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Abstract001

Personalized product search aims to learn per-002
sonalized preferences from search logs and ad-003
just the ranking lists returned by engines. Pre-004
vious studies have extensively explored exca-005
vating valuable features to build accurate inter-006
est profiles. However, they overlook that the007
user’s attention varies on product attributes(e.g.,008
brand, category). Users may especially prefer009
specific attributes or switch their preferences010
between attributes dynamically. Instead, exist-011
ing approaches mix up all attribute features and012
let the model automatically extract useful ones013
from rather complex scenarios. To solve this014
problem, in this paper, we propose a dynamic015
multi-attribute interest learning model to tackle016
the influences from attributes to user interests.017
Specifically, we design two interest profiling018
modules: attribute-centered and attribute-aware019
profiling. The former focuses on capturing the020
user’s preferences on a single attribute, while021
the latter focuses on addressing the interests022
correlated with multi-attribute within the search023
history. Besides, we devise a dynamic contribu-024
tion weights strategy that sends explicit signals025
to the model to determine the impacts of dif-026
ferent attributes better. Experimental results027
on large-scale datasets illustrate that our model028
significantly improves the results of existing029
methods.030

1 Introduction031

With the rapid growth of e-commerce services, on-032

line shopping has become increasingly popular. In033

a common e-shopping scenario, the user formulates034

her demands into a query and selects the interested035

items from the list retrieved by a product search036

engine. However, the query could be ambiguous037

and have multiple meanings, which makes it diffi-038

cult to capture accurate user needs. For instance,039

the user could enter the query word “MAC” to040

purchase computers, but the search engine cannot041

distinguish the needs of computers from those of042

cosmetic brands. Furthermore, the query could also 043

be broad (such as “laptop”), without specifying the 044

brands and desired features of the products the user 045

wants to buy. Personalized product search tasks 046

address this challenge by learning interests from 047

the user history. Researchers have tried excavating 048

features from various views for accurate interest 049

learning. A group of studies aim at improving the 050

features capturing ability through practical algo- 051

rithms, including simple embedding-based meth- 052

ods (Ai et al., 2017), attention-based methods (Ai 053

et al., 2019), or transformer-based methods (Bi 054

et al., 2020). Some studies pay attention to extract- 055

ing features from multiple aspects. Modeling the 056

impacts of short- and long-term history (Guo et al., 057

2019; Bennett et al., 2012; Shen et al., 2022) has 058

been a popular search topic. Leveraging the prod- 059

uct reviews (Bi et al., 2021) has also achieved sat- 060

isfactory results. Some studies also attempt to use 061

visual resources to model multi-modal preferences. 062

Other works (Ai et al., 2020; Liu et al., 2020, 2022) 063

explore relationships between user, items queries 064

by constructing knowledge graphs with the help of 065

product attributes (e.g., names, brands). 066

However, the studies mentioned above overlook 067

that the users’ interests in different product at- 068

tributes (such as brands, categories, features, etc.) 069

are sophisticated. Instead, they simply feed at- 070

tribute features into the model and let it automati- 071

cally learn interests from the mixed features. Such 072

a paradigm neither distinguishes the characteristics 073

of specific attributes nor explicitly models the influ- 074

ences among multiple attributes. Hence, we argue 075

that previous methods do not sufficiently explore 076

the potential within the attributes to reflect user 077

interests. As the user behavior sequence shown in 078

Table 1, the user reveals her special attention for the 079

product brands while showing less consideration 080

for the product names and categories. Intrinsically, 081

the interest in this case should depend more on 082

the brand features. Whereas, existing studies send 083
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Table 1: Example user history. Attribute information of
purchased product p1, p2, p3, and the candidate product
c1, c2 are listed.

Name Brand Category

Purchased Products

p1 2023 iMac Apple computer
p2 iPhone 15 Apple phone
p3 iPad 2018 Apple tablets

Candidate Products

c1 AirPods Max Apple headphone
c2 WH-CH720N Sony headphone

Current query: headphone

all types of features into the model where other084

features would bring more interference than contri-085

bution. The obtained interest representation would086

include much noise without properly enhancing087

important attributes, leading to an underestimation088

of the candidate product c1’s relevance. Aiming to089

resolve this problem, we propose explicitly enhanc-090

ing important attribute features by learning multi-091

attribute interest for personalized product search.092

To better build multi-attribute interest, we need093

to answer the following two questions: 1) how to094

represent the user’s interests on specific attributes,095

and 2) how to effectively fuse the interests on mul-096

tiple attributes. To resolve the first problem, we097

attempt to build item/query representations cen-098

tered on each attribute. As for the second prob-099

lem, we intend to address the attributes’ contribu-100

tions using two strategies. The first focuses on101

separately learning the user’s attention for each102

attribute. To achieve this, we would observe the103

affinities of historical attribute-centered item repre-104

sentations. Higher affinities indicate that the user’s105

tastes on that attribute are stable, so it is impor-106

tant to match her tastes again. The second strategy107

focuses on simultaneously learning the user inter-108

ests that switch between attributes. We compress109

the attribute-centered representations from multi-110

ple attributes into attribute-aware representations.111

Then, we send a sequence of historical representa-112

tions into one encoder and let the model draw the113

attribute correlations within the history.114

Concretely, we propose a Multi-Attribute115

Interest learning model (MAI) for personalized116

product search. It includes the following four parts:117

(1) Attribute-centered interest profiling. For each118

attribute, it obtains attribute-centered representa- 119

tions for queries and items by enhancing corre- 120

sponding attribute features and feeding them to 121

corresponding encoders to get the profiles. (2) 122

Attribute-aware interest profiling. It attends at- 123

tribute correlations within search history with com- 124

bined attribute-centered item representations. (3) 125

Multi-attribute interest fusion. We update attribute- 126

centered contribution weights by observing the at- 127

tention weights from the first part. According to 128

these weights, we calculate the similarity score 129

between the profiles and their corresponding can- 130

didate representations to obtain the final ranking 131

score. 132

To summarize, the main contributions of this pa- 133

per include (1) a method of learning multi-attribute 134

interest for personalized product search in a dy- 135

namic way. (2) an attribute-centered interest pro- 136

filing module that builds separate profiles by en- 137

coding item/query representations centered on cor- 138

responding attributes. (3) an attribute-aware inter- 139

est profiling module to simultaneously learn inter- 140

ests upon multiple attributes. (4) a dynamic multi- 141

attribute fusing module to explicitly model each 142

attribute’s contributions. 143

2 Related Work 144

2.1 Personalized Product Search 145

Personalized product search problems aim to im- 146

prove the ranking quality retrieved from search en- 147

gines by building accurate user interests from the 148

purchase history. Many studies focus on exploit- 149

ing interests in semantic latent space by leveraging 150

deep learning technology. Guo et al. (2019) utilize 151

attention networks to learn and integrate long- and 152

short-term user preferences. Bi et al. (2019) study 153

short-term clicks to represent users’ hidden intents 154

with a context-aware embedding model. Ai et al. 155

(2019) devise a novel attention mechanism which 156

enables the attention model to attend no input by 157

introducing a zero vector. Such a zero attention 158

model successfully allocates different attention to 159

the users’ search logs according to their current 160

intent. Recently, since the transformer (Vaswani 161

et al., 2017) architectures have succeeded in var- 162

ious fields, a group of studies attempt to employ 163

it in personalized product search. For instance, 164

Bi et al. (2021) design a review-level transformer- 165

based model that matches the reviews from the 166

user and item while allowing each review to have 167

a dynamic impact based on the sequential context. 168
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Recently, Jagatap et al. (2024) explore query gen-169

eration and interaction simulation to solve the cold170

start problem faced by new categories.171

2.2 Aspect-based Interest Learning172

There exist some personalized product search stud-173

ies that try to learn user interests from various174

aspects (e.g., brands, categories, popularity, etc.).175

Early methods, as (Lim et al., 2010), require the as-176

pects to be structurally organized so the algorithms177

can conduct accurate matching between the query178

and item. Recent methods obviate such require-179

ments thanks to the deep learning technology’s su-180

periority in extracting semantic features from free-181

form text. Wu et al. (2017) blend multiple models182

into a stacking ensemble model where different sub-183

models are used for statistic features, query-item184

features and session features accordingly. Xiao et al.185

(2019) devise a Dynamic Bayesian Metric Learn-186

ing model to represent semantic representations of187

different categories of users, products, and words188

and capture the affinities between them. Subse-189

quent studies (Ai et al., 2020; Liu et al., 2022;190

Zhu et al., 2024) apply knowledge graphs to jointly191

model sophisticated relationships from structured192

and unstructured aspects of the user and item.193

However, these works blindly send all attributes194

into a model and let it automatically extract use-195

ful features. This would inevitably bring noise to196

the learning process. In contrast, we efficiently en-197

hance important attributes with explicit weighting198

for simultaneously and separately profiled attribute199

interests.200

3 Methodology201

To start with, the problem could be formulated as202

follows. Suppose that for each user, her search203

history H includes N purchased items , H =204

{h1, . . . , hN}, where hi represents i-th historical205

purchased items. Given the current query q and206

the candidate target item list C = {c1, c2, . . .} re-207

turned by the search engine, our objective is to208

model a ranking probability score for each candi-209

date item c in C based on the current query q and210

the purchased item sequence H .211

The overview of our multi-attribute interest212

learning model is shown in Figure 1. Later, we213

will elaborate on the modeling details following214

the three stages: (1) attribute-centered interest pro-215

filing, (2) attributed-aware interest profiling and (3)216

multi-attribute interest fusion.217

3.1 Attribute-centered Interest Profiling 218

As stated in Section 1, previous approaches could 219

not efficiently detect interests centered on specific 220

attributes, for they deteriorate the interesting learn- 221

ing procedure by feeding the models misleading 222

signals from other attributes. This module focuses 223

on solving this problem by preserving attribute- 224

centered information through separate interest pro- 225

filing. 226

3.1.1 Attribute-centered Query/item 227

Representation 228

Base query representation. Following previous 229

methods (Ai et al., 2019, 2017, 2020), we generate 230

our base query representation q using a non-linear 231

projection for the average word embeddings: 232

q = tanh(Wϕq

∑
wq∈q wq

|q|
+ bϕq), (1) 233

where q is the current query, d is the embedding 234

size, Wϕq ∈ Rd×d and bϕq ∈ Rd are trainable pa- 235

rameters, |q| is the length of q and wq ∈ Rd is the 236

embedding of word wq in q. These query represen- 237

tations would be used to extract features related to 238

current intents in the attribute-aware interest profil- 239

ing. 240

Attribute-centered query representing. We in- 241

tend to use the current query to enhance current 242

intents during attribute-centered interest profiling. 243

However, these base query representations are in- 244

dependent of attribute features, so the correlations 245

between the query and attributes are complex to 246

capture. As a result, these representations are in- 247

efficient in enhancing current intents and might 248

even impede the interest learning from historical 249

attribute features. As the example shown in Table 1, 250

using the current query to emphasize the brand at- 251

tributes will lead to a cluttered profile where the 252

information of brands and the query are both con- 253

taminated. 254

Thus, we will reformulate the query according 255

to the attributes. Formally, the attribute-centered 256

query representations are obtained as follows. First, 257

for attribute ak, we obtain weighted word embed- 258

dings wak
q of the query q according to each word’s 259

relationships with recent historical information on 260

attribute ak: 261

wak
q = W ak

q wq, (2) 262
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Figure 1: The overview of the proposed MAI.

where W ak
q ∈ R|q| is calculated through multi-head263

attention. To measure the query-attribute relation-264

ship, we take the recent attribute representations265

as the query and the query word embeddings as266

the key and value. In this way, we enhance query267

features that are correlated with recent interests:268

W ak
q = MLP([headw1 , . . . , head

w
H ]), (3)269

where MLP(·) refers to the multilayer perceptron270

(MLP) with softmax(·) function, headwh is the at-271

tention weights of the hth head in total H heads272

in the multi-head attention layer. The headwh is273

obtained as follows:274

headwh = Attnw(hak,sWQ
h , qwWK

h , qwW V
h ),

(4)275

hak,s = [hak
M, . . . ,hak

N ], (5)276

where hak,s is the sequence of short-term attribute277

representations centered on attribute ak from the278

M th to the N th purchased item. hak
i refers to279

ith item representation in the purchasing history280

centered on attribute ak. The process of getting it281

will be explained later. qw is the word embedding282

sequence of the query. The projection matrices283

of each head WQ
h ∈ Rd×d/H , WK

h ∈ Rd×d/H284

and W V
h ∈ Rd×d/H are learned during training.285

Attn(·)w is the attention weights from each head:286

Attnw(Q,K, V ) = softmax(
QKT√
d/H

). (6) 287

At last, we send the weighted embeddings to the 288

same representing procedure as the base query in 289

Equation 1 to get the attribute-centered query rep- 290

resentation qak . Such reformulated query represen- 291

tations emphasize the query words related to the 292

corresponding attribute. 293

Attribute-centered item representing. We aver- 294

age the term vectors of the item’s corresponding 295

attributes and apply the same non-linear function in 296

query representing to get the attribute-centered rep- 297

resentation hak
i based on the kth attribute ak. The 298

process is the same as Equation 1.Wϕh
and bϕh

are 299

two different parameters used for item represent- 300

ing. For the candidate item c, we also encode its 301

attribute-centered representation caK for the final 302

comparison. 303

3.1.2 Attribute-centered Interest Learning 304

We join the attribute-centered item representations 305

with the attribute-centered query representation to 306

learn the attribute interests. Transformer encoders 307

are used to capture the complex interactions within 308

the history and query. This process can be formu- 309

lated as follows: 310

Iak = Trmlast([hak
i + hak,p

i ,qak + qak,p]), (7) 311
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where Iak is the interest profile centered on at-312

tribute ak, Trmlast notes the last outputs of the313

transformer encoder, which are the query outputs314

in this case. We leverage position information by315

adding the position embedding hak,p
i and qak,p for316

the items and query.317

3.1.3 Attribute-centered Interest Weighting318

In this part, we model the contributing level of319

each independent attribute-centered interest pro-320

file learned from previous parts. We inspect the321

attention weights of the short-term purchased items322

assigned by their previous items during the trans-323

former encoding shown in Equation 7. The contri-324

bution weights W ak of attribute ak in independent325

profiling are computed from the attention weights326

of short-term items:327

W ak = MLP([Trmw
M , . . . ,Trmw

N ]), (8)328

where Trmw
i denotes the last transformed encoder329

layer’s attention weights assigned for the ith histor-330

ical item from its previous P items. As explained331

in Section 1 Higher attention weights suggest the332

interests on that attributes are more important. To333

make the model focus on recent interests, we only334

inspect weights from short-term items.335

3.2 Attribute-aware Interest Profiling336

As we discussed, user preferences may change be-337

tween attributes within the history. Separately pro-338

filing attribute-centered interests would fail to cap-339

ture such variations. To overcome this obstacle,340

in this module we model the information of all341

attributes simultaneously. As illustrated in Sec-342

tion 1, mixing up all attributes like existing meth-343

ods will omit useful features. So, we concatenate344

and project the attribute-centered item representa-345

tions to preserve multiple attribute features. The346

process of obtaining the ith attribute-aware item347

representation hi ∈ Rd from K attributes is sym-348

bolized as follows:349

hi = MLP([ha1
i , . . . ,haK

i ]). (9)350

Then, we join the item representations with the base351

query representation q to build the attribute-aware352

interest profile I:353

I = Trmlast([hi + hp
i ,q+ qp]). (10)354

Similarly, hp
i and qp are the positional embeddings355

associated with the item and query based on their356

positions in the search sequence. Note that we di- 357

rectly use the base query representations because 358

we want to protect all clues of current intents. Be- 359

sides, using base query representations to influence 360

the profiling for attribute-aware interests would not 361

face the same problem stated in 3.1.1 since item 362

information is completely preserved. 363

3.3 Interest fusion 364

So far, we have obtained K attribute-centered inter- 365

est profiles and one attribute-aware interest profile. 366

With the guidance of contribution weights, we inte- 367

grate the ranking scores as follows: 368

score (q,H, c) = MLP([W a1s(Ia1 , ca1), . . . ,

W aks(Iak , cak), s(I, c]).
(11) 369

s(·) refers to the dot product similarity function. 370

cai is the attribute-centered candidate item repre- 371

sentations. c the attribute-aware candidate item 372

representations generated as Equation 9. 373

3.4 Model Optimization 374

Following previous methods (Ai et al., 2019, 2017; 375

Bi et al., 2021), we optimize our model by maximiz- 376

ing the log-likelihood of the observed (candidate 377

item, query, history) triples. The loss function can 378

be formulated as: 379

L =
∑

(q,H,c)

L(q,H, c)

=
∑

(q,H,c)

(logP (c|q,H) + logP (q, H))

≈
∑

(q,H,c)

log
exp(score (q,H, c))∑

c′∈C exp(score (q,H, c′))
.

(12) 380

where logP (q, H) can be ignored for it is prede- 381

fined as a uniform distribution. Similar to most 382

methods (Ai et al., 2019, 2017, 2020), we adopt 383

the negative sampling strategy (Le and Mikolov, 384

2014; Mikolov et al., 2013) to approximate the 385

probability on large-scale data. 386

4 Experiment Setup 387

4.1 Datasets 388

We conduct extensive experiments on JDsearch 389

dataset1 (Liu et al., 2023)and Amazon dataset2 to 390

verify and analyze the functionalities of the pro- 391

posed model. Three types of attributes, product 392

1https://github.com/rucliujn/JDsearch
2http://jmcauley.ucsd.edu/data/amazon/
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name, product brand and product category, are cho-393

sen for experiments.394

JDsearch dataset The JDsearch dataset is a395

large-scale dataset collected for personalized prod-396

uct search from JD.com, a popular Chinese online397

shopping platform. Like Liu et al. (2023), we take398

the last behaviors issued on 2022-10-17 as the test-399

ing set and the ones before them as the training400

set.401

Amazon dataset We apply the Amazon dataset402

to the personalized product search task following403

existing works (Ai et al., 2019, 2020). We use the404

dense sub-datasets of the corpus where each user405

and each item has at least five associated reviews406

to collect sufficient information for user profiling.407

Since the Amazon datasets are categorized by the408

product’s categories, we choose two sub-datasets409

that have multiple sub-categories, CDs & Vinyl,410

Electronics, to ensure our interest learning on the411

category attribute are fed with diverse preferences.412

We take the last search of the user history as the test-413

ing set, the former 20% as the validation set, and414

the rest as the training set. Queries are constructed415

from categories following existing works (Ai et al.,416

2017; Gysel et al., 2016). The top 100 items ranked417

by BM25 (Robertson and Zaragoza, 2009) accord-418

ing to all attribute text are taken as the candidate419

items.420

4.2 Model Settings and Evaluation metrics421

The final parameters of the proposed model are422

set as follows: The embedding dimension is 128.423

The attribute-centered transformer encoder and the424

attribute-aware transformer encoder are 4 heads425

with 2 layers. The multi-head attention used for426

attribute-centered query representing is 2 heads.427

For the JDsearch dataset, the history length is 30,428

the short-term history length is 15, and the weight-429

ing window size noted as P in Section 3.1.3 is 4.430

For the Amazon dataset, the history length is 10,431

the short-term history length is 5, and the weighting432

window size is 2. We compute MRR@200, Preci-433

sion@1, and NDCG@10 for evaluation metrics to434

evaluate the models.435

4.3 Baselines436

We compare our model with ad-hoc models and437

personalized models listed as follows:438

BM25 (Robertson and Zaragoza, 2009): It is a439

classical ad-hoc retrieval algorithm.440

QEM (Ai et al., 2019): It is an ad-hoc query441

embedding model, which gets ranking scores by442

matching items with the query. 443

HEM (Ai et al., 2017): It learns the semantic rep- 444

resentations for items and queries in latent space. 445

DREM (Ai et al., 2020): It creates a dynamic 446

knowledge graph based on search context and prod- 447

uct metadata. 448

AEM, ZAM (Ai et al., 2019): AEM is an 449

attention-based embedding model representing 450

users according to current queries. ZAM is an im- 451

provement of AEM, which introduces a zero vector 452

in the attention process to conduct differentiated 453

personalization. 454

TEM (Bi et al., 2020): It dynamically controls 455

the effects of personalization by encoding the user 456

history and the query with transformers. 457

HGN (Ai and Ramasamy, 2021): It builds 458

knowledge graphs to explicitly construct user rep- 459

resentations based on the user’s purchase history. 460

We follow (Liu et al., 2023) to implement all 461

models. For a fair comparison, we fed aspect-based 462

baselines (DREM, HGN) with the same attribute 463

information used in our model. For other baselines, 464

we feed them with concatenated attribute words. 465

5 Results and Analysis 466

5.1 Overall performance 467

The overall results on the three datasets are reported 468

in Table 2. It is observed that: 469

(1) Our model significantly outperforms all 470

baseline models with paired t-test at p<0.05 level 471

on every dataset. Specifically, compared to the 472

state-of-the-art model TEM, our model MAI im- 473

proves the ranking results on the JDseach dataset 474

by 4.31% in terms of MRR and 1.84% in terms 475

of NDCG. These results verify that building multi- 476

attribute interests is more effective in achieving 477

personalized product search. 478

(2) Compared to other aspect-based models (i.e., 479

DREM, HGN), our model achieves apparent im- 480

provements. Generally, personalized models show 481

superiority over ad-hoc models, proving the neces- 482

sity of learning interests from history. The poor 483

results from some KG-based models on JDsearch 484

might be due to the dataset’s characteristics, where 485

the relationships between entities are too sparse 486

to extract useful features. Thanks to parallel in- 487

terest profiling and explicit weighting, our MAI 488

overcomes this obstacle by successfully preserving 489

and modeling attribute features. 490

(3) Compared to other transformer-based and 491

attention-based models (i.e., TEM, AEM, ZAM), 492
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Table 2: Overall performance. The best results are shown in bold. ‘†’ indicates the model significantly outperforms
all baseline models with paired t-tests at p<0.05 level.

Dataset JDsearch CDs & Vinyl Electronics

Model MRR Prec NDCG MRR Prec NDCG MRR Prec NDCG
Ad-hoc BM25 0.1114 0.0402 0.0940 0.01 0.0001 0.0001 0.0194 0.0096 0.0096

QEM 0.1774 0.0728 0.1705 0.1953 0.1327 0.211 0.2409 0.1421 0.2659
Person- HEM 0.1955 0.0847 0.1905 0.2896 0.2236 0.41 0.2000 0.1248 0.3448
alized DREM 0.1647 0.0632 0.1578 0.2482 0.1549 0.3823 0.1807 0.0916 0.3316

HGN 0.1662 0.0634 0.1591 0.2583 0.1734 0.3873 0.2096 0.1152 0.3373
AEM 0.1971 0.0851 0.1920 0.2977 0.2227 0.3207 0.2571 0.1635 0.2890
ZAM 0.1969 0.0849 0.1920 0.2828 0.2056 0.3022 0.2600 0.1716 0.2838
TEM 0.2229 0.1049 0.2192 0.3558 0.2853 0.3734 0.2234 0.1302 0.2487

Ours MAI 0.2672† 0.1233† 0.2778† 0.3845† 0.2864† 0.4207† 0.2871† 0.1497† 0.3483†

Table 3: Results of ablation experiments on the JDsearch
dataset.

Model MRR Prec NDCG

MAI 0.2672 0.1233 0.2778
w/o. AC 0.1737 0.068 0.1694
w/o. AA 0.2110 0.0969 0.2026
w/o. QR 0.2602 0.1177 0.2026
w/o. CW 0.2560 0.1135 0.2654

our model boosts the ranking results on each493

dataset. It is illustrated that these models yield494

the best results owing to these structures’ excellent495

ability to capture latent features. Instead of simply496

applying the structures to represent items or encod-497

ing history sequences, we leverage the attention498

weights to reflect relevance.499

5.2 Ablation Analysis500

We test the functionalities of the four major com-501

ponents with several ablations models:502

MAI w/o. AC. We abandon the attribute-503

centered profiling (AC) described in Section 3.1.504

MAI w/o. AA. We delete the attribute-aware505

profiling (AA) part described in Section 3.2.506

MAI w/o. QR. We substitute the attribute-507

centered query representations (QR) in Sec-508

tion 3.1.1 with base query representations.509

MAI w/o. CW. We strip off the contribution510

weighting (CW) in Section 3.1.3.511

As the results reported in Table 3, all the abla-512

tion models are inferior to the MAI model. Particu-513

larly, we can find that:514

(1) The most significant performance drop is ob-515

served when removing the AC module. Without516

AC, the model simply aggregates all attribute in-517

formation, similar to other aspect-based models. 518

Similarly, it faces performance drops due to the 519

same reason: the lack of relationships among prod- 520

ucts and attributes. With AC, the attribute features 521

are clearly distinguished through separate profiling 522

and explicit weighting. 523

(2) The “MAI w/o. AA” model also damages 524

the results by 5.62% on MRR. This verifies the 525

necessity of attending the correlations of attribute- 526

aware features simultaneously. Without AA, the 527

model blocks the information flow among different 528

attributes within history, which happens for most 529

users, leading to poor results of the “MAI w/o. 530

AA”. 531

(3) The “MAI w/o. QR” model causes the per- 532

formance decline by 0.70% on MRR. This reveals 533

that reformulating queries according to attributes 534

helps enhance current intents in attribute-centered 535

profiles. 536

(4) The apparent drops caused by “MAI w/o. 537

CW” model proves our contribution weighting 538

module helps the model determine the importance 539

of attributes. 540

5.3 Case Study 541

In this section, we illustrate the functionalities of 542

contribution weights with an example. As the 543

JDsearch dataset only has anonymized term IDs, 544

we use the category Electronics from the Ama- 545

zon dataset. The attribute “category” weights are 546

much higher than other attributes since the user’s 547

purchased items are initially highly-related on cat- 548

egory. So, we only present the weights of “name” 549

and “brand” to show apparent changes. 550

As illustrated in Figure 2, we present the con- 551

tribution weights from three users. It is observed 552

that the weights of each attribute are limited in 553

7



User A

hewlett hp 
bt500 - 
network 
adapter, 

netgear neotv 
streaming 
player , 

amazonbasics 
hdmi

 hp, 
netgear, 

hp,
 netgear,

 none

name A brand A

User B

rokinon 
cv85m-c 

85mm t/1.5 
aspherical 
lens , new 

kamerar ff-3

 sony, 
none, 
kenko, 
none, 
kenko

name B brand B

User C

 eagle aspen 
easdtv2buhf 

directv 
approved 2-
bay, 65w ac 

power adapter 
charger 

  lg, 
none, 
eagle 
aspen, 

unknown, 
komingo

name C brand C

0.25

0.24

0.23

0.22

0.21

Figure 2: The contribution weights on attribute “name” and “brand” of users A, B, and C. A lighter area indicates a
larger weight. Corresponding text of short-term items is shown in the frames. For the attribute “name”, we list some
terms from the long text. For “brand”, we present all content. “,” separates the text of different items, while “none”
means the item does not have the corresponding attribute.

2 4 6 8
Weighting Window Size

0.260

0.265

0.270

0.275

0.280

0.285

M
RR

Figure 3: Results of different weighting window sizes.

a particular range, which is caused by the MLP554

from Equation 8 that is learned from the whole555

training set. Despite the ranges based on a global556

view, the contribution weights could still adjust the557

attributes’ importance from a personalized view.558

Take the “brand” attribute for example, its weights559

of user A and B are obviously higher than user C.560

This is because in user A and B, the short-term561

item shares more similarities with their neighbor-562

ing items than in user C. This verifies that these563

weights successfully help the model determine the564

attributes’ contributions according to the user’s per-565

sonal tastes.566

5.4 Effects of the Attribute-centered Interest567

Profiling568

Now, we will explore the attribute-centered inter-569

est profiling by studying the impacts of weighting570

window size and short-term history lengths. The571

former is used for reflecting the attribute correla-572

tions, while the latter is used for extracting recent573

interests.574

As shown in Figure 3, the results generally grow575

as the window size increases. It indicates our576

model’s ability to leverage the attention weights577

from more items. From Figure 4, we can see that578

5 10 15 20
Short-term History Length

0.245

0.250

0.255

0.260

0.265

0.270

0.275

M
RR

Figure 4: Results of different short-term history lengths.

higher results are obtained at small and medium 579

lengths. Perhaps it is because when increasing the 580

length, the extracting becomes more challenging 581

because the recent interests correlate with long- 582

term interests. At a certain length, 15 in this case, 583

the extracting may be efficient because of the suc- 584

cessful distinguishing of the recent, long-term in- 585

terests. But at a larger length, the extracting soon 586

fails again with too much noise. 587

6 Conclusion 588

This work proposes a product search model that dy- 589

namically captures multi-attribute interests. In this 590

model, we explore the potential of attribute features 591

by modeling the user’s preference on parallel pro- 592

filing parts, where attribute interests are modeled 593

independently and simultaneously. For each profil- 594

ing part, we feed it with item/query representations 595

that are enhanced by specific attributes accordingly. 596

At the interest fusion stage, we use contribution 597

weights obtained from profiling parts to help the 598

model determine the importance of each attribute. 599

Experiments demonstrate our model significantly 600

outperforms existing models. 601
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Limitations602

This work has several limitations. First, the per-603

formance drops obviously with a single attribute-604

centered profiling or attribute-aware profiling part.605

Although it is comprehensible as we explained606

in 5.2, it still indicates that both parts could be fur-607

ther improved. Take the attribute-aware profiling608

for example, mindlessly compressing all attribute609

information for all items neglects the fact that the610

user interests do not keep switching on all attributes611

at any time. A more efficient strategy could be612

designed to enhance or eliminate certain attribute613

features dynamically. We will leave this to our fu-614

ture work. Second, the contribution weights could615

not directly reflect the importance of correspond-616

ing attributes in the user’s completed interests. It617

overlooks that the matching quality should influ-618

ence the user’s purchasing choices. For instance,619

if the user shows stable preferences on “brand”,620

while in the current search, the product “name” per-621

fectly matches her interests, using the contributing622

weights to reduce the impacts of “name” is prob-623

lematic. Our work uses an MLP layer at the interest624

fusion stage to alleviate this problem. More efforts625

could be made to address this, and a more inter-626

pretable contribution weighting strategy could be627

designed.628
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