ALS-LORA: IMPROVED LOW-RANK MATRIX COMPESATION METHOD FOR LOW BIT QUANTIZATION

Anonymous authors

000

001

003 004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031

032

034

036

040

041

042

043

044

046 047

048

051

052

Paper under double-blind review

ABSTRACT

The rapid advancement of Large Language Models (LLMs) has intensified the demand for efficient methodologies that balance model performance with hardware constraints, particularly GPU memory limitations. Quantization has emerged as a prominent technique for model compression, with OLoRA demonstrating the potential of low-rank matrices for quantization error compensation by integrating LoRA-based efficient fine-tuning. However, even LoRA fine-tuning requires substantial resources for models with tens or hundreds of billions of parameters. In this work, we explore low-rank matrix compensation for quantization errors without global LoRA fine-tuning, employing Alternating Least Squares (ALS) to better model and solve the optimization problem. We introduce a novel approach that refines low-rank matrix modeling by incorporating activation values and optimizing them directly through ALS, particularly under low-bit quantization conditions. Furthermore, we revisit the quantization interval partitioning in Round-to-Nearest (RTN) methods by introducing scaling factors that transform the discontinuous truncation function into a continuous optimization problem, thereby enhancing quantization performance through more rational interval adjustment. Extensive experimental evaluations support our theoretical contributions. Our research reveals how low-rank matrices can effectively capture the intrinsic information of large models, overcoming limitations of traditional SVD-based approaches. Comprehensive experiments across standard benchmarks consistently show that our method outperforms state-of-the-art quantization techniques, providing a principled, data-driven framework for understanding low-rank structure's role in quantization error compensation. This advancement represents a significant step toward practical LLM deployment, offering more efficient and effective model compression strategies.

1 Introduction

Large Language Models (LLMs) have achieved remarkable progress in recent years, demonstrating unparalleled proficiency across various language tasks, such as Natural Language Understanding (NLU) and Natural Language Generation (NLG). Despite their effectiveness, the sheer number of parameters, often in the millions or billions, poses significant challenges in terms of hardware requirements and computational resources for deployment. Consequently, there is a pressing need to compress these models effectively without compromising their performance. Among the various compression techniques, Quantization and low-rank adaptation (LoRA) are two pivotal techniques in the realm of model optimization, especially for large-scale models with billions of parameters. These techniques aim to enhance computational efficiency and reduce resource consumption while maintaining model performance.

In our research, we begin by reassessing quantization methods that primarily determine the quantization range based on extreme values, such as the Round-to-Nearest (RTN) method. Our analysis reveals that applying an appropriate scaling to these extreme values can significantly tackle the issue of outliers that deviate from the main distribution. This adjustment ensures that the quantization interval, set by these extreme values, more closely aligns with the distribution pattern of the majority of the data. Furthermore, it reduces the sensitivity of the weight matrix to variations caused by outliers. This minor enhancement proves particularly beneficial in low-bit quantization scenarios, typically involving 3 to 4 bits.

However, merely making this adjustment is insufficient, as a significant amount of information is lost during low-bit quantization. Consequently, we focus on how to efficiently compensate for this quantization error. The potential of low-rank matrices for efficient error compensation has been revealed in the efficient fine-tuning of LoRA, and there have been relevant extensions to the field of quantization. However, existing methods primarily initialize the low-rank matrix based on Singular Value Decomposition (SVD) of the quantization error of the weight matrix. For quantization problems, the impact of input values must be taken into account. Therefore, we propose employing the Alternating Least Squares (ALS) method to directly address the problem of linear layer quantization optimization. This approach enables the low-rank matrix to achieve a better compensation effect by modeling the error of the weight matrix more accurately.

On the other hand, previous work on LoRA has predominantly focused on fine-tuning the entire model. Although this approach saves a considerable amount of computational resources compared to full fine-tuning, it still poses a significant resource overhead for models with tens or even hundreds of billions of parameters. In our work, we introduce the ALS-LoRA method, which combines the theoretical compensation methods outlined earlier with further extraction of interactive information through layer-wise fine-tuning. This allows us to obtain a low-rank matrix with a good compensation effect without performing full-model LoRA, thereby greatly conserving computational resources and also aiding our further understanding of the compensation process of low-rank matrices.

In summary, our contributions are threefold:

- 1. **Enhanced Quantization by a Scaling Mechanism**: We enhance quantization performance by introducing a scaling mechanism that effectively handles outlier values and better aligns quantization intervals with the value distribution. This improvement significantly reduces information loss in RTN-based quantization methods.
- 2. Optimized Low-rank Matrices Estimation with ALS: We propose using the Alternating Least Squares (ALS) method for initializing low-rank matrices in LoRA. Unlike traditional Singular Value Decomposition (SVD)-based methods, ALS directly addresses the problem of linear layer quantization optimization, achieving superior compensation effects without the need for total LoRA fine-tuning.
- 3. More Resource-Efficient LoRA Quantization: We introduce the ALS-LoRA method, which combines theoretical compensation with only layerwise-finetuning. This approach significantly reduces computational overhead compared to full-model LoRA fine-tuning, making it highly efficient for large models with billions of parameters.

2 RELATED WORK

2.1 WEIGHT ONLY QUANTIZATION FOR LLMS

In the domain of weight quantization for LLMs, a substantial body of research is emerging, encompassing both Quantization-Aware Training (QAT) and Post-Training Quantization (PTQ) methodologies. QAT approaches, such as LLM-QAT (Liu et al., 2023) and EfficientQAT (Chen et al., 2025), simulate the quantization and dequantization processes during training. This enables the model to learn how to compensate for quantization-induced errors, thereby reducing quantization noise. However, as the number of parameters in large models grows, QAT becomes increasingly resource-intensive. In contrast, PTQ is far more cost-effective. Notable PTQ strategies include GPTQ (Frantar et al., 2023) and GPTAQ (Li et al., 2025), which leverage Hessian matrices, AWQ (Lin et al., 2024) and SpQR (Dettmers et al., 2023b) that address outliers with special treatment, Quarot (Ashkboos et al., 2024) and SpinQuant (Liu et al., 2025) that employ rotation matrices, and AQLM (Egiazarian et al., 2024) and VPTQ (Liu et al., 2024b) that rely on Vector Quantization. Additionally, there are hybrid methods that require only partial adjustment of training parameters, such as the low-rank matrix-based QLoRA (Dettmers et al., 2023a) method. This research landscape underscores the ongoing efforts to optimize the trade-offs between quantization accuracy and computational efficiency, particularly for large-scale models where the stakes of resource allocation are high.

2.2 LOW-RANK ADAPTATION(LORA)

The fine-tuning of Large Language Models (LLMs) is often hampered by the prohibitive computational and memory costs associated with Full Fine-Tuning (FFT). Parameter-Efficient Fine-Tuning (PEFT) has emerged as a dominant paradigm to address this challenge. Among various PEFT strategies, LoRA (Hu et al., 2021) is a widely recognized parameter-efficient fine-tuning (PEFT) method in the domain of LLMs. It approximates the update of a pretrained weight matrix $m{W} \in \mathbb{R}^{m imes n}$ by the product of two low-rank matrices $A \in \mathbb{R}^{m \times r}$, $B \in \mathbb{R}^{n \times r}$, where rank $r \ll \min(m, n)$. This approach allows for significant improvements in fine-tuning performance while controlling the increase in the number of trainable parameters, and introduces no additional inference latency. The success of the original LoRA has spurred a prolific line of research into its enhancements and variants. AdaLoRA (Zhang et al., 2023) accounts for the importance of modules by introducing an adaptive budget allocation scheme, which dynamically assigns higher ranks to more critical weight matrices to improve the efficiency of the parameters. Tied-LoRA (Renduchintala et al., 2024) introduce weight tying to further reduce the complexity. DoRA (Liu et al., 2024a)decouples the pre-trained weight into magnitude and direction components, applying low-rank update solely to the direction. Notably, LoRA has been effectively combined with other compression techniques. QLoRA (Dettmers et al., 2023a)integrates 4-bit double quantization with LoRA. The performance of these methods is often sensitive to the choice of the rank hyperparameter, which requires tedious manual tuning. Moreover, the theoretical underpinnings of why the low-rank assumption holds so effectively across diverse tasks are not yet fully understood.

2.3 ALTERNATING LEAST SQUARES (ALS)

The Alternating Least Squares (ALS) algorithm, known for its strong optimization capabilities, is extensively utilized in recommendation systems and natural language processing. The foundational ALS algorithm has been continuously improved through a series of research efforts focused on increasing its robustness, scalability, and applicability. For example, in recommendation systems, ALS is used to handle large-scale user-item interaction matrices, employing low-rank factorization to capture the underlying relationships between users and items (Clark et al., 2018). In natural language processing, ALS is also applied to topic models, such as Latent Dirichlet Allocation (LDA), to discover latent topics within a collection of documents (Blei et al., 2003). The use of ALS for low-rank matrix recovery has been introduced (Haldar & Hernando, 2009). However, its potential for direct quantization error minimization has not been explored in the area of Large Language Model (LLM) quantization. Our work bridges this gap by reintroducing ALS to more effectively address the low-rank quantization compensation problem.

3 METHOD

In this section, we delve deeper into our ALS-LoRA quantization method, which primarily comprises three key components: the optimized RTN quantization foundation, the computation of the compensatory low-rank matrix, and the synergistic enhancement of the low-rank matrix's compensatory capabilities through layerwise-finetuning.

3.1 LOW RANK MATRIX OPTIMIZATION PROBLEM

We begin by modeling the optimization problem for the quantization error matrix of a linear layer. Given a pre-trained weight matrix $\mathbf{W} \in \mathbb{R}^{m \times n}$, a N-bit quantized weight matrix $\mathbf{Q} \in \mathbb{R}^{m \times n}$, and low-rank matrices $\mathbf{A} \in \mathbb{R}^{m \times r}$ and $\mathbf{B} \in \mathbb{R}^{n \times r}$ with rank $r \ll \min(m, n)$, the objective can be formulated as minimizing the quantization error through the following optimization problem:

$$\min_{\widehat{\boldsymbol{W}}} \|\boldsymbol{W} - \widehat{\boldsymbol{W}}\|_{2}^{2} = \min_{\boldsymbol{A}, \boldsymbol{B}} \|\boldsymbol{W}\boldsymbol{X} - (\boldsymbol{Q} + \boldsymbol{A}\boldsymbol{B}^{T})\boldsymbol{X}\|_{2}^{2} = \min_{\boldsymbol{A}, \boldsymbol{B}} \|\Delta \boldsymbol{W}\boldsymbol{X} - \boldsymbol{A}\boldsymbol{B}^{T}\boldsymbol{X}\|_{2}^{2}$$
(1)

where $\Delta W = W - Q$ represents the quantization error. The main goal of Equation(1) is to minimize this error by optimizing over the low-rank matrices A and B. This optimization process aims to maximize the compensation for the quantization error.

SCALING MECHANISM

162

163 164

166

167

169

170

171 172

173

174

175

176

177

178

179

181 182

183

185

186

187

188 189

190

191

192

193

195 196

197

200

201

202

203

204

205

206

207 208

210 211 212

213

214

215

For the N-bit Round to Nearest quantization, the quantization and dequantization processes can be described as follows:

> $Q_{z,s}(\boldsymbol{W}) = \operatorname{round}\left(\frac{\boldsymbol{W}}{s} + z\right) = \boldsymbol{W_q}$ (2)

$$Q_{z,s}^{-1}(W_q) = s(W_q - z)$$
(3)

where the quantization scale is $s = (W_{\text{max}} - W_{\text{min}})/(2^N - 1)$, and the zero-point is $z = -W_{\text{min}}/s$.

According to the principle of RTN, the quantization scale s is primarily determined by W_{max} and W_{\min} , which means it is mainly influenced by the extreme values at both ends of the weight matrix distribution. However, the majority of parameters in the weight matrix are concentrated in a narrower range, with only a few outliers that significantly affect the quantization interval division, leading to greater precision loss for the central values. Therefore, we propose introducing a scaling factor η to adjust W_{max} and W_{min} enabling the calculated interval to better approximate the distribution of the majority of parameters. Yet, the weight matrix is more sensitive to these outliers than to other values in the middle of the distribution. Thus, an excessively small η would lead to precision degradation rather than improvement. Consequently, η needs to be chosen as an appropriate value within the range (0,1), which can be easily implemented through a step-by-step search method.

Although quantile-based truncation methods exist for quantization interval processing, they primarily rely on discontinuous truncation functions that can cause significant abrupt changes around outlier values, adversely affecting overall error. In contrast, our introduced scaling factor enables continuous adjustment of boundary values, achieving a better balance between errors in the central distribution and those from outliers. Furthermore, as demonstrated in Section 4.1, this adjustment approach proves effective not only in RTN quantization but also in other quantization methods that require boundary interval configuration.

Subsequently, we can further refine the quantization intervals by incorporating the low-rank compensation matrices A and B. Similar to LoftQ (Li et al., 2023), we initialize matrices A and B using the first r singular vectors obtained from SVD. We then refine A, B, and the RTN quantization through Alternating Optimization to achieve improved performance. Specifically, we perform SVD on the quantization error to acquire the top r singular vectors, which serve as the initial values for A and B. Concurrently, we update the quantization scheme to accommodate the updates to A and B. This process is detailed in Algorithm 1.

Algorithm 1 Adjust Quantization Scale and Init A, B

- 1: **Require:** Full precision weight matrix W, quantization bit N, scaling factor η , rank r, number of iterations T.
- 2: Initialize $A, B \leftarrow 0, 0$
- 3: **for** epoch τ in T **do**
- Calculate $W_{\text{max}} W_{\text{min}} \leftarrow W AB^T$
- 5:
- $m{W}_{ ext{max}} = \eta imes m{W}_{ ext{max}}$, $m{W}_{ ext{min}} = \eta imes m{W}_{ ext{min}}$ Quantization scale s, zero-point $z \leftarrow m{W}_{ ext{max}}$, $m{W}_{ ext{min}}$ 6:
- 7: $W_q \leftarrow s, z$
- Calculate dequantization weight matrix and error $Q \leftarrow W_q$, $s, z, \Delta W \leftarrow W Q$ 8:
- 9: $A, B \leftarrow SVD(\Delta W), r$
- 11: **Return** N-bit quantization weight matrix W_q , Init Low-rank matrices A, B

3.3 ALTERNATING LEAST SQUARES (ALS) OPTIMIZATION

Unlike the previous method that used SVD decomposition to fit ΔW with matrices A and B, we employ Alternating Least Squares (ALS) to directly solve Equation(1). To enhance the robustness of the fit, we added a regularization term to Equation(1) and then formulated the optimization problem as follows:

216

217

218

219220

221

224

225226227

228229230

231

232233

234

235

236

237

238

239

240 241

242

243 244

245246

247 248

249250

265266267

268

269

$$\ell = \|\Delta W X - A B^T X\|_2^2 + \lambda (\|A\|_2^2 + \|B^T X\|_2^2)$$

$$= tr[\Delta W X X^T \Delta W^T - \Delta W X X^T B A^T - A B^T X X^T \Delta W^T + A B^T X X^T B A^T + \lambda (A A^T + B^T X X^T B)]$$
(4)

$$\frac{\partial \ell}{\partial \mathbf{A}} = -\Delta \mathbf{W} \mathbf{H} \mathbf{B} + \mathbf{A} \mathbf{B}^T \mathbf{H} \mathbf{B} + 2\lambda \mathbf{A}$$
 (5)

$$\frac{\partial \ell}{\partial B} = -H\Delta W^T A + HBA^T A + \lambda HB \tag{6}$$

where $\boldsymbol{H}=2\boldsymbol{X}\boldsymbol{X}^T$ is mathematically referred to as the Hessian matrix, which can be estimated using calibration data. The parameter λ denotes the regularization coefficient, typically assigned a small value (e.g., 1×10^{-5}).

The ALS method is fundamentally about reformulating the original optimization problem into two interdependent convex quadratic programming subproblems. This is achieved by iteratively fixing one matrix while optimizing the other. These alternating steps continue iteratively until \boldsymbol{A} and \boldsymbol{B} reach stable values, which represent the final solution to the optimization problem. The iterative nature of this method capitalizes on the convexity of the subproblems, ensuring that each iteration results in an improvement in the objective function, ultimately leading to a solution that minimizes the overall error. To expedite convergence, we utilize the values obtained in Algorithm 1 as the initialization for the ALS algorithm.

To optimize matrix A while holding matrix B constant, we set Equation (5) to zero:

$$A = \Delta W H B (B^T H B + 2\lambda I)^{-1}$$
(7)

Similarly, to optimize matrix B while keeping matrix A fixed, we set Equation (6) to zero:

$$\boldsymbol{B} = \Delta \boldsymbol{W}^T \boldsymbol{A} (\boldsymbol{A}^T \boldsymbol{A} + \lambda \boldsymbol{I})^{-1} \tag{8}$$

Algorithm2 provides a comprehensive summary of the procedure outlined in this subsection.

Algorithm 2 ALS for Low-Rank Matrix Estimation of A and B

```
251
                    1: Require: Quantization error \Delta W, Hessian matrix H, input value X, scaling factor \lambda, number
                         of iterations T.
253
                   2: Initialize A, B \leftarrow Algorithm 1
254
                   3: Initialize best error \epsilon_0 \leftarrow 0
255
                   4: for epoch \tau in T do
                              Fix \boldsymbol{B} and update \boldsymbol{A}: \boldsymbol{A} \leftarrow \Delta \boldsymbol{W} \boldsymbol{H} \boldsymbol{B} (\boldsymbol{B}^T \boldsymbol{H} \boldsymbol{B} + 2\lambda \boldsymbol{I})^{-1}
256
                              Fix \boldsymbol{A} and update \boldsymbol{B}: \boldsymbol{B} \leftarrow \Delta \boldsymbol{W}^T \boldsymbol{A} (\boldsymbol{A}^T \boldsymbol{A} + \lambda \boldsymbol{I})^{-1} Calculate current mean squared error: \epsilon \leftarrow \frac{1}{n} \sum_{i=1}^n (\Delta \boldsymbol{W} \boldsymbol{X} - \boldsymbol{A} \boldsymbol{B}^T \boldsymbol{X})_i^2
257
                   7:
258
                              if \epsilon < \epsilon_0 and \epsilon_0 > 0 then
                   8:
259
                   9:
                                   Update best error: \epsilon_0 \leftarrow \epsilon
260
                 10:
                              else if \epsilon > \epsilon_0 then
261
                                   Early break.
                 11:
262
                 12:
                              end if
                 13: end for
264
                 14: Return Low-rank matrices A, B
```

3.4 Layerwise-finetuning

In Section 3.3, we computed the low-rank compensation matrices A and B for individual linear modules using the Alternating Least Squares (ALS) method. To further enhance the ability of

these low-rank matrices to capture relationships between different linear modules within the same transformer layer, while also balancing reduced resource consumption and maintained performance, we can implement additional layer-wise fine-tuning. The experiments in Section 4.3.2 demonstrate that this serves as an effective additional improvement to further enhance the compensation effect of the low-rank matrices.

274275276277

278

4 EXPERIMENTS

279280281282283

Models and Datasets: Our evaluation framework employs three large language models: Llama3.1-8B (AI, 2023), Mistral-7B (Jiang et al., 2023), and Llama-30B (Touvron et al., 2023). Model performance is assessed using two key metrics: perplexity (PPL) and accuracy (Acc). For perplexity evaluation, we utilize the Wikitext2 (Merity et al., 2016) and C4 (Raffel et al., 2019) datasets, while accuracy is measured on the ARC-Challenge (ARC-c) and ARC-Easy (ARC-e) (Clark et al., 2018) benchmarks.

284 285 286

4.1 Effect of scaling factor η

287 288

Table 1: Effect of scaling factor η .

310 311 312

313

314

315

316

317

318

319

Bits Wiki2(↓) **Bits** Wiki2((↓) **Bits** quantile Wiki2(↓) η FP16/16 FP16/16 5.65 5.65 FP16/16 5.65 1.0 7.62 1.0 750.69 1.0 750.69 0.9 6.95 0.9 178.15 0.99998 534.88 0.8 6.73 89.12 0.99995 407.73 0.8 RTN/4 RTN/3 0.99990 0.7 6.73 0.7 32.08 RTN(cmp)/3 222.49 0.6 7.03 0.6 13.93 0.99985 177.66 8.70 19.82 0.99982 0.5 0.5 171.47 0.99980 0.4 173.72 0.4 454.38 6159.86 1.0 7.03 1.0 1089.94 1089.94 1.0 0.9 63.57 0.9998 104.72 0.9 6.69 0.8 6.49 0.8 30.21 0.9996 52.84 Had/4 Had/3 0.7 6.34 0.7 13.94 Had(cmp)/3 0.9995 43.57 0.6 6.49 0.6 10.36 0.9994 35.96 7.32 0.9992 29.53 0.5 0.5 11.16 0.4 75.17 0.4 461.03 0.9991 33.47 1240.03 1.0 7.68 1.0 1240.03 1.0 0.9 7.56 0.9 164.64 0.99995 265.94 0.8 0.99990 0.8 7.53 64.33 141.62 PoT/4 0.7 6.94 PoT/3 PoT(cmp)/3 0.99988 0.7 18.43 88.94 0.6 7.78 0.6 13.36 0.99985 56.99 7.44 0.5 12.28 0.99982 109.97 0.5 0.4 7.40 0.4 130.88 0.99980 593.90

In this section, we present our experimental findings, which were primarily conducted using the Llama3.1-8B model. The performance of the quantized model was evaluated using Perplexity (PPL) as the test metric on the Wikitext2 dataset. The objective of these experiments is to illustrate that selecting an appropriate scaling factor, denoted as η , can markedly improve the efficacy of the quantization process. Furthermore, in addition to the basic Round to Nearest (RTN) method, we also assessed the impact of applying the scaling factor η to other techniques. These included an enhanced version of RTN that employs Hadamard rotation matrix transformations to mitigate outliers (Tseng et al., 2024), as well as a non-uniform quantization method known as PoT (Miyashita et al., 2016), which is based on powers of two.

The results are presented in Table 1, where the first three columns from the left represent 4-bit quantization with scaling factor η , the middle three columns represent 3-bit quantization with scaling factor η , and the last three columns represent the traditional 3-bit quantization method using direct tail truncation based on quantiles, which is compared with the middle three columns. For each scenario,

325

326

327

328

330

331

332 333 334

335

341

342

343

344

345

346

347

348

349

350

351

352

353

354 355 356

357 358

359

360

361

362

363

364

366

367

368

369 370

371

372

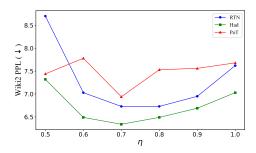
373

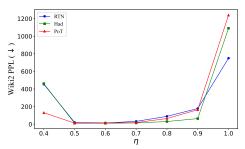
374

375

376

377





different η .

Figure 1: 4-bit quantization PPL changes with Figure 2: 3-bit quantization PPL changes with different η .

we tested the RTN method, the Hadamard-improved RTN, and the non-uniform Power-of-Two (PoT) quantization. Figure 1 and Figure 2 illustrate the variations in PPL as the scaling factor η is adjusted under 4-bit and 3-bit quantization scenarios, respectively. The results indicate that after applying an appropriate scaling factor η , all three methods—4-bit and 3-bit quantizations—showed significant improvements over the original quantization results, with particularly notable enhancements for 3-bit quantization, where PPL could be reduced to a few tenths or even a hundredth of the original value. Additionally, the results demonstrate that across a relatively wide range of η values, there is consistently good performance, which is more convenient for practical engineering applications and parameter tuning. When comparing the methods using η scaling with those using quantile truncation for 3-bit quantization, it is evident that quantile truncation is highly sensitive to the setting of the quantile and does not effectively preserve information about outliers, resulting in a noticeably inferior performance compared to the η scaling method.

Overall, the experimental results suggest that adjusting the scaling factor method does not require additional storage and has low computational overhead, making it a promising approach for improving low-bit quantization in interval-based segmentation.

4.2 QUANTIZATION PERFORMANCE

During the evaluation of our ALS-LoRA quantization approach, we utilized the Round to Nearest (RTN) quantization model as our primary baseline to assess the low-bit quantization performance on the Llama3.1-8B, Mistral-7B, and Llama-30B models. This included evaluating the compensation effects at 4-bit, 3-bit, and 2-bit levels. In our experimental setup, for 4-bit and 3-bit RTN, we employed per-channel quantization, while for 2-bit, we used per-group quantization with group sizes of 32 and 64. For ALS-LoRA, the scaling factor η was set to 0.8 for 4-bit quantization on both Llama3.1-8B and Mistral-7B, and to 0.6 for 3-bit and 2-bit quantization. For Llama-30B, η was set to 0.9 for 4-bit quantization and 0.8 for 3-bit quantization. The rank of low-rank matrices was 32. The calibration dataset required for ALS-LoRA consisted of 128 samples randomly selected from the Wikitext2 dataset, and the layer-wise fine-tuning was performed for 3 epochs. In terms of testing, we primarily measured two metrics: Perplexity (PPL) and Accuracy. PPL was assessed using the Wikitext2 and C4 datasets, while Accuracy was evaluated using the question-answering datasets ARC-Challenge (ARC-c) and ARC-Easy (ARC-e). The results were recorded in Table 2.

The findings clearly demonstrate that ALS-LoRA has outperformed the baseline significantly. In the case of 4-bit quantization, ALS-LoRA's PPL on Wikitext2 is within 0.5 of that achieved by FP16, and its accuracy is within 5%, indicating an effective compensation. For 3-bit quantization, ALS-LoRA offers even greater compensation compared to RTN, potentially reducing the PPL to a fraction or even a tenth of its original value. The table results show that ALS-LoRA exhibits strong compensation capabilities for both 4-bit, 3-bit, and 2-bit quantization. For instance, when quantizing the Llama 3.1-8B model at 3 bits, ALS-LoRA reduces the PPL on Wikitext2 from 750.7 to 7.1, a decrease to a little over one percent of the original value. Similarly, for 2-bit quantization, the PPL on Wikitext2 is dramatically reduced from 4346.10 to 10, a reduction of several orders of magnitude. These results

underscore the robustness and effectiveness of ALS-LoRA in enhancing the performance of quantized models, particularly in low-bit scenarios.

In summary, the ALS-LoRA method has shown good compensation effects across different quantization bit numbers and model sizes. In low-bit quantization scenarios, especially for large language models, it provides an effective strategy for compensating quantization errors, allowing for a reduction in model size while maintaining performance as much as possible. This is particularly significant for deploying large language models in resource-constrained environments.

Table 2: Performance comparing.

M - 1-1	D:4.	Madhad	PPL (↓)		Accuracy(\(\frac{1}{2}\))	
Model	Bits	Method	Wiki2	C4	Arc-c	Arc-e
	16	FP16	5.65	9.40	79.6%	91.3%
	4	RTN	7.62	13.06	68.4%	82.5%
	4	$RTN(\eta = 0.8)$	6.73	11.51	69.5%	85.9%
Llama3.1-8B	4	ALS-LoRA	6.09	10.49	75.9%	89.9%
	3	RTN	750.7	805.3	3.0%	4.0%
	3	$RTN(\eta = 0.6)$	13.93	23.37	35.0%	50.1%
	3	ALS-LoRA	7.10	12.72	55.2%	72.5%
	2	RTN(g32)	4346.10	780.86	7.3%	7.7%
	2	ALS-LoRA(g32)	10.60	19.85	34.2%	41.2%
Mistral-7B	16	FP16	6.81	7.91	73.5%	85.0%
	4	RTN	7.78	8.90	45.2%	68.2%
	4	$RTN(\eta = 0.8)$	7.67	8.74	58.1%	78.5%
	4	ALS-LoRA	6.97	8.13	71.2%	84.3%
	3	RTN	78.25	53.53	17.7%	19.8%
	3	$RTN(\eta = 0.6)$	21.60	37.03	11.3%	18.6%
	3	ALS-LoRA	7.50	8.85	58.3%	76.2%
	2	RTN(g32)	25.03	21.20	11.8%	11.5%
	2	ALS-LoRA(g32)	11.35	12.55	38.8%	39.3%
	2	RTN(g64)	173.63	78.79	7.0 %	7.7%
	2	ALS-LoRA(g64)	12.00	13.70	32.0%	39.3%
	16	FP16	5.13	6.20	64.2%	78.9%
	4	RTN	5.68	6.60	59.6%	71.9%
	4	$RTN(\eta = 0.9)$	5.56	6.50	63.7%	76.1%
Llama-30B	4	ALS-LoRA	5.32	6.33	64.0%	77.2%
	3	RTN	24.85	25.85	31.1%	42.3%
	3	$RTN(\eta = 0.8)$	9.37	9.42	43.3%	54.2%
	3	ALS-LoRA	6.21	7.22	55.0%	64.1%

4.3 ABLATION STUDIES

4.3.1 INFLUENCE OF RANK

In this section, we evaluate the low-rank matrix compensation effectiveness of ALS-LoRA under different rank configurations. Based on the Llama3.1-8B model, we experiment with various rank settings for both 4-bit and 3-bit quantization. The performance is assessed using perplexity (PPL) on Wikitext2 and C4 datasets, with results summarized in Table 3. Experimental results demonstrate that as the rank increases, the PPL correspondingly decreases, indicating that higher ranks lead to better compensation effects, albeit at the cost of increased additional storage overhead.

Table 3: Results under different rank

Bits	Rank	PPL(↓)		Bits	Donle	PPL(↓)	
		Wiki2	C4	Dits	Rank	Wiki2	C4
16	-	5.65	9.40	16	-	5.65	9.40
4	64	6.01	10.42	3	64	6.82	12.34
4	32	6.09	10.49	3	32	7.10	12.72
4	16	6.15	10.52	3	16	7.34	12.73
4	8	6.21	10.62	3	8	7.58	12.94

4.3.2 Influence of Layerwise-finetune

To assess the benefits of layer-wise fine-tuning in our approach, we conducted the ablation study presented in Table 4 Based on the Llama3.1-8B model, we performed quantization experiments to compare the model's performance on the test set before and after incorporating layer-wise fine-tuning. The results indicate that even without enabling layer-wise fine-tuning, the address matrix computed by ALS-LoRA achieves a reasonably good compensation effect. Layerwise-finetuning serves as an additional enhancement, further improving the compensatory capabilities of the low-rank matrix. Moreover, compared to full-model LoRA fine-tuning, layer-wise fine-tuning consumes significantly fewer GPU resources.

Table 4: Influence of layerwise-finetune

Method	Bits Rank		PPL(↓) Wiki2 C4		Accuracy(†) Arc-c Arc-e	
FP16	-	-	5.65	9.40	79.6%	91.3%
RTN ALS-LoRA(no fine) ALS-LoRA	4 4 4	- 16 16	7.62 6.28 6.03	13.06 10.76 10.59	68.4% 74.1% 75.9%	82.5% 88.5% 89.0%
RTN ALS-LoRA(no fine) ALS-LoRA	3 3 3	16 16	750.7 7.89 7.34	805.3 13.99 13.08	3.0% 54.6% 60.0%	4.0% 71.0% 79.1%

5 Conclusion

This work addresses the critical challenge of deploying large language models under hardware constraints by introducing an optimized quantization framework. The key innovation lies in developing a low-rank matrix compensation method that bypasses the resource-intensive LoRA fine-tuning through Alternating Least Squares (ALS) optimization. Our approach enhances quantization along three dimensions: (1) it incorporates activation values into low-rank modeling via ALS for better error compensation, particularly in low-bit settings; (2) it introduces scaling factors to transform discontinuous truncation into continuous optimization, improving interval adjustment in interval-based quantization; (3) it introduces layer-wise fine-tuning to further enhance the compensation effect of the low-rank matrix. Extensive experiments demonstrate superior performance over existing methods, providing both theoretical insights and practical advantages for efficient LLM deployment.

REFERENCES

Meta AI. The llama 3 herd of models. Meta AI Research, 2023. URL https://ai.meta.com/research/publications/the-llama-3-herd-of-models/. Accessed: 2023-10-05.

- Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Pashmina Cameron, Martin Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms, 2024. URL https://arxiv.org/abs/2404.00456.
 - David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. *Journal of Machine Learning Research*, 3:993–1022, 2003.
 - Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping Luo. Efficientqat: Efficient quantization-aware training for large language models, 2025. URL https://arxiv.org/abs/2407.11062.
 - Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint arXiv:1803.05457, 2018. URL https://arxiv.org/abs/1803.05457.
 - Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of quantized llms, 2023a. URL https://arxiv.org/abs/2305.14314.
 - Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized representation for near-lossless llm weight compression, 2023b. URL https://arxiv.org/abs/2306.03078.
 - Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Alistarh. Extreme compression of large language models via additive quantization, 2024. URL https://arxiv.org/abs/2401.06118.
 - Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization for generative pre-trained transformers, 2023. URL https://arxiv.org/abs/2210.17323.
 - Justin P. Haldar and Diego Hernando. Rank-constrained solutions to linear matrix equations using powerfactorization. *IEEE Signal Processing Letters*, 16(7):584–587, 2009. doi: 10.1109/LSP.2009. 2018223.
 - Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https://arxiv.org/abs/2106.09685.
 - Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saunier, Lélio Renard Lavaud, Marie-Anne Lachaux, Peter Hegde Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023. URL https://arxiv.org/abs/2310.06825.
 - Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. *arXiv preprint arXiv:2310.08659*, 2023. URL https://doi.org/10.48550/arXiv.2310.08659.
 - Yuhang Li, Ruokai Yin, Donghyun Lee, Shiting Xiao, and Priyadarshini Panda. Gptaq: Efficient finetuning-free quantization for asymmetric calibration, 2025. URL https://arxiv.org/abs/2504.02692.
 - Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for llm compression and acceleration, 2024. URL https://arxiv.org/abs/2306.00978.
 - Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation, 2024a. URL https://arxiv.org/abs/2402.09353.
 - Yifei Liu, Jicheng Wen, Yang Wang, Shengyu Ye, Li Lyna Zhang, Ting Cao, Cheng Li, and Mao Yang. Vptq: Extreme low-bit vector post-training quantization for large language models, 2024b. URL https://arxiv.org/abs/2409.17066.

- Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware training for large language models, 2023. URL https://arxiv.org/abs/2305.17888.
 - Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krishnamoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantization with learned rotations, 2025. URL https://arxiv.org/abs/2405.16406.
- Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. *arXiv preprint arXiv:1609.07843*, 2016.
- Daisuke Miyashita, Edward H. Lee, and Boris Murmann. Convolutional neural networks using logarithmic data representation, 2016. URL https://arxiv.org/abs/1603.01025.
- Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. *arXiv e-prints*, 2019.
- Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-lora: Enhancing parameter efficiency of lora with weight tying, 2024. URL https://arxiv.org/abs/2311.09578.
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language models. *CoRR*, abs/2302.13971, 2023. URL http://dblp.uni-trier.de/db/journals/corr/corr2302.html#abs-2302.13971.
- Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#: Even better Ilm quantization with hadamard incoherence and lattice codebooks. *arXiv* preprint *arXiv*:2402.04396, 2024. URL https://arxiv.org/abs/2402.04396.
- Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient fine-tuning, 2023. URL https://arxiv.org/abs/2303.10512.