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ABSTRACT

Deep learning models often experience performance degradation when the distri-
bution of testing data differs from that of training data. Domain generalization
addresses this problem by leveraging knowledge from multiple source domains to
enhance model generalizability. Recent studies have shown that distilling knowl-
edge from large pretrained models effectively improves a model’s ability to gener-
alize to unseen domains. However, current knowledge distillation-based domain
generalization approaches overlook the importance of domain-specific knowledge
and rely on a two-stage training process, which limits the effectiveness of knowl-
edge transfer. To overcome these limitations, we propose the Balanced Online
knowLedge Distillation (BOLD) framework for domain generalization. BOLD
employs a multi-domain expert teacher model, with each expert specializing in
specific source domains to preserve domain-specific knowledge. This approach
enables the student to distil both domain-invariant and domain-specific knowl-
edge from the teacher. Additionally, BOLD adopts an online knowledge dis-
tillation strategy where the teacher and students learn simultaneously, allowing
the teacher to adapt based on the student’s feedback, thereby enhancing knowl-
edge transfer and improving the student’s generalizability. Extensive experiments
conducted with state-of-the-art baselines on seven domain generalization bench-
marks demonstrate the effectiveness of the BOLD framework. We also pro-
vide a theoretical analysis that underscores the effectiveness of domain-specific
knowledge and the online knowledge distillation strategy in domain generaliza-
tion. The code is available at https://anonymous.4open.science/r/
BOKD-ICLR-3FF8/README.md.

1 INTRODUCTION

The success of deep neural networks largely depends on the assumption that training (source do-
main) and testing (target domain) data are independently and identically distributed (i.i.d.). How-
ever, this assumption is often violated in real-world scenarios due to discrepancies between training
and testing data, known as the domain shift problem, leading to significant performance degrada-
tion (Wang et al., 2022). To address this problem, Domain adaptation has been explored to transfer
knowledge from source to target domains (Pan & Yang, 2009). Unsupervised domain adaptation,
in particular, leverages unlabelled data from target domains, thereby eliminating the need for target
domain annotations (Xu et al., 2019). Despite their effectiveness, unsupervised domain adaptation
methods necessitate data collection and model tuning for each target domain, making them imprac-
tical in many situations (Yue et al., 2019). Consequently, domain generalization has emerged as a
prominent alternative. Domain generalization aims to learn a universal representation from multiple
labelled source domains, enabling robust generalization to unseen domains (Wang et al., 2022). Ex-
isting approaches typically fall into three categories: data augmentation (Zhou et al., 2020), domain-
invariant representation (Wang et al., 2022), and specialized training strategies (Zhao et al., 2024).

Knowledge distillation has recently shown promise in domain generalization (Wang et al., 2021;
Huang et al., 2023). Unlike classic domain generalization methods that train models directly using
one-hot ground truth labels, knowledge distillation-based approaches facilitate knowledge trans-
fer from a complex teacher model to a simple student model. This process reduces the learning
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Figure 1: Illustration of the significance of domain-specific knowledge in domain generaliza-
tion. Source domains contain both domain-invariant features, which are common across all domains,
and domain-specific features, which are unique to individual domains, e.g. edge features from the
Art domain and colour features from the Photo domain. The target domain (Cartoon) shares not
only domain-invariant features with all source domains but also domain-specific features with some
domains. Therefore, in addition to domain-invariant features, domain-specific features may also
enhance the model’s generalization performance.

complexity for the student while enabling it to acquire effective representations for domain gen-
eralization (Gou et al., 2021). However, current knowledge distillation-based methods for domain
generalization have two key limitations. First, most existing approaches prioritize distilling domain-
invariant knowledge, assuming that domain-specific knowledge impedes generalization (Lee et al.,
2022). This assumption may not always hold, as collective comprehensive data from diverse do-
mains is challenging, leading to domain-invariant knowledge derived from these source domains
may not always generalize well to unseen target domains (Zhang et al., 2023b). As illustrated in
Figure 1, target domains may share characteristics with certain source domains, suggesting that
domain-specific knowledge from these sources could enhance generalization performance. To en-
able the student to distil domain-specific knowledge, the teacher model must first acquire this knowl-
edge, which leads to the second limitation: most existing methods employ an offline distillation
strategy, requiring a separate training phase where the teacher model is trained before guiding the
student (Huang et al., 2023). Since the teacher model is fixed after its initial training, it will not
adapt to the student’s evolving needs during distillation, potentially resulting in ineffective knowl-
edge transfer and limiting the student’s ability to generalize.

To enable the student model to distil both domain-invariant and domain-specific knowledge while
allowing the teacher to adapt to student feedback, we propose the Balanced Online knowLedge
Distillation (BOLD) framework for domain generalization. BOLD leverages adapter techniques to
construct a multi-domain expert teacher model. Specifically, BOLD integrates multiple adapters
into a pretrained backbone model, with each adapter specializing in domain-specific knowledge
for a particular domain. This design allows the student model to distil domain-invariant knowledge
from the pretrained backbone and domain-specific knowledge from the corresponding domain expert
adapter. Furthermore, BOLD employs an online knowledge distillation strategy, where the domain
expert adapters in the teacher model are trained concurrently with the student model. During the
distillation process, the domain expert adapters also minimize the discrepancy between their output
and the student’s output. This online approach enables the domain expert adapters to adapt to student
feedback throughout training, supporting an end-to-end training scheme.

Contribution. Our contributions are summarized as follows. (1) We demonstrate that adapting
the teacher model based on feedback from the student through online knowledge distillation im-
proves knowledge transfer, thereby enhancing the student model’s generalization capability. To the
best of our knowledge, our work is the first investigation into the effectiveness of online knowl-
edge distillation for domain generalization. (2) We show that distilling both domain-invariant and
domain-specific knowledge, rather than focusing solely on domain-invariant knowledge, enhances
model generalizability. (3) We provide a theoretical analysis demonstrating the effectiveness of
domain-specific knowledge when the target domain shares characteristics with source domains, as
well as the benefits of the online knowledge distillation strategy for domain generalization. Exten-
sive experiments against state-of-the-art baselines across seven domain generalization benchmarks
confirm the effectiveness of the BOLD framework.
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2 RELATED WORK

Domain Shift refers to the degradation in performance caused by discrepancies between the source
(training) and target (testing) domains (Pan & Yang, 2009). Domain adaptation has been proposed
to address this issue by aligning the marginal (Baktashmotlagh et al., 2013) or conditional (Luo
et al., 2020) distributions of the source and target domains or by fine-tuning models trained on
source domains to adapt to the target domain (Long et al., 2015). To reduce the cost associated with
annotating target domain data, domain adaptation has been explored in semi-supervised (Saito et al.,
2019) and unsupervised (Long et al., 2017) scenarios, utilizing partially labelled or unlabelled target
domain data during training. However, these methods still rely on pre-collected target domain data,
which presents a practical limitation, as obtaining such data is not always feasible (Yue et al., 2019).
This limitation highlights the need for approaches that can generalize to unseen domains without
requiring target domain data collection in advance (Wang et al., 2022).

Domain Generalization was first introduced by Blanchard et al. (2011) and later formalized
by Muandet et al. (2013). Existing domain generalization approaches primarily fall into three cate-
gories: data augmentation (Zhou et al., 2020), domain-invariant representation learning (Wang et al.,
2022), and specialized learning strategies (Zhao et al., 2024). Recently, knowledge distillation has
attracted attention in the context of domain generalization. Wang et al. (2021) first proposed a gra-
dient regularization method to regularize the domain-invariant knowledge distilled from the teacher
model. Lee et al. (2022) introduced a self-distillation framework where a group of students collec-
tively form a teacher, with each student distilling domain-invariant knowledge from the ensemble
teacher. Huang et al. (2023) proposed leveraging the text encoder of a Vision-Language model to
distil domain-invariant knowledge. Zhang et al. (2023b) suggested distilling domain-aware knowl-
edge from a large pre-trained teacher model. Most existing methods focus exclusively on distilling
domain-invariant knowledge, overlooking the significance of domain-specific knowledge in domain
generalization (Chang et al., 2019; Seo et al., 2020; Bui et al., 2021). Additionally, these methods
typically employ an offline knowledge distillation strategy, where the teacher model remains fixed
after initial training. In contrast, our framework distills both domain-invariant and domain-specific
knowledge using an online knowledge distillation strategy, allowing the teacher to adapt based on
feedback from the student.

Knowledge Distillation was initially developed for model compression, with the goal of making
the output of a smaller student model similar to that of a larger, existing teacher model (Hinton
et al., 2014). Luo et al. (2016) demonstrated that training a student model using knowledge from a
teacher via knowledge distillation can lead to better performance than direct training with one-hot
ground truth labels. In reinforcement learning, knowledge distillation, also known as policy distil-
lation (Ashok et al., 2018; Liu et al., 2020; Xu et al., 2020), is employed for model compression,
accelerating network training, and merging multiple agent models. Knowledge distillation methods
can be categorized into offline and online approaches, depending on whether the teacher model is
updated concurrently with the student model Gou et al. (2021). In offline distillation, knowledge
is transferred from a pre-trained teacher to a student, typically following a two-stage training pro-
cess (Zagoruyko & Komodakis, 2017; Mirzadeh et al., 2020; Li et al., 2020). Conversely, online
distillation allows for the simultaneous updating of both teacher and student models and supports an
end-to-end trainable knowledge distillation framework (Anil et al., 2018; Zhang et al., 2018; Chen
et al., 2020; Wu & Gong, 2021). While offline knowledge distillation has proven effective in do-
main generalization (Wang et al., 2021; Lee et al., 2022; Huang et al., 2023), the potential of online
knowledge distillation remains unexplored. To our knowledge, this work is the first to explore and
theoretically analyze how online knowledge distillation enhances domain generalization.

3 METHODOLOGY

In this section, we first provide the preliminaries on domain generalization and knowledge distilla-
tion. We then outline the details of BOLD in two parts. First, we describe how the teacher model
learns domain-specific knowledge and how the student distils domain-invariant and domain-specific
knowledge from the teacher. Then, we explain how the teacher model adapts based on feedback from
the student. Finally, we offer a theoretical analysis to illustrate the importance of domain-specific
knowledge for domain generalization and the advantages of using an online distillation strategy.
Figure 2 provides an overview of BOLD, and the algorithm is detailed in Algorithm 1.
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Figure 2: Overview of BOLD. BOLD employs teacher-student architecture, where the teacher model
is based on Contrastive Language-Image Pretraining and consists of both an image encoder and a text
encoder. The image encoder is augmented with multiple domain expert adapters to retain domain-
specific knowledge for each source domain. The student distils domain-invariant knowledge by
minimizing its output against the invariant embedding produced by the image encoder (invariant
distillation loss) and distils domain-specific knowledge by minimizing its output against the spe-
cific embedding produced by the adapter (specific distillation loss). The domain expert adapters
capture domain-specific knowledge by minimizing the image-to-text loss for the matched domain
and maximizing it for unmatched domains. Additionally, they minimize specific distillation loss to
incorporate feedback from the student, thereby enhancing the effectiveness of knowledge transfer.

3.1 PRELIMINARY

Notation. Let X denote an input feature space, with dimension d, and Y a target class label space.
A domain, D, is composed of data sampled from a joint distribution P(X,Y ) on X × Y , where
D = (xi, yi)

n
i=1 ∼ P(X,Y ), x ∈ X ⊂ Rd, y ∈ Y ⊂ R and n is the number of data in the domain.

Here, X and Y denote the corresponding random variables (Zhou et al., 2022a; Wang et al., 2022).

Domain Generalization. For the task of domain generalization, the input is N source domains
(training set), S = {Dj | j = 1, · · · , N}, where Dj = {(xj

i , y
j
i )}

nj

i=1 denotes the jth domain
and nj denotes the number of examples in jth domain. The joint distributions between each pair
of domains are different: P(X,Y )(j) ̸= P(X,Y )(k), j ̸= k. The goal of domain generalization is
to learn a robust and generalizable predictive function f : X → Y from the N source domains to
achieve a minimum prediction error on an unseen target domain T , where T cannot be accessed
during training and P(X,Y )(T ) ̸= P(X,Y )(j) for j ∈ {1, · · · , N}.

Knowledge Distillation. Let T (x) and S(x) denote the outputs of the teacher and student models,
respectively, for a given input x. The knowledge distillation loss LKD is typically defined as the
Kullback-Leibler (KL) divergence between the outputs of the teacher and student models: LKD =
KL (T (x) ∥ S(x)).

3.2 BALANCED ONLINE KNOWLEDGE DISTILLATION

Teacher Model. To enable the student to distil domain-specific knowledge, the teacher model must
first acquire this knowledge. We employ Contrastive Language-Image Pretraining (CLIP) (Radford
et al., 2021) as the backbone for the teacher model, including both an image encoder and a text
encoder. CLIP was chosen because it demonstrated strong generalization capabilities in associating
images with their corresponding textual descriptions. For extracting domain-invariant knowledge,
the teacher model utilizes the pretrained image encoder without additional fine-tuning. To capture
domain-specific knowledge, we incorporate adapters (Gao et al., 2024), a parameter-efficient tun-
ing method, where each adapter is specialized for a specific domain. As illustrated in Figure 2,
multiple domain expert adapters are appended to the image encoder, with the number of adapters
corresponding to the number of source domains.
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We use the cross-entropy loss, Lce, for each expert adapter E. Unlike relying solely on a similarity-
based metric, cross-entropy loss inherently incorporates the calculation of similarity metrics (Rad-
ford et al., 2021). This approach enables us to both maximize the similarity between an image
and its ground-truth prompt and minimize the similarity between the image and its unmatched class
prompts, ensuring a more comprehensive optimization. For each class c, we generate m×N prompts
in the format: “a picture of a {Dj}{ck}.”, where Dj represents the j-th domain and ck represents
the k-th class. The text encoder of the teacher model converts these prompts into text embeddings,
yielding m text embeddings per domain, corresponding to the m classes. When processing an im-
age from domain Di, the corresponding expert adapter Ei calculates the cross-entropy loss LE for
each domain, as defined in Equation 1. Here, Timg denotes the image encoder of the teacher model,
Ej and T j represent the expert and text embeddings for the j-th domain, where j ∈ {1, · · · , N},
and sim refers to the similarity measurement used to evaluate the similarity of image-text pairs. We
adopt cosine similarity by following previous works (Radford et al., 2021).

Lj
E = Lce(sim(Ej(Timg(x)), T

j), y) (1)

After calculating LE for each domain, BOLD computes the domain loss Li
domain for expert adapter i

by minimizing the loss for its corresponding domain while maximizing the loss for other domains,
as outlined in Equation 2.

Li
domain = Li

E − 1

N − 1

N∑
j=1,j ̸=i

Lj
E (2)

Student Model. To distill both domain-invariant and domain-specific knowledge from the teacher
model, we introduce two distillation losses: Invariant Distillation Loss (Linv) and Student-Specific
Distillation Loss (Lsspc), as defined in Equations 3 and 4. The loss Linv minimizes the KL divergence
between the outputs of the student model and the image encoder of the teacher model, while Li

sspc
minimizes the KL divergence between the outputs of the student model and the outputs of the rele-
vant domain expert adapter Ei corresponding to the domain of the input data. Since KL divergence
is an asymmetric distance measure, the direction of distribution guidance is crucial. In our approach,
the distribution of the teacher model’s output is used to guide the output of the student model when
distilling knowledge from the teacher model to the student model.

Linv = KL(Timg(x) ∥ S(x)) (3)

Li
sspc = KL(Ei(Timg(x)) ∥ S(x)) (4)

Additionally, the student model learns independently by minimizing the cross-entropy of the given
input. The complete loss function is outlined in Equation 5.

LS = Linv + Lsspc + Lce(S(x), y) (5)

The combination of invariant and student-specific distillation losses enables the student model to
capture both the common features shared across domains and the unique characteristics specific to
each domain, which is crucial for enhancing the model’s ability to generalize to unseen domains, par-
ticularly when the target domain shares characteristics with some of the source domains. Addition-
ally, minimizing the divergence between the student and teacher outputs is a form of regularization,
mitigating the risk of overfitting the source domain data. Since the teacher model’s output represents
a full probability distribution over all classes, the student learns not only to fit the correct label but
also to approximate this probability distribution, which accounts for uncertainty. Furthermore, mini-
mizing the divergence between the student and teacher outputs allows the student to capture implicit
information encoded in the teacher’s soft outputs about inter-class relationships. These relationships
often include subtle correlations and patterns not apparent through hard labels (Wang et al., 2021).

Online Distillation. In contrast to existing knowledge distillation-based domain generalization
methods that rely on a fixed teacher model, we adopt an online knowledge distillation strategy
that allows the teacher model to adapt based on feedback from the student. To achieve this, we
incorporate Teacher-Specific Distillation Loss (Ltspc), defined in Equation 6 and incorporate it into
the teacher model’s learning objective, as shown in Equation 7. Unlike the Student-Specific Distil-
lation Loss (Lsspc), the Teacher-Specific Distillation Loss utilizes the output of the student model to
guide the teacher model’s output. During training, only the domain expert adapter corresponding
to the domain of the input data is updated, while the image encoder of the teacher model remains

5
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frozen. Domain expert adapters for domains not represented by the current input data are also un-
affected. Here, Li

T denotes the loss for the domain expert adapter associated with the i-th domain
while Li

domain and Li
tspc are the domain and teacher-specific distillation loss for the i-th domain.

Li
tspc = KL(S(x) ∥ Ei(Timg(x))) (6)

Li
T = Li

domain + Li
tspc (7)

The online distillation strategy enables the teacher model to adapt in real-time based on feedback
from the student model. Unlike fixed teacher models, which may become outdated as the student
evolves, this dynamic adaptation ensures that the transferred knowledge remains relevant and con-
tinuously refined, resulting in more effective knowledge transfer. Moreover, the online distillation
approach supports an end-to-end training process, eliminating the need for a separate training phase.

Algorithm 1 Balanced Online Knowledge Distillation

1: Input: D: training set; Timg: CLIP image encoder; Ttext: CLIP text encoder; N : number of
source domains.

2: Output: S: the optimal parameters for the student model.
3: Initialize N expert adapters {E1, · · · , EN}.
4: Generate m×N text embeddings {T 1

1 , · · · , T 1
m, T 2

1 , · · ·TN
m } with Ttext.

5: for each epoch do
6: Random sampling (xi, yi, di) ∼ D. ▷ Sample an input xi with class yi and domain di.
7: Lj

E = Lce(sim(Ej(Timg(xi)), T
j
yi
), yi) ▷ Compute the cross-entropy loss for each domain.

8: Ldi

domain = Ldi

E − 1

N − 1

∑N
j=1,j ̸=di

Lj
E ▷ Compute domain loss for expert adapter Edi

9: Linv = KL(S(xi) ∥ Timg(xi)) ▷ Compute the invariant distillation loss for xi.
10: Ldi

sspc = KL(Edi(Timg(xi)) ∥ S(xi)) ▷ Compute the student-specific distillation loss for xi.
11: Ldi

tspc = KL(S(xi) ∥ Edi(Timg(xi))) ▷ Compute the teacher-specific distillation loss for xi.
12: LS = Linv + Ldi

sspc + Lce(S(xi), yi) ▷ Combine invariant and specific distillation losses
with the cross-entropy loss to calculate the overall loss for the student model.

13: Ldi

T = Ldi

domain + Ldi
tspc ▷ Combine domain loss with specific distillation loss (student

feedback) to calculate the overall loss for domain expert adapter Edi in the teacher model.
14: Update the student model S with LS .
15: Update the domain expert adapter Edi in the teacher model with Ldi

T .
16: end for
17: Return S

3.3 THEORETICAL DISCUSSION

This section explores the effectiveness of the proposed framework. As shown in Equation 8, the er-
ror bound for domain generalization can be decomposed into two key components: (1) the empirical
risk within source domains and (2) the discrepancy between source and target domains. First, we
demonstrate how incorporating domain-specific knowledge tightens the generalization error bound
by reducing the discrepancy between source and target domains. Next, we show how online knowl-
edge distillation further tightens the error bound by reducing the empirical risk in source domains.

Effectiveness of Domain-Specific Knowledge for Domain Generalization. In Domain General-
ization, the error bound is commonly employed to evaluate a model’s generalization performance on
unseen domains. Within the Probably Approximately Correct (PAC)-Bayesian (McAllester, 1999)
framework, the risk on the target domain DT for any hypothesis h ∈ H can be bounded as follows:

L(h,DT ) ≤
1

N

N∑
i=1

L(h,Di
S) +

1

N

N∑
i=1

dH∆H(Di
S ,DT ) + λ, (8)

where H denotes the hypothesis space containing all possible models, DS represents the set of
source domain distributions encompassing N source domains, and DT denotes the target domain

6
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distribution. The term L(h,Di
S) represents the risk of hypothesis h on the i-th source domain, while

dH∆H(Di
S ,DT ) indicates the discrepancy between the i-th source and target domains. Finally, λ is

a constant that reflects the model’s complexity and its capacity for generalization.

Let O represent the function that quantifies the reduction in divergence caused by domain-specific
knowledge shared between a source domain Di

S and the target domain DT . We decompose the
second term,

∑N
i=1 dH∆H(Di

S ,DT ), into two components, as shown in Equation 9. Here, Di
S ∈ Sno

denotes the source domains that do not share domain-specific knowledge with the target domain
(i.e., O(Di

S , D
T ) = 0), while Di

S ∈ So represents the source domains that share domain-specific
knowledge with the target domain (i.e., O(Di

S , D
T ) > 0), and Nno +No = N .

N∑
i=1

dH∆H(Di
S ,DT ) =

Nno∑
i=1

dH∆H(Di
S ,DT ) +

No∑
i=1

(
dH∆H(Di

S ,DT )−O(Di
S ,DT )

)
(9)

Since the term O(Di
S , D

T ) > 0 for Di
S ∈ So is positive, its subtraction tightens the error bound,

thereby indicating improved generalization performance. The decomposition of the divergence term
provides two key insights regarding the role of domain-specific knowledge: (1) The greater the
amount of domain-specific knowledge shared between the source and target domains, the tighter
the error bound becomes. (2) As the number of source domains sharing domain-specific knowledge
with the target domain increases, the error bound is further tightened.

Effectiveness of Online Knowledge Distillation for Domain Generalization. In this section, we
first demonstrate how offline knowledge distillation reduces the empirical risk within source do-
mains, followed by an explanation of how online knowledge distillation further minimizes this risk.
Let hT denote the teacher model and h the student model, which is the same model we aim to op-
timize in the previous analysis. The objective of the knowledge distillation loss is to minimize the
discrepancy between the predictions of the student and teacher models across the source domains.
This objective is formalized through the following loss minimization:

min
h

1

N

N∑
i=1

(L(h,Di
S) + LKD(h, hT , D

i
S)), (10)

where L(h,Di
S) represents the student’s loss on the i-th source domain, and LKD(h, hT , D

i
S) de-

notes the knowledge distillation loss between the student and teacher models on the i-th domain.
Given that the teacher model is larger and pretrained on vast amounts of data, it typically outper-
forms the student model on the training data. Therefore, the student’s loss on a source domain is
expected to be higher than that of the teacher, leading to:

L(h,Di
S) ≥ L(hT , D

i
S) + ϵ, (11)

where ϵ is a discrepancy reflecting the mismatch between the student and teacher. By substituting
the student’s loss on the source domains with this inequality, we derive a new error bound, as shown
in Equation 12. Minimizing the knowledge distillation loss indirectly reduces the discrepancy ϵ
between the student and teacher, resulting in a tighter error bound than the original.

L(h,DT ) ≤
1

N

N∑
i=1

(L(hT , D
i
S) + ϵ) +

1

N

N∑
i=1

dH∆H(Di
S ,DT ) + λ. (12)

After demonstrating the effectiveness of offline knowledge distillation, we extend the analysis to
online knowledge distillation. The key difference between offline and online distillation lies in the
dynamic nature of the teacher model in the online setting, which evolves during training, providing
more adaptive and real-time feedback to the student. This results in a modified inequality:

L(h,Di
S) ≥ L(hT , D

i
S) + ϵo. (13)

Here, ϵo represents the average dynamic discrepancy between the student and teacher. Since the
teacher model also minimizes the discrepancy between its output and the student’s output, ϵo is
expected to be smaller than ϵ in Equation 11, leading to L(hT , D

i
S) + ϵo ≤ L(hT , D

i
S) + ϵ. Con-

sequently, the error bound for domain generalization with online knowledge distillation is further
tightened, as demonstrated in Equation 14.

L(h,DT ) ≤
1

N

N∑
i=1

(L(hT , D
i
S) + ϵo) +

1

N

N∑
i=1

dH∆H(Di
S ,DT ) + λ (14)
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In online knowledge distillation, where the teacher model is dynamically updated during training
to minimize the discrepancy between its output and the student’s, concerns may arise regarding
the potential degradation of L(hT , D

i
S). However, because the teacher model typically initializes

as a robust, pretrained model with strong generalization capabilities, these incremental updates are
unlikely to degrade L(hT , D

i
S).

4 EXPERIMENTS

We evaluate our approach on seven domain generalization benchmarks, Digits (Zhou et al., 2020),
PACS (Li et al., 2017), OfficeHome (Venkateswara et al., 2017), VLCS (Fang et al., 2013), Terra
Incognita (Beery et al., 2018), NICO++ (Zhang et al., 2023a), and DomainNet (Peng et al., 2019),
and compare it against several state-of-the-art domain generalization approaches, including Cross-
Grad (Shankar et al., 2018), DDAIG (Zhou et al., 2020), MixStyle (Zhou et al., 2021), Domain-
Mix (Sun et al., 2022), EFDMix (Zhang et al., 2022), RISE (Huang et al., 2023), SSPL (Zhao et al.,
2024), and CLIP-Adapter (Gao et al., 2024) along with two additional baseline approaches: Em-
pirical Risk Minimization (ERM) and Naive Knowledge Distillation (NKD) (Wang et al., 2021).
Consistent with prior work (Zhou et al., 2022a), we adopt the leave-one-out evaluation strategy.
Please refer to the reproducibility section in the appendix for details of experiment settings.

4.1 EXPERIMENTAL RESULTS

Table 1 shows leave-one-domain-out results for all benchmarks and baselines (excluding Cross-
Grad). Full results are in the appendix. The best results are highlighted in bold.

Overall accuracy across benchmarks. Table 1 reveals three key findings: (1) BOLD consistently
outperforms other state-of-the-art approaches, achieving the highest accuracy on the PACS, Of-
ficeHome, VLCS, NICO++, and DomainNet datasets, demonstrating its effectiveness in enhancing
model generalizability to unseen domains. Notably, BOLD’s strong performance on the large-scale
NICO++ and DomainNet datasets underscores its scalability. (2) It is important to note that knowl-
edge distillation-based methods (NKD, RISE, and BOLD) exhibit weaker performance on the Terra
Incognita and Digits datasets. This underperformance is attributed to the limitations of the teacher
model, CLIP, which performs poorly on these datasets, resulting in weaker student performance as
the students are trained to imitate the teacher’s outputs. (3) Despite the overall lower performance on
the Terra and Digits datasets, our method outperforms other knowledge distillation-based methods
by a clear margin, with an improvement of approximately 10% on the Terra dataset. The strong per-
formance of BOLD on Terra demonstrates the effectiveness of learning domain-specific knowledge
in domain generalization, as the domain-specific characteristics in Terra, such as shape and colour,
remain consistent across certain domains. This contrasts with datasets like PACS, where domain-
specific characteristics are closely tied to visual styles that vary significantly across domains.

Effectiveness across different backbones. Table 2 presents the evaluation results of BOLD com-
pared to NKD and RISE using different backbones on the PACS and OfficeHome datasets. For the
complete results, please refer to the appendix. Table 2 includes results from distilling knowledge
from ResNet50 and ViT-B/32 to ResNet18, as well as from ResNet50 to ResNet50. The evaluation
of distilling knowledge from ViT-B/32 to ResNet50 is provided in Table 1. These results demon-
strate that BOLD consistently outperforms other knowledge distillation-based domain generalization
methods, regardless of the backbone, underscoring its effectiveness in domain generalization.

4.2 ABLATION STUDY

Effectiveness of distilling domain-specific knowledge and online distillation strategy. Table 3
presents the ablation study results, validating the effectiveness of distilling domain-specific knowl-
edge and the online distillation strategy. Full results for all benchmarks are available in the appendix.
Here, Invariant represents the results where the student model distils only domain-invariant knowl-
edge from the teacher model. Spcoff refers to the results where the student distils both domain-
invariant and domain-specific knowledge from the teacher model but in an offline manner, where
the teacher does not incorporate feedback from the student. Spcon represents the results where the
student distils both domain-invariant and domain-specific knowledge in an online manner, where the
teacher adapts to student feedback during training.
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Table 1: Leave-one-domain-out accuracies on PACS, OfficeHome, VLCS, Terra Incognita, Digits,
NICO++, and DomainNet. DomMix denotes DomainMix.

ERM DDAIG MixStyle DomMix EDFMix SSPL NKD RISE BOLD
PA

C
S

Art 81.0 ± .3 83.4 ± .4 84.2 ± .2 85.9 ± .4 87.2 ± .3 87.9 ± .2 82.5 ± .2 85.7 ± .2 88.1 ± .2
Cartoon 74.0 ± .5 74.7 ± .3 74.5 ± .3 72.8 ± .5 76.1 ± .5 76.9 ± .3 83.3 ± .5 85.2 ± .4 86.9 ± .3
Photo 96.2 ± .3 96.8 ± .3 97.8 ± .2 97.1 ± .2 98.0 ± .1 97.8 ± .2 97.2 ± .2 97.4 ± .4 97.9 ± .2
Sketch 71.0 ± .5 73.7 ± .3 72.6 ± .4 73.6 ± .3 76.9 ± .3 77.5 ± .3 75.6 ± .2 78.2 ± .3 78.8 ± .3
Avg. 80.8 ± .4 82.1 ± .3 82.3 ± .3 82.3 ± .3 84.6 ± .4 85.0 ± .2 84.6 ± .3 86.6 ± .3 87.9 ± .3

O
ffi

ce
H

om
e Artistic 67.1 ± .2 68.8 ± .3 68.6 ± .3 69.0 ± .2 69.1 ± .2 69.4 ± .1 68.7 ± .2 69.5 ± .1 69.7 ± .2

Clipart 55.1 ± .2 53.4 ± .2 55.4 ± .3 54.6 ± .4 57.1 ± .1 58.3 ± .2 54.7 ± .2 55.8 ± .2 58.9 ± .3
Product 78.2 ± .3 78.0 ± .2 78.9 ± .2 77.5 ± .2 79.1 ± .1 79.7 ± .2 79.5 ± .3 79.7 ± .3 80.1 ± .2
RealWorld 82.0 ± .1 81.2 ± .1 82.3 ± .1 81.5 ± .2 82.3 ± .2 81.6 ± .3 82.3 ± .1 82.6 ± .3 83.3 ± .2
Avg. 70.6 ± .2 70.3 ± .2 71.3 ± .2 70.7 ± .3 71.9 ± .2 72.3 ± .2 71.3 ± .2 71.9 ± .2 73.0 ± .2

V
L

C
S

Caltech 97.2 ± .2 97.8 ± .3 98.0 ± .2 97.2 ± .2 98.0 ± .4 98.2 ± .3 99.4 ± .3 99.5 ± .3 99.5 ± .2
LabelMe 61.1 ± .1 61.9 ± .4 60.5 ± .3 59.2 ± .2 61.3 ± .2 62.1 ± .2 65.7 ± .3 66.1 ± .4 68.2 ± .3
Pascal 77.0 ± .2 75.8 ± .3 76.6 ± .3 69.8 ± .3 77.1 ± .3 77.7 ± .2 82.3 ± .2 82.7 ± .3 83.5 ± .3
Sun 66.8 ± .2 67.6 ± .3 67.4 ± .4 70.4 ± .3 67.6 ± .3 69.9 ± .3 70.6 ± .1 71.3 ± .2 71.7 ± .2
Avg. 75.5 ± .2 75.8 ± .3 75.6 ± .3 74.2 ± .3 76.0 ± .3 77.0 ± .3 79.5 ± .2 79.9 ± .3 80.7 ± .2

Te
rr

a

L38 20.4 ± .1 25.9 ± .3 36.2 ± .5 33.0 ± .4 38.0 ± .4 38.1 ± .3 25.5 ± .4 26.5 ± .3 38.3 ± .3
L43 35.2 ± .2 33.8 ± .4 43.5 ± .3 38.1 ± .3 44.6 ± .4 44.6 ± .3 29.3 ± .3 30.6 ± .2 41.2 ± .2
L46 29.6 ± .2 28.9 ± .3 32.2 ± .3 34.5 ± .2 31.9 ± .4 34.6 ± .3 25.5 ± .2 27.0 ± .4 31.5 ± .2
L100 39.0 ± .3 40.6 ± .3 54.9 ± .4 45.9 ± .3 52.3 ± .1 55.0 ± .4 18.0 ± .3 19.4 ± .4 28.1 ± .2
Avg. 31.1 ± .2 32.3 ± .3 41.7 ± .4 37.9 ± .3 41.7 ± .3 43.1 ± .3 24.6 ± .3 25.9 ± .3 34.8 ± .2

D
ig

its

MNIST 96.5 ± .1 96.7 ± .3 97.5 ± .3 96.7 ± .4 97.6 ± .2 97.6 ± .2 71.6 ± .2 72.1 ± .2 74.3 ± .3
MNIST-M 64.2 ± .4 66.1 ± .5 67.3 ± .4 67.0 ± .4 68.1 ± .2 68.2 ± .1 40.8 ± .3 41.4 ± .3 43.2 ± .3
SVHN 70.3 ± .3 70.5 ± .4 70.8 ± .2 69.2 ± .4 70.7 ± .1 70.8 ± .1 30.3 ± .4 31.3 ± .3 34.3 ± .2
SYN 88.2 ± .3 89.8 ± .3 90.3 ± .2 86.6 ± .4 90.3 ± .2 90.6 ± .2 58.7 ± .4 62.3 ± .2 64.5 ± .3
Avg. 79.8 ± .3 80.8 ± .4 81.5 ± .2 79.9 ± .4 81.7 ± .2 81.8 ± .1 50.4 ± .3 51.8 ± .2 54.1 ± .3

N
IC

O
++

Autumn 82.9 ± .1 84.8 ± .4 85.1 ± .1 86.3 ± .2 85.6 ± .2 86.0 ± .2 85.0 ± .3 85.9 ± .3 86.9 ± .4
Dim 75.8 ± .1 78.3 ± .2 79.3 ± .2 81.1 ± .2 80.4 ± .1 80.9 ± .2 78.5 ± .4 80.9 ± .3 81.6 ± .2
Grass 84.9 ± .3 86.5 ± .2 87.0 ± .3 87.8 ± .3 87.5 ± .3 87.7 ± .1 85.8 ± .3 87.2 ± .3 88.3 ± .3
Outdoor 82.4 ± .1 83.3 ± .2 84.8 ± .3 85.3 ± .1 85.3 ± .2 85.1 ± .2 83.4 ± .4 84.9 ± .2 85.7 ± .4
Rock 83.9 ± .4 85.3 ± .1 85.9 ± .1 87.0 ± .1 86.4 ± .3 87.0 ± .2 84.4 ± .4 85.8 ± .3 87.4 ± .4
Water 77.5 ± .2 78.8 ± .2 79.7 ± .1 80.3 ± .2 80.3 ± .1 80.1 ± .2 78.8 ± .4 80.2 ± .3 81.9 ± .4
Avg. 81.2 ± .2 82.8 ± .2 83.7 ± .2 84.6 ± .2 84.3 ± .2 84.5 ± .2 82.6 ± .4 84.2 ± .3 85.3 ± .3

D
om

ai
nN

et

Clipart 63.4 ± .2 61.3 ± .2 63.9 ± .2 63.5 ± .2 64.2 ± .2 63.9 ± .2 63.9 ± .2 64.3 ± .1 64.8 ± .2
Infograph 25.8 ± .3 27.9 ± .2 29.7 ± .1 27.5 ± .3 30.8 ± .2 31.0 ± .2 34.9 ± .2 35.0 ± .2 36.7 ± .2
Painting 49.7 ± .2 51.4 ± .2 54.2 ± .1 53.1 ± .1 54.6 ± .2 55.2 ± .2 56.3 ± .2 57.2 ± .1 60.2 ± .2
Quickdraw 11.8 ± .3 10.1 ± .1 11.7 ± .2 10.9 ± .1 12.3 ± .2 12.9 ± .2 10.1 ± .3 10.8 ± .2 12.3 ± .3
Real 61.6 ± .3 61.0 ± .2 64.1 ± .2 63.4 ± .2 64.5 ± .2 64.3 ± .1 71.9 ± .3 72.6 ± .2 75.4 ± .3
Sketch 48.1 ± .2 50.6 ± .2 52.9 ± .2 52.1 ± .2 53.6 ± .2 53.2 ± .2 50.5 ± .2 52.4 ± .3 55.9 ± .4
Avg. 43.4 ± .2 43.7 ± .2 46.1 ± .2 45.1 ± .2 46.7 ± .2 46.8 ± .2 47.9 ± .2 48.7 ± .2 50.9 ± .2

Based on the results in Table 3, we make three key observations: (1) When the invariant knowl-
edge across source and target domain is highly representative, such as the Photo domain of PACS,
the RealWorld domain of OfficeHome, and the Caltech domain of VLCS, the improvements from
distilling domain-specific knowledge and applying the online knowledge distillation strategy are
relatively minor. (2) When the target domain shares specific characteristics with the source do-
mains, the improvement from distilling domain-specific knowledge is substantial, as evidenced by
the Terra dataset discussed in the previous section. (3) The effectiveness of the online knowledge
distillation strategy is closely correlated with the capability of the teacher model. For instance, in
the Terra dataset, the improvement of online knowledge distillation is minor due to the teacher’s
limited performance. Conversely, in the Clipart domain of OfficeHome, while the improvement
from domain-specific knowledge is limited, the presence of a strong teacher model results in signifi-
cant gains from the online knowledge distillation strategy. For further details on the teacher model’s
performance across benchmarks, please refer to the CLIP zero-shot results provided in the appendix.

T-SNE Visualization. Figure 3 presents the T-SNE visualization for ERM, NKD, RISE, and BOLD
on the PACS dataset. As shown, distilling knowledge from a large teacher model allows NKD,
RISE, and BOLD to produce a more separable embedding space than ERM, highlighting the ef-
fectiveness of knowledge distillation. Furthermore, by incorporating domain-specific knowledge,
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Table 2: Leave-one-domain-out accuracies on PACS and OfficeHome datasets for various knowl-
edge distillation-based domain generalization approaches using different backbones.

ResNet50 → ResNet18 ViT-B/32 → ResNet18 ResNet50 → ResNet50
NKD RISE BOLD NKD RISE BOLD NKD RISE BOLD

PA
C

S

Art 77.4 ± .3 79.0 ± .2 80.2 ± .2 78.1 ± .4 79.3 ± .3 81.2 ± .2 80.7 ± .2 83.2 ± .3 85.1 ± .2
Cartoon 76.4 ± .2 77.1 ± .2 77.6 ± .2 79.6 ± .3 81.1 ± .2 81.8 ± .2 80.9 ± .5 82.1 ± .4 82.6 ± .2
Photo 94.1 ± .3 94.9 ± .3 95.3 ± .2 94.2 ± .2 95.6 ± .2 95.9 ± .2 95.2 ± .2 96.7 ± .2 97.0 ± .2
Sketch 71.1 ± .2 72.9 ± .3 74.7 ± .2 72.8 ± .3 73.2 ± .3 76.8 ± .3 76.5 ± .5 78.0 ± .4 78.1 ± .2
Avg. 79.7 ± .3 80.9 ± .2 82.0 ± .2 81.2 ± .3 82.3 ± .2 83.9 ± .2 83.3 ± .4 85.0 ± .3 85.7 ± .2

O
ffi

ce
H

om
e Artistic 57.5 ± .4 58.0 ± .2 60.0 ± .2 58.4 ± .3 59.3 ± .1 60.6 ± .2 68.8 ± .3 69.3 ± .2 69.7 ± .2

Clipart 48.0 ± .2 49.2 ± .1 54.9 ± .2 49.1 ± .2 51.0 ± .3 56.2 ± .2 55.3 ± .4 55.6 ± .3 58.5 ± .2
Product 72.5 ± .3 73.2 ± .2 73.8 ± .1 72.7 ± .2 73.4 ± .3 73.9 ± .3 78.4 ± .1 78.9 ± .2 79.7 ± .2
RealWorld 75.7 ± .1 75.8 ± .2 76.0 ± .1 76.0 ± .2 76.3 ± .2 77.0 ± .2 82.0 ± .3 82.2 ± .1 82.6 ± .1
Avg. 63.4 ± .2 64.1 ± .2 66.2 ± .2 64.0 ± .2 65.0 ± .2 66.9 ± .2 71.1 ± .3 71.5 ± .2 72.6 ± .2

Table 3: Ablation study results on the PACS, OfficeHome, VLCS, and Terra Incognita datasets.

Invariant Spcoff Spcon Invariant Spcoff Spcon

PA
C

S

Art 82.5 ± .2 86.9 ± .3 88.1 ± .2

V
L

C
S

Caltech 99.4 ± .3 99.5 ± .1 99.5 ± .2
Cartoon 83.3 ± .5 85.7 ± .2 86.9 ± .3 LabelMe 65.7 ± .3 66.4 ± .3 68.2 ± .3
Photo 97.2 ± .2 97.3 ± .2 97.9 ± .2 Pascal 82.3 ± .2 83.1 ± .2 83.5 ± .3
Sketch 75.6 ± .2 77.1 ± .2 78.8 ± .3 Sun 70.6 ± .1 71.4 ± .2 71.7 ± .2
Avg. 84.6 ± .3 86.8 ± .2 87.9 ± .3 Avg. 79.5 ± .2 80.1 ± .2 80.7 ± .2

O
ffi

ce
H

om
e Artistic 68.7 ± .2 69.5 ± .1 69.7 ± .2

Te
rr

a

L38 25.5 ± .4 35.3 ± .3 38.3 ± .3
Clipart 54.7 ± .2 55.1 ± .2 58.9 ± .3 L43 29.3 ± .2 38.9 ± .3 41.2 ± .2
Product 79.5 ± .3 79.9 ± .3 80.1 ± .2 L46 25.5 ± .2 30.1 ± .2 31.5 ± .2
RealWorld 82.3 ± .1 82.6 ± .2 83.3 ± .2 L100 18.0 ± .3 26.2 ± .3 28.1 ± .2
Avg. 71.3 ± .2 71.8 ± .2 73.0 ± .2 Avg. 24.6 ± .3 32.6 ± .3 34.8 ± .2

BOLD achieves an even more distinct and well-separated embedding space than NKD and RISE,
demonstrating the potential of domain-specific knowledge for effective domain generalization.

Scalability. We compared the parameter count across different backbones and expert adapters rela-
tive to the number of source domains. While the parameter count for the expert adapters increases
linearly with the number of source domains, it remains negligible compared to the large parameter
count in backbones, demonstrating BOLD’s scalability. See the appendix for detailed results.
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Figure 3: T-SNE visualization. A, C, and S denote Art, Cartoon, and Sketch domains, respectively.

5 CONCLUSION

Our Balanced Online Knowledge Distillation framework (BOLD)leverages domain-invariant and
domain-specific knowledge through an online distillation strategy to enhance domain generaliza-
tion. Theoretical analysis highlights the benefits of domain-specific knowledge when the target do-
main shares characteristics with source domains, as well as the advantages of the online distillation
strategy for domain generalization. Extensive experiments across seven benchmarks and ablation
studies validate the effectiveness and the effectiveness of the proposed framework. Future work will
focus on developing more effective distillation strategies to overcome the teacher model’s limited
capability and expanding BOLD’s application to more complex tasks like objective detection.
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6 REPRODUCIBILITY STATEMENT

All details necessary to reproduce our experiments, including descriptions of the datasets, evaluation
metrics, baselines, and training settings, are provided in the Appendix A.1. We have also included
a complete description of the proposed BOLD framework and its training procedure in Section 3.2,
with additional algorithmic details in Algorithm 1. The theoretical analysis, along with explana-
tions of any assumptions, are available in Section 3.3. Furthermore, to facilitate reproducibility, we
provide an anonymized link to the code in the abstract, which is also uploaded to the supplementary.
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A APPENDIX

A.1 REPRODUCIBILITY

Datasets. The proposed approach is evaluated on seven domain generalization benchmarks, cover-
ing a range of image classification tasks: (1) Digits (Zhou et al., 2020) includes four digit recognition
tasks: MNIST, MNIST-M, SVHN, and SYN. (2) PACS (Li et al., 2017) comprises four domains:
Photo, Art Painting, Cartoon, and Sketch. (3) OfficeHome (Venkateswara et al., 2017) contains
four domains: Artistic, Clipart, Product, and Real World, with 65 classes related to office and home
objects. (4) VLCS (Fang et al., 2013) is collected from four domains: Caltech101, PASCAL, La-
belMe, and Sun, featuring five common categories: bird, car, chair, dog, and person. (5) Terra
Incognita (Beery et al., 2018) is a subset of the Caltech Camera Traps dataset, consists of four do-
mains (L38, L43, L46, L100) representing different geographic locations, and includes nine species
of wild animals along with a ‘no-animal’ class. (6) NICO++ (Zhang et al., 2023a) is a recently
constructed dataset from 2023 for out-of-distribution (OOD) image classification, comprising six
domains and a total of 88,866 images. (7) DomainNet (Peng et al., 2019) is the largest domain
generalization dataset, consisting of six domains, 345 classes, and 596,010 images.

Baselines. We evaluate our method against several state-of-the-art domain generalization ap-
proaches, including CrossGrad (Shankar et al., 2018), DDAIG (Zhou et al., 2020), MixStyle (Zhou
et al., 2021), DomainMix (Sun et al., 2022), EFDMix (Zhang et al., 2022), RISE (Huang et al.,
2023), and SSPL (Zhao et al., 2024). In addition, we evaluate two baseline methods: Empirical
Risk Minimization (ERM), which aggregates data from all source domains without employing spe-
cialized domain generalization techniques, and Naive Knowledge Distillation (NKD) (Wang et al.,
2021), which distils knowledge from the teacher model using only invariant distillation loss.

Evaluation Metrics. Following previous work (Zhou et al., 2022a), we adopt the leave-one-out
evaluation strategy. Specifically, one domain is selected as the test domain, while the remaining
domains are used as source domains for training. Performance is reported as the top-1 classification
accuracy (%) averaged over ten runs, along with the corresponding 95% confidence intervals.

Network Structure & Training. For all benchmarks, input images are resized to 224× 224 pixels,
and the pretrained ResNet50 model is used as the backbone. ResNet50 also serves as the backbone
for the student model in knowledge-distillation-based methods. For the teacher model, we evaluate
both ResNet50 and ViT-B/32 from CLIP’s image encoder to demonstrate the effectiveness of the
proposed method. The implementation is carried out using the PyTorch library. Stochastic Gradient
Descent (SGD) is used as the optimizer for training the baseline, student, and teacher models with a
momentum of 0.9 and a weight decay of 5 × 10−4. Across all benchmarks, the models are trained
with a learning rate of 0.01 using the CosineAnnealingLR learning scheduler and a batch size with
64 for 50 epochs. All experiments are conducted on NVIDIA Tesla A100 80 GB GPUs.
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A.2 EXPERIMENTAL RESULTS

Scalability. Figure 4 presents the comparison of the parameter count across different backbones and
expert adapters relative to the number of source domains. While the parameter count for the expert
adapters increases linearly with the number of source domains, it remains negligible compared to
the large parameter count in backbones, demonstrating BOLD’s scalability.
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Figure 4: Scalability. Comparing the number of parameters across different backbones.

Teacher Capability. Table 4 presents the CLIP-ZeroShot accuracy across all benchmarks using
ResNet50 and ViT-B/32 backbones, highlighting CLIP’s performance across different benchmarks.
As shown, CLIP, pretrained on 400 million images through Language-Image pertaining, demon-
strates remarkable performance on domains such as Art and Photo in PACS and Caltech in VLCS.
However, its performance significantly reduces on more abstract datasets like Terra and Digits.

Table 4: CLIP-ZeroShot accuracy across all benchmarks using ResNet50 and ViT-B/32 backbones.

RN50 ViT RN50 ViT RN50 ViT RN50 ViT

PA
C

S

Art 92.72 96.53

O
ffi

ce
H

om
e Artistic 69.43 75.20

V
L

C
S

Caltech 100.00 100.00

Te
rr

a

L38 26.88 20.06
Cartoon 94.88 98.12 Clipart 54.20 66.41 LabelMe 65.62 70.39 L43 32.64 30.08
Photo 99.46 99.82 Product 80.69 86.21 Pascal 85.09 85.09 L46 24.38 19.14
Sketch 80.07 85.46 RealWorld 81.68 86.46 Sun 71.47 72.18 L100 12.47 15.21
Avg. 91.78 94.98 Avg. 71.50 78.57 Avg. 80.55 81.92 Avg. 24.09 21.12

RN50 ViT RN50 ViT RN50 ViT

N
IC

O
++

Autumn 83.16 86.11

D
om

ai
nN

et

Clipart 55.05 68.17

D
ig

its

MNIST 35.40 25.12
Dim 78.28 83.77 Infograph 41.45 42.32 MNIST-M 21.05 15.15
Grass 86.13 87.92 Painting 54.74 63.01 SVHN 19.92 13.35
Outdoor 81.00 82.75 Quickdraw 6.13 13.09 SYN 43.78 20.37
Rock 83.46 85.12 Real 77.94 81.33 Avg. 30.04 18.50
Water 72.80 75.96 Sketch 49.65 58.57
Avg. 80.81 83.61 Avg. 47.49 54.42

Table 5 presents the ablation study results on the NICO++, DomainNet, and Digits datasets, which
are not included in the main paper. Table 6 provides the complete evaluation results across all bench-
marks and all baselines, including CrossGrad. Table 7 displays the evaluation results on the VLCS,
Terra Incognita, NICO++, DomainNet, and Digits datasets for various knowledge distillation-based
domain generalization approaches using different backbones.
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Table 5: Ablation study results on the NICO++, DomainNet, and Digits datasets.

Invariant Spcoff Spcon Invariant Spcoff Spcon
N

IC
O

++
Autumn 85.0 ± .3 86.3 ± .2 86.9 ± .4

D
om

ai
nN

et

Clipart 63.9 ± .2 64.6 ± .2 64.8 ± .2
Dim 78.5 ± .4 80.4 ± .2 81.6 ± .2 Infograph 34.9 ± .2 36.1 ± .3 36.7 ± .2
Grass 85.8 ± .3 87.1 ± .3 88.3 ± .3 Painting 56.3 ± .2 59.4 ± .3 60.2 ± .2
Outdoor 83.4 ± .4 85.2 ± .2 85.7 ± .4 Quickdraw 10.1 ± .3 11.9 ± .3 12.3 ± .3
Rock 84.4 ± .4 86.3 ± .2 87.4 ± .4 Real 71.9 ± .3 74.5 ± .2 75.4 ± .3
Water 78.8 ± .4 80.0 ± .3 81.9 ± .4 Sketch 50.5 ± .2 53.7 ± .4 55.9 ± .4
Avg. 82.6 ± .4 84.2 ± .2 85.3 ± .3 Avg. 47.9 ± .2 50.0 ± .3 50.9 ± .2

D
ig

its

MNIST 71.6 ± .2 73.9 ± .3 74.3 ± .3
MNIST-M 40.8 ± .3 43.0 ± .2 43.2 ± .3
SVHN 30.3 ± .4 33.6 ± .2 34.3 ± .2
SYN 58.7 ± .4 62.8 ± .3 64.5 ± .3
Avg. 50.4 ± .3 53.3 ± .3 54.1 ± .3

Table 6: Leave-one-domain-out accuracies on PACS, OfficeHome, VLCS, Terra Incognita, Digits,
NICO++, and DomainNet. CroGrad and DomMix denote CrossGrad and DomainMix.

ERM CroGrad DDAIG MixStyle DomMix EDFMix SSPL NKD RISE BOLD

PA
C

S

Art 81.0 ± .3 81.9 ± .3 83.4 ± .4 84.2 ± .2 85.9 ± .4 87.2 ± .3 87.9 ± .2 82.5 ± .2 85.7 ± .2 88.1 ± .2
Cartoon 74.0 ± .5 72.9 ± .2 74.7 ± .3 74.5 ± .3 72.8 ± .5 76.1 ± .5 76.9 ± .3 83.3 ± .5 85.2 ± .4 86.9 ± .3
Photo 96.2 ± .3 96.6 ± .2 96.8 ± .3 97.8 ± .2 97.1 ± .2 98.0 ± .1 97.8 ± .2 97.2 ± .2 97.4 ± .4 97.9 ± .2
Sketch 71.0 ± .5 71.5 ± .3 73.7 ± .3 72.6 ± .4 73.6 ± .3 76.9 ± .3 77.5 ± .3 75.6 ± .2 78.2 ± .3 78.8 ± .3
Avg. 80.8 ± .4 80.8 ± .3 82.1 ± .3 82.3 ± .3 82.3 ± .3 84.6 ± .4 85.0 ± .2 84.6 ± .3 86.6 ± .3 87.9 ± .3

O
ffi

ce
H

om
e Artistic 67.1 ± .2 67.5 ± .2 68.8 ± .3 68.6 ± .3 69.0 ± .2 69.1 ± .2 69.4 ± .1 68.7 ± .2 69.5 ± .1 69.7 ± .2

Clipart 55.1 ± .2 54.9 ± .2 53.4 ± .2 55.4 ± .3 54.6 ± .4 57.1 ± .1 58.3 ± .2 54.7 ± .2 55.8 ± .2 58.9 ± .3
Product 78.2 ± .3 78.2 ± .2 78.0 ± .2 78.9 ± .2 77.5 ± .2 79.1 ± .1 79.7 ± .2 79.5 ± .3 79.7 ± .3 80.1 ± .2
RealWorld 82.0 ± .1 81.7 ± .2 81.2 ± .1 82.3 ± .1 81.5 ± .2 82.3 ± .2 81.6 ± .3 82.3 ± .1 82.6 ± .3 83.3 ± .2
Avg. 70.6 ± .2 70.6 ± .2 70.3 ± .2 71.3 ± .2 70.7 ± .3 71.9 ± .2 72.3 ± .2 71.3 ± .2 71.9 ± .2 73.0 ± .2

V
L

C
S

Caltech 97.2 ± .2 97.6 ± .4 97.8 ± .3 98.0 ± .2 97.2 ± .2 98.0 ± .4 98.2 ± .3 99.4 ± .3 99.5 ± .3 99.5 ± .2
LabelMe 61.1 ± .1 60.9 ± .3 61.9 ± .4 60.5 ± .3 59.2 ± .2 61.3 ± .2 62.1 ± .2 65.7 ± .3 66.1 ± .4 68.2 ± .3
Pascal 77.0 ± .2 76.7 ± .3 75.8 ± .3 76.6 ± .3 69.8 ± .3 77.1 ± .3 77.7 ± .2 82.3 ± .2 82.7 ± .3 83.5 ± .3
Sun 66.8 ± .2 66.8 ± .2 67.6 ± .3 67.4 ± .4 70.4 ± .3 67.6 ± .3 69.9 ± .3 70.6 ± .1 71.3 ± .2 71.7 ± .2
Avg. 75.5 ± .2 75.5 ± .3 75.8 ± .3 75.6 ± .3 74.2 ± .3 76.0 ± .3 77.0 ± .3 79.5 ± .2 79.9 ± .3 80.7 ± .2

Te
rr

a

L38 20.4 ± .1 25.5 ± .2 25.9 ± .3 36.2 ± .5 33.0 ± .4 38.0 ± .4 38.1 ± .3 25.5 ± .4 26.5 ± .3 38.3 ± .3
L43 35.2 ± .2 35.1 ± .2 33.8 ± .4 43.5 ± .3 38.1 ± .3 44.6 ± .4 44.6 ± .3 29.3 ± .3 30.6 ± .2 41.2 ± .2
L46 29.6 ± .2 28.4 ± .4 28.9 ± .3 32.2 ± .3 34.5 ± .2 31.9 ± .4 34.6 ± .3 25.5 ± .2 27.0 ± .4 31.5 ± .2
L100 39.0 ± .3 39.4 ± .2 40.6 ± .3 54.9 ± .4 45.9 ± .3 52.3 ± .1 55.0 ± .4 18.0 ± .3 19.4 ± .4 28.1 ± .2
Avg. 31.1 ± .2 32.1 ± .2 32.3 ± .3 41.7 ± .4 37.9 ± .3 41.7 ± .3 43.1 ± .3 24.6 ± .3 25.9 ± .3 34.8 ± .2

D
ig

its

MNIST 96.5 ± .1 96.5 ± .3 96.7 ± .3 97.5 ± .3 96.7 ± .4 97.6 ± .2 97.6 ± .2 71.6 ± .2 72.1 ± .2 74.3 ± .3
MNIST-M 64.2 ± .4 64.5 ± .3 66.1 ± .5 67.3 ± .4 67.0 ± .4 68.1 ± .2 68.2 ± .1 40.8 ± .3 41.4 ± .3 43.2 ± .3
SVHN 70.3 ± .3 69.9 ± .4 70.5 ± .4 70.8 ± .2 69.2 ± .4 70.7 ± .1 70.8 ± .1 30.3 ± .4 31.3 ± .3 34.3 ± .2
SYN 88.2 ± .3 88.4 ± .3 89.8 ± .3 90.3 ± .2 86.6 ± .4 90.3 ± .2 90.6 ± .2 58.7 ± .4 62.3 ± .2 64.5 ± .3
Avg. 79.8 ± .3 79.8 ± .3 80.8 ± .4 81.5 ± .2 79.9 ± .4 81.7 ± .2 81.8 ± .1 50.4 ± .3 51.8 ± .2 54.1 ± .3

N
IC

O
++

Autumn 82.9 ± .1 84.9 ± .2 84.8 ± .4 85.1 ± .1 86.3 ± .2 85.6 ± .2 86.0 ± .2 85.0 ± .3 85.9 ± .3 86.9 ± .4
Dim 75.8 ± .1 78.0 ± .3 78.3 ± .2 79.3 ± .2 81.1 ± .2 80.4 ± .1 80.9 ± .2 78.5 ± .4 80.9 ± .3 81.6 ± .2
Grass 84.9 ± .3 86.8 ± .1 86.5 ± .2 87.0 ± .3 87.8 ± .3 87.5 ± .3 87.7 ± .1 85.8 ± .3 87.2 ± .3 88.3 ± .3
Outdoor 82.4 ± .1 84.3 ± .4 83.3 ± .2 84.8 ± .3 85.3 ± .1 85.3 ± .2 85.1 ± .2 83.4 ± .4 84.9 ± .2 85.7 ± .4
Rock 83.9 ± .4 85.7 ± .2 85.3 ± .1 85.9 ± .1 87.0 ± .1 86.4 ± .3 87.0 ± .2 84.4 ± .4 85.8 ± .3 87.4 ± .4
Water 77.5 ± .2 79.7 ± .2 78.8 ± .2 79.7 ± .1 80.3 ± .2 80.3 ± .1 80.1 ± .2 78.8 ± .4 80.2 ± .3 81.9 ± .4
Avg. 81.2 ± .2 83.2 ± .2 82.8 ± .2 83.7 ± .2 84.6 ± .2 84.3 ± .2 84.5 ± .2 82.6 ± .4 84.2 ± .3 85.3 ± .3

D
om

ai
nN

et

Clipart 63.4 ± .2 59.4 ± .2 61.3 ± .2 63.9 ± .2 63.5 ± .2 64.2 ± .2 63.9 ± .2 63.9 ± .2 64.3 ± .1 64.8 ± .2
Infograph 25.8 ± .3 25.0 ± .1 27.9 ± .2 29.7 ± .1 27.5 ± .3 30.8 ± .2 31.0 ± .2 34.9 ± .2 35.0 ± .2 36.7 ± .2
Painting 49.7 ± .2 49.2 ± .2 51.4 ± .2 54.2 ± .1 53.1 ± .1 54.6 ± .2 55.2 ± .2 56.3 ± .2 57.2 ± .1 60.2 ± .2
Quickdraw 11.8 ± .3 9.1 ± .2 10.1 ± .1 11.7 ± .2 10.9 ± .1 12.3 ± .2 12.9 ± .2 10.1 ± .3 10.8 ± .2 12.3 ± .3
Real 61.6 ± .3 57.8 ± .1 61.0 ± .2 64.1 ± .2 63.4 ± .2 64.5 ± .2 64.3 ± .1 71.9 ± .3 72.6 ± .2 75.4 ± .3
Sketch 48.1 ± .2 43.3 ± .1 50.6 ± .2 52.9 ± .2 52.1 ± .2 53.6 ± .2 53.2 ± .2 50.5 ± .2 52.4 ± .3 55.9 ± .4
Avg. 43.4 ± .2 40.6 ± .2 43.7 ± .2 46.1 ± .2 45.1 ± .2 46.7 ± .2 46.8 ± .2 47.9 ± .2 48.7 ± .2 50.9 ± .2
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Table 7: Leave-one-domain-out accuracies on VLCS, Terra Incognita, NICO++, DomainNet and
Digits datasets for various knowledge distillation-based domain generalization approaches using
different backbones.

ResNet50 → ResNet18 ViT-B/32 → ResNet18 ResNet50 → ResNet50
NKD RISE BOLD NKD RISE BOLD NKD RISE BOLD

V
L

C
S

Caltech 97.5 ± .3 96.6 ± .5 97.7 ± .3 97.5 ± .3 97.2 ± .3 97.7 ± .3 97.5 ± .2 96.9 ± .1 98.0 ± .2
LabelMe 59.8 ± .6 60.9 ± .4 61.8 ± .4 60.4 ± .2 61.5 ± .3 63.0 ± .2 61.4 ± .5 62.4 ± .4 64.3 ± .2
Pascal 77.4 ± .4 78.4 ± .4 78.9 ± .3 77.5 ± .2 79.5 ± .4 80.1 ± .2 79.2 ± .2 80.1 ± .3 80.9 ± .2
Sun 68.3 ± .3 68.8 ± .5 69.3 ± .3 68.6 ± .3 69.5 ± .4 69.9 ± .3 70.1 ± .3 71.1 ± .1 71.4 ± .1
Avg. 75.7 ± .4 76.2 ± .5 76.9 ± .3 76.0 ± .2 76.9 ± .3 77.7 ± .3 77.1 ± .3 77.6 ± .2 78.7 ± .2

Te
rr

a

L38 23.5 ± .4 24.9 ± .4 31.3 ± .4 17.3 ± .3 18.6 ± .2 28.4 ± .2 28.1 ± .3 29.9 ± .3 41.8 ± .3
L43 29.2 ± .2 30.5 ± .2 39.5 ± .2 28.9 ± .2 29.9 ± .4 37.2 ± .3 32.9 ± .4 33.1 ± .2 37.2 ± .3
L46 24.8 ± .5 26.6 ± .4 30.2 ± .3 23.3 ± .4 24.8 ± .5 27.4 ± .4 31.1 ± .4 33.7 ± .3 27.4 ± .4
L100 10.8 ± .4 11.6 ± .2 16.6 ± .3 15.9 ± .4 16.2 ± .3 21.4 ± .3 17.0 ± .2 17.4 ± .3 21.4 ± .3
Avg. 22.1 ± .4 23.4 ± .3 29.4 ± .3 21.4 ± .3 22.4 ± .4 28.6 ± .3 27.3 ± .3 28.5 ± .3 28.6 ± .3

N
IC

O
++

Autumn 78.6 ± .2 80.0 ± .3 80.7 ± .2 81.2 ± .2 82.0 ± .3 82.5 ± .2 83.4 ± .3 85.7 ± .3 86.2 ± .2
Dim 70.2 ± .3 72.0 ± .3 72.6 ± .2 70.6 ± .3 72.4 ± .3 73.2 ± .2 77.1 ± .2 80.4 ± .2 80.9 ± .2
Grass 80.5 ± .3 81.5 ± .2 82.1 ± .3 81.9 ± .3 82.8 ± .4 83.5 ± .3 85.2 ± .2 87.0 ± .3 87.7 ± .3
Outdoor 78.5 ± .2 79.8 ± .4 80.6 ± .1 80.7 ± .3 82.2 ± .3 82.9 ± .3 82.5 ± .3 84.2 ± .2 85.0 ± .3
Rock 79.0 ± .3 80.0 ± .4 80.6 ± .2 79.2 ± .4 80.6 ± .3 81.0 ± .2 83.7 ± .3 84.9 ± .4 85.6 ± .3
Water 71.1 ± .3 71.5 ± .2 72.3 ± .2 71.6 ± .2 72.6 ± .3 73.3 ± .2 78.7 ± .3 79.6 ± .4 80.1 ± .4
Avg. 76.3 ± .3 77.5 ± .3 78.1 ± .2 77.5 ± .3 78.8 ± .3 79.4 ± .2 81.8 ± .3 83.6 ± .3 84.3 ± .3

D
om

ai
nN

et

Clipart 40.3 ± .2 43.6 ± .2 43.8 ± .2 48.9 ± .2 51.6 ± .3 52.2 ± .4 50.7 ± .3 52.9 ± .2 53.3 ± .2
Infograph 26.3 ± .2 29.2 ± .2 31.5 ± .3 26.8 ± .2 30.2 ± .3 32.2 ± .1 34.2 ± .3 34.7 ± .2 36.1 ± .2
Painting 45.2 ± .2 47.3 ± .2 49.1 ± .2 47.8 ± .2 50.6 ± .3 52.4 ± .2 52.7 ± .3 55.5 ± .2 58.2 ± .2
Quickdraw 5.1 ± .1 5.9 ± .1 6.4 ± .1 8.6 ± .2 9.2 ± .2 9.8 ± .2 6.2 ± .2 6.7 ± .3 7.1 ± .2
Real 56.5 ± .2 60.9 ± .2 62.0 ± .1 60.3 ± .2 64.2 ± .2 65.9 ± .2 70.0 ± .2 71.8 ± .2 73.8 ± .2
Sketch 41.3 ± .2 43.6 ± .2 44.4 ± .2 43.6 ± .3 45.4 ± .4 46.9 ± .3 46.2 ± .3 49.9 ± .3 52.6 ± .2
Avg. 35.8 ± .2 38.4 ± .2 39.5 ± .2 39.4 ± .2 41.9 ± .3 43.2 ± .2 42.4 ± .2 45.2 ± .2 46.9 ± .2

D
ig

its

MNIST 64.9 ± .2 67.0 ± .5 68.1 ± .3 58.7 ± .4 60.3 ± .4 63.8 ± .3 69.6 ± .4 70.5 ± .3 71.0 ± .2
MNIST-M 30.0 ± .2 30.9 ± .4 32.1 ± .2 30.3 ± .3 31.6 ± .2 33.0 ± .3 31.5 ± .3 33.9 ± .2 36.0 ± .1
SVHN 36.1 ± .3 38.3 ± .5 41.0 ± .2 21.7 ± .3 25.9 ± .4 28.4 ± .3 37.4 ± .5 39.6 ± .3 43.7 ± .2
SYN 60.5 ± .3 62.6 ± .1 65.0 ± .2 54.3 ± .4 57.0 ± .4 59.9 ± .3 61.2 ± .3 63.9 ± .2 66.8 ± .3
Avg. 47.9 ± .3 49.7 ± .4 51.6 ± .2 41.2 ± .3 43.7 ± .4 46.3 ± .3 49.9 ± .4 52.0 ± .3 54.4 ± .2
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A.3 IMBALANCED DATASET DISTRIBUTION

Figure 5 visualizes the dataset distributions for all benchmarks except Digits, which has a balanced
distribution of 6,000 images per domain. Imbalanced dataset distribution is indeed a significant
practical concern, particularly in ensuring the adequate training of domain experts. In our frame-
work, domain experts are implemented as lightweight adapters consisting of a two-layer fully con-
nected network rather than large-scale deep neural networks. This design allows these adapters to
be effectively trained even in domains with only a few hundred images. Our experiments on bench-
marks such as Terra Incognita, NICO++, and DomainNet demonstrate strong performance despite
the presence of imbalanced distributions. For example, our framework achieves an average accuracy
of 85.3% on NICO++ and 50.9% on DomainNet. While our approach does not explicitly address
dataset imbalance, these results suggest that the framework is inherently robust to such challenges.
In future work, we aim to extend the framework to more effectively address imbalance problems,
tailoring it explicitly to such scenarios.

Art
Cartoon

 Photo
 Sketch

PACS

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
r o

f I
m

ag
es

2048
2344

1670

3929

Artist
ic

Clipart
Product

RealWorld

OfficeHome

0

1000

2000

3000

4000

2427

4365 4439 4357

Caltech
LabelMe

Pascal Sun

VLCS

0

1000

2000

3000

4000

5000

6000

2406

4515

5739 5579

L38 L43 L46
L100

Terra Incognita

0

2000

4000

6000

8000

10000

N
um

be
r o

f I
m

ag
es

9736

3970

5883

4741

Autumn Dim Grass
 Outdoor

 Rock
 Water

NICO++

0

2500

5000

7500

10000

12500

15000

17500

20000

9094

12489

20327

16690

11064

19202

Clipart

Infograph
Painting

QuickdrawReal
Sketch

DomainNet

0

25000

50000

75000

100000

125000

150000

175000

48833 53201

75759

172500 175327

70386

Figure 5: Dataset Distribution for PACS, OfficeHome, VLCS, Terra, NICO++, and DomainNet.
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A.4 FURTHER EXPERIMENTS COMPARISON

Table 8 presents evaluation results across all benchmarks, comparing BOLD with CLIP-
LinearProble (CLIP-LP) (Radford et al., 2021), CLIP-Adapter (CLIP-A) Gao et al. (2024),
CoOp Zhou et al. (2022c), and CoCoOp (Zhou et al., 2022b). All experimental settings align with
those discussed in the main paper. These evaluations were not included in the main paper because the
listed baselines are CLIP-based fine-tuning methods. Compared to the baselines in the main paper,
these methods utilize backbones with more parameters and are pretrained on larger datasets, making
direct comparisons less fair. As shown in Table 8, despite having fewer parameters, BOLD achieves
performance comparable to these CLIP-based fine-tuning methods across most benchmarks. No-
tably, on benchmarks like NICO++ and DomainNet, BOLD even outperforms these methods. This
further highlights the effectiveness of BOLD in leveraging online knowledge distillation to integrate
both domain-invariant and domain-specific knowledge.

Table 8: Leave-one-domain-out accuracies on VLCS, Terra Incognita, NICO++, DomainNet and
Digits datasets for various CLIP-based fine-tuning approaches.

CLIP-LP CLIP-A CoOp CoCoOp BOLD

PA
C

S

Art 88.6 ± .3 93.3 ± .1 89.4 ± .3 93.3 ± .5 88.1 ± .2
Cartoon 89.6 ± .3 94.1 ± .1 92.7 ± .3 94.2 ± .1 86.9 ± .3
Photo 98.5 ± .5 99.5 ± .0 98.8 ± .2 99.2 ± .3 97.9 ± .2
Sketch 79.7 ± .3 82.2 ± .2 82.1 ± .4 78.8 ± .1 78.8 ± .3
Avg. 89.1 ± .5 92.3 ± .1 90.7 ± .3 91.4 ± .4 87.9 ± .3

O
ffi

ce
H

om
e Artistic 64.7 ± .4 70.5 ± .2 69.2 ± .3 71.4 ± .3 69.7 ± .2

Clipart 51.7 ± .3 56.3 ± .1 54.8 ± .3 56.0 ± .2 58.9 ± .3
Product 80.0 ± .1 83.1 ± .1 82.1 ± .0 84.6 ± .2 80.1 ± .2
RealWorld 80.0 ± .1 83.8 ± .3 81.6 ± .1 83.6 ± .1 83.3 ± .2
Avg. 69.1 ± .4 73.4 ± .2 71.9 ± .2 73.9 ± .2 73.0 ± .2

V
L

C
S

Caltech 98.9 ± .3 100.0 ± .0 98.2 ± .3 100.0 ± .0 99.5 ± .2
LabelMe 62.1 ± .4 60.0 ± .1 59.1 ± .2 69.6 ± .5 68.2 ± .3
Pascal 83.2 ± .5 84.0 ± .2 80.0 ± .2 83.7 ± .3 83.5 ± .3
Sun 76.3 ± .4 76.5 ± .2 73.1 ± .1 75.5 ± .3 71.7 ± .2
Avg. 80.1 ± .5 80.1 ± .1 77.6 ± .2 82.2 ± .3 80.7 ± .2

Te
rr

a

L38 35.3 ± .4 32.6 ± .5 34.0 ± .4 31.2 ± .3 38.3 ± .3
L43 46.2 ± .3 44.4 ± .1 44.9 ± .4 42.9 ± .3 41.2 ± .2
L46 32.1 ± .4 31.6 ± .3 33.7 ± .2 32.5 ± .3 31.5 ± .2
L100 27.5 ± .1 26.2 ± .3 28.5 ± .1 26.8 ± .4 28.1 ± .2
Avg. 35.3 ± .3 33.7 ± .3 35.3 ± .3 33.4 ± .3 34.8 ± .2

D
ig

its

MNIST 67.9 ± .5 63.7 ± .3 68.6 ± .4 61.3 ± .4 74.3 ± .3
MNIST-M 48.9 ± .4 37.1 ± .3 48.1 ± .4 39.2 ± .4 43.2 ± .3
SVHN 38.9 ± .3 32.8 ± .1 36.7 ± .4 34.7 ± .4 34.3 ± .2
SYN 65.2 ± .2 66.4 ± .5 65.7 ± .3 64.9 ± .3 64.5 ± .3
Avg. 55.2 ± .3 50.0 ± .3 54.8 ± .4 49.5 ± .4 54.1 ± .3

N
IC

O
++

Autumn 85.1 ± .1 85.2 ± .2 85.6 ± .1 85.9 ± .2 86.9 ± .4
Dim 79.6 ± .2 80.8 ± .2 80.9 ± .2 81.3 ± .2 81.6 ± .2
Grass 87.5 ± .3 88.1 ± .2 88.1 ± .2 88.6 ± .2 88.3 ± .3
Outdoor 84.9 ± .2 85.6 ± .2 85.8 ± .1 86.7 ± .2 85.7 ± .4
Rock 85.1 ± .1 86.1 ± .1 86.6 ± .1 87.0 ± .2 87.4 ± .4
Water 78.0 ± .4 79.1 ± .3 79.7 ± .3 80.0 ± .3 81.9 ± .4
Avg. 83.4 ± .2 84.2 ± .2 84.5 ± .2 84.9 ± .2 85.3 ± .3

D
om

ai
nN

et

Clipart 59.0 ± .1 59.2 ± .1 58.3 ± .2 60.0 ± .2 64.8 ± .2
Infograph 31.9 ± .1 43.3 ± .2 41.1 ± .2 42.2 ± .1 36.7 ± .2
Painting 49.2 ± .2 58.0 ± .1 56.5 ± .2 57.6 ± .2 60.2 ± .2
Quickdraw 7.7 ± .1 8.5 ± .1 8.4 ± .1 8.3 ± .1 12.3 ± .3
Real 70.2 ± .2 78.6 ± .1 74.9 ± .3 75.9 ± .2 75.4 ± .3
Sketch 47.6 ± .1 52.9 ± .2 51.9 ± .2 50.7 ± .1 55.9 ± .4
Avg. 44.3 ± .1 50.1 ± .1 48.5 ± .2 49.1 ± .1 50.9 ± .2
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A.5 INTEGRATING DOMAIN-INVARIANT AND DOMAIN-SPECIFIC KNOWLEDGE INTO ONE
MODEL

Although the learning objectives of domain-invariant and domain-specific knowledge may appear
conflicting, they can be complementary. The embedding space of the model is multi-dimensional,
and not all dimensions need to serve both objectives simultaneously. By carefully designing the
loss function, it is possible to coordinate the coexistence of these two types of knowledge within the
embedding space (Sener & Koltun, 2018; Chen et al., 2024).
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