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Abstract

Recently it has been shown that without any ac-001
cess to the contextual passage, multiple choice002
reading comprehension (MCRC) systems are003
able to answer questions significantly better004
than random on average. These systems use005
their accumulated "world knowledge" to di-006
rectly answer questions, rather than using infor-007
mation from the passage. This paper examines008
the possibility of exploiting this observation as009
a tool for test designers to ensure that the form010
of "world knowledge" is acceptable for a partic-011
ular set of questions. We propose information-012
theory based metrics that enable the level of013
"world knowledge" exploited by systems to014
be assessed. Two metrics are described: the015
expected number of options, which measures016
whether a passage-free system can identify the017
answer a question using world knowledge; and018
the contextual mutual information, which mea-019
sures the importance of context for a given020
question. We demonstrate that questions with021
low expected number of options, and hence022
answerable by the shortcut system, are often023
similarly answerable by humans without con-024
text. This highlights that the general knowledge025
‘shortcuts’ could be equally used by exam can-026
didates, and that our proposed metrics may be027
helpful for future test designers to monitor the028
quality of questions.029

1 Introduction030

Reading comprehension (RC) exams are used ex-031

tensively in a wide range of language competency032

examinations (Alderson, 2000), and have become033

a ubiquitous assessment method to probe how well034

candidates can read a passage and understand the035

text’s core meaning. A fundamental assumption of036

RC exams is that to answer any of the questions037

correctly, one has to read the passage, comprehend038

its meaning, and identify the relevant information039

of a given question. However, recent work has040

Figure 1: Output probabilities of our model (trained
with contexts omitted) on real RACE++ (Liang et al.,
2019) examples.

shown that multiple-choice machine reading com- 041

prehension (MCMRC) systems without access to 042

the passage can achieve reasonable performance 043

(Pang et al., 2022), showing that the models may 044

be doing less comprehension than anticipated. 045

In this paper we analyse this phenomena and for 046

several standard MCMRC datasets (Liang et al., 047

2019; Huang et al., 2019; Yu et al., 2020) verify 048

that passage-free baselines are able to achieve per- 049

formance significantly better than random. We 050

show that a subset of questions can be answered 051

accurately and confidently without access to the 052

contextual passage, where further analysis shows 053

this is partly due to the presence of low-quality 054

distractors, i.e. options that can be eliminated us- 055

ing only the question. As an example, given the 056

question “Mina’s sister’s name is:", one can elimi- 057

nate any options that use a traditionally male name 058

(see Figure 1). This highlights a potential ‘shortcut’ 059

candidates could use to answer questions while by- 060

passing the context. Our work raises awareness to 061

this potential flaw, and proposes a simple solution 062

to catch questions that can be answered without 063

comprehension. The proposed metrics might be 064

a useful tool for future multiple-choice RC test 065

designers to ensure that all questions truly assess 066

reading comprehension ability. 067

Machine reading comprehension (MRC) is a 068

highly researched area, with state-of-the-art (SoTA) 069
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Figure 2: Model architecture.

systems (Zhang et al., 2021; Yamada et al., 2020;070

Zaheer et al., 2020; Wang et al., 2022) often ap-071

proaching or even exceeding human level per-072

formance on public benchmarking leaderboards073

(Clark et al., 2018; Lai et al., 2017; Trischler et al.,074

2017; Yang et al., 2018). Existing work has anal-075

ysed the robustness of MRC systems, where re-076

searchers have questioned whether systems fully077

leverage context and whether they accomplish the078

underlying comprehension task (Sugawara et al.,079

2020; Rajpurkar et al., 2016; Kaushik and Lipton,080

2018; Jia and Liang, 2017; Si et al., 2019). Most081

notably Kaushik and Lipton (2018) show that for082

a range of question-answering tasks, passage-only083

systems can often achieve remarkable performance,084

which has been observed in the MCRC setting085

(Pang et al., 2022).086

Most existing work has discussed model robust-087

ness, demonstrating that for some tasks it is possi-088

ble to obtain high average system performance with089

no context information. In contrast, this paper fo-090

cuses on the attributes of individual questions and091

options, identifying questions where "world knowl-092

edge" can be leveraged, and the extent to which093

this knowledge can be leveraged. This could be a094

useful tool to enable test designers to monitor the095

questions being proposed, and whether alternative096

distractors or questions should be considered.097

2 Multiple choice reading comprehension098

Multiple-choice reading comprehension is a099

popular task where given a context passage C and100

question Q, the correct answer must be deduced101

from a set of answer options {O}. Current102

SoTA MRC systems are dominated by pre-trained103

language models (PrLMs) based on the transformer104

encoder architecture (Devlin et al., 2019; Liu et al.,105

2019; Clark et al., 2020).106

107

Model Architecture Our question-answering108

system follows the standard MCMRC architecture109

of Figure 2 (Yu et al., 2020; Raina and Gales,110

2022). Each option is individually encoded along 111

with the question and the context into a score, and 112

a softmax layer converts the 4 options’ scores 113

into a probability distribution. At inference, the 114

predicted answer is the option with the greatest 115

probability. 116

117

‘No Context’ Shortcut System A requirement for 118

good MCRC questions is that information from 119

both the question and the context passage must be 120

used to determine the correct answer. To probe 121

whether this is an issue for MCMRC, we train sys- 122

tems using ‘context free’ inputs (similar to Pang 123

et al. (2022)). The standard set-up (Figure 2) is 124

still followed, however the input is now altered to 125

exclude the context, as shown in Figure 3. 126

Figure 3: System inputs for shortcut system.

Effective Number of Options Consider the out- 127

put probability distribution of the predicted answer, 128

P(y). One can measure the entropy of the distribu- 129

tion, H(Y ), which can be converted into the more 130

interpretable effective number of options, N (Y ), a 131

value bounded between 1 and the maximum num- 132

ber of options: 133

N (Y ) = 2H(Y ), H(Y ) = −
∑
y∈Y

P(y) log2 P(y) (1) 134

For well designed questions, one would expect 135

systems with missing information (i.e. the 136

‘shortcut’ models) to have no information of what 137

the answer is. This would correspond to a uniform 138

distribution output (the distribution of maximum 139

entropy), with an effective number of options 140

equal to the total number of answer options. 141

However, if the effective number of options is 142

significantly lower than the total number of answer 143

options, then this implies that the model can 144

somewhat infer the answer without comprehension. 145

146
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Mutual Information To probe how much informa-147

tion is gained by the context, one can additionally148

look at an approximation of mutual information of149

the context. This looks at how much the entropy150

decreases between the ‘no context’ shortcut system151

and the ‘context’ baseline system .152

I(Y ;C|Q, {O}) = H(Y |Q, {O})−H(Y |Q, {O}, C) (2)153

3 Experiments154

Data We consider three popular MCMRC datasets:155

RACE++ (Lai et al., 2017), COSMOSQA (Huang156

et al., 2019) and ReClor (Yu et al., 2020). RACE++157

is a dataset of English comprehension questions158

for Chinese high school students, COSMOSQA159

is a large scale commonsense-based reading com-160

prehension dataset, while ReClor is a challenging161

logical reasoning dataset at a graduate student162

level. All datasets have 4 options per question, one163

of which being the correct answer.164

165

TRN DEV EVL

RACE++ 100,388 5,599 5,642
COSMOS 25,262 2,985 –
ReClor 4,638 500 1000

Table 1: Dataset statistics

Training An ELECTRA-large1 model is fine-tuned166

on the training split TRN, hyper-parameters are167

tuned on the developement set DEV, and perfor-168

mance reported on the test split EVL for RACE++169

(DEV splits are used for COSMOS and ReClor due170

to unavailability of the EVL splits). Additionally,171

models are trained and evaluated using the ‘no con-172

text’, as described in Section 2. Final hyperpa-173

rameters are given in Appendix C.1. Three seeds174

are trained, and ensemble accuracy is used as the175

default metric when reporting performance.176

3.1 Results177

Context-Free Performance We compare the per-178

formance of the baseline ‘standard’ system against179

the shortcut ‘no context’ systems for the various180

MCMRC datasets. Table 2 illustrates that the short-181

cut systems achieve high performance across all182

MCMRC datasets, all above 50%, significantly183

above the expected random performance of 25%.184

Further, we find that the shortcut rules can gener-185

alise across domains, most notably seen with the186

1https://huggingface.co/docs/
transformers/model_doc/electra

54% performance when training the shortcut sys- 187

tem on RACE and evaluating on COSMOS. This 188

highlights that the shortcut performance cannot be 189

explained purely by dataset bias, but that there is a 190

skill, unrelated to comprehension, that the systems 191

are meaningfully leveraging. 192

Training data RACE++ COSMOS ReClor

– 25.00 25.00 25.00

RACE++ standard 85.01 70.05 48.60
no context 57.32 54.04 34.80

COSMOS standard 66.81 84.49 41.20
no context 38.73 68.51 27.80

ReClor standard 52.69 41.68 69.80
no context 31.27 33.13 51.80

Table 2: Cross-performance of systems on RACE++,
COSMOSQA and ReClor using accuracy.

RACE++ Effective Number of Options Figure 4 193

presents the count and accuracy plots of the effec- 194

tive number of options (bin width of 0.2) for both 195

the standard and shortcut systems on RACE++ (see 196

Appendix for other datasets). Since the systems are 197

slightly overconfident2, the systems’ output proba- 198

bilities are calibrated using temperature annealing 199

(Guo et al., 2017) (see Appendix C.3). 200

Figure 4: Distribution of effective number of options
and corresponding (binned) accuracy.

The baseline system has high certainty for most 201

points, which is somewhat expected given the 202

baseline’s high accuracy. However the shortcut 203

system, without any contextual information, has 204

a significant number of examples in the very low 205

entropy region. This shows that for a subset of 206

questions, the system can confidently reason the 207

true answer without doing any comprehension 208

at all. In other cases, the shortcut system can 209

2For both models, the mean of the maximum probability
is 5% above the overall accuracy.
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leverage some information from the question210

and can reduce the number of effective options211

to between 2-3, which implies that certain poor212

distractors can be eliminated by the question213

alone. We also show that for both models, there214

is a clear linear relationship between uncertainty215

and accuracy, illustrating that the context-free216

system’s use of world knowledge is sensible and217

that it leverages meaningful task information. This218

confirms that the systems are well calibrated and219

that the effective number of options is a good220

measure of actual model uncertainty.221

222

Human “World Knowledge" Figure 4 shows that223

some questions can be answered without any com-224

prehension. To see whether such an insight could225

be useful as a tool to flag questions that could226

be improved/replaced, we consider whether such227

questions are similarly answerable without context228

by humans. We run an internal human evaluation229

where we select the 100 questions with lowest and230

highest entropy and get three graduate students to231

independently answer the questions in a shortcut232

setting (without access to the context). We find that233

humans without comprehension are often able to234

answer the questions that the shortcut systems is235

able to confidently answer, with humans achieving236

an average accuracy of 92% on the 100 lowest and237

32% on the 100 highest entropy examples respec-238

tively. The sets of questions and graduate student239

answers are provided in the supplementary infor-240

mation.241

low entropy high entropy

human 91.7±1.9 31.7±2.9

shortcut 99.0±0.0 24.3±6.2

Table 3: Human and system ‘no context’ accuracy on
lowest and highest entropy questions

Mutual Information To further look at the influ-242

ence of context, the mutual information (MI) be-243

tween prediction and context was approximated244

for each example using Equation 2. Points with245

a high MI are questions where the model is cer-246

tain of the answer with context, but is uncertain247

without context - a property questions that require248

comprehension should have. Figure 5 shows the249

counts when all the examples are ordered by MI250

(see Equation 2) along with both the baseline and251

shortcut system accuracies. In particular, we note252

that the count distribution has a mix of high and 253

low MI questions, which shows that the benefit of 254

context is not a system-wide property but instead 255

varies over questions. We also note that the accu- 256

racy of the baseline system increases considerably 257

when context is useful, while accuracy falls for the 258

shortcut system. It is interesting to note that a small 259

fraction of questions have a negative MI. Though 260

mutual information should always be positive, neg- 261

ative values can be observed since models are only 262

approximations of the true underlying distributions. 263

The low accuracy of the shortcut model on negative 264

MI questions occurs when standard world knowl- 265

edge is not consistent with the information in the 266

context. 267

Figure 5: Distribution of counts and corresponding ac-
curacy when points are sorted by MI approximation.

4 Conclusions 268

For popular MCMRC datasets, systems can achieve 269

reasonably high performance without performing 270

any comprehension. Without passage information, 271

‘shortcut’ systems can confidently determine some 272

correct answer options, eliminate some unlikely 273

distractors, and use general knowledge to gain in- 274

formation. Rather than focusing on average system 275

performance, out work analyses individual ques- 276

tion’s reliance on world knowledge. We propose 277

a metric based on the shortcut systems that may 278

be used to automatically flag questions that are 279

answerable without comprehension. We further 280

provide evidence that the flagged questions are an- 281

swerable by humans without any context. Lastly, 282

using an approximation of the mutual information, 283

we show that the importance of context varies over 284

the questions in the dataset, and reason that high 285

MI questions can be thought of as candidates for 286

high-quality questions that truly measure compre- 287

hension abilities. 288
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Appendix A Limitations411

We propose an approach that can automatically flag412

questions that can be answered without contextual413

information. However, the remaining questions are414

not necessarily high-quality questions, since many415

other aspects make up question quality. Further,416

exams might be aimed at a level where a lack of417

specific knowledge may be assumed. Our work418

does not consider variable candidate knowledge419

levels, and our evaluation was only done by highly420

educated (we’d like to think) graduate students. Fi-421

nally, we acknowledge that our human evaluation422

was limited in size and questions, with potential423

conflict of self-interest, however it is clearly demon-424

strated that for low ‘shortcut entropy’ questions,425

comprehension is not necessarily required.426

Appendix B Additional Results427

Appendix B.1 COSMOSQA428

Figure Appendix B.1: Distribution of effective number
of options and binned accuracy for COSMOSQA.

We repeat the entropy plot (Figure Appendix429

B.1) for COSMOSQA and find similar trends to430

those seen in RACE++. The shortcut no-context431

system has a very flat distribution with a substantial432

number of questions answerable without context,433

with the effective number of options again having434

Figure Appendix B.2: Distribution of counts and cor-
responding accuracy when points are sorted by MI ap-
proximation for COSMOSQA.

a clean linear relationship with accuracy. The re- 435

peated mutual information plot (Figure Appendix 436

B.2) for COSMOSQA also has the same trend seen 437

in RACE++, validating that our findings are more 438

general that just for RACE++. 439

Appendix B.2 ReClor 440

Figure Appendix B.3: Distribution of effective number
of options and binned accuracy for ReClor.

Figure Appendix B.4: Distribution of counts and cor-
responding accuracy when points are sorted by MI ap-
proximation for ReClor.

ReClor show roughly the same trends, however 441

the questions of ReClor are much more challeng- 442
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ing than in either RACE++ and COSMOSQA, and443

so we notice that the counts distribution is pushed444

considerably to the higher entropy side. Addition-445

ally, since ReClor is much smaller than RACE++446

and COSMOSQA (see Table 1), the curves are less447

smooth and largely suffer from noise.448

Appendix B.3 Other Shortcuts449

We also consider other shortcut approaches, such as450

having context and options (i.e. missing question)451

and only options (Figure Appendix B.5). Perfor-452

mance of the systems is shown in Table Appendix453

B.1.454

Figure Appendix B.5: System inputs for alternative
shortcut systems.

Training data RACE++ COS. ReClor

– 25.00 25.00 25.00

RACE++

{O} 41.76 21.44 34.00
Q+{O} 57.32 54.04 34.80
{O}+C 68.20 54.61 46.00

Q+{O}+C 85.01 70.05 48.60

COSMOS

{O} 29.95 57.39 25.20
Q+{O} 38.73 68.51 27.80
{O}+C 52.41 78.96 40.40

Q+{O}+C 66.81 84.49 41.20

ReClor

{O}. 26.07 18.29 49.00
Q+{O} 31.27 33.13 51.80
{O}+C 39.83 36.88 68.40

Q+{O}+C 52.69 41.68 69.80

Table Appendix B.1: Cross-performance of systems on
RACE++, COSMOSQA and ReClor using accuracy.

Appendix C Model Information455

C.1 Training Details456

For all systems, deep ensembles of 3 models are457

trained with the large 3 ELECTRA PrLM as a part458

of the multiple-choice MRC architecture depicted459

in Figure 2. Each model has 340M parameters.460

Grid search was performed for hyperparameter461

tuning with the initial setting of the hyperparam-462

eter values dictated by the baseline systems from463

Yu et al. (2020); Raina and Gales (2022). Apart464

3Configuration at: https://huggingface.co/
google/electra-large-discriminator/blob/
main/config.json.

from the default values used for various hyper- 465

paramters, the grid search was performed for the 466

maximum number of epochs ∈ {2, 5, 10}; learning 467

rate ∈ {2e−7, 2e−6, 2e−5}; batch size ∈ {2, 4}. 468

For RACE++, training was performed for 2 epochs 469

at a learning rate of 2e-6 with a batch size of 4 470

and inputs truncated to 512 tokens. For systems 471

trained on ReClor the final hyperparameter settings 472

included training for 10 epochs at a learning rate 473

of 2e-6 with a batch size of 4 and inputs truncated 474

to 512 tokens. For COSMOSQA, training was per- 475

formed for 5 epochs at a learning rate of 2e-6 with 476

a batch size of 4 and inputs truncated to 512 tokens. 477

Cross-entropy loss was used at training time with 478

models built using NVIDIA A100 graphical pro- 479

cessing units with training time under 3 hours per 480

model for ReClor, 5 hours for COSMOSQA and 4 481

hours for RACE++. All hyperparameter tuning was 482

performed by training on TRN and selecting values 483

that achieved optimal performance on DEV. For 484

fairness, the ‘shortcut’ systems (omitting various 485

forms of the input) for each dataset were trained 486

with the same hyperparameter settings as their cor- 487

responding baseline systems. 488

C.2 Evaluation Details 489

For each dataset, the systems are trained on the 490

training split and hyperparameter tuned on the de- 491

velopment split. For RACE++, systems are evalu- 492

ated on the held out test data, but for COSMOSQA 493

and ReClor, the evaluations are performed on the 494

development split because their test splits have their 495

labels hidden. 496

C.3 Calibration 497

The trained models were calibrated post-hoc using 498

single parameter temperature annealing (Guo et al., 499

2017). Uncalibrated, model probabilities are deter- 500

mined by applying the softmax to the output logit 501

scores si: 502

P (y = k;θ) ∝ exp(sk) (3) 503

where k denotes a possible output class for a predic- 504

tion y. Temperature annealing ‘softens’ the output 505

probability distribution by dividing all logits by a 506

single parameter T before the softmax. 507

PCAL(y = k;θ) ∝ exp(sk/T ) (4) 508

As the parameter T does not change the relative 509

rankings of the logits, the model’s prediction will 510

be unchanged and so temperature scaling does not 511
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affect the model’s accuracy. The parameter T is512

chosen such that the accuracy of the system is equal513

to the mean of the maximum probability (which514

would be expected for a calibrated system).515

Appendix D Licenses516

This section details the license agreements of the517

scientific artifacts used in this work. The dataset518

COSMOSQA (Huang et al., 2019) has BSD 3-519

Clause License. The datasets RACE++ (Lai et al.,520

2017) and ReClor (Yu et al., 2020) are freely avail-521

able with the limitation on the latter that it can522

only be used for non-commercial research purposes.523

Huggingface transformer models are released un-524

der: Apache License 2.0. All the scientific aritfacts525

are consistent with their intended uses.526
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