models in resource-constrained environments.

Table 2: Performance comparing.

Model Bits Method PPL(↓) Accuracy(↑)
Wiki2 C4 Arc-c Arc-e

Llama3.1-8B

16 FP16 5.65 9.40 79.6% 91.3%

4 RTN 7.62 13.06 68.4% 82.5%
4 RTN(η = 0.8) 6.73 11.51 69.5% 85.9%
4 ALS-LoRA 6.09 10.49 75.9% 89.9%

3 RTN 750.7 805.3 3.0% 4.0%
3 RTN(η = 0.6) 13.93 23.37 35.0% 50.1%
3 ALS-LoRA 7.10 12.72 55.2% 72.5%

2 RTN(g32) 4346.10 780.86 7.3% 7.7%
2 ALS-LoRA(g32) 10.60 19.85 34.2% 41.2%

Mistral-7B

16 FP16 6.81 7.91 73.5% 85.0%

4 RTN 7.78 8.90 45.2% 68.2%
4 RTN(η = 0.8) 7.67 8.74 58.1% 78.5%
4 ALS-LoRA 6.97 8.13 71.2% 84.3%

3 RTN 78.25 53.53 17.7% 19.8%
3 RTN(η = 0.6) 21.60 37.03 11.3% 18.6%
3 ALS-LoRA 7.50 8.85 58.3% 76.2%

2 RTN(g32) 25.03 21.20 11.8% 11.5%
2 ALS-LoRA(g32) 11.35 12.55 38.8% 39.3%
2 RTN(g64) 173.63 78.79 7.0 % 7.7%
2 ALS-LoRA(g64) 12.00 13.70 32.0% 39.3%

Llama-30B

16 FP16 5.13 6.20 64.2% 78.9%

4 RTN 5.68 6.60 59.6% 71.9%
4 RTN(η = 0.9) 5.56 6.50 63.7% 76.1%
4 ALS-LoRA 5.32 6.33 64.0% 77.2%

3 RTN 24.85 25.85 31.1% 42.3%
3 RTN(η = 0.8) 9.37 9.42 43.3% 54.2%
3 ALS-LoRA 6.21 7.22 55.0% 64.1%

4.3 ABLATION STUDIES

4.3.1 INFLUENCE OF RANK

In this section, we evaluate the low-rank matrix compensation effectiveness of ALS-LoRA under
different rank configurations. Based on the Llama3.1-8B model, we experiment with various rank
settings for both 4-bit and 3-bit quantization. The performance is assessed using perplexity (PPL) on
Wikitext2 and C4 datasets, with results summarized in Table 3. Experimental results demonstrate
that as the rank increases, the PPL correspondingly decreases, indicating that higher ranks lead to
better compensation effects, albeit at the cost of increased additional storage overhead.
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Table 3: Results under different rank

Bits Rank PPL(↓) Bits Rank PPL(↓)
Wiki2 C4 Wiki2 C4

16 - 5.65 9.40 16 - 5.65 9.40
4 64 6.01 10.42 3 64 6.82 12.34
4 32 6.09 10.49 3 32 7.10 12.72
4 16 6.15 10.52 3 16 7.34 12.73
4 8 6.21 10.62 3 8 7.58 12.94

4.3.2 INFLUENCE OF LAYERWISE-FINETUNE

To assess the benefits of layer-wise fine-tuning in our approach, we conducted the ablation study
presented in Table 4 Based on the Llama3.1-8B model, we performed quantization experiments to
compare the model’s performance on the test set before and after incorporating layer-wise fine-tuning.
The results indicate that even without enabling layer-wise fine-tuning, the address matrix computed
by ALS-LoRA achieves a reasonably good compensation effect. Layerwise-finetuning serves as an
additional enhancement, further improving the compensatory capabilities of the low-rank matrix.
Moreover, compared to full-model LoRA fine-tuning, layer-wise fine-tuning consumes significantly
fewer GPU resources.

Table 4: Influence of layerwise-finetune

Method Bits Rank PPL(↓) Accuracy(↑)
Wiki2 C4 Arc-c Arc-e

FP16 - - 5.65 9.40 79.6% 91.3%

RTN 4 - 7.62 13.06 68.4% 82.5%
ALS-LoRA(no fine) 4 16 6.28 10.76 74.1% 88.5%

ALS-LoRA 4 16 6.03 10.59 75.9% 89.0%

RTN 3 - 750.7 805.3 3.0% 4.0%
ALS-LoRA(no fine) 3 16 7.89 13.99 54.6% 71.0%

ALS-LoRA 3 16 7.34 13.08 60.0% 79.1%

5 CONCLUSION

This work addresses the critical challenge of deploying large language models under hardware con-
straints by introducing an optimized quantization framework. The key innovation lies in developing a
low-rank matrix compensation method that bypasses the resource-intensive LoRA fine-tuning through
Alternating Least Squares (ALS) optimization. Our approach enhances quantization along three
dimensions: (1) it incorporates activation values into low-rank modeling via ALS for better error com-
pensation, particularly in low-bit settings; (2) it introduces scaling factors to transform discontinuous
truncation into continuous optimization, improving interval adjustment in interval-based quantization;
(3) it introduces layer-wise fine-tuning to further enhance the compensation effect of the low-rank
matrix. Extensive experiments demonstrate superior performance over existing methods, providing
both theoretical insights and practical advantages for efficient LLM deployment.
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