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ABSTRACT

The Self-Attention mechanism in Transformer models has shown great success
across many domains, but its effectiveness can diminish in complex settings, such
as multimodal tasks. This is due to the varying token granularity and the high com-
putational cost of processing long sequences. To overcome these limitations, we
propose the Learnable Context-Aware Attention Mask (LCAAM), a novel method
that globally adjusts attention maps to prioritize the most important tokens in a
sequence. Our approach integrates LCAAM into a BERT-like Transformer net-
work, enhancing the Self-Attention mechanism by capturing token relationships
while accounting for their contextual relevance. Additionally, we extend LCAAM
to a multi-layer framework, enabling it to capture diverse information across the
layers of the Transformer. Extensive experiments on datasets including MADvV2,
QVHighlights, ImageNet-1K, and MSRVTT demonstrate that LCAAM improves
model performance while reducing redundant computations. This innovation of-
fers a significant improvement in tackling complex tasks, such as movie under-
standing.

1 INTRODUCTION

The evolution of deep learning has empowered us to navigate increasingly complex scenarios, many
of which require digesting information from diverse sources, such as videos, images, audio, and
text. One such scenario lies in understanding movie scenes (Soldan et al., 2022; |Han et al.| [2023bc;
Barrios et al.l 2023 Rohrbach et al.| [2015; Xiao et al.l 2022} Islam et al., 2023}, |Chen et al., 2023)),
where models aim to extract meaningful insights from multiple modalities.

Consider a movie scene represented by video and audio tokens. While these tokens naturally align
in time, each one can be associated with any other tokens presented in the scene, as shown in Fig-
ure [[(a). While the Self-Attention module is effective for computing local associations between
tokens, we have observed several drawbacks in the current attention mechanism, especially when
tokens originate from diverse modalities. Firstly, different modalities introduce varying granular-
ities of information, leading to potential challenges. Each token in one modality may be asso-
ciated with multiple tokens in the other modality. Such associations can extend beyond one-to-
one correspondences, forming between sub-sequences of tokens in each modality. In Figure [T[a),
“Joanna’s shouts” might not be associated with a single video token but with several. Moreover,
while longer sequences of tokens generally offer richer information, the computational demands of
attention mechanisms increase with the input length of tokens. This constraint hinders the effective
processing of a higher number of tokens.

Our method stems from the empirical observation that not all tokens in complex input sequences
carry equal importance. While prior works like [Fan et al,| (2021); Tang et al.| (2021); [Lin & Joe
(2023); |[Rende et al.[(2024) have demonstrated the effectiveness of dynamically updated masking
mechanisms, this concept remains relatively unexplored in the computer vision domain, with only
a few studies such as |Lin et al.| (2022) exploring it. This gap in vision research has motivated our
comprehensive analysis of the impact of dynamic token masking across diverse vision tasks.



Under review as a conference paper at ICLR 2025

L *

YR i 112 [ 3 [va s [v6 [ 7 [ va [ @ [vio] vt [vi2]vis]via  vis vis)
Time

Learnable

BRTSRIONY < [ a2 135 [ a6 125 a6 7. a8 (0 10] 1 [a12] i3 14 a5 16 J c-Aterition Jll Contoxt-Aware

Attention Mask

Audio “Would it be very wrong if | asked you for your number?”  “We have to go”
“It’'s Mary” “My hair, it's not too brown?” “Okay I'm coming”
‘ ))) ~ Cellphone beep ~ ~Joanna’s shouts ~ ~ Joanna'’s high heels ~ "'..'......
(a) (b)

Figure 1: (a) While video and audio tokens naturally align in time, their associations can extend
beyond temporal boundaries. For example, “Joanna’s shouts” may correspond to multiple video
tokens (i.e. not just v8-11, but also v13-16). (b) The Self-Attention module Vaswani et al.|(2017) can
capture these attention scores locally, token-versus-token. We introduce the Learnable Context-
Aware Attention Mask (LCAAM), a novel concept that enables a holistic overview of the entire
sequence of input tokens, generating a mask that captures attention structures globally.

To tackle the challenges posed by complex input sequences, we propose the Learnable Context-
Aware Attention Mask (LCAAMﬂ—a mechanism that dynamically generates a matrix of weights
to regulate attention maps and prioritize critical tokens based on their contextual significance.
LCAAM takes as input a token sequence and outputs a mask, capturing attention structures glob-
ally across the sequence. Here, “context” encompasses several dimensions: temporal relationships,
intermodal associations, and dynamic changes throughout the input sequence. By processing the en-
tire input sequence, LCAAM enables efficient token inspection and dynamic prioritization tailored
to each sequence. This adaptive masking technique integrates into existing Transformer Encoder
architectures, offering a flexible solution to enhance transformer-based models across diverse appli-
cations.

More formally, the LCAAM method employs linear layers that take as input a sequence of tokens
with shape (B, N, E), where B is the batch size, N is the number of tokens, and E is the embed-
ding size. The sequence can be either single-modal or multimodal. The output is a mask of size
(B, N, N), where for each item in the batch, a mask is generated to capture the attention between
all pairs of tokens in the sequence. This generated mask can be applied either globally across all
transformer layers in the stack or scaled individually for each transformer layer.

Eventually, the resulting mask, as illustrated in Figure [I(b), captures attention structures globally.
This generated mask is then element-wise multiplied or added (depending on the setup) with the
attention scores, allowing the masking out or prioritization of specific tokens. Furthermore, our
observation that each layer in the Transformer Network embeds different information aspects moti-
vates us to install the LCAAM module per stage, leading to the extension of LCAAM to a multi-layer
configuration.

We validate the effectiveness of our approach across various experimental settings. Initially, we
assess the capability of the multi-layer LCAAM in multimodal settings, presenting results from
audio description generation experiments on the MADv?2 dataset (Soldan et al., 2022} [Han et all}
[2023b). Additionally, we apply our approach to Moment Retrieval and Highlight Detection tasks on
the QVHighlight dataset 2021)), incorporating both text and video inputs. Furthermore,
we demonstrate that LCAAM can enhance performance in single-modality settings, such as image
classification tasks in ImageNet 1K and video captioning tasks in MSRVTT
2016), where a single modality is considered as input to the model. While the performance
gain in single-modality settings is modest, we demonstrate that our multi-layer LCAAM can be
adopted in various scenarios. Finally, we analyze how the generated mask effectively regulates
attention maps.

"While the term “mask” is used, it is important to note that LCAAM operates as a soft mask or filter,
adjusting attention scores rather than fully masking tokens. This allows for more effective prioritization of
important information in multimodal sequences.
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In summary, our contributions are three-fold:

1. We propose the Learnable Context-Aware Attention Mask (LCAAM), a mechanism that
dynamically generates masks to regulate attention maps and prioritize significant tokens
based on their contextual significance. LCAAM can be integrated into existing Transformer
Encoder architectures, potentially enhancing performance on complex sequence processing
tasks with minimal architectural modifications.

2. Through experiments across various benchmarks, including MAD, ImageNet-1K,
MSRVTT, and QVHighlights, we empirically demonstrate the effectiveness of our
LCAAM method, particularly when employed with multimodal encoders.

3. We analyze the output of LCAAM and its influence on attention weight distributions, sup-
plemented by qualitative analysis to provide insights into its behavior.

2 RELATED WORK

2.1 MULTIMODAL TRANSFORMERS

A predominant area of prior exploration in aligning multiple modalities centers around contrastive
learning, a method extensively utilized in both image-text and video-audio alignment contexts (Chen
et al.}2020; |Khosla et al., 2020; |[Radford et al., 2021;|He et al.,[2019; |[Han et al.,[2023a};[Zhang et al.}
2023a). Recent investigations have also delved into merging diverse modalities within a unified fea-
ture space through the incorporation of cross-attention layers (Chen et al., [2021} [Lee et al., 2021}
Wei et al.,|2020; Moon et al.|[2023)). Furthermore, there is a growing trend of leveraging Transformer
capabilities for multimodal fusion tasks (Luo et al.| 2021} Kamath et al., 2021; [Han et al., 2023a;
Barrios et al.; 2023} Lei et al.,|[2021)). Our decision to employ a multimodal transformer in our design
is rooted in its unparalleled capability to integrate information across diverse modalities, thus fos-
tering a more comprehensive understanding of the input data. Through the utilization of this unified
architecture, we are enabled to effectively capture intricate interactions within the sequence, strategi-
cally prioritizing relevant cues based on their significance. In contrast to conventional methodologies
that treat modalities in isolation, the multimodal transformer facilitates the seamless integration of
contextual information, thereby yielding more coherent and nuanced representations.

2.2 LANGUAGE MODELS FOR VIDEO DESCRIPTION

To adapt a Large Language Model (LLM) for AD generation, we incorporate an adapter module.
This module processes audiovisual features and transforms them into the feature space of our LLM.
The concept of training an adapter module rather than finetuning the entire LLM to account for
a new modality has been widely explored (Yi-Lin Sung, 2022; Hu et al., |2023)), but the method
most similar to ours is LLaMA-Adapter (Zhang et al., 2023b; |Gao et al.| [2023). LLaMA adapter,
however, does not account for audio data. Our method follows that of LLaMA-Adapter closely, but
changes the input feature space to include both audio and video features. The previous State-of-the-
Art in our specific task (generating audio descriptions of movie clips) on the MAD dataset are the
AutoAD models Han et al.|(2023b;c). We are able to generate comparable results with significantly
less fine tuning and contextual information. Recent models have also achieved significant results in
finding important moments in longer videos, but these contributions are not particularly relevant to
ours because we focus on describing shorter video segments (Lei et al., [2021} |Barrios et al., [2023)).
Another recent result similar to ours is the Video-LLaMA model, which focuses on general purpose
visual question answering but uses a Q-Former instead of an adapter module to fuse the visual,
audio, and text modalities (Zhang et al., 2023a)).

2.3 MASKING ATTENTION

In the field of Natural Language Processing, researchers have explored various methods of con-
structing attention masks, while also investigating their impact on transformer architectures (Fan
et al.,|2021;|Tang et al.| |2021; |Lin & Joel [2023;Rende et al., 2024)). Conversely, this exploration has
received limited attention in Computer Vision (L1 et al., 2021} |Lin et al.| 2022). Motivated by this
disparity, our objective is to investigate this phenomenon, particularly in the context of multimodal
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data, and its implications for task performance. Unlike the approach proposed by SwinBert (Lin
et al., 2022)), which advocates for a sparse and learnable mask, our focus aligns more closely with
the principles of Mask Attention Networks (Fan et al., 2021). Instead of relying on a static mask
matrix, which may restrict the model’s ability to capture local relationships effectively, we propose
employing a Learnable Context-Award Attention Mask (LCAAM). This adaptive mechanism aims
to prioritize and regulate attention tokens within long sequences based on their contextual signifi-
cance in a dynamic manner.

3 LEARNABLE CONTEXT-AWARE ATTENTION MASK (LCAAM)

Our goal is to train a Learnable Context-Aware Attention Mask that effectively prioritizes and regu-
lates tokens based on their significance within a complex sequence. The term “context” here encom-
passes multiple dimensions: temporal relationships, intermodal associations and dynamic changes
throughout the input sequence. This adaptable mechanism can also be seamlessly incorporated into
any of the existing Transformer Encoders. Figure[2|shows the overview of the LCAAM architecture.
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Figure 2: Overview of the Learnable Context-Aware Attention Mask (LCAAM). The LCAAM mod-
ule processes the entire input sequence to generate a mask. This mask is applied element-wise (e.g.,
via addition or multiplication, as detailed in Section[3.3)) to modify the attention scores produced by
the Transformer Encoders.

3.1 DEFINITION

We aim to generate an attention mask that adeptly prioritizes and regulates tokens according to their
importance within a sequence. For this purpose, we develop a learnable module (denoted as F),
which receives a sequence of tokens X as input and returns a mask M, as shown in Equation[I} The
shape of the mask M depends on the sequence length and the purpose of the multi-head attention,
whether it is self-attention or cross-attention.

F(X)—=M (1)

Attention. In the context of self-attention, the resulting mask output can be represented as
(B, N, N), where B is the batch size and N is the number of tokens. For instance, consider a
multimodal sequence with 128 tokens and a batch size of 1. In this case, the output of our LCAAM
would have the dimensions (1,128,128). In the cross-attention setup, the mask shape is given by
(B, Ny, Ni), where N, represents the length of the Query tensor and N}, represents the length of
the Key tensor. For example, if we perform cross-attention with 75 visual features as the query, 32
text features as the key, and a batch size of 1, the output of LCAAM will be (1,75, 32). To ensure
clarity for the reader, all content in the SectionE]refers to the self-attention scenario unless otherwise
specified.

Scalability. The mask can be applied either globally across all transformer layers in the stack
(Section [3.2) or individually for each layer (Section [3.4). This flexibility allows for different masks
to be used at various depths, meaning that each layer can have its own set of learnable parameters,
capturing hierarchical information at different levels.
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3.2 LEARNABLE CONTEXT-AWARE ATTENTION MASK MODULE

The Learnable Context-Aware Attention Mask (LCAAM) module processes an input sequence
through a stack of linear layers with ReLU activations. Let X € REZXN*D denote the input to
the LCAAM module, where B is the batch size, N is the number of tokens, and D is the embedding
dimension. The module consists of L layers, where each layer: € 1,2,..., L is defined by a weight
matrix W; € RPnixDouti and a bias vector b, € RP  The forward pass of the LCAAM module
can be described as follows:

H, = ReLU(XW, + by) ?)
H,; = ReLU(H1,1W1 + bl), fori € {2,37 o L— 1} 3
M=H;_{W,+b, “4)

Where ReLU(-) represents the rectified linear unit activation function, H; € RE*NXDos; jg the
output of the i-th layer, and M € REXN XN i the generated mask. Note that the input X and all
intermediate outputs H; maintain the batch and number of tokens (B, V). For optimal implemen-
tation, LCAAM’s dimensionality should align with the Transformer Layer.

3.3 LEARNABLE CONTEXT-AWARE ATTENTION MASK FUSION

We implement a Learnable Context-Aware Attention Mask for any type of Transformer
Layer (Vaswani et al.,[2017). For each Transformer Layer, with input X, and learnable mask M,
the attention mechanism is expressed as:

KT
Attention = softmax (Q o M> (®)]
Vdy

Here, @ and K are query and key projections of X, dj is the key dimension, and ¢ represents
the fusion operation. This fusion can be implemented in two ways: addition (Ao B = A + B)
or element-wise multiplication (4 © B = A ® B). The element-wise multiplication, denoted by
©®, applies the operation to corresponding elements of the matrices. We tested both methods in
our Ablation Studies (Section[A.4.T). By default, we use element-wise multiplication in Section [4]
When a different operation is employed, we specify it explicitly.

3.4 MULTI-LAYER LEARNABLE CONTEXT-AWARE ATTENTION MASK FUSION

We extend the Learnable Context-Aware Attention Mask (LCAAM) approach to a stack of L Trans-
former layers, with each layer [ having its own unique learnable mask, denoted as IM;. The attention
mechanism at each layer is computed according to Equation[5] The masks M, are learned indepen-
dently for each layer, allowing each LCAAM to adapt its masking operation based on the layer’s
representation. As the output of one layer serves as the input to the next, this allows for hierarchical
representation learning across the stack.

4 EXPERIMENTS

4.1 DATASETS

Generating AD. MADv2 (Soldan et al., 2022;|Han et al.,[2023b)) is a vast dataset for video-language
grounding, with over 264K queries in 488 movies totaling 892 hours. It includes MADv2-eval, with
10 movies for evaluation.

Moment Retrieval and Highlights Detection. QVHighlights (Lei et al.,2021) is the latest dataset
for moment retrieval and highlight detection, featuring annotations for both tasks in over 10,000
YouTube videos.

Image Classification. ImageNet 1K (Deng et al., 2009) is a benchmark dataset consisting of 1.2
million images across 1, 000 categories, commonly used for image classification tasks.

Video Captioning Task. MSRVTT (Xu et al., [2016) is a dataset for video captioning, comprising
10, 000 video clips from 20 categories with human-annotated descriptions.
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4.2 METRICS

Generating AD. Conventional metrics like Rouge-L (R-L)(Lin} 2004), CIDEr (C)(Vedantam et al.,
2014])), and Retrieval-based metric (R@k/N) (Han et al.,|2023c) are employed to compare generated
Audio Descriptions (AD) with ground-truth AD. These metrics are robust to low-level variations in
testing data, with higher values indicating superior text generation.

Moment Retrieval and Highlights Detection. For video grounding tasks, evaluation metrics in-
clude Recall@ K and mAP@K for IoU=0 (R@ K-IoU=6), assessing both ranking and temporal
overlap. Models are evaluated at K = 1 with IoU thresholds of 0.5 and 0.7. Average mAP across
IoU thresholds from 0.5 to 0.95 with 0.05 increments is calculated. Highlight detection primarily
employs mAP, while HIT@ 1 measures the hit ratio for the highest scored clip.

Video Captioning. Evaluation metrics for video captioning include BLEU4 (B4) (Papineni et al.,
2002), CIDEr (C), SPICE (S) (Anderson et al.l 2016), METEOR (M) (Lavie & Agarwal, 2007),
and Rouge-L (R-L), capturing different aspects of caption quality such as n-gram overlap, semantic
similarity, and linguistic fluency.

Image Classification. Performance in image classification is often measured using Accuracy top-1
(Acc-topl) and Accuracy top-5 (Acc-top5).

4.3 BASELINES

The proposed LCAAM module can be incorporated into any of the existing Transformer Encoders.
We integrated our contribution into four baseline models: LlaMA AdapterV2 (Gao et al., 2023)
with a transformer-based audiovisual encoder, QD-DETR (Moon et al.l 2023), SwinBERT (Lin
et al.l 2022), and ViT Base (He et al., 2021} [Vaswani et al.| [2017). Our module, described in
Section |3] was added only to the encoder of each model, except for SwinBERT, where we replaced
its fixed learnable mask with our approach to align with its design principle. For more details, see
supplementary material.

Table 1: Comparing performance across various datasets. We evaluate our masking method
on both multimodal encoders and single modality encoders. Our method demonstrates significant
performance gains when applied to multimodal encoders, particularly in tasks (a, b, and c). However,
for tasks involving single-modality encoders (d and e), we observe minimal improvements across
most metrics. The asterisk (*) denotes that we retrained using the codebase and observed a slight
decrease in performance compared to the numbers reported inHe et al.[(2021).

Model R-L C R@5/16 Model R1@IoU0.7 mAP (Avg)
LlaMA Adapter (Gao et al.|[2023)  10.7 9.4 43.4 QD-DETR (Moon et al.|[2023) 44.98 39.86
Ours 13.5 18.6 56.1 Ours 46.94 42.32
Gain(A) 2.8 9.2 12.7 Gain(A) 1.96 2.46
(a) AD Task on MADv2-named (Soldan et al., 2022} (b) Moment Retrieval Task in QVHighlights (Lei
Han et al | [2023b) et al.| [2021)
Model mAP HIT@1 Model Acc-Topl  Acc-Top5
QD-DETR (Moon et al.|[2023)  38.94 62.40 *ViT Base (He et al.|[2021) 82.71 96.32
Ours 39.70 63.33 Ours 83.45 96.59
Gain(A) 0.76 0.93 Gain(A) 0.74 0.27
(c) Highlights Detection at VeryGood confidence (d) Image Classification in ImageNet 1K (Deng
in QVHighlights (Lei et al.} 2021) et al.,[2009)

Model B4 R-L M C S

SwinBERT (Lin et al.|[2022) 42.82 62.06 30.39 51.96 7.64

Ours 42.03 62.05 30.60 52.24 8.03

Gain(A) -0.79 —-0.01 0.21 0.28 0.39

(e) Video Captioning Task in MSRVTT (Xu et al.; 2016)
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4.4 RESULTS

Our comprehensive evaluation across five diverse tasks, as presented in Table[I] reveals the signifi-
cant impact of our proposed method. The results demonstrate a marked improvement in performance
when applied to multimodal encoders, in contrast to single-modality encoders. Specifically, for mul-
timodal tasks, we observe substantial gains: Table[Ta]shows a maximum improvement of 12.7 points
for the R@5/16 metric, with an average improvement of 8.23 points across all metrics. This trend
is corroborated by the results in Tables [1b|and where we note maximum improvements of 2.46
and 0.93 points, accompanied by average improvements of 2.21 and 0.86 points, respectively. In
contrast, the application of our method to single-modality encoders yields minimal gains and, in
some cases, marginal performance decreases. For instance, Table [Te]indicates a slight decrease of
0.79 points for the B4 metric, while modest increases of 0.28 and 0.39 points are observed for the
C and S metrics, respectively. Similarly, Table[Td|shows a nominal improvement of 0.74 points for
the Acc-Topl metric.

Takeaway: Our method demonstrates an enhanced capacity to leverage multimodal sequences com-
pared to single-modality inputs. While we observe modest gains in some single-modality tasks, the
more pronounced improvements in multimodal scenarios suggest greater potential for advancing
multimodal learning tasks. These results indicate promising directions for future research, particu-
larly in optimizing our approach for both multimodal and single-modality applications, with plenty
of room for further enhancements across diverse task domains.

4.5 ABLATION STUDIES

In this section, we present a comprehensive series of ablation studies to rigorously evaluate the ef-
fectiveness of our Learnable Context-Aware Attention Mask (LCAAM) architecture across multiple
dimensions. These studies isolate and quantify the contributions of LCAAM in improving model
performance, while providing insights into its computational efficiency and scalability. We system-
atically explore the impact of various attention mask architectures, assess the influence of LCAAM
versus parameter scaling, and measure the computational trade-offs associated with its implementa-
tion.

Additionally, we analyze how LCAAM scales with increasingly complex multimodal datasets,
demonstrating its robustness across varied data sizes and modalities. Further investigations into
fusion strategies for masking (e.g., element-wise addition vs. multiplication) and the effects of
LCAAM depth, along with detailed visualizations, are included in the Supplementary Material. Our
analysis highlights that the LCAAM module offers superior performance gains with minimal com-
putational overhead, positioning it as an effective and scalable solution for modern Al tasks. This
evidence supports its broader adoption in multimodal learning and enhances our understanding of
optimized attention mechanisms for high-dimensional and dynamic datasets, such as MADv2 and
QVHighlights.

Table 2: Attention Mask Influence. We analyze the performance of the Audio Description generation task
using a subset of 1,010 instances from the MADv2 dataset (see Supplementary Material). Our results show that
integrating the Learnable Context-Aware Attention Module (LCAAM) improves performance. Additionally,
a more noticeable improvement is observed when using a multi-layer setup, where each transformer attention
layer utilizes its own LCAAM, rather than a global one, as seen in row 3. The ‘*’ indicates that we followed
the learnable sparse mask design from |Lin et al.|(2022). All experiments were trained using identical hyperpa-
rameters over 10 epochs.

Mask R-L C
Full Attention 12.92 15.46
Sparse Learnable Mask* 10.02 9.72
LCAAM 13.10 16.58
Multi-Layer LCAAM 14.28 17.11

Impact of Attention Mask Architectures. We conducted a comprehensive analysis of the perfor-
mance impact of various attention mask architectures, focusing on our novel Learnable Context-
Aware Attention Mask (LCAAM) module. Evaluations were conducted on a specific subset of the
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MADVv2 dataset (See Supplementary Material for more details), with performance quantified using
the Rouge-L and CIDEr metrics (Table [2). Our investigation encompassed four distinct configura-
tions: (i) full attention as a baseline, (ii) the learnable sparse mask from SwinBert, (iii) our proposed
LCAAM, and (iv) an extended Multi-Layer LCAAM. Results demonstrate that the introduction of
LCAAM yields a substantial performance improvement over the full attention baseline, with CIDEr
scores increasing from 15.46 to 16.58. Notably, the Multi-Layer LCAAM architecture achieved
superior performance, reaching a CIDEr score of 17.11. In contrast, SwinBERT’s sparse learnable
mask exhibited a marked decrease in performance, with CIDEr dropping from 15.46 to 9.72. We
attribute this decline to the mask’s inability to effectively capture the dynamic nature of MAD-v2
sequences, which are characterized by frequent shot changes, transitions, and complex audio-visual
interactions. Our LCAAM architecture shows improved performance in handling these multimodal
sequences, indicating its effectiveness for the MAD-v2 video captioning task.

Table 3: Parameters vs. LCAAM Module Influence. We present the performance results of three models:
the baseline model without masking, a Full Attention Transformer with an equivalent number of parameters to
the Multi-Layer Learnable Context-Aware Attetion Mask, and the Multi-Layer LCAAM itself. Generally, our
findings suggest that the number of parameters does not directly correlate with performance gains.

Experiment R-L C
Baseline 12.92 15.46
Full Attention w/ same number params.  11.23  12.87
Multi-Layer LCAAM 14.28 17.11

Performance: Parameters vs. LCAAM Module Influence. We explore whether the performance
gains attributed to our Learnable Context-Aware Attention Mask (LCAAM) module are genuinely
due to the module itself or simply the result of an increased number of model parameters. To
investigate this, we compare a baseline model with full attention to a multi-layer LCAAM model
and another variant with full attention but augmented with additional linear layers to equate the
LCAAM model’s parameter count. Results from the Audio Description generation task (Table [3)
indicate that increasing parameters alone, without LCAAM, leads to a performance decline from
15.46 to 12.87 CIDETr, highlighting that more parameters facilitate over-fitting rather than improving
the model’s learning capability. Thus, the effectiveness of LCAAM arises from its targeted approach
to enhancing token attention, rather than merely adding more parameters.

Table 4: Computational metrics for AD Generation in MADv2. The table compares models
based on performance (R-L, C), computational cost (FLOPs, MACs), parameters, and latency. The
baseline shows moderate performance with 6.930B parameters. The Same Parameters Exp. in-
creases resource usage but slightly underperforms. Multi-Layer LCAAM achieves the best scores
(R-L: 14.28, C: 17.11) with only a minor increase in computational cost, highlighting its efficiency
in utilizing resources for improved performance. An upward arrow (7) indicates that higher values
are better, while a downward arrow (| ) indicates that lower values are preferred.

Model R-L(1) cm FLOPs(]) MACs(]) Params(]) Latency(])

Baseline 12.92 1546 3.39 TFLOPs 1.69 TMACs 6.930B 87.57 ms
Same number params.  11.23 12.87  3.45 TFLOPs  1.80 TMACs 7.072 B 89.12 ms
Multi-Layer LCAAM  14.28 17.11 3.43TFLOPs 1.71 TMACs 7.072B 88.60 ms

Computational Overhead. To address potential concerns regarding the computational complex-
ity introduced by our additional module, we conducted a comprehensive analysis of the models’
efficiency. Building upon our previous experiments (Table[3), we evaluated the computational over-
head of each model by measuring their floating-point operations (FLOPs) and multiply-accumulate
operations (MACs). Table [ presents these metrics alongside the parameter counts and latency
measurements for the baseline, same params exp., and our proposed Multi-Layer LCAAM mod-
els. Our findings reveal that the Multi-Layer LCAAM architecture offers a compelling trade-off
between computational complexity and performance. While it incurs a modest increase in FLOPs,
MACs, and parameters compared to the baseline, it demonstrates superior efficiency relative to the
equi-parametric experimental model. Notably, our Multi-Layer LCAAM achieves lower FLOPs and
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MACs while maintaining parity in parameter count with the experimental model, resulting in an
intermediate latency profile. These results suggest that the LCAAM effectively optimizes the model
architecture, enhancing resource utilization without significantly compromising speed or introduc-
ing undue complexity.

Table 5: Maximum Performance Gain by Dataset Size and Modality. This table, adapted from Table 1]
presents the maximum performance gains for each dataset, organized by size and modality (V: Vision, T: Text,
A: Audio). The results show that larger datasets with multiple modalities, such as MADV2, typically achieve
higher performance gains. Conversely, the smaller MSRVTT dataset demonstrates the lowest performance
gain. The main goal is to highlight the largest gaps in performance gains. It is important to note that averaging
the metrics can be misleading, as different scales among metrics can influence each other when combined,
potentially obscuring the true extent of the gaps.

Dataset Size Modality  Max. Gain
MSRVTT 6.3 GB V+T 0.39
Imagenet 1k 164 GB v 0.74
QVHighlights ~ 180GB  V+T 2.46
MADvV2 ~ 3TB V+A+T 1270

Dataset Scaling. It is acknowledged that increasing the number of parameters may influence the
scaling behavior of data across various modalities. Table [5] which expands upon Table [I] presents
a comprehensive analysis of performance gains across datasets of varying sizes and modalities, en-
compassing Visual, Textual, and Audio data. Our analysis focuses on the maximum performance
gain for each metric, a strategic approach that accentuates significant improvements while mitigat-
ing distortions inherent in averaging metrics of disparate magnitudes. This method provides a con-
densed yet insightful representation of our findings. The results reveal a clear correlation between
dataset complexity and the efficacy of our LCAAM approach. Notably, large-scale multimodal
datasets, exemplified by MAD (~ 3 TB, V+A+T), demonstrate the most substantial performance
improvements, particularly when employing multi-layer LCAAM. For instance, LCAAM achieves
a remarkable gain of 12.7 on the MADv?2 dataset. In contrast, smaller, less diverse datasets such as
MSRVTT (6.3 GB, V+T) exhibit more modest gains (0.39), while medium-sized uni-modal datasets
like ImageNet-1k (164 GB, V) show intermediate improvements (0.74). These findings underscore
LCAAM’s particular effectiveness in handling complex, high-dimensional data structures. The ob-
served performance gradient across dataset sizes and modalities suggests that LCAAM’s ability to
capture and adapt to intricate cross-modal relationships scales with data complexity. This scalability
justifies the computational cost associated with LCAAM, especially in the context of large-scale
models and datasets where traditional fine-tuning approaches may prove insufficient or impractical.

More Ablation Studies. Section analyzes the impact of depth on LCAAM performance, ex-
plores two element-wise operations for masking fusion, and discusses how LCAAM modifies atten-
tion weight distribution.

Qualitative Analysis. We conducted two qualitative analyses on the Audio Description Task: one on
temporally aligned video and audio streams, and another on misaligned streams. See Section[A.4.3]

5 CONCLUSIONS AND LIMITATIONS

The Learnable Context-Aware Attention Mask (LCAAM) significantly enhances attention mech-
anisms in Transformer models, especially for multimodal tasks. By dynamically prioritizing im-
portant tokens, LCAAM boosts model performance in diverse tasks. However, its gains in single-
modality scenarios are limited. While LCAAM excels at capturing contextual relationships in mul-
timodal tasks, the improvements in single-modality tasks are modest due to the simpler nature of
processing a single input type, which underutilizes LCAAM’s dynamic masking. Future work could
focus on amplifying LCAAM’s impact in single-modality tasks, possibly by incorporating additional
contextual information or hybrid strategies combining insights from multiple modalities.
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A APPENDIX

A.1 MULTIMODAL ENCODER TASKS

We evaluated the effectiveness of the Learnable Context-Aware Attention Mask (LCAAM) across
three significant multimodal tasks: Audio Description (AD) Generation, Moment Retrieval, and
Highlights Detection. In this section, we first outline the definitions of these tasks (Sections [A.1.T]
and [A.1.2) and show the implementation details of our proposed LCAAM module to each task

(Sections and[A.1.4).

A.1.1 AUDIO DESCRIPTION GENERATION

Our task involves adapting a Large Language Model (LLM) to generate Audio Descriptions (AD) in
text for a long-form movie £ segmented into short clips {c1, ca, . .., ¢y }. Each clip encompasses S
samples in the visual stream (represented as V') and S samples in the audio stream (denoted as Aﬂ
Specifically, our goal is to create a text ¢; that describes the audiovisual content presented in each
clip ¢;, aiming to assist individuals who are blind in following the movie’s narrative.

Audiovisual Model A). We aim to train an audiovisual model that comprehends the relationships
between sequential video and audio streams. Consequently, AV processes video (V') and audio (A)
observations sampled at ¢; clip and produces an audiovisual feature representations FE,,,.

AV (V,A) = Eyq (6)

Large Language Model 7. Given an input sequence X = {x1, s, ..., x,}, the model H estimates
the probability distribution of the next word x,; based on the context using the chain rule of
probability:

P(zp41]|X) = P(xpt1]21, 2, .oy ) @)

The model is trained by maximizing the likelihood of generating the correct sequence according to
the training data. During inference, it predicts the most likely next word given the context. The
model’s weights 6 are optimized through back-propagation and gradient descent to improve its lan-
guage understanding and generation capabilities.

Raw sound from movies, excluding descriptions
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Adapter Module P. Let’s assume a pre-trained model with parameters represented by 6. The
adapter layer introduces additional parameters for audiovisual understanding task, and these param-
eters can be denoted as ¢. The output of the adapter layers can be represented as P(z’, ¢), where
2’ is the projected audiovisual features into the language space. So, the overall output of the model
with the adapter layer can be written as:

I(H($,9),P(l‘/,¢)) —t 3

Where F is a function that combines the pre-trained Language Model H and the adapter P to
produce an AD in text ¢;.

A.1.2 MOMENT RETRIEVAL AND HIGHLIGHTS DETECTION

The visual-language grounding model, denoted as G, is tasked with processing an untrimmed video,
V, sampled from a temporal window W, along with a natural language query (). It then produces
predictions for J temporal moments, defined as:

G(V,Q) = (Ts,Ter 5,51) - )

In Equation [9] the grounding models yield a series of moments ranked by their confidence scores.
Here, (75, 7.) represents the duration span of the moment, while s indicates its confidence score.
Now, let’s define the inputs for our attention modules. Given a video comprising L clips and a
text query containing N words, their representations extracted by frozen video and text encoders
are denoted as v1,vs,...,vr, and t1,ta,...,tN, respectively. Additionally, the grounding model
provides saliency scores s; for each moment for the highlight detection task.

A.1.3 IMPLEMENTATION DETAILS FOR AD GENERATION

Feature Extraction. The extraction of visual features follows the CLIP-based methodology out-
lined in Soldan et al.| (2022). To be more specific, visual features are extracted at a rate of 5 frames
per second (FPS) with an embedding dimensionality of D, =512. For audio feature extraction, we
follow|Barrios et al.|(2023)) by utilizing the OpenL3 (Cramer et al., 2019;|Arandjelovic & Zisserman,
2017) checkpoint pre-trained on videos containing environmental audiovisual data. We use a spec-
trogram time-frequency representation with 128 bands and set the audio embedding dimensionality
D, to 512. Furthermore, we extract the audio embeddings using a stride size of 0.2 seconds, i.e.,
with an extraction frame rate of 5 Hz, matching the frame rate of the visual features.

Audiovisual Model AY. We utilize a Multimodal Transformer with a standard configura-
tion (Vaswani et al.,2017)). For each observation c;, consisting of both visual and audio information,
we employ S = 25 visual tokens and .S = 25 audio tokens, effectively spanning a 5-second duration
at a frame rate of 5 FPS. This Multimodal Transformer architecture comprises 16 layers and
employs a Multi-Layer Learnable Context-Aware Attention Mask Module with a dimensionality of
768 and depth of 16.

Large Language Model . For Large Language Model, we choose to employ a frozen LLaMA 7B
model (Touvron et al., [2023)) and opt to use its official checkpoint.

Adapter Module P. We build our audiovisual adapter following the approach done in|Gao et al.
(2023). In this part, we select 16 tokens as audiovisual tokens. We adjust the last 31 layers of
LLaMA 7B, making sure that the audiovisual features stay at a size of 512, which then maps to
4096 (LLaMA dimensionality). We set the depth to 8, use 16 heads, apply LoRA Rank (Hu et al.,
2021)) with a value of 16, and activate Bias layers (Zhang et al.| |2023b).

Training Protocol. To generate Audio Descriptions, we follow the training methodology outlined
in Zhang et al.| (2023b)); |Gao et al.| (2023). This involved utilizing 8 RTX 6000 Ada Generation
GPUs, each equipped with 50 GB VRAM, alongside employing a base learning rate of 1e — 4 and
the Adam optimizer.
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A.1.4 IMPLEMENTATION DETAILS FOR MOMENT RETRIEVAL AND HIGHLIGHTING TASK

Feature Extraction. The visual and text embeddings are extracted following the methodology
presented in|Lei et al.|(2021)). For video, we use SlowFast (Feichtenhofer et al.,|2018)) and the visual
encoder (ViT-B/32) of CLIP (Radford et al., [2021) to extract features every 2 seconds. We then
normalize the two features and concatenate them at hidden dimension. The resulting visual features
is denoted as Ey € REVDv with Dy = 2816. For text features , we use the CLIP text encoder to
extract token level features, Ey, € RYe*Pe with Dy = 512.

Video Grounding Model. We adopt the methodology outlined in Moon et al.[(2023). The architec-
ture consists of three distinct components: an encoder comprising four layers of transformer blocks
(two cross-attention layers and two self-attention layers), while the decoder has only two layers.
We configure the hidden dimension of the transformers to be 256 Additionally, for the transformer
encoder layers and the cross-attention layers, we utilize our LAACM using dimensionality of 256
and depth of 32 layers.

Training Protocol. We conducted training over 200 epochs, employing a batch size of 32 and a
learning rate set to 1e — 4. We utilized the Adam optimizer with a weight decay of 1e — 4, leveraging
a single GPU, the RTX 6000 Ada Generation.

A.2 SINGLE MODALITY ENCODER TASKS

A.2.1 IMAGE CLASSIFICATION TASK

In the image classification task, the goal is to assign an input image I to one or more predefined
classes from a set of C' classes. Let’s denote the image classification model as M. Given an input
image I, the model generates a set of class predictions and their corresponding confidence scores:

M(I)_>(glaﬁl)a(g%ﬁQ)v"'v(ndﬁC) (10)
Here, §. € 1,2,...,C represents the predicted class label for the c-th class, and p. € [0, 1] is the
corresponding confidence score or probability assigned by the model to that class. The model’s goal
is to accurately predict the true classes present in the input image /.

A.2.2 VIDEO CAPTIONING TASK

In the video captioning task, the goal is to generate a textual description or caption for a given
input video V. Let’s denote the video captioning model as M. Given an input video V, the model
generates a sequence of words W = wy,ws, ..., wy that forms the caption:

M(V)—)W:whwg,...,wN (11
Here, each w; represents a word in the generated caption, and N is the length of the caption se-

quence. The model’s objective is to produce a natural language caption W that accurately and
coherently describes the content and events depicted in the input video V.

A.2.3 IMPLEMENTATIONS DETAILS FOR IMAGE CLASSIFICATION TASK

We follow the pre-trained model developed in|He et al.|(2021) and fine-tune it for the image classifi-
cation task. The base model is a Vision Transformer (ViT) with a 16x16 patch size, 768-dimensional
embedding, 12 transformer layers, and 12 attention heads. It includes an MLP ratio of 4, biases in
the query, key, and value projections, and layer normalization with an epsilon of le — 6. To in-
corporate our proposed Learnable Context-Aware Attention Mask (LCAAM) module, we use the
Multi-Layer LCAAM variant, which generates the attention mask using a single linear layer. For
the pretraining stage, we adhere to the methodology outlined in [He et al.| (2021])), but increase the
batch size to 128 and use 4 gradient accumulation steps. For fine-tuning on the image classification
task, we maintain a batch size of 128 and 4 gradient accumulation steps. Additionally, we train for
100 epochs, apply a weight decay of 0.05, set the drop path rate to 0.1, and use mixup and cutmix
with values of 0.8 and 1.0, respectively.

A.2.4 IMPLEMENTATIONS DETAILS FOR VIDEO CAPTIONING TASK

We adopt the methodology proposed by SwinBERT (Lin et al.l [2022), with a notable modifica-
tion. Instead of using a fixed learnable mask implemented via nn.Parameter, we integrate our
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Learnable Context-Aware Attention Mask (LCAAM) module, which consists of 16 layers while
maintaining the same dimensionality as the original SwinBERT. Regarding the hyperparameters,
the experiment utilizes a batch size of 2 per GPU, running for 20 epochs with a learning rate of
0.0003. Training is conducted in half precision using DeepSpeed, with gradient accumulation over
16 steps. For the entire training process, we used 8 A6000 Ada generation GPUs.

A.3 ADDITIONAL DETAILS FOR AUDIO DESCRIPTION GENERATION

In the following sections, we examine specific details that have not been addressed in the main paper.
This comprehensive discussion includes insights into the current methodology for calculating met-
rics, the specific prompts employed, and the intricacies of both the training and evaluation processes
for our implementation.

A.3.1 METRICS

In this work, we compute the CIDEr (Vedantam et al., 2014) score using the pycocoeval package
from the |coco-caption repository, adhering to the standard parameters of n = 4 and sigma = 6
as prescribed in [Vedantam et al| (2014). For Rouge-L (Lin, [2004), a commonly used metric in
natural language processing, we leverage the Hugging Face evaluate library for implementation
(evaluate-metric/rouge). The Rouge-L configuration is set with use_aggregator=True and
use_stemmer=True, aligning with the default settings to ensure consistent evaluation. Prior to
metric computation, both predicted and reference texts are normalized by converting to lowercase
and removing punctuation, following standard preprocessing protocols.

For retrieval-based evaluation, we adopt the R@k/N metric, utilizing the methodology introduced
in [Han et al.| (2023c). This is further supplemented by the BERTScore (Zhang et al., [2020) metric,
ensuring alignment with state-of-the-art retrieval practices. To maintain reproducibility and result
comparability, we use the specified hash code for BERTScore: roberta-large_L17_noidf_|
version=0.3.12 (hug_trans=4.30.2)-rescaled, which reflects the model version and
Hugging Face environment at the time of evaluation. These standardized configurations and consis-
tent preprocessing steps reinforce the robustness and reliability of our evaluation pipeline.

A.3.2 NATURAL LANGUAGE PROMPTING

To implement Audio Description functionality in our model, we apply the prompting approach de-
veloped in the LLaMA Adapter framework (Gao et al.l [2023). The primary prompt used for gen-
erating Audio Descriptions is: “Below is an instruction that describes a task. Write a response
that appropriately completes the request.” We then include a task-specific instruction: “Gener-
ate a caption for this video.” This prompt setup, shown in Figure[S3] provides the model with the
necessary context to produce relevant and concise descriptions for the video content.

Below is an instruction that describes a task
### Instruction:

Generate caption of this video.

### Response:

Figure S3: Prompt for Audio Description Generation The caption provided outlines the prompt
utilized to activate the functionality of Audio Description generation employing the LLaMA model.

A.3.3 DATASET SPLIT

As MADvV2 lacks a validation set, we curated a subset of 1010 moments from two movies,
3034_IDES_OF_MARCH and 3074 _THE_ROOMMATE from the Unnamed version for our ablation
studies and model selection. All models and experiments were assessed under consistent parame-
ters to ensure fair comparisons. However, Table 1 in the main paper was generated using the entire
dataset in the named version to maintain parity with other baselines.
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A.3.4 TRAINING PROTOCOL

The training procedure for our Audio Description Generation model adhered closely to the method-
ology outlined in (2023). The process began with an initial alignment phase aimed at
ensuring robust synchronization between the audiovisual features. This phase was crucial for es-
tablishing coherence between the audio and visual modalities of the input data. Upon successful
alignment, we resumed training with a focus on optimizing the bias and gate layers as proposed
by (2023), leveraging the LLaMA [Touvron et al.| (2023) 7B architecture in combination
with our audiovisual encoder. In this subsequent stage, we performed backpropagation exclusively
on the bias, gate, and audiovisual layers to enhance the model’s capacity to generate accurate and
contextually relevant audio descriptions.

Training was conducted over a span of 20 epochs, with model selection based on performance on
the validation subset. Hyperparameters were meticulously tuned, including a learning rate of 1e =%,
weight decay of 0.05, and a batch size of 256. We employed the AdamW optimizer to ensure effi-
cient parameter updates. During the audiovisual alignment phase, the adapter and audiovisual layers
were trained for 2 epochs, with the rest of the model parameters held constant, facilitating stable con-
vergence. Importantly, the LLaMA model’s core parameters remained frozen throughout the entire
training process, preserving the integrity of its pre-trained features while allowing focused adapta-
tion of the newly introduced layers. This careful balance between alignment and fine-tuning was
critical for achieving high-quality audio description generation without disrupting the foundational
capabilities of the LLaMA architecture.

A.4 ABLATION STUDIES
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Figure S4: Ablation Studies on the number of layers in LCAAM and types of mask operation. We
conduct an investigation into the impact of varying the number of layers utilized within the Learnable Context-
Aware Attention Mask (LCAAM) framework, as applied in the cross-attention configuration, along with the
methods employed for mask fusion with attention weights. The experimentation involves the manipulation of
the number of layers, ranging from 2 to 64, and explores two distinct fusion techniques: multiplication and
addition operations, both implemented at the element-wise level. Evaluation of these experiments is carried out
on the validation split set of QVHighlights [2021). Overall, notable enhancements in performance,
particularly concerning the Average mAP metric for the Moment Retrieval task, are observed. The most sub-
stantial improvements are achieved when utilizing 32 layers within the LCAAM module.

A.4.1 EFFECTS OF DEPTH AND MASKING FUSION TECHNIQUES

Our ablation study on the cross-attention mechanism systematically investigates the impact of two
critical components within the Learnable Context-Aware Attention Mask (LCAAM) module: the
depth of the LCAAM architecture and the mask operations (addition and multiplication). As illus-
trated in Figure[S4} we evaluate performance using the Average mAP metric for Moment Retrieval
on the QVHighlights validation set. The results demonstrate that LCAAM consistently enhances
performance across various configurations, with some architectures yielding more substantial im-
provements than others. Notably, all LCAAM variants, regardless of layer composition or opera-
tion type, outperform the baseline model. The most effective configuration utilizes 32 layers with
both addition and multiplication operations, achieving Average mAP scores of 42.61 and 42.32, re-
spectively. These findings underscore the efficacy of our approach in bolstering Moment Retrieval
performance on the QVHighlights dataset and suggest that the interplay between architectural depth
and diverse mask operations is crucial for optimizing cross-attention mechanisms in this context.
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Figure S5: Attention Weight Distribution. This figure illustrates the effect of our Learnable Context-Aware
Attention Mask (LCAAM) on the distribution of attention weights during the AD generation task. When using
LCAAM, attention weights tend to decrease in magnitude as they propagate through deeper layers, with many
approaching zero. This observation may facilitate future exploration of attention optimization by potentially
reducing redundant computations. The attention weights shown were collected from a forward pass using 64
samples.

A.4.2 ATTENTION WEIGHTS

Figure [S5]presents a comparative analysis of attention weight distributions across three critical lay-
ers (1st, 8th, and final) of the Transformer architecture, contrasting traditional full-attention mech-
anisms with our proposed Multi-Layer Learnable Context-Aware Attention Mask (LCAAM). Our
findings reveal a striking pattern: the implementation of Multi-Layer LCAAM induces a substantial
sparsification of attention weights, with a significant proportion reducing to zero and many others
converging to near-zero values. This phenomenon suggests that LCAAM effectively prunes re-
dundant connections within the attention mechanism, potentially leading to more computationally
efficient model training without sacrificing performance. The observed sparsity not only aligns with
recent trends in neural network optimization but also opens avenues for further research into the
interpretability and efficiency of attention-based models. While these results underscore the po-
tential of LCAAM as a promising approach for enhancing the scalability and resource utilization
of Transformer-based architectures, there remains considerable room for improvement and further
investigation. Future work could explore the optimal degree of sparsity, the impact on various down-
stream tasks, and potential hybridization with other attention optimization techniques to further push
the boundaries of efficient, high-performance Transformer models.

A.4.3 QUALITATIVE ANALYSIS

Figure [S6] presents a qualitative analysis of our Multi Layer Learnable Context-Aware Attention
Mask (LCAAM) implementation for the Audio Description generation task. This visualization en-
compasses two key aspects: Figure [S6a] displays the concurrent audio and video signals, and Fig-
ure [S6b] illustrates the mask values corresponding to each token in the initial transformer layer. In
this figure, the x-axis represents the sequence of tokens, and the colored heatmap indicates the mask
values for each token in relation to the other tokens in the sequence. In this example, the first 25
tokens represent visual information, and the last 25 tokens correspond to the audio data. Each token
(highlighted in the title) is analyzed in terms of its interaction with the sequence.

In this example, the token sequence has a shape of (1,50, 756), where 50 denotes the total number
of tokens resulting from the concatenation of visual and audio tokens, each contributing 25 tokens.
The visual content remains largely static across frames, depicting a residential backyard with minor
visual variations. The auditory content transitions from ambient sounds such as wind, insects, and
outdoor noise to the rhythmic pattern of a clock. The ground truth Audio Description states: “A
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(a) Scene Visualization. We highlight a specific moment from the movie Signs (2002) for qualitative analysis
within the MADv2-eval set. Here, we meticulously present the visual elements while accurately representing
the accompanying audio signals of the scene.
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(b) Scene Visualization We also showcase the mask values produced by the Learnable Context-Aware Atten-
tion Mask (LCAAM) module for each visual and audio token present in the scene. These mask values exhibit
positive numerical values, ranging between 0 and 1 inclusively.

Figure S6: Qualitative Analysis. This illustration presents a qualitative analysis of a specific in-
stance from the MADv2-eval dataset. It depicts visual and audio signals alongside mask values
corresponding to the initial transformer layer (1st layer). Video tokens are represented on the x-axis
from O to 24, while audio tokens range from 25 to 49 on the same axis. The ground truth label for
this moment is: “A set of swings and a climbing frame stand in a rural backyard, along with a picnic
table and a brick barbecue.”

set of swings and a climbing frame stand in a rural backyard, along with a picnic table and a brick
barbecue.”

In this scenario, the LCAAM module activates only three out of twenty-five visual tokens while
assigning minimal attention to audio tokens. Figure [S6b| shows the masking values for each token,
where the x-axis corresponds to the sequence of tokens resulting from the concatenation: tokens
numbered from O to 24 are visual tokens, and tokens from 25 to 49 are audio tokens. For instance,
for visual token 1, LCAAM assigns values greater than 0.35 to tokens 0 to 24 (the visual tokens),
indicating strong correlations between these visual elements, as shown by the yellow-green-colored
cells in the heatmap. Moreover, some correlation with audio tokens (25 to 49) is also visible in the
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Figure S7: Analysis of Attention Weight Distribution in the Qualitative Example. The plot illustrates
the distribution of attention weights within the initial transformer layer across two distinct configurations:
employing Learnable Context-Aware Attention Mask (LCAAM) and full-attention mechanisms. It is evident
from the depiction that attention weights under LAM tend to exhibit a leftward bias, resulting in a significant
portion approaching 0 or nearing zero. The distribution weights correspond to the same example in FigurelS_El
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Figure S8: Analysis of LCAAM Failure Example in Audio Description Generation. This plot illustrates
the learned mask (LCAAM’s output) from the example shown in Figure[S6] In this scenario, the visual features
remain unchanged, but the audio tokens correspond to the last 25 samples from the movie’s credits, which
consist solely of the soundtrack. While the mask correctly assigns low values to the visual features, it fails to
do so for the audio features, assigning mid-range values from the distribution instead. The x-axis represents the
video tokens (ranging from 0 to 24) and the audio tokens (ranging from 25 to 49) on the same axis.

figure, though these values are generally lower. Conversely, for audio token 1, LCAAM assigns
higher values to the initial visual tokens and lower values to the later visual tokens, reflecting the
static nature of the visual information—a backyard scene with minimal dynamic changes—while the
other audio tokens receive varying degrees of attention. Notably, the last audio tokens (e.g Audio
Token 15 to 25) correspond to indoor sounds, indicating a scene transition from an outdoor to an
indoor setting. Consequently, LCAAM assigns values less than 0.35 in its masking for these tokens,
interpreting them as less important and less related to the predominantly outdoor visual and audio
tokens.

To compare with self attention, Figure[S7)shows the attention weight distributions for both LCAAM
and full attention on the same scene. Without LCAAM, the distribution is more uniform, suggesting
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that attention is spread across more tokens. With LCAAM, the distribution is skewed to the left
with many weights near zero, implying focused attention on fewer, more relevant tokens. This
analysis highlights LCAAM’s capability to discern and prioritize specific tokens, thereby enhancing
multimodal scene interpretation.
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(a) Scene Visualization. We highlight a specific moment from the movie Signs (2002) for qualitative analysis
within the MADv2-eval set. Here, we meticulously present the visual elements while accurately representing
the accompanying audio signals of the scene.
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(b) Scene Visualization We also showcase the mask values produced by the Learnable Context-Aware Atten-
tion Mask (LCAAM) module for each visual and audio token present in the scene. These mask values exhibit
positive numerical values, ranging between O and 1 inclusively.

Figure S9: Additional Example for Qualitative Analysis. This illustration provides an additional
example of qualitative analysis from the MADv2-eval dataset. It displays both visual and audio
signals along with corresponding mask values from the first transformer layer (1st layer). The x-
axis represents video tokens from 0 to 24 and audio tokens from 25 to 49. The ground truth label
for this moment is: “They stop when they reach a gap”.

Figure [S8]illustrates a challenging scenario for our LCAAM approach. This example uses the same
visual content as in Figure [S6|but pairs it with audio samples comprising 25 tokens from the credits
section, containing only background soundtrack music. While LCAAM correctly assigns minimal
values to the visual tokens, recognizing the lack of relevance between the video and the new audio
tokens, it struggles to handle the audio tokens optimally. Instead of assigning values close to zero
to the audio tokens—as would be expected given the irrelevance of the soundtrack to the scene
description task—LCAAM assigns intermediate values from its distribution. This outcome suggests
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potential areas for improvement in the model’s audio-visual integration capabilities, particularly in
distinguishing between relevant and irrelevant audio information.

Another example, depicted in Figure[S9] involves the ground truth labeled as “They stop when they
reach a gap.” The scene opens with an image of a maize field, accompanied by the sudden sound
of a little girl screaming. The film’s protagonists immediately begin sprinting through the field,
generating a distinct crunching noise alongside the sound of rapid footsteps. While the visual content
is highly dynamic—both the character and the environment are in motion—the scene remains largely
focused on the maize field and the actors running through it. This continues until a moment of
silence marks their exit from the field. In Figure[SOb| the final visual tokens (24 and 25) carry the
most weight in the LCAAM output because they show the characters stopping, which aligns with
the ground truth. Additionally, the audio of the crunching sound (audio token 1 to 14) from the
maize field provides context, as it reflects the running action and comes before the stopping action,
which is the task’s consequence. The silence that follows signifies the stopping action and the fact
that the gap has been crossed, as there is no more maize field to traverse. This is why later audio
tokens (20-25) are attended to, though less strongly, as they represent the conclusion of the scene.

In summary, these findings highlight both the strengths and limitations of LCAAM in multimodal
Audio Description generation. While the model effectively prioritizes relevant tokens in scenes
with aligned audio and visual content, it struggles with irrelevant audio, assigning undue attention
to non-informative tokens. This underscores the need for further refinement in its ability to dis-
criminate between pertinent and extraneous information, suggesting avenues for future research to
enhance multimodal attention mechanisms. There is still room for improvement, and we are opti-
mistic that addressing these challenges will further advance the effectiveness of LCAAM in complex
multimodal tasks.
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