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ABSTRACT

Trajectory planning for autonomous driving is challenging due to agents’ behav-
ioral uncertainty and intricate multi-agent interaction modeling. Most existing
studies generate trajectories without explicitly exploiting possible scene evolution,
while world models predict consequences from ego behavior, enabling more in-
formed planning decisions. Inspired by the world model, we propose OccDriver,
a novel rasterized-to-vectorized dual-branch framework for trajectory planning.
This pipeline performs a coarse-to-fine trajectory decoding process: The vectorized
branch first generate multimodal coarse trajectories; Then the rasterized branch
predicts future scene evolutions conditioned on each coarse trajectory via occu-
pancy flow prediction; Lastly, the vectorized branch leverages intuitive future
interaction evolution of each modality from the rasterized branch and produces
refined trajectories. Several cross-modality (occupancy and trajectory) losses are
further introduced to improve the consistency between trajectory and occupancy
prediction. Additionally, we apply a contingency objective in both occupancy
space, considering marginal and joint occupancy distributions in different planning
scopes. Our model is assessed on the large-scale real-world nuPlan dataset and
its associated planning benchmark. Experiments show that OccDriver achieves
state-of-the-art in both Non-Reactive and Reactive closed-loop performance.

1 INTRODUCTION

Trajectory planning for autonomous driving confronts intrinsic challenges due to the complexity of
multi-agent interactions and pervasive uncertainty Djuric et al. (2020); Xu et al. (2014)—from sensor
noise to high-level behavioral unpredictability. Deep learning methods Bansal et al. (2018); Guo et al.
(2023); Scheel et al. (2022) have emerged as a promising alternative to rule-based systems Bouchard
et al. (2022); Treiber et al. (2000); Yi et al. (2018). However, effectively modeling the dynamic and
uncertain interplay among agents in future scenarios remains a formidable task. In this work, we
tackle this problem from two key perspectives: predictive modeling of future interactions and the
choice of its representation space.

Representation space is crucial in planning, transforming raw sensor inputs into structured features
that capture environmental contexts. Figure. 1 presents a comparison of different representation
paradigms. Rasterized representations Hu et al. (2021); Kim et al. (2022); Hu et al. (2023b), by
modeling occupancy over spatiotemporal grids, offer robustness against occlusions and a probabilistic
view of joint future states Liu et al. (2023a); Mahjourian et al. (2022). Unfortunately, this approach
incurs discretization artifacts and loses fine individual context and geometric details. In contrast,
vectorized methods Jiang et al. (2023); Zhou et al. (2022; 2023) provide high-precision trajectory
generation by capturing detailed individual semantics but tend to oversimplify evolving future
interactions and require substantial manual feature engineering to approximate uncertainty Khaitan
et al. (2021); Chen et al. (2024). To overcome these limitations, we propose a hybrid approach that
retains the probabilistic strengths of rasterized joint modeling while preserving the individual fidelity
of vectorized representations, supporting probabilistic interaction modeling and more interaction-
informed trajectory planning.
The problem of interaction modeling has been extensively studied in recent years. Multi-agent
reinforcement learning methods Kiran et al. (2021); Liu et al. (2022) are developed to simulate
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Figure 1: Illustration of different representation paradigms: (a) rasterized framework models the scene-
level joint dynamics in spatiotemporal grids; (b) vectorized framework performs individual-level
trajectory planning; (c) our proposed dual-branch framework integrates scene-level and individual-
level information, further leveraging future scene as planning guidance.

interactions and learn policies through trial and error. However, they often struggle with scalability
and environmental non-stationarity. Graph neural networks (GNNs) Mo et al. (2022); Sheng et al.
(2022) excel in capturing relational dependencies, yet suffer from message-passing limitations and
escalating computational costs as the number of agents increases. Beyond encoding mechanisms,
decoding mechanisms e.g., game theoretic approaches Huang et al. (2023); Wang et al. (2021) and
tree policy planning Huang et al. (2024) have been explored. However, these methods typically lack
robustness, limiting practicality for real-world deployment. Nevertheless, all these methods perform
forward-only planning without correction ability when poor rollout occurs, often necessitating a
strong trajectory scoring module. Our method first plans multimodal coarse ego trajectories in
vectorized branch. Then the rasterized branch constructs probabilistic occupancy maps conditioned
on each coarse trajectory, capturing future scene evolution resulting from each ego action. Lastly, the
interactive knowledge embedded in the occupancy space is distilled into the vectorized branch for
trajectory guidance.

Beyond the framework, we propose a suite of specialized loss functions, leveraging future occupancy
as planning guidance. Occupancy interference loss captures ego and agents’ exclusivity in occupancy
space, which can be seen as ego planning in occupancy space. Occupancy guidance loss enforces
explicit consistency between trajectories and predicted occupancy, which bridges the gap between
scene’s occupancy probabilistic modeling and trajectory planning, ensuring effective information
transfer between the two branches.

Our framework also integrates contingency planning objective Cui et al. (2021); Li et al. (2023b); Liu
et al. (2024a) utilizing both marginal and joint occupancy distribution to balance safety and efficiency
in dynamic traffic environments. In short-term, we estimate marginal occupancy probabilities of
key interactive agents, enabling the ego vehicle to respond swiftly to imminent risks. For long-
term planning, we estimate joint occupancy probabilities to construct a modality-consistent traffic
evolution, ensuring scene-compliance and avoiding over-conservative behavior.

Our contributions are summarized as follows:

1) We propose a dual-branch transformer framework for coarse-to-fine trajectory planning, where
a rasterized branch serves as a 2D occupancy world model by predicting future scene evolution
conditioned on coarse trajectories and guiding fine-grained trajectory planning.

2) We introduce several specialized losses to facilitate effective information transfer between vector-
ized and rasterized branches, imposing intuitive guidance on planning.

3) We incorporate a contingency planning strategy that leverages short-term marginal occupancy
distribution for risk-sensitive planning and long-term joint occupancy distribution for scene-compliant
behavior generation.

4) Extensive evaluation on the NuPlan dataset, achieving state-of-the-art planning performance on
both reactive and non-reactive closed-loop metrics.

2 RELATED WORK

2.1 REPRESENTATION SPACE IN MOTION PLANNING

Imitation-based planning method Hu et al. (2022a); Cheng et al. (2024b) has attracted lots of research
interest due to the accessibility of massive real-world expert driving data Caesar et al. (2020; 2021);
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Ettinger et al. (2021). It can be categorized into two branches according to the representation
paradigm: rasterized and vectorized approaches.

Rasterized Approaches project scene context into discret bird-eye-view(BEV) images Hu et al.
(2022b); Li et al. (2024c) and encode it with off-the-shelf image feature extraction methods Liu et al.
(2021b); Dosovitskiy et al. (2020). Earlier research uses CNN Renz et al. (2022); Song et al. (2020)
for feature encoding and trajectory decoding, while recent research utilizes transformer structure Chen
et al. (2021); Huang et al. (2022); Chitta et al. (2022); Zhang et al. (2022); Yao et al. (2023) for
better performance. Some works decode agents’ future movement as future occupancy and flow
fields Liu et al. (2023a); Kim et al. (2022), providing a dense and intuitive scene representation, yet
compromising fewer individual details and limited receptive field.

Vectorized Approaches yield impressive performance because of vector’s concise but effective rep-
resentation capacity for scene semantics. Building on vectorized representation of traffic scenes Gao
et al. (2020), researchers have used structures like graph neural networks for interaction modeling
and DETR-style transformers Wang et al. (2023); Achaji et al. (2022) for query-based decoding.
Additionally, instead of fully learnable queries, anchor-based Afshar et al. (2024); Li et al. (2023a);
Chen et al. (2024) queries are used to decode multi-modal trajectories with explicit patterns.

OccDriver combines the advantages of vectorized and rasterized representations. The rasterized
branch predicts future occupancy and flow fields to represent future scene evolution, serving as
guidance for trajectory planning. The comparison between our work and other occupancy-assisted
planning methods is provided in Appendix A.2.

2.2 CONTINGENCY PLANNING

Contingency planning Li et al. (2023c) is traditionally framed as a tree-structured trajectory opti-
mization problem, where each branch represents a possible scenario and a shared short-term segment
ensures safety across all cases. While theoretically complete, this approach suffers from exponential
complexity, as branches grow combinatorially with interactive agents’ intentions, requiring a compli-
cated safety-evaluation pruning strategy. Also, each agent’s intention is reduced to a deterministic
approximation, resulting in the loss of trajectory-level multi-modality.

OccDriver addresses these challenges by formulating contingency planning within a dense proba-
bilistic occupancy space. Rather than explicitly constructing and pruning a scenario tree, it directly
predicts multiple scene-level rollouts of interactive agents’ joint occupancy distribution, which also
mitigates the limitations of deterministic scenario approximation.

3 METHOD

The overall framework of OccDriver is illustrated in Fig. 2. We first introduce problem formulation in
Sec .3.1. Then, we demonstrate OccDriver’s dual-branch network architecture in Sec. 3.2. Marginal
occupancy distribution prediction is presented in Sec. 3.3. Finally, in Sec. 3.4, we propose several
specialized training losses.

3.1 PROBLEM FORMULATION

Our research is dedicated to the task of trajectory planning. Our model input X composes of
states of ego vehicle E and dynamic agents A over historical horizon Th, states of static objects
S and a High-Definition map M. The objective is to plan ego vehicle’s M -modal future states
Y = {(yi, πi) | i = 1...M}, where y is trajectory over future horizon Tf and π is the confidence
score. With the integration of the occupancy branch, our model is updated with rasterized inputs
and outputs. E0, A0 and M at current step are projected into occupancy grid O0

e, O0
a and Om.

Following the practice in Liu et al. (2023a), current backward flow FL0 is computed as extra
input. Occupancy prediction branch takes Xocc = {O0

e, O0
a, Om, FL0} as input and predicts ego

vehicle’s occupancy Oe, other agents’ occupancy Oa and scene’s backward flow FL over future
horizon Tf . In alignment with trajectory planning, occupancy branch outputs multimodal prediction
Yocc = {(Oe,i,Oa,i,FLi) | i = 1...M}. Consequently, the formulation of our model is given as:

Y,Yocc = f(X,Xocc |θ), (1)

where f denotes the neural network of OccDriver, θ is the model parameters.

3
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Figure 2: The architecture of the OccDriver comprises three fundamentals. Context Encoding
first encodes heterogeneous inputs into vectorized individual features Fvec and joint scene feature
Focc respectively. Initialized by Qvec and Focc, dual-branch iterative decoding structure decodes
joint future occupancy and trajectory iteratively. Short-term marginal occupancy is generated via
marginal occupancy distribution prediction. Joint and marginal occupancy predictions enforces
explicit guidance to trajectory through specialized losses.

3.2 DUAL-BRANCH ARCHITECTURE

Context Encoding. For vectorized branch, heterogeneous inputs {E,A,S,M} are encoded as
individual features {FE , FA, FS , FM} with separate encoders. After added by positional embedding,
encoded features are concatenated as Fvec ∈ R(1+NA+NS+NM )×D. We then perform scene-level
feature fusion via a transformer encoder, employing self-attention to capturing social interactions
between encoded scene semantics.

For the rasterized occupancy branch, O0 = {O0
e, O0

a, Om} and FL0 are embedded into occupancy
feature Fo and flow feature Ff with separate Swin-Transformer blocks. Fo and Ff are then con-
catenated and projected into the scene feature map Fs ∈ R(H/4)×(W/4)×D with an MLP. Then we
propose a two-layer attention-based joint scene encoder for better aggregation of scene information.
Cross-attention is employed to integrate coarse trajectory feature Fvec’s dense semantic information,
followed by a self-attention for feature fusion in the occupancy space. The process of joint scene
encoder is described as:

Fs = CrossAttn(Fs, Fvec, Fvec), (2)
Focc = SelfAttn(Fs), (3)

where CrossAttn(Q,K, V ) and SelfAttn(X) indicates cross-attention and self-attention mechanism
respectively. The encoded occupancy feature is denoted as Focc.

Iterative Decoding Structure. Retaining encoded vectorized feature Fvec and occupancy feature
Focc, we decode future occupancy evolution and future trajectories iteratively. As depicted in Fig. 2,
iterative decoding structure is composed of 3 sequential decoders: coarse trajectory decoder Dc, future
scene decoder Ds and fine trajectory decoder Df . For better consistency in scene evolution, we jointly
decode the future trajectories of ego vehicle and agents. A set of M learnable queries Qm ∈ RM×D

is combined with {FE , FA} ⊂ Fvec, forming multi-modal decoding queries Qvec ∈ RM×(NA+1)×D.

Coarse trajectory decoder Dc takes Qvec as input, deriving coarse trajectory queries Qc. Each
layer of Dc comprises of three types of attention mechanisms. Within each modality, Qvec first
performs self-attention to extract social interactions among agents. Then cross attention is employed
to integrate static obstacle and map information from {FS , FM} ⊂ Fvec. Lastly, Qvec queries Focc

via another cross-attention, establishing a spatial scene understanding.

In occupancy branch, future scene decoder Ds acts as a world model in BEV view, decoding Focc

into feature Qs that represent future scene evolution conditioned on ego coarse trajectories. In each
layer of Ds, Focc conducts two cross-attention operations to query Qc and {FS , FM} respectively,
aggregating instance-level features and map information. Focc further applies self-attention for social
interaction modeling. The decoded Qs encompasses an intuitive prior of the future scene evolution.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Despite aggregating current scene information, Qc requires further refinement under the guidance
of future scene evolution. Thus, utilizing future scene information from Qs, fine trajectory decoder
Df refines Qc into future-informed trajectory query Qf to make scene-consistent planning. Df and
Dc share the same architecture, except that Df leverages Qs instead of Focc as Key and Value in the
third cross-attention. The iterative decoding process is formulated below:

Qc = Dc(Q = Qvec, K,V = Focc, {FS , FM}), (4)

Qs = Ds(Q = Focc, K,V = Qc, {FS , FM}), (5)

Qf = Df (Q = Qc, K,V = Qs, {FS , FM}). (6)
Prediction heads. Given Qf and Qs, different prediction heads are implemented. Fine trajectory
feature Qf determines M -modal joint planning trajectories Y with corresponding confidence scores
π via two MLPs. To generate reasonable raw behaviors, coarse trajectory feature Qc is decoded
into coarse trajectory Yc via another MLP. Future scene feature Qs is upsampled back to original
shape of the input images and then deployed with two separate 2d-CNNs to output M -modal future
occupancy fields and flow fields. Different from earlier works, we decouple the future occupancy
prediction into the ego vehicle Oe and surrounding vehicles Oa to facilitate explicit loss guidance
detailed in Sec. 3.4. We provide further architectural details in Appendix. C.

3.3 MARGINAL OCCUPANCY DISTRIBUTION PREDICTION

Accounting for emergency risk, we model potential agent behaviors by extending occupancy pre-
diction beyond agents’ joint distribution to individual’s short-term marginal distribution. As shown
in the top of Fig. 2, the scene feature map Fs integrate individual agent features Fi ∈ FA through
an additional marginal occupancy encoder. Fs attends only to the vectorized feature of a single
agent, rather than all elements in Fvec, thereby capturing the agent’s marginal behavioral feature
Fm,i. Without modality decomposition, Fm,i is directly leveraged to predict i-th agent’s short-term
marginal occupancy Om,i of Ts horizon (Ts < Tf ) through upsampling and a 2D-CNN output head.

We perform agent pruning to reduce the computational cost, retaining only interactive agents for
marginal occupancy distribution prediction. We devise a rule-based pruning method with minor
inductive bias by selecting agents whose future bounding boxes cross with ego’s future path. Please
refer to Appendix. D for details about agent pruning. Marginal occupancy prediction is applied only
in the training phase, enabling the model to learn individual agent’s behavior patterns and short-term
uncertainties during the optimization process, which also serves as a foundation for contingency
planning. Its entire procedure is presented as follows:

{Fi |i = 1, 2, ..., Nm} = Prune(FA),

Fm,i = fm(Fs, Fi),

Om,i = Conv(Upsample(Fm,i)).

(7)

where Nm indicates the number of pruned interactive agents, while fm denotes the network of
marginal occupancy encoder, sharing the same structure as joint scene encoder.

3.4 TRAINING LOSS

Apart from basic trajectory and occupancy flow supervision, we devise a suite of specialized losses
as shown in (a)-(c) in Fig. 3. Occupancy interference loss is applied to strengthen the interaction
awareness between predicted ego and agents’ joint occupancy. Occupancy guidance loss is further
introduced to guide the trajectories with future occupancy probabilistic distribution. Utilizing
predicted marginal and joint occupancy distribution, we apply contingency planning strategy for
better driving safety without compromising efficiency. We leave details of trajectory planning loss
Ltraj and occupancy prediction loss Locc in Appendix. E.

Occupancy interference loss. The occupied areas of ego vehicle and agents are mutually exclusive,
inherently reflecting future interactions. We incorporate this property within occupancy interference
loss, which is formulated as Eq. 8. For training stability, we apply teacher-forcing Williams & Zipser
(1989) technique. For both ego and agents, the loss is calculated as the average predicted occupancy
within the opponents’ GT occupied regions, measuring the extent of spatial interference. Optimizing
occupancy interference loss effectively enhances the interaction awareness in the occupancy space,
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(a) Occupancy Interference Loss (c) Traj-Occ Collision Losss (d) Contigency Planning(b) Traj-Occ Alignment Loss

Marginal Distribution

Joint Distribution
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Interference
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Figure 3: (a) - (c) illustrates the proposed losses: (a) penalizes the overlapping region between
occupancy prediction and its opponent’s ground truth; (b) is imposed if ego’s trajectory point is
mapped onto its low-occupancy region; (c) is applied when the distance between ego’s mapped point
and agents’ high-occupancy region is smaller than the safety margin. (b) and (c) constitute occupancy
guidance loss. (d) illustrates our contingency policy in occupancy space. Short-term occupancy takes
the maximum value of joint and marginal distribution, considering potential behavior uncertainty.

facilitating subsequent occupancy guidance loss as well.
Loe = sum(O∗

e ·Ogt
a ) / sum(Ogt

a ), Loa = sum(O∗
a ·Ogt

e ) / sum(Ogt
e ),

Loi = Loe + Loa,
(8)

where O∗ denotes occupancy prediction of best modality and Ogt denotes ground truth occupancy.

Occupancy guidance loss. Future occupancy can serve as spatial prior information in the BEV
view, explicitly guiding ego’s trajectory planning. Utilizing both Oa

∗ and O∗
e , we devise trajectory-

occupancy collision loss to steer the ego trajectory away from agents’ high-probability occupied
area and trajectory-occupancy alignment loss is introduced to constrain ego trajectory within its own
high-probability occupied area.

Considering ego vehicle’s shape, at each timestep t, we offset trajectory position (xt, yt) into Nv

circle centers {P t
i | i = 1...Nv} to approximate the ego vehicle. For trajectory-occupancy alignment

loss, we obtain P t
i ’s occupied probability Ot

i on the predicted ego occupancy grid through coordinate
projection and bilinear interpolation. To enforce alignment between trajectory and high-occupancy
areas, penalty is applied to points whose occupancy probability is below the predefined threshold ε.

Lalign =
1

Tf

Tf∑
t=1

Nv∑
i=1

max(0, ε−Ot
i). (9)

For trajectory-occupancy collision loss, after mapping P t
i onto the predicted agents’ occupancy grid

through coordinate projection, we compute its minimum Euclidean distance dti to high-occupancy
regions (where occupancy probability exceeds threshold ζ). Collision penalty is applied when dti is
below the safety margin η, which indicates high collision risk.

Lcollision =
1

Tf

Tf∑
t=1

Nv∑
i=1

max(0, dti − η). (10)

Contingency Planning is incorporated into Lcollision to enhance planning safety. Conventional
contingency planning divides trajectory into short-term safe maneuver and subsequent branched long-
term behavior sets. Compared to trajectory, occupancy probability models behavioral uncertainty
more effectively. In our work, the predicted short-term marginal occupancy Om,i is leveraged
to represent the uncertainty of single agent’s short-term behavior. As shown in Eq. 11, before
computing Lcollision, the predicted all-agents’ occupancy O∗

a incorporates {Om,i | i = 1...Nm}
through an element-wise maximum operation over a short period Ts. Thus, Lcollision enforces ego
trajectory to account for short-term risks caused by agents’ behavior uncertainty, while keeping
modality-compliant planning in the long term.

Õ∗
a =

 max(Ot ∗
a ,

Nm
max
i=1

(Ot
m,i)), t ≤ Ts

Ot ∗
a , t > Ts

(11)

Occupancy guidance loss Log is represented as a weighted sum of Lalign and Linter, regulating
ego’s trajectory with the explicit guidance of predicted future scenario:

Log = w1Lalign + w2Lcollision. (12)

6
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Table 1: Performance comparison of closed-loop planning on nuPlan Val14 benchmark. All Metrics
are higher the better. Among learning-based methods, OccDriver achieves SOTA in both none-
reactive score (NR-S) and reactive score (R-S) with top safety performance (Collisions and TTC).

Type Planner
Val14

Collisions TTC Comfort Progress NR-S R-S
Expert Log-Replay 0.988 0.944 0.993 0.990 0.937 0.812

Learning

PDM-Open Dauner et al. (2023) 0.745 0.691 0.995 0.699 0.502 0.548
RasterModel Caesar et al. (2021) 0.870 0.815 0.815 0.806 0.669 0.647
UrbanDriver Scheel et al. (2022) 0.856 0.803 1.000 0.808 0.677 0.649
PlanTF Cheng et al. (2024b) 0.941 0.907 0.937 0.898 0.853 0.771
PLUTO Cheng et al. (2024a) 0.962 0.933 0.964 0.896 0.890 0.800
BeTopNet Liu et al. (2024a) 0.966 0.916 0.932 0.866 0.883 0.837
DiffusionPlanner Zheng et al. (2025a) - - - - 0.899 0.828
OccDriver (Ours) 0.971 0.938 0.969 0.885 0.896 0.838

Table 2: Performance comparison of closed-loop planning on nuPlan Test14−Hard benchmark.
All Metrics are higher the better. Compared to vectorized-only, topology-guided and diffusion-based
methods, OccDriver achieves top driving scores with desirable planning safety and progress.

Planner Inference Time (ms)
Test14-Hard

Collisions Progress NR-S R-S

PLUTO Cheng et al. (2024a) 7.39 0.938 0.816 0.787 0.753

BeTopNet Liu et al. (2024a) 70.00 0.968 0.747 0.771 0.688

DiffusionPlanner Zheng et al. (2025a) 40.00 - - 0.760 0.692

OccDriver (Ours) 23.03 0.941 0.829 0.794 0.759

All losses are differentiable, allowing for end-to-end training. The overall training loss comprises
trajectory planning loss Ltraj , occupancy prediction loss Locc, occupancy interference loss Loi and
occupancy guidance loss Log . It is formulated as :

L = Ltraj + Locc + Loi + Log. (13)

4 EXPERIMENTS

4.1 BENCHMARK AND METRICS

OccDriver is trained and evaluated on nuPlan dataset Caesar et al. (2021). We use a standardized
training set of 1M frames with 2s history and 8s horizon. Our evaluation is conducted on Val14
split Dauner et al. (2023), and verified using closed-loop evaluation metrics: Non-Reactive Closed-
Loop Simulation(CLS-NR) score and Reactive Closed-Loop(CLS-R) provided by nuPlan simulator.
To verify performance under challenging cases, we further evaluate OccDriver on Test14−Hard
split Cheng et al. (2024c). We follow the nuPlan challenge framework and report the official Planning
Scores. More experiment details and parameter settings are in Appendix. F.

4.2 MAIN RESULTS

Comparison with State of the Art. We conduct a comparative analysis between OccDriver and
existing state-of-the-art learning-based methods on nuPlan Val14 benchmark. All methods are
evaluated without post-processing to compare models’ planning performance. Comparative results
are presented in Table. 1. In closed-loop simulation, OccDriver gains SOTA planning scores of 0.896
NR-Score and 0.838 R-Score. Notably, it demonstrates best performance on safety metircs, boosting
to 0.971 (Collisions) and 0.938 (TTC). This can be attributed to guidance of future occupancy and
contingency planning strategy, improving ego’s awareness of spatial interactions and behavioral
uncertainty. Unlike previous methods, OccDriver enhances safety performance with less degradation
on Comfort and Progress. This results from the iterative decoding process, which refines trajectory
holistically and generates scenario-compliant behavior.

7
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Figure 4: Qualitative results of closed-loop planning. Each scenario lasts 15 seconds. OccDriver
performs interaction-compliant planning in changing lane in dense traffic (first row) and turning left
after yielding (second row).

t=1s t=4s t=8s t=1s t=4s t=8s
 (b) Guidance from future occupancy to trajectory (a) Comparison between occupancy prediction and ground truth 

Figure 5: Visualization of future occupancy prediction and guidance. (a) ego’s (red) and agents’
(purple) occupancy predictions coincide with their GT bounding boxes; (b) planning trajectory (green
point) aligns with ego’s occupancy while keeps away from agents’ occupancy.

To further demonstrate the advantages of OccDriver under challenging scenarios, we conduct compari-
son with vectorized-only method (PLUTO), topology-guided method (BeTopNet) and diffusion-based
method (Diffusion Planner) on Test14−Hard benchmark, as presented in Table. 2. OccDriver
reaches the highest driving scores in both non-reactive and reactive simulation. Compared to PLUTO,
OccDriver achieves enhancement in both safety and progress metics, demonstrating the effectiveness
of incorporating occupancy branch. OccDriver also outperforms BeTopNet with +3.0% NR-S and
+10.3% R-S, which models multi-agent interactions with topology connections. Despite excelling in
safety metrics, BeTopNet suffers from a substantial degradation in progress. In contrast, our method
maintains a favorable trade-off between safety and progress, leading to the best driving scores. This
suggests that explicit spatial occupancy delivers more intuitive and fine-grained interaction relations
than implicit topological structures, avoiding over-conservative planning. Results in Fig. 4 further
prove our model’s robust performance in tackling dense traffic scenarios and multi-agent interac-
tive scenarios. Notably, compared to denoising paradigm of diffusion and the intricate topological
modeling, OccDriver has less inference latency, enabling deployment in real-world applications.

Qualitative results. To visually demonstrate the effectiveness of future occupancy guidance, we
render both the predicted future occupancy and ego’s planning trajectory simultaneously. As depicted
in Fig. 5, predicted occupancy overlaps with ground-truth bounding boxes, demonstrating the accuracy
of future occupancy prediction and robustness of scene evolution reasoning. Besides, planning
trajectory is positioned within the ego’s high-occupancy region and steers away from agents’ high-
occupancy region. This further validates effective guidance from future occupancy via implicit feature
aggregation and explicit losses supervision.

4.3 ABLATION STUDY

To investigate the effectiveness of proposed framework, auxiliary losses and contingency planning
strategy in our work, we conduct an ablation study. All ablation experiments are evaluated on Val14
benchmark, and the results is shown in Table. 3. We first evaluate base dual-branch framework
without marginal occupancy prediction module, achieving near-SOTA performance with 0.859 NR-S
and 0.787 R-S. With the integration of marginal occupancy prediction module, both safety metrics
and driving scores exhibit improvements. It is attributed to to the modeling of individual behavior
patterns and short-term uncertainty.
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Table 3: Ablation results of OccDriver’s planning performance with different components. All
proposed components contribute to improvements in safety metrics and driving scores. Loi, Lcollision,
Lalign denotes occ interference loss, traj-occ collision loss and traj-occ alignment loss. MP and CP
denotes marginal prediction and contingency planning.

MP Loi Lcollision Lalign CP Collisions TTC Comfort Progress NR-Score R-Score

- - - - - 0.933 0.905 0.966 0.893 0.859 0.787

! - - - - 0.938 0.913 0.968 0.889 0.863 0.800

! ! - - - 0.943 0.914 0.975 0.886 0.864 0.807

! ! ! - - 0.960 0.931 0.966 0.882 0.879 0.825

! ! ! ! - 0.960 0.928 0.971 0.892 0.885 0.830

! ! ! ! ! 0.971 0.938 0.969 0.885 0.896 0.838

Table 4: Impact of different horizon T of joint
occupancy in occupancy guidance loss.

T Collisions TTC NR-score R-score

2s 0.933 0.908 0.828 0.787

4s 0.943 0.916 0.843 0.799

6s 0.946 0.914 0.845 0.801
8s 0.931 0.917 0.828 0.787

Table 5: Impact of different threshold ζ of high-
occupancy regions in Lcollision

ζ Collisions TTC NR-score R-score

0.5 0.938 0.916 0.837 0.786

0.6 0.941 0.917 0.841 0.799

0.7 0.946 0.914 0.845 0.801
0.8 0.948 0.903 0.840 0.799

Based on proposed framework, we first apply occupancy interference loss Loi to learn exclusivity
between ego’s and other agents’ occupancy. It enhances Collision metric while benefiting Comfort
metric due to improved awareness of spatial interaction and feasible safe areas. In the fourth experi-
ment, a substantial boost in safety metrics (Collision from 0.943 to 0.960 and TTC from 0.914 to
0.931) is observed after adding Lcollision, attributed to its explicit penalty for collision and excessive
proximity to other agents. On this basis, we further introduce Lalign, which yields an improvement
in Progress metric due to ego occupancy’s positive guidance. Notably, the continuous increases of
driving safety do not compromise the Comfort metric. The above experiments demonstrates that the
proposed losses effectively distill spatial information from occupancy branch to trajectory branch.

The bottom row of Table. 3 presents the ablation study on contingency planning. Safety metrics
and driving scores reach their peaks at a minor trade-off in the Progress metric. We attribute this to
the model’s consideration of potential marginal behaviors of relevant agents, adopting a relatively
cautious strategy to boost contingency safety.

Table. 4 shows the effects of different horizons of joint occupancy prediction in occupancy guid-
ance loss. We observe a consistent growth in Collision metric and driving scores as the horizon
T increases, reaching peak at T = 6s. Driving performance starts to degrade when the horizon
extends to 8s. It suggests that long-horizon future occupancy captures scene dynamics and agents’
long-term interactions, facilitating interaction-consistent planning. However, as the uncertainty of oc-
cupancy prediction accumulates over time, leveraging highly uncertain future occupancy as guidance
introduces ambiguous or incorrect supervision signal, ultimately degrading planning performance.

In Table. 5, we ablate different thresholds of high-occupancy regions in Lcollision. Collision metric
increases as the threshold ζ rises, while TTC starts decreasing once ζ exceeds 0.6. The reason is
that higher threshold offers more deterministic collision supervision, while simultaneously losing
uncertainty awareness. Overall, ζ = 0.7 reaches the optimal performance.

5 CONCLUSION

In this paper, we present OccDriver, a future occupancy guided dual-branch trajectory planning
framework. Occupancy branch is incorporated to predict future scenes in occupancy space, guiding
interaction-aware trajectory planning through implicit iterative decoding process and explicit loss
supervision. Contingency planning is applied, leveraging short-term marginal and long-term joint
occupancy predictions simultaneously to mitigate uncertainty risks and sustain scene consistency.
Experiments on nuPlan benchmark verify OccDriver’s state-of-the-art performance in closed-loop
planning, leading to significant improvements in driving safety.
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APPENDIX

A DISCUSSIONS

Towards a better understanding of this work, we supplement intuitive questions that may arise and
provide empirical answers.
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A.1 WHAT IS THE KEY OF OCCDRIVER AS A WORLD MODEL GUIDED PLANNING PARADIGM?

Most world models in autonomous driving predict future scene evolution by generating videosHu
et al. (2023a); Wang et al. (2024a); Yang et al. (2024); Zhao et al. (2025) or 3D representationsZhang
et al. (2023); Zheng et al. (2024); Li et al. (2025), serving primarily as data generators and RL
simulation environmentsLi et al. (2024a); Gao et al. (2025). DriveWorldMin et al. (2024) and LAWLi
et al. (2024b) leverage world models to extract latent scene representations, enhancing spatiotemporal
scene understanding of autonomous driving systems. Recent research integrates world models into
end-to-end planning. MILEHu et al. (2022a) and DriveDreamerWang et al. (2024a) jointly decode
driving actions and the corresponding future scene dynamics. Drive-WMWang et al. (2024b)and
Drive-OccWorldYang et al. (2025) utilize explicit future scene predictions to formulate cost functions
for trajectory selection or optimization. Latent feature-based methods implicitly transfer future
world knowledge to the planner. LatentDriverXiao et al. (2025) unifies the environment’s next states
and ego’s next action as a mixture distribution. World4DriveZheng et al. (2025b) constructs an
intention-aware latent world model to rank trajectories.

Compared with prior work, OccDriver extends beyond predicting future scenario evolution by
further exploiting interaction modeling in occupancy world and how this can benefit planning safety.
OccDriver extracts spatial exclusivity and behavior uncertainty from ego and agents’ occupancy
distribution, distilling this interaction knowledge to trajectory planning via both feature transfer and
occupancy guidance losses.

A.2 WHAT ARE THE KEY DIFFERENCES BETWEEN OCCDRIVER AND OTHER
OCCUPANCY-ASSISTED PLANNING METHODS?

Yang et al. (2025) proposed a 3D occupancy-based world model to evaluate the trajectories, which
decoupled from the planner as a separate model. In contrast, the occupancy branch in OccDriver is
integrated as part of the planner, where the planning branch incorporates occupancy feature during
both training and inference, and the predicted occupancy is leveraged to design training losses that
improve the planner’s trajectory quality. Compared to Liu et al. (2023b), which only incorporates
historical occupancy features to provide supplementary information, our approach further exploits
future occupancy predictions to explicitly model multi-agent interactions, and integrate this interaction
knowledge into the planning branch through both feature-level fusion and specialized loss supervision.

A.3 WHY IS CONTINGENCY PLANNING SUITABLE FOR LEARNING-BASED INTERACTION
MODELING, MAKING OCCUPANCY-GUIDED PLANNING SUPERIOR IN SAFETY?

Previous works enhance multi-agent prediction using game theoretic approaches and integrated
prediction and planningLiu et al. (2024b) and conditional prediction. Although capable of generating
scene compliant scene evolution, these methods suffer from over-optimistic when uncooperative
agent behaviour occurs. Contingency planning is one of the strongest optimization-based tools for
safety-critical motion planning. Yet, it suffers from discretized artifacts and the difficulty of enjoying
the power of data-driven planning. OccDriver proposes a natural paradigm to integrate contin-
gency objective with learning-based algorithm, and mitigate the discretized artifacts by representing
contingency objective within occupancy space.

A.4 WHAT WOULD BE THE BROADER IMPACT OF OUR PARADIGM?

The paradigm that combines occupancy-based world model and contingency planning can be extended
to a varies of sota methods. For example, we use regression method for trajectory learning to better
compare with several strong baselines, but diffusion-based planner has shown superior performance
by avoiding learning local average behavior. Our pipeline can be adapted to diffusion-based planner
by introducing occupancy as classifier guidance and including occupancy feature as DiT condition.
Previous works also exploit RL fine-tuning by collecting rollouts and rewards within a world model.
Occupancy-based world models are often used as reward models and should be adaptable to RL
paradigm. However, the actual gain and design of such architectures need further investigation.
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B LIMITATION AND FUTURE WORK.

Our current approach discretizes the occupancy distribution along the time dimension, lacking
supervision across time intervals. Future work will extend this to a unified spatiotemporal occupancy
distribution, ensuring smoother temporal consistency. Additionally, we aim to develop an end-to-end
framework that seamlessly integrates information between branches. Furthermore, we will explore
safe reinforcement learning for contingency planning, leveraging risk-aware optimization objectives
such as Conditioned Value at Risk (CVaR).

C ARCHITECTURAL DETAILS

Vectorized Encoder. Ego’s and agents’ inputs involves kinematic states for past Th = 2 seconds
at 10 Hz and attributes. We only leverage the current state for ego vehicle to prevent shortcut bias.
All scene inputs {E,A,S,M} are firstly embedded to hidden dimension D = 128 with separate
encoders. Ego state E is embedded through attention based State Dropout Encoder (SDE). Agents’
states A are embedded through attention-based Feature Pyramid Network (FPN). Static objects S and
map polylines M are embedded through 2-layer Multi Layer Perceptron (MLP) and PointNet-based
vector encoder respectively. All embedded features are concatenated together and added respective
positional embedding, as Fvec ∈ R(1+NA+NS+NM )×D. As depicted in Fig, a 4-layer transformer
encoder is employed for feature fusion between scene elments. Each layer consists of a multi-head
self-attention and a feedforward neural network (FFN).

Rasterized Encoder. We build a H × W = 128 × 128 spatial grid, covering the ego vehicle’s current
position with a range of [-20m, 60m] in the x-direction and [-40m, 40m] in the y-direction (resolution
rate = 0.625m / pixel). Follow the practice of Ettinger et al. (2021), we seperately rasterize ego state,
agent states and map into occupancy grids {Oe, Oa, Om}. The backward flow FL is constructed
by calculating the displacement of the occupancy pixels between two consecutive timesteps for the
same agent. We only use current occupancy grids and backward flow as input which are embedded
and down-sampled to Fo, Ff ∈ R(32×32×128) with 2 separate Swin-transformer encodersLiu et al.
(2021b). Each swin-transformer encoder is a 2-layer transformer with window self-attention (W-SA)
and shifted window self-attention (SW-SA). Fo and Ff are concatenated and fed into a MLP to form
spatial scene feature Fs ∈ R(32×32×128).

Joint Scene Encoder is a two-layer transformer module, which takes scene feature map Fs as
input query, deriving encoded occupancy feature Focc. Each layer consists of a self-attention, a
cross-attention (Fvec as Key and Value), and a feed-forward network (FFN). Marginal Occupancy
Encoder shares the same structure with Joint scene Encoder. The only difference is that the cross-
attention in marginal occupancy encoder queries individual agent feature Fi ∈ FA instead of Fvec.

Iterative Decoding Structure is composed of 3 iterative decoders: coarse trajectory decoder Dc,
future scene decoder Ds and fine trajectory decoder Df . In trajectory branch, we initialize M = 6
learnable embeddings Qm ∈ RM×D to model ego’s M longitudinal modalities. Qm is concatenated
with FE ⊂ Fvec and projected as Q

′

m ∈ RM×1×D via a MLP. For joint prediction, Q
′

m is further
concatenated with FA ⊂ Fvec, forming Qvec ∈ RM×(NA+1)×D. In occupancy branch, Ds directly
utilizes Focc as decoding query. Dc and Df share the same 4-layer Transformer decoder structure,
with each layer consisting of a self-attention, two cross-attentions, and a feed-forward network (FFN).
We implement Ds as a 2-layer Transformer decoder. Each layer of Ds contains a self-attention, a
cross-attention and an FFN.

Prediction Heads. Deocoded fine trajectory query Qf is passed through 2 separate MLPs to gen-
erate joint prediction trajectories Y ∈ RM×(NA+1)×(Tf/∆traj)×6 for future Tf = 8 seconds and
corresponding confidence scores π ∈ RM×1. Trajectory states contains (x, y, cos(θ), sin(θ), vx, vy).
Coarse trajectory query Qc is processed with another MLP to generate coarse trajectories Yc. Future
scene feature Qs is up-sampled and passes through two separate 2d-CNNs to output future occupancy
grids O = {Oe,Oa} ∈ RM×(Tf/∆occ)×128×128×2 and flow grids FL ∈ RM×(Tf/∆occ)×128×128×2.
Agents’ marginal occupancy features {fm,i} is decoded into short-term marginal occupancy
{Om,i |i = 1, 2, ..., Nm} ∈ RNm×(Ts/∆occ)×128×128×1 for Ts = 2s. ∆traj and ∆occ indicate
the prediction frame rates of trajectory and occupancy, respectively.
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Table 6: Loss weight parameters.

Loss Lreg Lcls Lcoarse Le La Lm Lflow Lalign Lcollision

Weight 4 1 0.3 3000 800 2000 1 1 9

D AGENT PRUNING

Although OccDriver reduces the computational complexity of contingency planning from O(n2)
to O(n), calculating marginal occupancy distribution of each agent is unacceptable. Therefore, we
propose a rule-based agent pruning method that identifies non-directly-interactive agents according
to their ground truth trajectories. During training, the annotated non-interactive agents are directly
ignored in marginal occupancy computation, and an agent role prediction head takes in agent features
and predicts the confidence score of the role of each agent. During inference, the agents that have
above threshold confidence of being non-interactive are pruned in marginal occupancy computation.

We identify 5 regular agent roles: in-lane leader, in-lane follower, lateral intruder(cut-in, cut-out,
crossing agents), overtaking target, and non-interactive agents. The interactive relationship is de-
termined by examining whether the ground truth bboxes of ego and agent intersect within a time
difference of 4s. If ego reaches the intersection position prior to the agent, the agent is either an
in-lane follower or an overtaking target, which is then determined by their heading difference at the
intersection position. Similarly, if ego reaches the intersection position later than the agent, the agent
is either an in-lane leader or a lateral intruder, which is also further determined by their heading
difference at the intersection position. All other agents are considered non-interactive agents as they
have no direct impact on the ego vehicle in the short term, thus can be ignored for marginal occupancy
computation. Note that predicting detailed agent roles instead of only interactive and non-interactive
agents alleviates the causal confusion problem, e.g., in-lane follower.

E TRAINING LOSS

Trajectory planning loss. To avoid mode collapse Liu et al. (2021a), we employ teacher-
forcing Williams & Zipser (1989) technique during the training process. We compute the length
of the ground-truth trajectory and assign it to the corresponding longitudinal modality based on 20
m segments. The trajectory y∗ of the target modality is used to compute the regression loss. For
regression loss Ltraj , we employ the smooth L1 loss, and for classification loss Lcls, we utilize the
cross-entropy loss.

To facilitate future scene prediction with more reliable initial behaviors and accelerate training
convergence, we apply smooth L1 loss Lcoarse to coarse trajectory y∗c . The overall trajectory
planning loss Ltraj is formulated as a weighted sum of its components:

Ltraj = w3Lreg + w4Lcls + w5Lcoarse. (14)

Occupancy prediction loss. We supervise both joint occupancy prediction of target modality
O∗

e,O
∗
a and marginal occupancy predictions {Om,i |i = 1, 2, ..., Nv}. Due to the significantly larger

proportion of unoccupied regions, we utilize focal loss Ross & Dollár (2017) as loss function Le,
La, Lm . Additionally, L1 loss Lflow is applied to supervise flow prediction FL∗, facilitating better
understanding of traffic scene’s dynamics. The overall occupancy prediction loss Locc is defined as:

Locc = w6Le + w7La + w8Lm + w9Lflow. (15)

Together with w1 and w2 for Lalign and Lcollision, detailed loss weight parameters are shown in
Table. 6.

F EXPERIMENTAL DETAILS

We perform training on 32 NVIDIA RTX 4090 GPUs with a batch size of 16 for 30 epochs. It takes
20 hours for finishing training. The total number of parameters is 7.9 M and the model size is 31
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Table 7: Hyperparameters and configuration settings.

Notation Parameters Values
M Number of modality 6
Tf Horizon of joint prediction 8s
Ts Horizon of marginal prediction 2s

∆traj frame rate of trajectory 0.1
∆occ frame rate of occupancy 1
Nv Number of covering circles 3
η safety margin in Lcollision 2m
ε occupancy threshold in Lalign 0.8
ζ occupancy threshold in Lcollision 0.7

MB. Learning rate is set to 1e-3, with 3 warm-up epochs and Cosine scheduler. We adopt AdamW
optimizer, applying a weight decay of 0.0001. For proper guidance and training stability, we add
occupancy guidance loss after 15 epochs. In occupancy guidance loss, the gradient of occupancy
predictions is detached to guarantee unidirectional guidance. Details on parameter settings can be
found in Table. 7.

Table 8: Impact of different prediction horizons
Tocc of joint occupancy.

Tocc Collisions TTC NR-score R-score

2s 0.925 0.886 0.836 0.774
4s 0.928 0.886 0.839 0.778
6s 0.933 0.901 0.848 0.779
8s 0.935 0.900 0.846 0.782

Table 9: Impact of different weights w2 of
trajectory-occupancy collision loss Lcollision

w2 Collisions TTC Progress NR-score

3 0.932 0.903 0.876 0.840
6 0.943 0.908 0.869 0.843
9 0.946 0.914 0.873 0.845

12 0.922 0.879 0.902 0.826

Table 10: Impact of different numbers M of decoding modalities.

M Collisions TTC Comfort Progress NR-S R-S

1 0.915 0.887 0.975 0.860 0.823 0.755
3 0.931 0.904 0.978 0.869 0.835 0.784
6 0.946 0.914 0.976 0.873 0.845 0.801

G ADDITIONAL ABLATION STUDIES

For efficiency, we sample 20% of nuPlan training set for hyperparameter ablation experiments and
conduct evaluation on the Val14 split.

Different prediction horizons of joint occupancy. To further investigate the influence of occupancy
prediction on trajectory planning, we ablate different joint occupancy prediction horizons Tocc

without incorporating auxiliary losses. As shown in Table. 8, we observe that increasing Tocc leads to
simultaneous improvements in both safety metrics and closed-loop driving scores. It suggests that
extended occupancy predictions captures long-term dynamics of the traffic, enabling more consistent
spatial guidance for trajectory planning. Further performance improvement ceases when Tocc extends
to 6s, presumably due to the compounding uncertainty inherent in long-term occupancy predictions.
In practice, Tocc is set as Tf = 8s to ensure consistency with trajectory planning.

Different weights of trajectory-occupancy collision loss. Table. 9 presents the effects of varying
w2 aligned to Lcollision on driving performance. As w2 increases from 3 to 9, OccDriver consistently
improves driving safety (+1.4% Collision and +1.2% TTC) with minor degradation in Progress,
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0sFine Traj: 8s Coarse Traj: 0s 8s

Figure 6: Visualization of coarse trajectory and fine trajectory in nuPlan Test14−Hard benchmark.

validating the effectiveness of Lcollision in collision avoidance. However, further increasing w2 to 12
results in significant performance degradation, due to over-penalization of collisions, which leads to
undesirable shortcut that ego moves out of the occupancy field quickly to avoid collision supervision.

Different numbers of modalities. As presented in Table. 10, a higher number M of modalities
contributes to better overall driving performance. A substantial boost in driving scores (NR-S from
0.823 to 0.845 and R-S from 0.755 to 0.801) is observed as M increases from 1 to 6. Finer-grained
modality division enables the decomposition of ego’s behavioral patterns, mitigating trajectory
averaging. Due to OccDriver’s joint prediction paradigm, multimodal decoding leads to diverse scene
evolution patterns, which facilitate more scene-consistent planning.

H ADDITIONAL QUALITATIVE RESULTS

Fig. 6 exhibits qualitative comparison between coarse and fine trajectories on Test14-Hard set. In
interactive scenarios, compared with collision-prone coarse trajectories, fine trajectories are evidently
altered to avoid collisions and handle interactions effectively, validating the effectiveness of the
coarse-to-fine decoding architecture and occupancy guidance.

t=0s t=1s t=2s

Figure 7: Visualization of contingency planning. Com-
pared to joint occupancy (purple), marginal occupancu
(blue) models potential behaviors.

Fig. 7 illustrates the overlapping results
of marginal and joint occupancy predic-
tions to validate the effectiveness of con-
tingency planning in modeling behavioral
uncertainty. It showcases that marginal oc-
cupancy distribution not only captures the
waiting behavior but also reflects the ag-
gressive right turn possibility. Interacting
with short-term marginal occupancy dis-
tribution avoids running into unexpected
sudden situations, thus improving safety
and comfort. Relevant quantitative results
are presented in the ablation study.

Qualitative closed-loop Planning results on nuPlan Val14 benchmark is provided in Fig. 8. Qualitative
results of occupancy guidance is provided in Fig. 9.

I VIDEO RESULTS

We include several 15-second closed-loop planning videos on Test14−Hard split in the supple-
mentary material, which intuitively demonstrates OccDriver’s closed-loop planning performance.

J CODE

We provide the core code of the iterative decoding structure, specialized loss functions and agent
pruning mechanism in the supplementary material to facilitate reproducibility.
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0sPlanning:

t=0s t=5s t=15st=10s

t=0s t=5s t=15st=10s

t=0s t=5s t=15st=10s

t=0s t=5s t=15st=10s

t=0s t=5s t=15st=10s
8s 0sPrediction: 8s

Figure 8: Visualization of closed-loop planning in nuPlan Val14 benchmark.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Ego Occupancy :

t=2s t=4s t=8st=6s

Agents Occupancy :

t=2s t=4s t=8st=6s

t=2s t=4s t=8st=6s

t=2s t=4s t=8st=6s

t=2s t=4s t=8st=6s

Trajectory Point :

Figure 9: Visualization of closed-loop planning under guidance of future occupancy prediction.
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