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Figure 1: A long-horizon loco-manipulation task generated with our proposed method; the robot
moves a box to enable reaching for a laundry basket.

Abstract: This paper uses the capabilities of latent diffusion models (LDMs) to3

generate realistic RGB human-object interaction scenes to guide humanoid loco-4

manipulation planning. To do so, we extract from the generated images both the5

contact locations and robot configurations that are then used inside a whole-body6

trajectory optimization (TO) formulation to generate physically consistent trajec-7

tories for humanoids. We validate our full pipeline in simulation for different8

long-horizon loco-manipulation scenarios and perform an extensive analysis of9

the proposed contact and robot configuration extraction pipeline. Our results show10

that using the information extracted from LDMs, we can generate physically con-11

sistent trajectories that require long-horizon reasoning.12

Keywords: Contact Planning, Humanoids, Generative Models13

1 Introduction14

It has been long argued that humanoids are the best platform to replace humans in repetitive and15

dangerous tasks, because of the similarities in their morphologies. However, the complexity of16

these platforms poses significant challenges that have hindered the progress and we still do not see17

humanoid robots reliably doing real-world tasks. In particular, humanoids are high-dimensional18

systems with highly unstable dynamics (compared to wheeled and four-legged robots) which ren-19

ders their planning problem highly challenging. Furthermore, performing any reasonable loco-20

manipulation task requires a long-horizon reasoning procedure and none of the existing methods21

can scale to such problems. The similarity between the human and humanoid morphologies can22

come to rescue in such a case, as the robot can imitate the behavior of humans doing the same task.23

Thanks to the recent advances in generative models, it is nowadays possible to generate a desired24
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human behavior from text prompts. While the outputs of these models do not respect the geometri-25

cal and physical constraints of the real world, they can guide the existing optimization frameworks26

to find physically consistent motions quickly.27

In this paper, we develop a framework to rapidly synthesize plausible 3D human-object interaction28

scenes using latent diffusion models (LDMs) [1] for 2D image generation, without the need for ad29

hoc heuristics or 3D richly annotated data, and use the retargeted motion inside a whole-body tra-30

jectory optimization (TO) formulation to generate physically consistent motions to achieve complex31

long-horizon tasks.32

The main contributions of this work are as follows:33

• We introduce, to the best of our knowledge, the first pipeline that plans both contacts and34

robot configurations for humanoid loco-manipulation using LDMs.35

• We integrate our proposed robot configuration and contact planner within a whole-body36

TO formulation to generate physically consistent trajectories.37

• We validate our approach in simulation on two challenging long-horizon scenarios, and38

perform an extensive analysis with various baselines.39

2 Related work40

Classical approaches for planning and control of loco-manipulation for humanoids consider the41

effect of manipulated objects on the locomotion system as a disturbance [2, 3, 4, 5]. However, for42

general loco-manipulation problems, concurrent consideration of both locomotion and manipulation43

is essential. To reduce the complexity of the holisitc loco-manipulation planning, more advanced44

approaches relied on splitting the system into simpler coupled dynamical systems [6], using heuris-45

tics to separate zones in which locomotion or loco-manipulation or manipulation occurs [7], split-46

ting the object path planning and locomotion planning problems [8], or using a predefined contact47

sequence [9]. [10] used a hierarchy of optimal controllers to perform loco-manipulation automati-48

cally, augmenting the locomotion problem with logic predicates for manipulation [11]. However,49

they demonstrated only quadrupedal loco-manipulation with single arm, which is simpler than a50

humanoid with two arms.51

There have been recent efforts on the use of Deep Reinforcement Learning (DRL) for loco-52

manipulation tasks in the real world [12, 13, 14, 15]. However, these approaches are limited to very53

simple manipulation tasks with a quadruped and cannot reason about the complex, long-horizon54

humanoid loco-manipulation tasks.55

Recent advances in imitation learning have shown promise in generating loco-manipulation policies56

from teleoperation demonstrations [16, 17]. However, generating teleoperated demonstrations for57

humanoid robots is extremely difficult compared to other manipulation settings [18], as the system58

is highly unstable and can easily fall down. [19] used TO to generate demonstrations that are then59

imitated using DRL. However, TO is a local approach and would fail to generate long-horizon60

trajectories that require reasoning.61

3 Method62

In this section, we present our approach to plan contacts and robot configurations to guide a TO pro-63

cedure for arbitrarily long-horizon humanoid loco-manipulation tasks. Our approach does not rely64

on task-specific heuristics or 3D interaction datasets. Instead, we propose a pipeline that introduces65

an optimization-based approach that leverages LDMs to generate realistic human-object interaction66

2D scenes, given a high-level description of the desired interactions. These 2D RGB scenes are used67

to extract the contact locations and robot configurations that are later used by TO (Section 4). The68

pipeline overview is illustrated in Fig. 2.69
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3.1 Planning Contacts & Robot Configurations70

The planner receives high-level instructions P (that can come from a language model) and RGB-D71

images of the objects in the scene as input. The high-level plan consists of ordered sequences of72

text prompts describing how to break down the long-horizon task. For tasks involving placement,73

we assume to receive the target 3D location and yaw of the object. The RGB-D images consist of74

the RGB frames Rs and respective depth images Ds of the objects to be manipulated. The output75

of the planner is the sequence of 3D contact locations L and associated robot configurations C. The76

planning process consists of three main steps, which are detailed in the sections below.77

Figure 2: Pipeline overview.

3.1.1 Image Generation78

Given P , we use a state-of-the-art latent diffusion model (LDM) [20] to generate a collection of79

images Rg demonstrating how to accomplish the long-horizon task. The instructions consist of an80

ordered sequence of short text prompts describing very minimally the expected interaction with the81

objects in the scene, as shown in Fig. 2. Using directly these prompts leads to images that do not82

depict a full-body person, which is essential for our pipeline. In fact, to extract the contact locations83

of the hand and feet, and the respective robot configuration the vast majority of the human body has84

to be visible in the generated image. Therefore, we automatically append a static set of words to the85

task prompts to generate a full-body person. The additional words are mainly a general description86

of the person’s hair color and clothing style, which forces the LDM to generate the correct interaction87

but also a full-body. Given an instruction, we modify it in the following way:88

”A scene of a person {predicate}+ing {subtask prompt without predicate}. The person has dark89

hair and is wearing casual clothes such a shirt, jeans, and sneakers.”90
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where {predicate} is the verb describing the task’s action and is always the first word in the task91

prompt, while {task prompt without predicate} is what remains of the prompt after removing92

the predicate and it mainly describes the object to which the action applies and its position in the93

environment. The generated images are then fed to the contact transfer (Sec. 3.1.2) and retargeting94

(Sec. 3.1.3) modules.95

3.1.2 Contact Transfer96

The contact transfer stage extracts and maps the 2D contact information from the images in Rg to97

the corresponding 3D contact locations in the scene to manipulate the object of interest for the task.98

To achieve this we use a three-step approach as shown in Fig. 3.99

First, we compute the 2D semantic masks of the objects in Rg and Rs. To do so, we use a Vision100

Language Model (VLM) [21] to perform open vocabulary object detection that returns the bounding101

box coordinates enclosing the objects. However, the obtained bounding box is not tight enough for102

the point cloud extraction later. Hence, we apply a visual segmentation foundation model [22] that103

further refines the VLM output and returns a per-pixel segmentation of the objects.104

Second, using the objects’ masks and the depth information we proceed to compute the objects’105

point clouds by performing a 2D to 3D lifting procedure. For the simulated images Rs we have106

the ground truth depth Ds from the simulated RGB-D camera in the MuJoCo [23] simulator and its107

correct camera intrinsic parameters. However, for Rg we are missing both its depth estimate and108

correct camera intrinsics. This is because LDMs only output RGB images and do not adhere to a109

specific camera model during the image generation. Therefore, to estimate each generated image110

depth we leverage a zero-shot metric depth geometric foundation model [24] to obtain the estimated111

metric depth Dg . The missing camera intrinsics are computed using an empirical trial and error112

approach where we found that using the LDMs’ image resolution as the focal lengths and half the113

focal lengths for the principal point offsets leads to a reasonable point cloud geometry, without114

too much distortion. Finally, we also apply a noise removal process to the point clouds to remove115

outliers.116

Third, we use a sampling-based optimization approach that combines the semantic scores from a117

semantic-aware foundation model and the object geometries to transfer the 2D contact locations118

from Rg to the 3D world. The task of finding correct semantic correspondences across images119

is a challenging one, and especially so in our case. This is mainly due to the fact that during120

the image generation process, we have limited control over the generated object properties, such121

as viewpoint, shape, and texture, leading to significant intra-class variation between the generated122

and the simulated objects. To solve the semantic correspondence problem, we use a semantic-123

aware foundation model [25] to obtain semantic matches between the images. However, depending124

exclusively on the model is not reliable, as the intra-class variation can be large leading to incorrect125

mappings that deteriorate the output trajectory (Sec. 5.2). Therefore, we propose a sampling-based126

algorithm that refines the correspondences from the semantic-aware model using the objects’ point127

cloud geometries. The underlying idea is that correct semantic matches should result in a good128

geometrical overlap between the objects’ point clouds. Hence, we generate a semantic score pool129

for some sampled 2D points on the objects’ masks found in Rg , such that for each sampled point we130

obtain the top N most plausible correspondences in the respective objects’ masks found in Rs from131

the model. To find the set of semantic matches that best aligns the objects’ geometries, we formulate132

a sampling-based algorithm that searches randomly within the semantic pool. More precisely, given133

the sampled semantic correspondences we compute the respective 3D correspondences and solve for134

the rigid-body transform with the Singular Value Decomposition (SVD) algorithm. The transform135

is then further refined with the Iterative Closest Point (ICP) algorithm. We repeat this process for136

10 iterations and pick the rigid-body transform that obtained the highest overlapping score between137

the objects’ point clouds. In practice, we found that within 3 iterations the best transform is already138

found. Finally, we compute the 3D contact locations L by applying the transform to the 3D lifted139

hand and feet 2D locations obtained by running a human pose estimator [26] on the images in Rg .140
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Figure 3: Contact extraction procedure.

To avoid penetrations between the real object and L, we apply a simple heuristic to L to make sure141

these are projected to the closest object’s surface.142

3.1.3 Retargeting143

In the retargeting stage, we use the depicted humans in Rg and L to obtain the robot configuration144

R. R consists of a 35D vector describing the robot’s 6D base state and joint angles for each actuated145

joint of the system. Extracting this configuration is an important step in our proposed pipeline, as146

this complementary information to the contacts guides the TO to a better local minima. However,147

we can’t map directly the human configuration to the robot, due to differences in the number of148

degrees of freedom, limb length, and height. Therefore, we formulate an Inverse Kinematics (IK)149

based retargeting process that remaps the extracted human configurations from the generated images150

to a kinematically feasible robot configuration. Figure 4 shows an outline of the retargeting process.151

First, we extract the human configuration we wish to remap, that consists of the human’s joint angles,152

foot positions, and base orientation. To do so, we use WHAM [26] a 3D human pose estimation153

module that returns the 3D joint positions and the joint orientations given a 2D image depicting a154

human body. For the joint orientations, as our humanoid has a subset of the degrees of freedom155

obtained from WHAM, we follow a similar approach to [27], where we only consider the human’s156

joints that have a corresponding match on the robot. The foot positions are extracted from the 3D157

body model by computing the relative distance between the human’s pelvis and the left and right158

ankles, however we only consider the planar coordinates as the foot height is set based on the task.159

The base orientation is obtained by first applying the rigid body transformation, computed during the160

contact transfer stage (Sec. 3.1.2), to the 3D body model and then computing the relative orientation161

between the human’s pelvis and the simulated object of which we know the full state. Finally, we162

apply the IK retargeting which uses as constraints the hand and feet contact locations, and feet pitch163

angle. The joint angles only act as a regularization term to guide the IK output towards a human-like164

configuration.165

4 Trajectory Optimization166

In this section, we outline our TO formulation and how the extracted contact locations and robot167

configurations are used within the formulation. We use the centroidal dynamics coupled with whole-168

body kinematics formulation similar to [28].169
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Figure 4: Keyframe extraction procedure.

4.1 Task-generic Cost170

To avoid task-specific tuning, the stagewise cost Lstage is designed to regularize the robot locomotion171

with minimum heuristics:172

Lstage := bstLst + (1− bst)Lwk + Lreg + Lslack, (1)

where bst is the Boolean flag indicating whether the robot is in a stance phase, Lst, Lwk are respec-173

tively the cost of stance and walking phases, Lreg is the common regularization term, and Lslack is the174

penalty of the slack variables used for constraints. All costs are in quadratic form w||(·)||22, where175

w is the weight.176

4.2 Keyframe Cost177

The full configuration of the robot and the contact locations generated from the planning module178

constitute a keyframe, which provides waypoints for a long-horizon loco-manipulation task. We add179

the following cost term for the keyframe robot pose:180

Lb
kf := W b

kf[(rbase,z − rkf
base,z)

2, ||Θ−Θkf||22]⊤, (2)

where W b
kf ∈ R1×2 is the cost weight for which we used [100, 10] in this paper. (·)kf denotes the181

corresponding value at a certain keyframe, rbase,z is the z component of the robot base, and Θ is182

the aforementioned base orientation. The keyframes also indicate the desired relative foot position183

w.r.t. the object, which can then be used to compute a global position reference rdes
f . It is added as184

an additional term to the corresponding stance phase cost Lst:185

Lf
kf := W f

kf||(rlf,xy + rrf,xy)/2− rdes
f ||22, (3)

where W f
kf is the keyframe foot position weight for which we used 5e2 in this paper.186

The overall TO problem can be formulated as187

min .
1

N

N∑
i=0

[Li
stage + Li

col] +
∑
j∈K

Lb,j
kf (4)

s.t. Dynamics,Contacts,Collision.

5 Experiments188

In this section, we present the results of applying our proposed pipeline for two different scenarios,189

each involving a long-horizon task. The first scenario (S1) consists of fetching a laundry basket190

placed on top of a shelf. As the basket is not easily reachable, the robot needs to move a box191

close to the shelf and step on top of it to be able to reach the basket. The second scenario (S2)192

consists of moving a box placed on top of a table using a trolley and then pushing the trolley.193

We used the MuJoCo simulation environment [23] and the Unitree G1 humanoid robot for all the194
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visualization and comparisons. For both scenarios the pipeline took several minutes, with the main195

bottlenecks being the image generation, the sematic-aware foundation model inference, and the196

trajectory optimization. This currently hinders real-time capabilities.197

First, we demonstrate the promise of our framework in generating physically plausible trajectories198

for both scenarios. We also compare our results to a TO baseline that is guided only through contacts199

from a semantic-aware foundation model. Note that without providing such information, it was200

impossible for TO to solve the tasks, as both tasks require long-horizon reasoning that is unfeasible201

to do with local TO.202

Second, we perform an ablation study on our proposed contact extraction process (Sec. 3.1.2), where203

we compare a geometry-unaware contact transfer and our method to see how much our proposed204

contact refinement improves the resulting trajectories.205

Third, we carry out an ablation study on the effect of each component of the keyframe information206

(Sec. 3.1.3) on the TO output. We refer the reader to the supplementary video for the additional207

qualitative results.208

5.1 Physically Plausible Trajectories209

We compare the output of the TO results (Sec. 4) when using the output of our proposed planning210

pipeline (Sec. 3.1) and a naive approach. Our pipeline feeds both the refined contact information211

and the respective robot configuration extracted from LDMs to TO. The naive approach only gives212

the contact locations obtained directly from the semantic-aware foundation model to the TO. In both213

cases, we use a minimal set of collision penalties constraints.214

Figure 5 presents the total amount of negative collision penetrations at each timestep of the trajec-215

tory from MuJoCo, while enabling collision penalties for both scenarios. Our proposed pipeline216

maintains a collision-free behavior throughout the whole trajectory, while a naive approach experi-217

ences significant negative penetrations during the whole trajectory. One might argue that all possible218

collision constraints could be enabled in the TO to obtain a collision-free motion. However, in such219

a case TO fails to solve the task and gets stuck in a local minima.220

5.2 Geometry Improves Contact Transfer221

We present a comparison between the trajectory outputs when using our proposed contact transfer222

(Sec. 3.1.2) and a geometry-unaware contact extraction process. Our contact extraction approach223

uses semantic and geometry cues from a semantic-aware foundation model and the objects’ point224

clouds to refine incorrect semantic matches. On the other hand, the geometry-unaware contacts225

directly use the output of the model without any correction. Our metric for the comparison is the226

amount of collision penetration, both in terms of self-collisions and robot-object collisions. To study227

the effect of the contact extraction in isolation, we disable all collision penalties in the TO problem228

and use the same extracted robot configuration (Sec. 3.1.3) in both approaches.229

Figure 5 shows the result of the ablation study for scenarios S1 and S2. For both S1 and S2, we230

clearly see that a geometry-unaware contact transfer leads to a higher number of negative collisions,231

and therefore a higher amount of negative penetration during the trajectory. While with our ap-232

proach, there still exists some negative penetrations but these are substantially less for both scenarios233

and can be prevented with a minimal set of collisions (Sec. 5.1). However, to obtain a collision-free234

motion, a geometric-unaware approach would require significantly more collision constraints which235

makes the problem extremely non-convex with many local minima. Local TO in such cases gets236

stuck in local minima and is unable to solve the task.237

5.3 Keyframes Reduce Penetration238

In this section, we conduct ablation studies between the keyframe-guided TO and the TO without239

keyframes (we call this baseline NoKeyframe). Note that in this case, we use the refined contact240

7



(a) S1 w/ collision penalties (b) S1 w/o collision penalties

(c) S2 w/ collision penalties (d) S2 w/ collision penalties

Figure 5: Collision penetrations comparison between the TO output using our proposed pipeline
(blue) and a naive approach (red) for both the laundry scenario (S1) and the trolley scenario (S2)
with and without collision penalties enabled.

information (Sec. 3.1.2) in all problems and the focus is to quantify the effect of the different com-241

ponents of the keyframe. To do that, we formulate various settings with different combinations of242

keyframe utilization. This includes the keyframe base cost in (2), the keyframe foot position cost243

as in (3), and the subtask-like warm start in Sec. 4.2. All formulations are provided with the same244

contact sequences and the same set of collision constraints as in Sec. 5.1.245

5.3.1 S1 (Basket retrieval)246

Three keyframes are used in this experiment: picking up the box, placing the box, and grabbing247

the basket while standing on the box. We also varied in the experiment the box mass in the range248

{2.5, 5.0}kg, and the initial robot yaw angle ϕ in the range {0, 0.6, 1.2}rad. We have observed in249

our experiments that these two parameters have a large impact on the performance of TO. We added250

only a minimal set of collision constraints as defined in Sec. 5.1 for S1. The results are shown in251

Fig. 6a.252

5.3.2 S2 (Trolley pushing)253

In this scenario, to describe the goal of pushing the trolley forward, an additional cost on the trolley’s254

position is added. Three keyframes are used: picking up the box, placing the box, and the beginning255

of pushing the trolley. The set of tested box mass is {2.5, 5.0, 7.5}kg, and that of the initial robot yaw256

angle ϕ is {0, 0.6, 1.2,−0.6,−1.2}rad. A minimal set of collision constraints is added as explained257

in Sec. 5.1 for S2. The results are shown in Fig. 6b.258

5.3.3 Discussion259

For both S1 and S2, it can be observed in Fig. 6 that using keyframes helps the success rate of TO260

in solving the problem, and leads to better solutions with low penetration. This is evident when we261
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(a) S1 collision data. The y-axis bound of average penetration is 7.5cm.

(b) S2 collision data. The y-axis bound of average penetration is 15cm.

Figure 6: Collision ablation study data. Subtitles are (box mass, robot initial yaw). The upward solid
triangles denote that the average penetrations exceed the y-axis bound. Slash hatches on bars mean
the optimization failed to converge with the corresponding settings. The legends represent settings
of keyframe utilization. The average penetration is calculated as the sum of penetration divided by
the number of shooting nodes.

compare the case where AllKeyframe is used (pink, rightmost bars) versus the NoKeyframe case262

(grey, leftmost bars).263

For example, in the (5.0kg, 0rad) test of S1, the AllKeyframe case results in zero penetration, while264

removing any part of the keyframe either hinders convergence or results in large penetrations. In265

particular, settings with the warm-start tend to have better convergence and lower penetration. In266

some cases, we can see that the AllKeyframe case has achieved slightly worse results than other267

cases. We believe this is due to some details in the trajectory optimization solver.268

6 Conclusion269

In this work, we presented a novel approach that generates physically consistent trajectories for270

long-horizon loco-manipulation tasks. We do so by leveraging LDMs to synthesize 2D images271

demonstrating how a human would accomplish a task. From such demonstrations, we extract the272

robot configurations and contact locations for a long-horizon high-level plan, which are used to guide273

a whole-body TO. We evaluated the proposed method in simulation for two challenging scenarios274

that require long-horizon reasoning, and showed that our proposed pipeline can generate physically275

plausible trajectories for long-horizon humanoid loco-manipulation tasks.276

Future work will focus on evaluating the proposed work on a real humanoid robot. Furthermore,277

we will relax the assumption of being given the high-level plan, by developing a long-horizon task278

planner that leverages large language models instead. Finally, we will consider using human videos279

instead of 2D images due to the current limited capability of LDMs in generating more complex280

human-object interactions tasks.281
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