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ABSTRACT

Deep neural networks are known to develop similar representations for semantically
related data, even when they belong to different domains, such as an image and
its description, or the same text in different languages. We present a method for
quantitatively investigating this phenomenon by measuring the relative information
content of the representations of semantically related data and probing how it
is encoded into multiple tokens of large language models (LLMs) and vision
transformers. Looking first at how LLMs process pairs of translated sentences,
we identify inner “semantic” layers containing the most language-transferable
information. We also identify layers encoding semantic information within visual
transformers. We show that caption representations in the semantic layers of
LLMs predict visual representations of the corresponding images. We observe
significant and model-dependent information asymmetries between image and text
representations.

1 INTRODUCTION

Current research explores the conjecture that Large Language Models (LLMs) possess a universal
language of thought, enabling them to process concepts across different languages (Peng and Søgaard,
2024; Lindsey et al., 2025; Huh et al., 2024; Singh et al., 2019; Brinkmann et al., 2025). A compelling
example comes from Anthropic’s study of the Claude model (Lindsey et al., 2025), which shows
that the network occasionally reasons within a shared conceptual space across languages. Huh et al.
(2024) shows that representations of many different LLM/ViTs processing semantically equivalent
data are similar to each other, and that this form of alignment is correlated with model size. More
generally, representations in deep networks, including but not limited to LLMs, are converging,
potentially pointing toward shared underlying conceptual structures.

In this work, we seek to turn the qualitative notion that deep networks develop semantically meaningful
shared representations into quantitative measures, identifying where in the network, and to what
extent, semantic information is encoded. We can cast the identification of shared semantic content
as a problem of relative information: different networks learn distributions defined on different
data domains, such as images and captions. Those distributions loosely span a common underlying
subspace, associated with shared semantic information. The support of the different distributions does
not reduce to this subspace, but spans other subspaces, which are data and architecture specific. To
quantify relative information we need a similarity criterion that is both (i) asymmetric, as there may
be a partial order relation between models and representations (qualitatively, the subspaces which
are data specific might have different dimensions); (ii) computationally efficient for representations
of dimension of order 105 − 106, which is the typical number of neurons in a deep representation.
Cross-entropy measures how difficult it is to encode an event from a distribution into another and
would be the ideal choice, but estimating it is computationally difficult due to the dimension of the
representations. On the other hand, local methods like the average number of nearest neighbors
(Doimo et al., 2020; Huh et al., 2024) fail to capture the asymmetry between spaces. To overcome
the limitations, we employ the Information Imbalance (Glielmo et al., 2022): a method that leverages
conditional ranking to provide an asymmetric measure of relative mutual predictivity, which has been
shown to be an excellent proxy of the cross entropy (Del Tatto et al., 2024).
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We analyze the representation of translations of the same sentences in different languages, using one
of the most powerful open-source language models, DeepSeek-V3 with 671B parameters (DeepSeek-
AI et al., 2025), comparing it to the mid-sized Llama3.1-8b LLM (Meta, 2024). Moreover, we
analyze the deep representations of pairs of images and of human-generated descriptions, and of pairs
of images depicting the same object, with the goal of capturing the alignment between image and
caption representations in different architectures and the relative predictive power of images and texts.
As visual models, we employ image-gpt-large (Chen et al., 2020) and DinoV2-large (Oquab et al.,
2024).

Our main contributions are as follows:

• We analyze the DeepSeek-V3 language model and measure, layer by layer, the relative
information content between representations of sentence pairs that are translations of each
other. This reveals a broad region of the network, robust across language pairs, that
consistently encodes shared semantic content.

• We compare different summaries of the data -considering concatenations, mean and last
tokens- to quantify their impact on similarity scores. We find that considering several tokens
yields significantly stronger similarity, suggesting that semantic information is spread across
many tokens.

• We also identify semantic layers in vision transformers by processing pairs of images that
share the same class. These semantic layers are also the most informative about DeepSeek-
V3 representations of descriptive image captions, where we observe significant information
asymmetries between image and text representations.

Related work. The presence of semantic layers containing shared information in deep networks
is connected to the notion of representation alignment (Sucholutsky et al., 2024). Two different
models can be ‘stitched’ together with (Bansal et al., 2021) or without (Moschella et al., 2023) a
trainable stitching layer at several different stages of the network. For instance, two vision models
can effectively use similar low-level features (Lenc and Vedaldi, 2019). Nonetheless, the types of
features that we probe for in a semantic layer are instead abstract, encoding the collective relationships
between the input constituents, independently of the particular way in which they were expressed in
the specific input modality at disposal. The general representations we are probing lie behind the
so-called Platonic representation hypothesis, postulating that, as model quality improves, models
converge to similar representations (Huh et al., 2024). We significantly extend our understanding of
the nature of these shared representations with respect to (Huh et al., 2024), since for autoregressive
language models, the authors take the average across the token axis, reducing the dimensionality of
the problem, whereas for vision models, they only consider the “class” token. We address instead
where semantic information is encoded within the network, namely across different tokens and
different layers. LLM representations have also been studied in Cheng et al. (2025) using, among
other techniques, the Information Imbalance. This work is focused on the analysis of the last-token
representation of the same text in different models, and not on multimodal data.

Other earlier works point to deep similarities across architectures and modalities (Kornblith et al.,
2019; Sorscher et al., 2022; Maniparambil et al., 2024). Again, these works do not focus on
determining the location and nature of the shared semantic layers, nor do they include a latest-
generation, large model such as DeepSeek-V3. Our work also relates to studies that probe the extent
to which multilingual LLMs produce shared representations across languages (and whether this is due
to English acting as a pivot language), e.g. (Peng and Søgaard, 2024; Singh et al., 2019; Brinkmann
et al., 2025; Wendler et al., 2024; Zhao et al., 2024). In particular, Wendler et al. (2024) analyzes
whether multilingual models align non-English inputs by implicitly routing them through English,
focusing on logit lens experiments. To this research line, we contribute a method to compute similarity
that allows us analyze long spans of tokens and to capture asymmetry between language-specific
representations, without the use of the embedding or unembedding matrices. Finally, Chughtai et al.
(2023) also study universality in learned representations, but while their analysis is purely theoretical
and operates in controlled toy settings, our work examines analogous questions using real-world
multilingual and multimodal data on actual state-of-the-art LLMs and ViTs.
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Figure 1: Left: Information Imbalance ∆(X → Y ), ∆(Y →X), compared with Central Kernel
Alignment (CKA), for a synthetic Gaussian construction in which each index r generates a pair
(Xr, Yr) via Yr = BrXr + ε, with Xr ∼ N (0, I) and ε ∼ N (0, σ2I), in D = 10 dimensions. The
matrices Br ∈ RD×D are designed to have monotonically increasing rank—from rank one at r=1
to full rank at the final index. Right: Statistical-power benchmark on a high-dimensional Gaussian
model. We compute the Information Imbalance and CKA using only a fraction of the p components,
ranging from small subsets to the full vector for p = 103 and p = 105. In both figures, we report the
standard error computed by averaging over ten jackknife repetitions.

2 THE INFORMATION IMBALANCE

Large language models encode information in high-dimensional spaces, transforming representations
across layers to perform a task. The Platonic representation hypothesis (Huh et al., 2024) suggests
that –for relevant model sizes– representations converge to similar neighboring structures regardless
of (i) the task of the model and (ii) the specific encoding of the information. The emerging regularity
of these structures underpins the idea that meaning drives their organization, with models loosely
acting as continuous mappings from a hidden manifold in which semantically similar ideas are close
to each other. We can thus cast the convergence to a universal representation as a mutual information
problem. If we model pairs of representations as random variables with a joint probability distribution,
for instance an image and its caption, we can measure the information lost by replacing the joint
distribution p(x, y) with the product of the marginals p(x)p(y). If the distributions are independent,
observing captions is not informative of the density of images. If representations converge, knowing
a caption is highly informative and the joint distribution is not approximated well by the marginals.

Mutual information alone, however, is not sufficient to compare different models. The Platonic
hypothesis argues that convergence towards a universal set of representations depends on model
size. We therefore need to determine (i) whether the effect correlates with the specific encoding
of the information (images, captions, . . . ); (ii) whether architectural differences matter; and (iii)
how convergence changes with model size. From an information-theoretic standpoint, we need an
asymmetric measure that quantifies how much uncertainty over the representation in Y (e.g., captions)
remains once we observe the representation in X (e.g., images). In practice, estimating information-
theoretical measures which could quantify such asymmetry is difficult in the high-dimensional
spaces produced by modern models. For this reason, we turn to the Information Imbalance (Glielmo
et al., 2022; Del Tatto et al., 2024), a rank-based measure that tests whether neighbourhoods in one
representation space predict neighbourhoods in another: if representations converge, the nearest
neighbours of a point in Y should also be nearest neighbours of the corresponding point in X in the
other architecture.

Formally, the Information Imbalance compares the neighborhood structures of two representation
spaces X and Y . Given representations {zXi }Ni=1 and {zYi }Ni=1, we compute all pairwise distances
and rank points j ̸= i in each space by increasing distance, obtaining ranks rXi,j and rYi,j . The
Information Imbalance from X to Y is the normalized average rank in Y of the nearest neighbor of i
in X:

∆(X → Y ) =
2

N − 1

1

N

N∑
i=1

rYi,NN(i),

3
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where NN(i) denotes the index of the closest point to i in space X , i.e. rXi,NN(i) = 1. If neighborhoods
in X predict neighborhoods in Y , these ranks are small and ∆(X → Y ) is close to zero; if X carries
no information about Y , the expected rank is uniform and ∆(X → Y ) ≈ 1. The asymmetry
∆(X → Y ) ̸= ∆(Y → X) quantifies directional predictability across models or modalities. In
Fig. 1 (left), we show that the information imbalance captures both the strength and the direction of
the relative information across layers in a controlled synthetic setting, highlighting how asymmetry
emerges when information is compressed or degraded. We compute the Information Imbalance
∆(X→Y ) and ∆(Y →X) for a synthetic Gaussian construction in which each index r generates a
pair (Xr, Yr) via Yr = BrXr + ε, with Xr ∼ N (0, I) and ε ∼ N (0, σ2I), in D = 10 dimensions.
The Brs are defined by first choosing a target rank r ∈ {1, . . . , D} and then sampling independent
Gaussian factors Ur ∼ N (0, 1)D×r and Vr ∼ N (0, 1)r×D, with the linear map given by Br = UrVr,
which enforces a transformation of rank r. High–rank settings preserve most of the structure in
Xr, whereas low–rank settings collapse information into a low-dimensional, noisy subspace. The
information-imbalance curves reveal the resulting directional improved predictivity, showing that
∆(X → Y ) is lower than ∆(Y → X). For comparison, we also report CKA, which tracks the
overall loss of alignment between Xr and Yr but, being symmetric, cannot expose the asymmetry
captured by Information Imbalance. A complementary statistical-power benchmark is shown in Fig. 1
(right), where we compute the Information Imbalance between a gaussian vectors with p components
and a vector containing only given a fraction of them, for cases p = 103 and p = 105. For a
105-dimensional Gaussian, CKA saturates to 1 even when only a small fraction of the components
is observed, while the Information Imbalance retains discriminative resolution up to a much larger
fraction of shared features. This illustrative example echoes the findings of Huh et al. (2024), that
showed their neighborhood overlap was preferable to CKA in high dimensions.

Our representations live in extremely high-dimensional spaces, with embedding dimensions of a few
thousand across 40–1024 tokens, leading to feature spaces of size up to O(106). A central difficulty
is that it is not clear a priori which summary of these token-level representations should be used:
many studies rely on the last token or on the average, but these choices may discard information.
One advantage of the Information Imbalance is that it scales to high dimensions, allowing us to
concatenate all tokens and systematically compare different summaries without committing to a
specific one. To reduce memory usage and stabilise distance computations, we binarize activations
using the sign function—a quantization method widely used in neural network training (Hubara et al.,
2018; Guo, 2018; Hubara et al., 2016; Wang et al., 2023) and in representation analysis, where it
approximately preserves angles (Anderson and Berg, 2018) and has proved suitable for studying
the intrinsic dimension of many-token representations (Acevedo et al., 2025). Standard practice
in representation analysis involves clipping activations and normalising vectors to mitigate outlier
dimensions (Kovaleva et al., 2021; Bondarenko et al., 2023; Sun et al., 2024); binarization implicitly
performs both steps by clipping values to ±1 and enforcing equal norms. In Sec. G of the Supp. Inf.,
we show that binarized and floating-point activations yield essentially identical information-imbalance
curves, indicating that our results depend on the geometric arrangement of points—relative distances
and neighbourhoods—rather than on the precise numerical values of the activations.

3 RESULTS

3.1 THE LOCAL GEOMETRY OF LLM REPRESENTATIONS OF TRANSLATED SENTENCES
ALLOWS THE IDENTIFICATION OF SEMANTIC LAYERS

We consider sets of features Al and Bl in two different languages. The index l labels different layers
and ranges from 1 to L. If a sentence in the language associated with space Al is tokenized into
T tokens, then at each layer l, Al ∈ RT×E , where E denotes the embedding dimension of the
language model processing the sentence. What we refer to as the semantic content (or meaning) of a
sentence, is a global property, emerging from the interaction of all the symbols present in it. However,
in the deep representations the attention mechanism can move information across the tokens, and
eventually concentrate it in a specific token, as indeed happens by construction in the last layer of
causal models. One of the goals of this work is studying explicitly where the information is stored
in the deep layers. This will be addressed in Section 3.1.2. We use human-made translations from
Helsinki-NLP/opus_books. Data processing details are in Supp. Inf. C.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0

Relative depth

0.0

0.2

0.4

0.6

0.8

1.0

In
fo

rm
at

io
n

im
b
a
la

n
ce

DiÆerent languages in DeepSeek-V3

English ! Spanish

English ! Italian

Spanish ! Italian

German ! Hungarian

0.0 0.2 0.4 0.6 0.8 1.0

Relative depth

0.0

0.2

0.4

0.6

0.8

1.0

In
fo

rm
at

io
n

im
b
al

an
ce

English ! Spanish in diÆerent networks

DeepSeek-V3

BERT

Llama-1B

Llama-3B

Llama-8B

0.0 0.2 0.4 0.6 0.8 1.0

Relative depth

0.0

0.2

0.4

0.6

0.8

1.0

In
fo

rm
at

io
n

im
b
al

an
ce

DiÆerent languages in DeepSeek-V3

English ! Spanish

English ! Italian

Spanish ! Italian

German ! Hungarian

Figure 2: Panel a) Information Imbalance from English to Spanish, using representations generated
at equal depth from translated sentences of opus books, as a function of the relative network depth,
for DeepSeek-V3, BERT-multilingual and Llama3 with 1, 3, and 8 billion parameters. A smaller
value of the Information Imbalance correspond to higher predictive power. We used the concatenation
of the last 20 tokens for the computation. Panel b) Information Imbalance between equal-layer
representations of DeepSeek-V3 processing different translation pairs. For each language pair in the
legend, we show the Information Imbalance from the first language to the second. The Jackknife
error bars (five repetitions subsampling 2,000 of 5,000 sentences) are too small to show; the marker
sizes act as an upper bound on these errors.

Starting with English-Spanish translations, we compute the Information Imbalance between Al and
Bl for every layer in the network, excluding the embedding layer, using the last 20 tokens of each
representation (in Sec. 3.1.2 we study the dependence of the Information Imbalance on the number of
tokens). Note that Al and Bl are generated independently, with the network reading one language
at a time, without any specific prompt or instruction. We also verified that our conclusions are
robust to standard preprocessing and similarity metrics, such as clipping-and-normalization and the
neighborhood overlap of Huh et al. (2024), as detailed in Supp. Inf. F.

Results are shown in panel a) of Fig. 2. Since the initial layers of LLMs must process the input,
we expect the corresponding representations to be strongly language-dependent, and hence not
highly informative about each other. As we consider deeper layers, we observe that they become
progressively more informative about the deep representations in the other language. Since the
information shared by both input languages must be semantic in nature, this analysis confirms that
the data structure of deep representations seems to encode information in a universal, language-
independent manner. In the very last layers of DeepSeek-V3, we see an apparent jump in Information
Imbalance. Part of this effect is due to the fact that we report only a subsample of layers for
computational reasons, which makes the transition appear more abrupt. Beyond this sampling
artefact, the increase is expected: the final layers are driven by next-token prediction and therefore
encode strongly language-specific representations, which cannot be universal.

Note that -under the Platonic representation hypothesis- for an ideal dataset of translations, an ideal
network separately processing the sentence pairs should generate equivalent representations, namely
somewhere in the network the Information Imbalance from one language to the other should be close
to zero. Thus, we define semantic quality in terms of mutual predictability, which should manifest as
a lower Information Imbalance. In Fig. 2, for English-Spanish pairs the Information Imbalance of
DeepSeek-V3’s representations has a very broad minimum of order 0.2, roughly between relative
depths 0.4 and 0.9. This number is impressively small, considering that the dimension of the
representations which are compared is 20 · 7000 ∼ 150, 000. As a comparison, if the data were
generated by Gaussian processes, one would observe an Information Imbalance of 0.2 if approximately
20% of the features were shared between the two representations (see Fig. 1). Instead, for Llama3.1-
8b the minimum Information Imbalance is significantly higher, of order 0.3, corresponding to
approximately 15% shared features. Moreover, the minimum is narrower, around a relative depth of
0.3, suggesting that bigger and better models generate representations of higher semantic content.
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Finally, to account for different model sizes, we performed the same experiments on two additional
Llama models, observing that the minimum Information Imbalance moves downward and gets slightly
displaced toward earlier layers. Notably, this effect only takes place in inner layers, whereas the II
measured in both initial and final layers does not seem to scale down with model size. To account for
a difference in training objective, we also added a multilingual BERT model with 0.2B parameters,
also showing a qualitatively similar behavior.

We also measure the intrinsic dimensionality of DeepSeek-V3’s representations using the BID
estimator (Acevedo et al., 2025). We find two local maxima of roughly the same height that coincide
with the beginning (around 0.4) and the end (around 0.9) of the semantic region observed in Fig. 2,
see Supp. Inf., Sec. H. Although these peaks suggest that semantic encoding leverages a higher-
dimensional abstract space—echoing findings from brain-similarity studies (Antonello and Cheng,
2024)—we defer a deeper investigation of representation dimensionality to future work.

As a null hypothesis, we show in Supp. Inf. E that performing batch-shuffling on any of the datasets
leads to completely uninformative representations (Information Imbalance gives 1 for every layer),
since the semantic correspondence between translations is destroyed. Furthermore, in Supp. Inf. F
we show that our results are compatible with those obtained using the overlap neighborhood metric
from Huh et al. (2024). In Supp. Inf. D we also show that, if instead of considering many-token
representations as we do in Fig. 2, one reduces the dimensionality by averaging all tokens, as done
in Huh et al. (2024), the results are qualitatively compatible, but present significant quantitative
differences. For all layers, but most strongly on the first and the last layers, we observe that averaging
significantly increases the level of mutual predictability.

3.1.1 HETEROGENEITY OF DEEPSEEK’S REPRESENTATIONS FOR DIFFERENT LANGUAGE
PAIRS

We repeated the previous translation experiment with other language pairs, in particular English-
Italian, English-Spanish, Italian-Spanish and German-Hungarian. We considered again sentences
taken from opus books (Tiedemann, 2012) and applied the same filtering procedure regarding their
number of tokens, as in Fig. 2a).

Fig. 2b) shows the same qualitative behavior observed for English-Spanish pairs (low Information
Imbalance in the deep layers) but with major quantitative differences. Even if the training dataset
of DeepSeek-V3 contains several languages in which the network can perform well, the quality
of the representations is heterogeneous across languages, since it depends on the amount of data
seen in each language. Fig. 2b) shows that the Information Imbalance between English and Italian
is higher than between English and Spanish. A possible interpretation is that models may encode
richer Spanish representations because Spanish appears much more frequently than Italian in large
web corpora—Common Crawl, for instance, contains roughly twice as many Spanish as Italian
documents (Lan, 2025; Common Crawl Foundation, 2025). Aligned with this argument, we observe
that, even though Spanish and Italian are linguistically closer than either is to English, the Information
Imbalance between Spanish and Italian is higher than between English-Spanish or English-Italian
translation pairs. Finally, we observe that translations involving a less common language, namely
Hungarian, are associated with a significantly higher Information Imbalance (the minimum value is
0.5).

3.1.2 SEMANTIC INFORMATION IN LLMS IS SPREAD ACROSS MANY TOKENS

Having shown that long-span Information Imbalance captures the semantic similarity of sentences in
different languages, we turn our attention to the extent to which different tokens are contributing to
cross-linguistic similarity. Fig. 3a) shows the minimum Information Imbalance across all layers as a
function of the number of tokens involved in the calculation, again for English-Spanish translations
from opus books. The span is determined starting from the end and moving back towards the sentence
beginning. For both models, we see that concatenations of tokens increases mutual predictivity:
this suggests that layer summaries – for example the mean or the last tokens– do not necessarily
capture all the semantic information. In facts, if we take alignment as a proxy of semantic quality,
this suggests that semantic information is not concentrated in the last tokens, but spread over many of
them.
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Figure 3: Panel a) Minimum Information Imbalance across depth, from English to Spanish
representations, as a function of the number of tokens used in the computation, for DeepSeek-V3 and
Llama3.1-8b, when considering shorter (40 to 80 tokens, in circles) or longer (100 to 200 tokens,
in triangles) sentences. Panels b) and c) Information Imbalance from the last token to a previous
token at token-distance τ , using English sentences, computed on the representations generated by
DeepSeek-V3 in panel a) and by Llama3.1-8b in panel b), in different layers. Long-distance token-
token correlations are maximal (Information Imbalance increases most slowly) for representations on
the inner semantic layers (43 for DeepSeek-V3, 23 for Llama3.1-8b), and the effect is dramatically
stronger in DeepSeek-V3. The Jackknife error bars (five repetitions subsampling 2,000 of 5,000
sentences) are too small to show; the marker sizes act as an upper bound on these errors.

Focusing first on DeepSeek-V3, we note that, up to about 10 tokens, the results do not change much
between shorter (40 to 80 tokens) and longer (100 to 200 tokens) sentences. In both cases adding
more tokens significantly boosts the information content. However, for shorter sentences we observe
that the Information Imbalance reaches its lowest value at around 20 tokens, and it increases with
the addition of further tokens. We conjecture that this is because the last added tokens are close to
the start of the sentence, and thus they do not carry much information about the semantic content
of the whole sentence, given the autoregressive nature of the attention mechanism in the considered
language models. In contrast, for longer sentences, we observe that adding tokens leads to a rapid
decrease in Information Imbalance, which converges to very low values (around 0.05) at around 50
tokens and stays there. On the one hand, this reflects the fact that, as longer sentences contain more
information, their translation will contain more shared information at the semantic level. On the
other hand, it further corroborates that information is spread across a large number of tokens. We
observe similar trends for Llama3.1-8b Information Imbalance, although the curves are systematically
above the DeepSeek-V3 ones. Similar to what we observed in Fig 2a), this confirms that bigger and
better performing models generate representations that align better and, potentially, of better quality,
capturing deep semantic similarity across different languages. This result shows that not every token
contributes homogeneously to the semantic similarity between representations, and thus this analysis
suggests to take the concatenation of roughly the last 20 tokens as representative of the sentence
content.

3.1.3 INNER REPRESENTATIONS HAVE LONGER-RANGE CORRELATIONS

The previous analysis shows that considering several tokens improves alignment across different
languages One wonders if the activations of the tokens in those layers are uncorrelated or not. If
activations were independent, one could argue that different tokens would be associated to different
“directions” in semantic space. If they are correlated, this would suggest that the model is building
a joint semantic representation of sentences spreading its information across its component tokens.
We address this question by measuring how informative two distinct tokens of the same sentence
are about each other. Fig. 3 (panels b) and c)) shows how much the Information Imbalance between
two token positions depends on their distance, for sentences in English. Concretely, we measure
∆(T → T − τ), the Information Imbalance between the token at position T , and tokens at position
T − τ , for τ = 1, 2, .... We report this measure for the first and last layers, as well as an intermediate
layer from the semantic region (layers 43 of DeepSeek-V3 and 23 of Llama3.1-8b, respectively). For
both LLMs, the Information Imbalance rapidly grows as a function of τ for the initial layers and
saturates to 1, clearly showing that the first layer is short-range correlated. For the deeper layers that
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were shown in Fig. 2 to associate to the phase of shared cross-linguistic information, the Information
Imbalance exhibits the slowest growth, meaning that far away tokens are predictive about each other,
i.e., in these layers the information is mostly shared between tokens. DeepSeek’s deep representations
have notably lower Information Imbalance across tokens than Llama3.1-8b’s, hinting at a connection
between (i) the quality of the semantic representations in terms of token alignments and (ii) the
magnitude and the span of long-distance correlations. A clear separation in effect strength between
the intermediate semantic layer and the last layer (61 for DeepSeek-V3, 32 for Llama3.1-8b) is
moreover only present for DeepSeek-V3. Still, even for DeepSeek-V3 the last layer has Information
Imbalance values clearly below those of the first layer, suggesting that putatively, while the last
layer is optimized to write the output, it still carries semantic content. To investigate how semantic
information is distributed across tokens and whether causal asymmetries differ across languages, we
conduct a detailed token-level analysis reported in Appendix I.

3.2 IMAGES SHARING HIGH LEVEL SEMANTICS

We extend the analysis to pairs of images and measure how vision transformers (ViTs) capture
semantic information for two systems: image-gpt (Chen et al., 2020) and DinoV2 (Oquab et al.,
2024). Image-gpt performs next-token prediction after it (i) down-scales the images; (ii) unrolls them,
juxtaposing the rows; (iii) quantizes the colors. It mimics the strategy of LLMs: the last layers must
perform next-token prediction; previous work suggests that semantics appears in the middle Chen
et al. (2020). DinoV2 encodes salient features. It trains a student network to mimic its teacher and
reconstruct different instances of the same image. The final layer should be the most semantically
rich: its output is the input to downstream tasks such as depth estimation, image segmentation, and
instance retrieval.

We first compare representations for pairs of images from the Imagenet1k dataset (Deng et al., 2009).
Each couple shares the same class, which we take as a proxy of similar semantics: we process the
pairs of instances with the same architecture and compute the Information Imbalance on a random
subset of 2500 same-class pairs of images, which we sample without repetition. We replicate the
procedure five times to quantify uncertainty. We report the results in the left panel of Fig. 4. As
the assignment of same-pair images to two spaces used to compute the Information Imbalance is
arbitrary, we report the average of Information Imbalance in the two directions. The minimum of the
Information Imbalance is in the middle for image-gpt and at the end for DinoV2, consistently with
previous work (Valeriani et al., 2023). The Information Imbalance is lower for DinoV2 (≈ 0.43):
this would correspond to roughly 10% shared features in the Gaussian case, see Fig. 1.

3.3 IMAGES AND CAPTIONS: MULTIMODAL DATA SHARING SEMANTIC CONTENT

Image-caption pairs encode the same semantic content in different modalities: we are interested in
their representations as semantics must play a key role in alignment. We process text with DeepSeek-
V3 and images with DinoV2 and image-gpt. The dataset is flickr30k (Young et al., 2014): it contains
pairs of images and captions; the captions are the concatenations of five different human-generated
descriptions. We next repeat the analysis of Fig. 3a), estimating the minimum Information Imbalance
between the image transformer and DeepSeek-V3 as a function of the number of image tokens
concatenated from the end of the sequence. For DeepSeekV3, we fix the token window to 9, which
corresponds to the point where the steep decrease of Information Imbalance observed in Fig. 3a)
essentially saturates. We find that, for both DinoV2 and image-gpt, it is necessary to concatenate the
last 200 tokens to capture the relevant shared information. Results obtained with shorter windows
(last 50 tokens) and with mean-token are reported for comparison in Supp. Inf., Sec. K.

In Fig. 4 we report the Information Imbalance between layer 52 of DeepSeek-V3 (captions), DinoV2
and image-gpt (images). We select layer 52 of DeepSeek-V3 because it is a layer in which the
representations of text in different languages is highly mutually predictive, see Fig. 2. We recover
the exact same semantic regions provided by the analysis of the image-image pairs: towards the
end for DinoV2 and in the middle for image-gpt. DinoV2 has a lower Information Imbalance of
0.4. Using the Gaussian process as a reference (see Fig. 1), this would correspond to approximately
10% of shared features. The minimum Information Imbalance for image-gpt is ≈ 0.6, corresponding
to 5% of shared features. The dashed lines in Fig. 4 report the Information Imbalance from the
image to the text representation. Remarkably, for the image-gpt model the Information Imbalance
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Figure 4: Panel a) Information Imbalance for image pairs from the Imagenet1k dataset. We sample
2500 pairs of images from the same class at random; averaging over five replications. We report
the mean and standard deviation. Panel b) Information Imbalance between image and caption
representations on the flickr30k dataset. Images are encoded using DinoV2 and image-gpt-large,
while captions are processed with DeepSeek-V3. We report the imbalance as a function of the relative
depth in the vision transformer, using the 52nd layer of DeepSeek-V3 (inside the semantic region)
for captions. Results are averaged over 5000 samples, with uncertainty estimated via bootstrapping
(100 replicas of 200 samples each). Dotted lines indicate information flow from caption to image;
dashed lines, from image to caption.

is considerably larger than in the text-to-image direction. In particular, the minimum value of the
Information Imbalance is ≈ 0.7. The difference between the Information Imbalance in the two
direction is significantly higher than the error bars estimated by bootstrap, indicating that the effect
is statistically significant. This difference is likely due to the better quality of the DeepSeek-V3
representations. The asymmetry in the Information Imbalance is reversed for the DinoV2 model. In
this case the image representation predicts the text representation marginally better than the reverse.
This can be due to the fact that DinoV2 is explicitly trained to extract semantically meaningful visual
features, and indeed the largest asymmetry is observed in the last layer.

To directly test whether joint text–image training facilitates cross-modal alignment, we performed a
set of experiments with the ViT-L/14 visual encoder of the multimodal CLIP system (Radford et al.,
2021) on the same flickr30k dataset (Supp. Inf., Sec. K). We computed the Information Imbalance
between CLIP image representations and DeepSeek-V3 text representations and compared it with the
DinoV2–DeepSeek-V3 baseline. We found that the DeepSeekV3-CLIP Image Information Imbalance
reaches a minimum of approximately 0.3 (≈ 15% of shared features), which is lower than the
minimum Information Imbalance observed for DinoV3-DeepSeeV3, indicating that CLIP’s visual
encoder aligns more closely to the text semantics than a purely visual model of comparable capacity.

4 LIMITATIONS

It would be interesting to extend our analyses to a further variety of models of intermediate sizes
and diverse architectures, including diffusion models, for example quantifying the depth and the
length of the semantic regions found as a function of the number of parameters in the model, and
to consider models that specifically target multilinguality (Martins et al., 2025; Üstün et al., 2024).
In our experiments with translations, we used human translations from opus books (Tiedemann,
2012), in which the different language pairs may correspond to translations from different novels,
introducing an extra source of variation not taken into account in our analysis. We explicitly avoided
using LLMs to generate the translations to avoid the introduction of biases in the analyses. Indeed,
we found that, for the case of English-Italian, DeepSeek-generated translations have more similar
representations than those obtained from opus books. We worked with a limited number of language
pairs, that allowed us to spot interesting heterogeneities across representations, and to propose
some plausible interpretations on why they appear. We leave for future work a detailed quantitative
analysis solely dedicated to the influence of language heterogeneity in the mutual information
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content of representations. For example, fixing English as a pivot language and then systematically
considering different translations of the same English text into languages with different online
presence, and of different degree of relatedness. Finally, it would also be important to extend our
analysis to embedding models trained specifically for cross-lingual retrieval, in order to assess whether
architectures optimized for cross-lingual alignment exhibit different patterns of semantic convergence
than general-purpose LLMs.

5 CONCLUSION

Through a novel application of the Information Imbalance measure (Glielmo et al., 2022), we showed
that DeepSeek-V3, the largest publicly available LLM, developed an internal processing phase in
which different inputs that share the same semantics, such as translations and image-caption pairs, are
reflected in representations that are extremely similar. We further ascertained that, on these “semantic”
layers, long token spans meaningfully contribute to the representation. Several of the patterns we
observed in DeepSeek-V3 also emerge in the medium-sized Llama3.1-8b model, but in a weaker
manner, suggesting that deep semantic processing is a hallmark of better models. We also analyzed
visual processing models, finding again the presence of layers that capture deeper semantic similarity,
and whose position depends on the objective the models are trained upon. DeepSeek-V3 textual
representations and vision transformer visual representations of the same concepts are most strongly
aligned in the respective semantic layers.

Our work supports the hypothesis that, as deep models improve, they converge towards shared
representations of the world (Huh et al., 2024). We took a first step away from simply verifying that
such representations exist, towards characterizing their nature, by precisely quantifying the degree of
shared information, localizing where they occur in different networks and determining how they are
synthesized from composite inputs. Future research, besides extending the empirical coverage of
our investigation, should further increase the resolution of the measurements, allowing us to go from
observing the holistic behavior of a model with respect to a data set to a full characterization of how
semantic representations are constructed given each specific input instance.

6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our experiments employ publicly available datasets
and open-source models (under their respective licenses). We are not aware of any ethical concerns.
To the contrary, by providing new tools to understand the inner workings of LLMs and other AI
systems, we hope to contribute to a safer and more transparent AI.

7 REPRODUCIBILITY STATEMENTS

We describe all model configurations, datasets, and computational settings in the main text and
supplementary material to enable independent verification. Upon acceptance, we will release the full
source code and instructions in a public repository to facilitate reproducibility.
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Supplementary Information

A COMPUTE RESOURCES

We run DeepSeek-V3 on a cluster of 16 H100 GPUs (80GB each), using the SGLang frame-
work (Zheng et al., 2024). For LLama3.1-8B, a single GPU from a DGX H100 system is sufficient.
For our experiments on text and image-caption pairs, 1TB of RAM is enough, moving to the GPU a
couple of layers at a time. Image-Image experiments are done using up to five NVIDIA A30 GPUs
and 500 GB of RAM.

B ASSETS

opus books: https://huggingface.co/datasets/Helsinki-NLP/opus_books ; licence: CC BY 4.0.

DeepSeek-V3: https://huggingface.co/deepseek-ai/DeepSeek-V3 ; Model licence.

Llama3.2-1b: https://huggingface.co/meta-llama/Llama-3.2-1B ; license: llama3.2

Llama3.2-3b: https://huggingface.co/meta-llama/Llama-3.2-3B ; license: llama 3.2

Llama3.1-8b: https://huggingface.co/meta-llama/Llama3.1-8b-3.1-8B ; license: llama3.1

BERT: https://huggingface.co/google-bert/bert-base-multilingual-cased ; licence: apache-2.0

Flickr dataset: https://huggingface.co/datasets/clip-benchmark/wds_flickr30k ; subject to flickr terms
of use.

Imagenet: https://image-net.org/ ; terms of access: https://image-net.org/download.php

DinoV2: https://github.com/facebookresearch/dinov2/tree/main ; licence: Apache 2.0

image-gpt-large: https://github.com/openai/image-gpt ; licence: Modified MIT

C TRANSLATIONS DATASET

We filter pairs of translated sentences from Helsinki-NLP/opus_books (Tiedemann, 2012) that have
a number of tokens between 40 and 80, avoiding trivial sentences and incorrect translations, while
keeping roughly 5000 thousands sentences of comparable length. We avoid truncating the translated
sentences, preserving their full meaning. We excluded the last two tokens of each sentence from the
analysis, as they consistently correspond to punctuation marks (e.g., a period or a period followed by
a quotation mark), which introduce trivial similarities in the representations.

D AVERAGE TOKEN COMPARISON

Fig. 5 shows the Information Imbalance between DeepSeek-V3 representations of English and
Spanish translations, using 20 tokens of each sentence, with and without taking the average over
the token axis. Note that for the case of concatenated tokens, the curve is the same as in Fig. 2
of the main article, for direct comparison. When taking the average, we use the L2 distance and
we clip and normalize the inputs, as Huh et al. (2024). When using all 20 tokens we binarize
activations and we use the Hamming distance, as in the main text. While the results are qualitatively
consistent, they differ significantly in quantitative terms. Across all layers—most notably in the
first and last—averaging leads to a marked increase in mutual predictability (lower Information
Imbalance), due to the elimination of positional information, which is most relevant in the initial and
last layers, i.e., before and after the semantic region.
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Figure 5: Information Imbalance between English (en) and Spanish (es) representations generated by
DeepSeek-V3’s as a function of depth. ‘Concat’ stands for the results obtain with the concatenation
of the 20 last tokens of each sentence. ‘Average’ stands for the average of the same 20 tokens. The
standard deviation is computed with a Jackknife procedure, subsampling 2000 samples out of 5000
five times, and it is smaller than marker size.

E MISALIGNMENT OF TRANSLATIONS ERASES SEMANTIC SIMILARITY

As a consistency check, Fig 6 shows the Information Imbalance for DeepSeek-V3’s and Llama3.1-
8b representations using misaligned translations, namely performing a batch-shuffle in one of the
datasets. Since the semantic correspondence between sentences is destroyed, the representations are
not informative about each other, and thus the Information Imbalance is close to one, for all layers.
The same occurs with misaligned image pairs, Information Imbalance being around one when pairs
do not share the same class, for all layers.
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LLama3.1-8b[en] --> LLama3.1-8b[es]
LLama3.1-8b[es] --> LLama3.1-8b[en]

Figure 6: Information Imbalance between English (en) and Spanish (es) representations generated
by DeepSeek-V3 and Llama3.1-8b, for the "non-informative case", namely a misaligned dataset in
which we batch-shuffle the Spanish translations. The (hardly visible) shaded area corresponds to one
standard deviation, computed with a Jackknife procedure subsampling 2000 samples out of 5000.

F COMPARISON BETWEEN NEIGHBORHOOD OVERLAP AND INFORMATION
IMBALANCE

To quantify representation similarity, Huh et al. (2024) used the neighborhood overlap, namely the
average fraction of shared k nearest neighbors. In particular, they found this metric to be more
suitable than linear metrics, like Central Kernel Alignment (CKA), providing a stronger signal. In
this section we compare our results from Fig. 1.a) of the main article with the neighborhood overlap
computed on the same representations. To measure the neighborhood overlap we follow the pipeline
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of Huh et al. (2024), namely we clip the activations using quantiles of order 0.05% and 95%, we
normalize each vector, and we measure the distances between them with the L2 metric. Fig 7 shows
that the neighborhood overlap between representations increases and reaches a plateau concurrently
with the local minimum plateau of the Information Imbalance, thus both methods give qualitative
the same results. We note that the neighborhood overlap, being defined between 0 and 1, here only
reaches a value around 0.2. Similar small values were also observed and even highlighted in Huh et al.
(2024), although the authors do not provide arguments to understand the reasons behind this property.
We note that if the k-th neighbor of representation A is instead the k+1 neighbor of representation B,
automatically that point counts as outside the k-neighborhood, even if it is extremely close, rendering
the alignment value very low. This effect doesn’t take place in the Information Imbalance, which,
instead of evaluating if k neighbors are shared, measures what is the rank in space B of k neighbors
in space A, and vice-versa.
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DeepSeek-V3

Information Imbalance (en --> es)
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Alignment(es,en)

Figure 7: Information Imbalance between English (en) and Spanish (es) representations generated by
DeepSeek-V3 from Fig. 2 of the main article, compared with the neighborhood alignment metric
from Huh et al. (2024). The (hardly visible) shaded area corresponds to one standard deviation,
computed with a Jackknife procedure subsampling 2000 samples out of 5000.

G BINARIZING HIGH DIMENSIONAL REPRESENTATIONS HAS A MARGINAL
EFFECT ON THE INFORMATION IMBALANCE

Fig. 8 includes again, as reference, the Information Imbalance between DeepSeek-V3 representations
of English and Spanish translations, using the last 20 tokens of each sentence, binarizing the activa-
tions and using the Hamming distance, (results of Fig. 2 from main text). To investigate the effects
of binarizing the representations, we show the Information Imbalance using the same data where,
instead of taking the sign of the activations to generate binary variables, we clip them using quantiles
of order 0.05% and 95%, we normalize vectors to unit norm, and we use the L2 distance, similar
to Huh et al. (2024). Remarkably, binarizing has marginal effects on the Information Imbalance
computed with full precision (for DeepSeek-V3’s representations, BF16), which is possible in this
setup given that we are working with 20 tokens.
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Figure 8: In circles, Information Imbalance between English (en) and Spanish (es) representations
generated by DeepSeek-V3, binarizing the activations and using the Hamming distance. In crosses,
the Information Imbalance clipping and normalizing activations, and using the L2 metric. The
standard deviation, computed with a Jackknife procedure subsampling 2000 samples out of 5000, is
smaller than marker size.

H BINARY INTRINSIC DIMENSION OF DEEPSEEK-V3 REPRESENTATIONS

The Binary Intrinsic Dimension (BID) is defined in Acevedo et al. (2025) through the probability
distribution of Hamming distances between samples of binary high dimensional vectors. If we
consider N -dimensional vectors σ with components σi, i = 1, ..., N uniformly distributed in
{0, 1}, then the probability of observing Hamming distance r between any two samples is exactly
P0(r) =

1
2N

(
N
r

)
. The BID is defined as the coefficient d0 of the following Ansatz:

P (r) =
1

2(d0+d1r)

(
N

d0 + d1r

)
, (1)

where d1 is a second variational parameter. We perform a second-order optimization of the Kullback-
Leibler divergence between the model equation 1 and the empirical distribution of distances, comput-
ing numerical derivatives with JAX’s autodiff. For more details on the BID computation, see Acevedo
et al. (2025). We used hyperparameters αmin = 0.15, and αmax = 0.4. Fig. 9 shows the Binary
Intrinsic Dimension (BID) of DeepSeek-V3’s representations processing English sentences from opus
books with length between 40 and 80 tokens. We take the last 10 and the last 20 tokens of the bina-
rized representation, and we find two dimensionality peaks that roughly coincide with the beginning
(around 0.4) and the end (around 0.9) of the semantic region found in Fig. 2. These results align with
recent evidence of abstract spaces presenting dimensionality peaks in deep representations (Cheng
et al., 2025; Antonello and Cheng, 2024). The missing points at the beginning of the blue curve
correspond to failed optimizations due to the strong multimodality of the empirical distribution of
distances.
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Figure 9: Binary Intrinsic Dimension (BID) normalized by the number of bits (neurons), in the
representation generated by DeepSeek-V3 processing English text. In the legend, n_tokens stands
for the number of tokens concatenated in the representation, starting from the last. Shaded area
corresponds to one standard deviation, computed with a Jackknife procedure, subsampling 2000
samples out of 5000, ten times.

I TOKEN-LEVEL INFORMATION IMBALANCE AND CAUSAL ASYMMETRY
ACROSS LANGUAGES

0 5 10 15 20 25 30 35

ø

0.0

0.2

0.4

0.6

0.8

1.0

T
ok

en
-T

ok
en

II

English

Spanish

Italian

German

Hungarian

0.0 0.2 0.4 0.6 0.8 1.0

Relative depth

°0.04

°0.02

0.00

0.02

0.04

A
sy

m
m

et
ry

A

English

Spanish

Italian

German

Hungarian

Figure 10: Panel a) In solid markers, the “backward” Information Imbalance, i.e., from the last token
to a previous token at token-distance τ , as a function of τ , for DeepSeek-V3 representations at layer 43
and sentences in several languages. In dashed lines, the reciprocal “forward” Information Imbalance.
Panel b) Asymmetry A between forward and backward Information Imbalance, averaged over τ , as
a function of DeepSeek’s relative depth. The Jackknife error bars (five repetitions subsampling 1,000
of 2,000 sentences) are too small to show; the marker sizes act as an upper bound on these errors.

Fig. 10a) focuses on a semantic layer from DeepSeek-V3, and it shows token-token Information
Imbalance as a function of token distance for several languages. We present the Information Imbalance
in both directions: The "backward" Information Imbalance, from the last token, T , to a previous token
at distance τ , ∆(T → T−τ), and the reciprocal or “forward” Information Imbalance, ∆(T−τ → T ).
We observe that English deep representations are much more correlated than the representations in
the other languages. We conjecture that this is a sign of better quality, consistent with Fig. 2b), where
the presence of English in a pair results in the best predictability (lowest Information Imbalance
scores). At the opposite extreme, note that single-language German and Hungarian representations
are the least correlated in Fig. 10a), and the German-Hungarian translations have indeed the worst
mutual predictability score (highest Information Imbalance) in Fig. 2. Furthermore, Spanish and
Italian have the second and third most correlated inner representations in Fig. 10a), coherently with
the profiles of the English-Spanish and English-Italian pairs in Fig. 2b) (lowest and second lowest
Information Imbalance values, respectively).
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Finally, Fig. 10a) shows that, for English, as the distance between tokens τ increases, the relative
information content between past and future tokens gets increasingly asymmetric. In particular,
earlier tokens are more informative of the last one than the other way around. This could be
expected, since causal models like DeepSeek-V3 are trained to predict future tokens, and text itself
has a natural causal asymmetry. Nonetheless, Fig. 10a) shows that this past-to-future asymmetry
is heterogeneous across languages. To further study the effect, we first define the asymmetry as
A = ∆(T → T − τ)−∆(T − τ → T ). When A is positive, the earlier token predicts the last one
more than the latter predicts the earlier token, whereas a negative A has the opposite interpretation.
Fig. 10b) shows the information asymmetry A of DeepSeek-V3 as a function of its layers for the
all languages we studied. For initial layers (i.e., relative depth less than roughly 0.4, see Fig. 2), we
observe that all representations have a comparable amount of causal asymmetry. Instead, for semantic
layers there are strong heterogeneities between languages. English remains causally asymmetric until
the last few layers of the network, while the other languages present earlier negative values of A.
Intriguingly, Spanish and Italian, the two languages with the lowest Information Imbalance values
from English, have a later dip in A compared to German and Hungarian. These results call for further
experiments to study possible relationships between these observed information asymmetries, model
performance, and linguistic structure. We leave them as material for future research. In Sec. J we
study this information asymmetry for a non autoregressive model.

J BERT’S FORWARD-BACKWARD ASYMMETRY PROFILE

In this section we study, the asymmetry in II between two tokens at distance τ , A = ∆(T →
T − τ)−∆(T − τ → T ), where T is the last token, to see if the observed asymmetries are similar
to those of DeepSeek-V3 (Fig. 10b). Fig. 11 shows the asymmetry A for similar English sentences
from opus books as those used in Fig. 10b), processed by BERT. Contrary to what was observed in
Fig. 10b), BERT’s representations present a positive asymmetry close to the initial and final layers,
and negative asymmetry in central layers. This strong difference of asymmetry profiles opens the
door for further studies on the asymmetry of correlations in several different models and architectures,
and its potential relations to downstream tasks.
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Figure 11: Asymmetry A between forward and backward Information Imbalance, averaged over
token all distances as a function of BERT’s relative depth. The shaded area corresponds to one
standard deviation computed subsampling half out of 7500 samples, five times.

K IMAGE-CAPTIONS PAIRS

In Fig. 12, we report additional results for the image-caption experiments: we consider different
windows of tokens, using the last 200 tokens for images –as we do in the main text– vs a smaller
windows of 50 tokens and the average. In general, results are qualitatively similar across setups. We
observe that the choice of the number of tokens comes with a trade-off: more tokens convey more
information; at the same time, having more tokens implies working with bigger objects.
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Figure 12: Information Imbalance for image-caption pairs. We consider three scenarios: (i) 50 tokens;
(ii) 200 tokens; and (iii) the mean token. The results are qualitatively similar.

In Fig. 13, we show how the alignment between models changes when the number of tokens is
increased: on the left, we report the case for DinoV2, comparing it with DeepSeek-V3, in the
image-caption case, and with itself for the pairs of images. On the right, we report the same analysis
for image-gpt.

Finally, we performed three analyses on the flickr30k image–caption pairs to probe how CLIP’s joint
training influences representational alignment.

1. DinoV2 → CLIP-Image: comparing a purely visual model with CLIP’s visual branch.

2. DeepSeek-V3 → CLIP-Text: comparing a purely textual model with CLIP’s text branch.

3. DeepSeek-V3 → CLIP-Image: comparing a purely textual model with CLIP’s visual branch.

Results are in Fig. 14. In all cases we compute the Information Imbalance in both directions (from the
source model to the target and vice-versa), always indicating the direction in the figure legends. The
DeepSeek-V3 → CLIP-Image comparison directly tests whether a visual encoder trained to align with
text predicts textual representations better than a unimodal vision model. Its minimum Information
Imbalance is approximately 0.3 (≈ 15% shared features), which is lower than the ≈ 0.40 minimum
for DeepSeek-V3 → DinoV2 (main text Fig. 4). The DinoV2 → CLIP-Image Information Imbalance
remains extremely low (≈ 0.01) past a relative depth of ≈ 0.8, consistent with a near-identical visual
representation. Conversely, the DeepSeek-V3 → CLIP-Text Information Imbalance decreases more
gradually and stabilizes around 0.4, indicating weaker alignment of CLIP’s text branch to purely
textual models. Shaded regions in Fig. 14 show 95% bootstrap confidence intervals.
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Figure 13: Information Imbalance for varying windows of tokens. We report the minimum of the
Information Imbalance, a proxy of alignment, for growing windows of tokens. On the left, we report
the results for DinoV2 in both the image-caption (dotted blue line) and the image-image case (dashed
blue line). On the right, we report the results for the image-gpt in both the image-caption (dotted
green line) and the image-image cases (dashed green line).
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Figure 14: Information Imbalance on flickr30k involving CLIP representations. Top: DinoV2 image
vs. CLIP image. Middle: DeepSeek-V3 text (layer 52) vs. CLIP text. Bottom: DeepSeek-V3 text vs.
CLIP image (new cross-modal analysis). Lower Information Imbalance indicates stronger semantic
predictivity. Shaded areas show 95% bootstrap confidence intervals.
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