

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 A QUANTITATIVE ANALYSIS OF SEMANTIC INFORMATION IN DEEP REPRESENTATIONS OF TEXT AND IMAGES

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep neural networks are known to develop similar representations for semantically related data, even when they belong to different domains, such as an image and its description, or the same text in different languages. We present a method for quantitatively investigating this phenomenon by measuring the relative information content of the representations of semantically related data and probing how it is encoded into multiple tokens of large language models (LLMs) and vision transformers. Looking first at how LLMs process pairs of translated sentences, we identify inner “semantic” layers containing the most language-transferable information. We also identify layers encoding semantic information within visual transformers. We show that caption representations in the semantic layers of LLMs predict visual representations of the corresponding images. We observe significant and model-dependent information asymmetries between image and text representations.

1 INTRODUCTION

Current research explores the conjecture that Large Language Models (LLMs) possess a *universal language of thought*, enabling them to process concepts across different languages (Peng and Søgaard, 2024; Lindsey et al., 2025; Huh et al., 2024; Singh et al., 2019; Brinkmann et al., 2025). A compelling example comes from Anthropic’s study of the Claude model (Lindsey et al., 2025), which shows that the network occasionally reasons within a shared conceptual space across languages. Huh et al. (2024) shows that representations of many different LLM/ViT’s processing semantically equivalent data are similar to each other, and that this form of alignment is correlated with model size. More generally, representations in deep networks, including but not limited to LLMs, are converging, potentially pointing toward shared underlying conceptual structures.

In this work, we seek to turn the qualitative notion that deep networks develop semantically meaningful shared representations into quantitative measures, identifying where in the network, and to what extent, semantic information is encoded. We can cast the identification of shared semantic content as a problem of relative information: different networks learn distributions defined on different data domains, such as images and captions. Those distributions loosely span a common underlying subspace, associated with shared semantic information. The support of the different distributions does not reduce to this subspace, but spans other subspaces, which are data and architecture specific. To quantify relative information we need a similarity criterion that is both (i) asymmetric, as there may be a partial order relation between models and representations (qualitatively, the subspaces which are data specific might have different dimensions); (ii) computationally efficient for representations of dimension of order $10^5 - 10^6$, which is the typical number of neurons in a deep representation. Cross-entropy measures how difficult it is to encode an event from a distribution into another and would be the ideal choice, but estimating it is computationally difficult due to the dimension of the representations. On the other hand, local methods like the average number of nearest neighbors (Doimo et al., 2020; Huh et al., 2024) fail to capture the asymmetry between spaces. To overcome the limitations, we employ the Information Imbalance (Glielmo et al., 2022): a method that leverages conditional ranking to provide an asymmetric measure of relative mutual predictivity, which has been shown to be an excellent proxy of the cross entropy (Del Tutto et al., 2024).

¹These authors contributed equally to this work.

We analyze the representation of translations of the same sentences in different languages, using one of the most powerful open-source language models, DeepSeek-V3 with 671B parameters (DeepSeek-AI et al., 2025), comparing it to the mid-sized Llama3.1-8b LLM (Meta, 2024). Moreover, we analyze the deep representations of pairs of images and of human-generated descriptions, and of pairs of images depicting the same object, with the goal of capturing the alignment between image and caption representations in different architectures and the relative predictive power of images and texts. As visual models, we employ image-gpt-large (Chen et al., 2020) and DinoV2-large (Oquab et al., 2024).

Our main contributions are as follows:

- We analyze the DeepSeek-V3 language model and measure, layer by layer, the relative information content between representations of sentence pairs that are translations of each other. This reveals a broad region of the network, robust across language pairs, that consistently encodes shared semantic content.
- We compare different summaries of the data -considering concatenations, mean and last tokens- to quantify their impact on similarity scores. We find that considering several tokens yields significantly stronger similarity, suggesting that semantic information is spread across many tokens.
- We also identify semantic layers in vision transformers by processing pairs of images that share the same class. These semantic layers are also the most informative about DeepSeek-V3 representations of descriptive image captions, where we observe significant information asymmetries between image and text representations.

Related work. The presence of semantic layers containing shared information in deep networks is connected to the notion of representation alignment (Sucholutsky et al., 2024). Two different models can be ‘stitched’ together with (Bansal et al., 2021) or without (Moschella et al., 2023) a trainable stitching layer at several different stages of the network. For instance, two vision models can effectively use similar low-level features (Lenc and Vedaldi, 2019). Nonetheless, the types of features that we probe for in a semantic layer are instead abstract, encoding the collective relationships between the input constituents, independently of the particular way in which they were expressed in the specific input modality at disposal. The general representations we are probing lie behind the so-called *Platonic representation hypothesis*, postulating that, as model quality improves, models converge to similar representations (Huh et al., 2024). We significantly extend our understanding of the nature of these shared representations with respect to (Huh et al., 2024), since for autoregressive language models, the authors take the average across the token axis, reducing the dimensionality of the problem, whereas for vision models, they only consider the “class” token. We address instead where semantic information is encoded within the network, namely across different tokens and different layers. LLM representations have also been studied in Cheng et al. (2025) using, among other techniques, the Information Imbalance. This work is focused on the analysis of the last-token representation of the same text in different models, and not on multimodal data.

Other earlier works point to deep similarities across architectures and modalities (Kornblith et al., 2019; Sorscher et al., 2022; Maniparambil et al., 2024). Again, these works do not focus on determining the location and nature of the shared semantic layers, nor do they include a latest-generation, large model such as DeepSeek-V3. Our work also relates to studies that probe the extent to which multilingual LLMs produce shared representations across languages (and whether this is due to English acting as a pivot language), e.g. (Peng and Søgaard, 2024; Singh et al., 2019; Brinkmann et al., 2025; Wendler et al., 2024; Zhao et al., 2024). In particular, Wendler et al. (2024) analyzes whether multilingual models align non-English inputs by implicitly routing them through English, focusing on logit lens experiments. To this research line, we contribute a method to compute similarity that allows us analyze long spans of tokens and to capture asymmetry between language-specific representations, without the use of the embedding or unembedding matrices. Finally, Chughtai et al. (2023) also study universality in learned representations, but while their analysis is purely theoretical and operates in controlled toy settings, our work examines analogous questions using real-world multilingual and multimodal data on actual state-of-the-art LLMs and ViTs.

Figure 1: **Left:** Information Imbalance $\Delta(X \rightarrow Y)$, $\Delta(Y \rightarrow X)$, compared with Central Kernel Alignment (CKA), for a synthetic Gaussian construction in which each index r generates a pair (X_r, Y_r) via $Y_r = B_r X_r + \varepsilon$, with $X_r \sim \mathcal{N}(0, I)$ and $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$, in $D = 10$ dimensions. The matrices $B_r \in \mathbb{R}^{D \times D}$ are designed to have monotonically increasing rank—from rank one at $r=1$ to full rank at the final index. **Right:** Statistical-power benchmark on a high-dimensional Gaussian model. We compute the Information Imbalance and CKA using only a fraction of the p components, ranging from small subsets to the full vector for $p = 10^3$ and $p = 10^5$. In both figures, we report the standard error computed by averaging over ten jackknife repetitions.

2 THE INFORMATION IMBALANCE

Large language models encode information in high-dimensional spaces, transforming representations across layers to perform a task. The Platonic representation hypothesis (Huh et al., 2024) suggests that—for relevant model sizes—representations converge to similar neighboring structures regardless of (i) the task of the model and (ii) the specific encoding of the information. The emerging regularity of these structures underpins the idea that meaning drives their organization, with models loosely acting as continuous mappings from a hidden manifold in which semantically similar ideas are close to each other. We can thus cast the convergence to a universal representation as a mutual information problem. If we model pairs of representations as random variables with a joint probability distribution, for instance an image and its caption, we can measure the information lost by replacing the joint distribution $p(x, y)$ with the product of the marginals $p(x)p(y)$. If the distributions are independent, observing captions is not informative of the density of images. If representations converge, knowing a caption is highly informative and the joint distribution is not approximated well by the marginals.

Mutual information alone, however, is not sufficient to compare different models. The Platonic hypothesis argues that convergence towards a universal set of representations depends on model size. We therefore need to determine (i) whether the effect correlates with the specific encoding of the information (images, captions, ...); (ii) whether architectural differences matter; and (iii) how convergence changes with model size. From an information-theoretic standpoint, we need an asymmetric measure that quantifies how much uncertainty over the representation in Y (e.g., captions) remains once we observe the representation in X (e.g., images). In practice, estimating information-theoretical measures which could quantify such asymmetry is difficult in the high-dimensional spaces produced by modern models. For this reason, we turn to the Information Imbalance (Glielmo et al., 2022; Del Tutto et al., 2024), a rank-based measure that tests whether neighbourhoods in one representation space predict neighbourhoods in another: if representations converge, the nearest neighbours of a point in Y should also be nearest neighbours of the corresponding point in X in the other architecture.

Formally, the Information Imbalance compares the neighborhood structures of two representation spaces X and Y . Given representations $\{\mathbf{z}_i^X\}_{i=1}^N$ and $\{\mathbf{z}_i^Y\}_{i=1}^N$, we compute all pairwise distances and rank points $j \neq i$ in each space by increasing distance, obtaining ranks $r_{i,j}^X$ and $r_{i,j}^Y$. The Information Imbalance from X to Y is the normalized average rank in Y of the nearest neighbor of i in X :

$$\Delta(X \rightarrow Y) = \frac{2}{N-1} \frac{1}{N} \sum_{i=1}^N r_{i,\text{NN}(i)}^Y,$$

162 where $\text{NN}(i)$ denotes the index of the closest point to i in space X , i.e. $r_{i,\text{NN}(i)}^X = 1$. If neighborhoods
 163 in X predict neighborhoods in Y , these ranks are small and $\Delta(X \rightarrow Y)$ is close to zero; if X carries
 164 no information about Y , the expected rank is uniform and $\Delta(X \rightarrow Y) \approx 1$. The asymmetry
 165 $\Delta(X \rightarrow Y) \neq \Delta(Y \rightarrow X)$ quantifies directional predictability across models or modalities. In
 166 Fig. 1 (left), we show that the information imbalance captures both the strength and the direction of
 167 the relative information across layers in a controlled synthetic setting, highlighting how asymmetry
 168 emerges when information is compressed or degraded. We compute the Information Imbalance
 169 $\Delta(X \rightarrow Y)$ and $\Delta(Y \rightarrow X)$ for a synthetic Gaussian construction in which each index r generates a
 170 pair (X_r, Y_r) via $Y_r = B_r X_r + \varepsilon$, with $X_r \sim \mathcal{N}(0, I)$ and $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$, in $D = 10$ dimensions.
 171 The B_r s are defined by first choosing a target rank $r \in \{1, \dots, D\}$ and then sampling independent
 172 Gaussian factors $U_r \sim \mathcal{N}(0, 1)^{D \times r}$ and $V_r \sim \mathcal{N}(0, 1)^{r \times D}$, with the linear map given by $B_r = U_r V_r$,
 173 which enforces a transformation of rank r . High-rank settings preserve most of the structure in
 174 X_r , whereas low-rank settings collapse information into a low-dimensional, noisy subspace. The
 175 information-imbalance curves reveal the resulting *directional* improved predictivity, showing that
 176 $\Delta(X \rightarrow Y)$ is lower than $\Delta(Y \rightarrow X)$. For comparison, we also report CKA, which tracks the
 177 overall loss of alignment between X_r and Y_r but, being symmetric, cannot expose the asymmetry
 178 captured by Information Imbalance. A complementary statistical-power benchmark is shown in Fig. 1
 179 (right), where we compute the Information Imbalance between a gaussian vectors with p components
 180 and a vector containing only given a fraction of them, for cases $p = 10^3$ and $p = 10^5$. For a
 181 10^5 -dimensional Gaussian, CKA saturates to 1 even when only a small fraction of the components
 182 is observed, while the Information Imbalance retains discriminative resolution up to a much larger
 183 fraction of shared features. This illustrative example echoes the findings of Huh et al. (2024), that
 184 showed their neighborhood overlap was preferable to CKA in high dimensions.

185 Our representations live in extremely high-dimensional spaces, with embedding dimensions of a few
 186 thousand across 40–1024 tokens, leading to feature spaces of size up to $\mathcal{O}(10^6)$. A central difficulty
 187 is that it is not clear a priori which summary of these token-level representations should be used:
 188 many studies rely on the last token or on the average, but these choices may discard information.
 189 One advantage of the Information Imbalance is that it scales to high dimensions, allowing us to
 190 concatenate all tokens and systematically compare different summaries without committing to a
 191 specific one. To reduce memory usage and stabilise distance computations, we binarize activations
 192 using the sign function—a quantization method widely used in neural network training (Hubara et al.,
 193 2018; Guo, 2018; Hubara et al., 2016; Wang et al., 2023) and in representation analysis, where it
 194 approximately preserves angles (Anderson and Berg, 2018) and has proved suitable for studying
 195 the intrinsic dimension of many-token representations (Acevedo et al., 2025). Standard practice
 196 in representation analysis involves clipping activations and normalising vectors to mitigate outlier
 197 dimensions (Kovaleva et al., 2021; Bondarenko et al., 2023; Sun et al., 2024); binarization implicitly
 198 performs both steps by clipping values to ± 1 and enforcing equal norms. In Sec. G of the Supp. Inf.,
 199 we show that binarized and floating-point activations yield essentially identical information-imbalance
 200 curves, indicating that our results depend on the geometric arrangement of points—relative distances
 201 and neighbourhoods—rather than on the precise numerical values of the activations.

3 RESULTS

3.1 THE LOCAL GEOMETRY OF LLM REPRESENTATIONS OF TRANSLATED SENTENCES ALLOWS THE IDENTIFICATION OF SEMANTIC LAYERS

202 We consider sets of features A_l and B_l in two different languages. The index l labels different layers
 203 and ranges from 1 to L . If a sentence in the language associated with space A_l is tokenized into
 204 T tokens, then at each layer l , $A_l \in \mathbb{R}^{T \times E}$, where E denotes the embedding dimension of the
 205 language model processing the sentence. What we refer to as the semantic content (or meaning) of a
 206 sentence, is a global property, emerging from the interaction of all the symbols present in it. However,
 207 in the deep representations the attention mechanism can move information across the tokens, and
 208 eventually concentrate it in a specific token, as indeed happens by construction in the last layer of
 209 causal models. One of the goals of this work is studying explicitly where the information is stored
 210 in the deep layers. This will be addressed in Section 3.1.2. We use human-made translations from
 211 Helsinki-NLP/opus_books. Data processing details are in Supp. Inf. C.

Figure 2: **Panel a)** Information Imbalance from English to Spanish, using representations generated at equal depth from translated sentences of opus books, as a function of the relative network depth, for DeepSeek-V3, BERT-multilingual and Llama3 with 1, 3, and 8 billion parameters. A smaller value of the Information Imbalance correspond to higher predictive power. We used the concatenation of the last 20 tokens for the computation. **Panel b)** Information Imbalance between equal-layer representations of DeepSeek-V3 processing different translation pairs. For each language pair in the legend, we show the Information Imbalance from the first language to the second. The Jackknife error bars (five repetitions subsampling 2,000 of 5,000 sentences) are too small to show; the marker sizes act as an upper bound on these errors.

Starting with English-Spanish translations, we compute the Information Imbalance between A_l and B_l for every layer in the network, excluding the embedding layer, using the last 20 tokens of each representation (in Sec. 3.1.2 we study the dependence of the Information Imbalance on the number of tokens). Note that A_l and B_l are generated independently, with the network reading one language at a time, without any specific prompt or instruction. We also verified that our conclusions are robust to standard preprocessing and similarity metrics, such as clipping-and-normalization and the neighborhood overlap of Huh et al. (2024), as detailed in Supp. Inf. F.

Results are shown in panel a) of Fig. 2. Since the initial layers of LLMs must process the input, we expect the corresponding representations to be strongly language-dependent, and hence not highly informative about each other. As we consider deeper layers, we observe that they become progressively more informative about the deep representations in the other language. Since the information shared by both input languages must be semantic in nature, this analysis confirms that the data structure of deep representations seems to encode information in a universal, language-independent manner. In the very last layers of DeepSeek-V3, we see an apparent jump in Information Imbalance. Part of this effect is due to the fact that we report only a subsample of layers for computational reasons, which makes the transition appear more abrupt. Beyond this sampling artefact, the increase is expected: the final layers are driven by next-token prediction and therefore encode strongly language-specific representations, which cannot be universal.

Note that -under the Platonic representation hypothesis- for an ideal dataset of translations, an ideal network separately processing the sentence pairs should generate equivalent representations, namely somewhere in the network the Information Imbalance from one language to the other should be close to zero. Thus, we define semantic quality in terms of mutual predictability, which should manifest as a lower Information Imbalance. In Fig. 2, for English-Spanish pairs the Information Imbalance of DeepSeek-V3's representations has a very broad minimum of order 0.2, roughly between relative depths 0.4 and 0.9. This number is impressively small, considering that the dimension of the representations which are compared is $20 \cdot 7000 \sim 150,000$. As a comparison, if the data were generated by Gaussian processes, one would observe an Information Imbalance of 0.2 if approximately 20% of the features were shared between the two representations (see Fig. 1). Instead, for Llama3.1-8b the minimum Information Imbalance is significantly higher, of order 0.3, corresponding to approximately 15% shared features. Moreover, the minimum is narrower, around a relative depth of 0.3, suggesting that bigger and better models generate representations of higher semantic content.

Finally, to account for different model sizes, we performed the same experiments on two additional Llama models, observing that the minimum Information Imbalance moves downward and gets slightly displaced toward earlier layers. Notably, this effect only takes place in inner layers, whereas the II measured in both initial and final layers does not seem to scale down with model size. To account for a difference in training objective, we also added a multilingual BERT model with 0.2B parameters, also showing a qualitatively similar behavior.

We also measure the intrinsic dimensionality of DeepSeek-V3’s representations using the BID estimator (Acevedo et al., 2025). We find two local maxima of roughly the same height that coincide with the beginning (around 0.4) and the end (around 0.9) of the semantic region observed in Fig. 2, see Supp. Inf., Sec. H. Although these peaks suggest that semantic encoding leverages a higher-dimensional abstract space—echoing findings from brain-similarity studies (Antonello and Cheng, 2024)—we defer a deeper investigation of representation dimensionality to future work.

As a null hypothesis, we show in Supp. Inf. E that performing batch-shuffling on any of the datasets leads to completely uninformative representations (Information Imbalance gives 1 for every layer), since the semantic correspondence between translations is destroyed. Furthermore, in Supp. Inf. F we show that our results are compatible with those obtained using the overlap neighborhood metric from Huh et al. (2024). In Supp. Inf. D we also show that, if instead of considering many-token representations as we do in Fig. 2, one reduces the dimensionality by averaging all tokens, as done in Huh et al. (2024), the results are qualitatively compatible, but present significant quantitative differences. For all layers, but most strongly on the first and the last layers, we observe that averaging significantly increases the level of mutual predictability.

3.1.1 HETEROGENEITY OF DEEPSEEK’S REPRESENTATIONS FOR DIFFERENT LANGUAGE PAIRS

We repeated the previous translation experiment with other language pairs, in particular English-Italian, English-Spanish, Italian-Spanish and German-Hungarian. We considered again sentences taken from opus books (Tiedemann, 2012) and applied the same filtering procedure regarding their number of tokens, as in Fig. 2a).

Fig. 2b) shows the same qualitative behavior observed for English-Spanish pairs (low Information Imbalance in the deep layers) but with major quantitative differences. Even if the training dataset of DeepSeek-V3 contains several languages in which the network can perform well, the quality of the representations is heterogeneous across languages, since it depends on the amount of data seen in each language. Fig. 2b) shows that the Information Imbalance between English and Italian is higher than between English and Spanish. A possible interpretation is that models may encode richer Spanish representations because Spanish appears much more frequently than Italian in large web corpora—Common Crawl, for instance, contains roughly twice as many Spanish as Italian documents (Lan, 2025; Common Crawl Foundation, 2025). Aligned with this argument, we observe that, even though Spanish and Italian are linguistically closer than either is to English, the Information Imbalance between Spanish and Italian is higher than between English-Spanish or English-Italian translation pairs. Finally, we observe that translations involving a less common language, namely Hungarian, are associated with a significantly higher Information Imbalance (the minimum value is 0.5).

3.1.2 SEMANTIC INFORMATION IN LLMs IS SPREAD ACROSS MANY TOKENS

Having shown that long-span Information Imbalance captures the semantic similarity of sentences in different languages, we turn our attention to the extent to which different tokens are contributing to cross-linguistic similarity. Fig. 3a) shows the minimum Information Imbalance across all layers as a function of the number of tokens involved in the calculation, again for English-Spanish translations from opus books. The span is determined starting from the end and moving back towards the sentence beginning. For both models, we see that concatenations of tokens increases mutual predictivity: this suggests that layer summaries – for example the mean or the last tokens— do not necessarily capture all the semantic information. In facts, if we take alignment as a proxy of semantic quality, this suggests that semantic information is not concentrated in the last tokens, but spread over many of them.

Figure 3: **Panel a)** Minimum Information Imbalance across depth, from English to Spanish representations, as a function of the number of tokens used in the computation, for DeepSeek-V3 and Llama3.1-8b, when considering shorter (40 to 80 tokens, in circles) or longer (100 to 200 tokens, in triangles) sentences. **Panels b) and c)** Information Imbalance from the last token to a previous token at token-distance τ , using English sentences, computed on the representations generated by DeepSeek-V3 in panel a) and by Llama3.1-8b in panel b), in different layers. Long-distance token-token correlations are maximal (Information Imbalance increases most slowly) for representations on the inner semantic layers (43 for DeepSeek-V3, 23 for Llama3.1-8b), and the effect is dramatically stronger in DeepSeek-V3. The Jackknife error bars (five repetitions subsampling 2,000 of 5,000 sentences) are too small to show; the marker sizes act as an upper bound on these errors.

Focusing first on DeepSeek-V3, we note that, up to about 10 tokens, the results do not change much between shorter (40 to 80 tokens) and longer (100 to 200 tokens) sentences. In both cases adding more tokens significantly boosts the information content. However, for shorter sentences we observe that the Information Imbalance reaches its lowest value at around 20 tokens, and it increases with the addition of further tokens. We conjecture that this is because the last added tokens are close to the start of the sentence, and thus they do not carry much information about the semantic content of the whole sentence, given the autoregressive nature of the attention mechanism in the considered language models. In contrast, for longer sentences, we observe that adding tokens leads to a rapid decrease in Information Imbalance, which converges to very low values (around 0.05) at around 50 tokens and stays there. On the one hand, this reflects the fact that, as longer sentences contain more information, their translation will contain more shared information at the semantic level. On the other hand, it further corroborates that information is spread across a large number of tokens. We observe similar trends for Llama3.1-8b Information Imbalance, although the curves are systematically above the DeepSeek-V3 ones. Similar to what we observed in Fig 2a), this confirms that bigger and better performing models generate representations that align better and, potentially, of better quality, capturing deep semantic similarity across different languages. This result shows that not every token contributes homogeneously to the semantic similarity between representations, and thus this analysis suggests to take the concatenation of roughly the last 20 tokens as representative of the sentence content.

3.1.3 INNER REPRESENTATIONS HAVE LONGER-RANGE CORRELATIONS

The previous analysis shows that considering several tokens improves alignment across different languages. One wonders if the activations of the tokens in those layers are uncorrelated or not. If activations were independent, one could argue that different tokens would be associated to different “directions” in semantic space. If they are correlated, this would suggest that the model is building a joint semantic representation of sentences spreading its information across its component tokens. We address this question by measuring how informative two distinct tokens of the same sentence are about each other. Fig. 3 (panels b) and c)) shows how much the Information Imbalance between two token positions depends on their distance, for sentences in English. Concretely, we measure $\Delta(T \rightarrow T - \tau)$, the Information Imbalance between the token at position T , and tokens at position $T - \tau$, for $\tau = 1, 2, \dots$. We report this measure for the first and last layers, as well as an intermediate layer from the semantic region (layers 43 of DeepSeek-V3 and 23 of Llama3.1-8b, respectively). For both LLMs, the Information Imbalance rapidly grows as a function of τ for the initial layers and saturates to 1, clearly showing that the first layer is short-range correlated. For the deeper layers that

were shown in Fig. 2 to associate to the phase of shared cross-linguistic information, the Information Imbalance exhibits the slowest growth, meaning that far away tokens are predictive about each other, i.e., in these layers the information is mostly shared between tokens. DeepSeek’s deep representations have notably lower Information Imbalance across tokens than Llama3.1-8b’s, hinting at a connection between (i) the quality of the semantic representations in terms of token alignments and (ii) the magnitude and the span of long-distance correlations. A clear separation in effect strength between the intermediate semantic layer and the last layer (61 for DeepSeek-V3, 32 for Llama3.1-8b) is moreover only present for DeepSeek-V3. Still, even for DeepSeek-V3 the last layer has Information Imbalance values clearly below those of the first layer, suggesting that putatively, while the last layer is optimized to write the output, it still carries semantic content. To investigate how semantic information is distributed across tokens and whether causal asymmetries differ across languages, we conduct a detailed token-level analysis reported in Appendix I.

3.2 IMAGES SHARING HIGH LEVEL SEMANTICS

We extend the analysis to pairs of images and measure how vision transformers (ViTs) capture semantic information for two systems: image-gpt (Chen et al., 2020) and DinoV2 (Oquab et al., 2024). Image-gpt performs next-token prediction after it (i) down-scales the images; (ii) unrolls them, juxtaposing the rows; (iii) quantizes the colors. It mimics the strategy of LLMs: the last layers must perform next-token prediction; previous work suggests that semantics appears in the middle Chen et al. (2020). DinoV2 encodes salient features. It trains a student network to mimic its teacher and reconstruct different instances of the same image. The final layer should be the most semantically rich: its output is the input to downstream tasks such as depth estimation, image segmentation, and instance retrieval.

We first compare representations for pairs of images from the Imagenet1k dataset (Deng et al., 2009). Each couple shares the same class, which we take as a proxy of similar semantics: we process the pairs of instances with the same architecture and compute the Information Imbalance on a random subset of 2500 same-class pairs of images, which we sample without repetition. We replicate the procedure five times to quantify uncertainty. We report the results in the left panel of Fig. 4. As the assignment of same-pair images to two spaces used to compute the Information Imbalance is arbitrary, we report the average of Information Imbalance in the two directions. The minimum of the Information Imbalance is in the middle for image-gpt and at the end for DinoV2, consistently with previous work (Valeriani et al., 2023). The Information Imbalance is lower for DinoV2 (≈ 0.43): this would correspond to roughly 10% shared features in the Gaussian case, see Fig. 1.

3.3 IMAGES AND CAPTIONS: MULTIMODAL DATA SHARING SEMANTIC CONTENT

Image-caption pairs encode the same semantic content in different modalities: we are interested in their representations as semantics must play a key role in alignment. We process text with DeepSeek-V3 and images with DinoV2 and image-gpt. The dataset is flickr30k (Young et al., 2014): it contains pairs of images and captions; the captions are the concatenations of five different human-generated descriptions. We next repeat the analysis of Fig. 3a), estimating the minimum Information Imbalance between the image transformer and DeepSeek-V3 as a function of the number of image tokens concatenated from the end of the sequence. For DeepSeekV3, we fix the token window to 9, which corresponds to the point where the steep decrease of Information Imbalance observed in Fig. 3a) essentially saturates. We find that, for both DinoV2 and image-gpt, it is necessary to concatenate the last 200 tokens to capture the relevant shared information. Results obtained with shorter windows (last 50 tokens) and with mean-token are reported for comparison in Supp. Inf., Sec. K.

In Fig. 4 we report the Information Imbalance between layer 52 of DeepSeek-V3 (captions), DinoV2 and image-gpt (images). We select layer 52 of DeepSeek-V3 because it is a layer in which the representations of text in different languages is highly mutually predictive, see Fig. 2. We recover the exact same semantic regions provided by the analysis of the image-image pairs: towards the end for DinoV2 and in the middle for image-gpt. DinoV2 has a lower Information Imbalance of 0.4. Using the Gaussian process as a reference (see Fig. 1), this would correspond to approximately 10% of shared features. The minimum Information Imbalance for image-gpt is ≈ 0.6 , corresponding to 5% of shared features. The dashed lines in Fig. 4 report the Information Imbalance from the image to the text representation. Remarkably, for the image-gpt model the Information Imbalance

Figure 4: **Panel a)** Information Imbalance for image pairs from the Imagenet1k dataset. We sample 2500 pairs of images from the same class at random; averaging over five replications. We report the mean and standard deviation. **Panel b)** Information Imbalance between image and caption representations on the flickr30k dataset. Images are encoded using DinoV2 and image-gpt-large, while captions are processed with DeepSeek-V3. We report the imbalance as a function of the relative depth in the vision transformer, using the 52nd layer of DeepSeek-V3 (inside the semantic region) for captions. Results are averaged over 5000 samples, with uncertainty estimated via bootstrapping (100 replicas of 200 samples each). Dotted lines indicate information flow from caption to image; dashed lines, from image to caption.

is considerably larger than in the text-to-image direction. In particular, the minimum value of the Information Imbalance is ≈ 0.7 . The difference between the Information Imbalance in the two direction is significantly higher than the error bars estimated by bootstrap, indicating that the effect is statistically significant. This difference is likely due to the better quality of the DeepSeek-V3 representations. The asymmetry in the Information Imbalance is reversed for the DinoV2 model. In this case the image representation predicts the text representation marginally better than the reverse. This can be due to the fact that DinoV2 is explicitly trained to extract semantically meaningful visual features, and indeed the largest asymmetry is observed in the last layer.

To directly test whether joint text–image training facilitates cross-modal alignment, we performed a set of experiments with the ViT-L/14 visual encoder of the multimodal CLIP system (Radford et al., 2021) on the same flickr30k dataset (Supp. Inf., Sec. K). We computed the Information Imbalance between CLIP image representations and DeepSeek-V3 text representations and compared it with the DinoV2–DeepSeek-V3 baseline. We found that the DeepSeekV3-CLIP Image Information Imbalance reaches a minimum of approximately 0.3 ($\approx 15\%$ of shared features), which is lower than the minimum Information Imbalance observed for DinoV3-DeepSeeV3, indicating that CLIP’s visual encoder aligns more closely to the text semantics than a purely visual model of comparable capacity.

4 LIMITATIONS

It would be interesting to extend our analyses to a further variety of models of intermediate sizes and diverse architectures, including diffusion models, for example quantifying the depth and the length of the semantic regions found as a function of the number of parameters in the model, and to consider models that specifically target multilinguality (Martins et al., 2025; Üstün et al., 2024). In our experiments with translations, we used human translations from opus books (Tiedemann, 2012), in which the different language pairs may correspond to translations from different novels, introducing an extra source of variation not taken into account in our analysis. We explicitly avoided using LLMs to generate the translations to avoid the introduction of biases in the analyses. Indeed, we found that, for the case of English-Italian, DeepSeek-generated translations have more similar representations than those obtained from opus books. We worked with a limited number of language pairs, that allowed us to spot interesting heterogeneities across representations, and to propose some plausible interpretations on why they appear. We leave for future work a detailed quantitative analysis solely dedicated to the influence of language heterogeneity in the mutual information

486 content of representations. For example, fixing English as a pivot language and then systematically
 487 considering different translations of the same English text into languages with different online
 488 presence, and of different degree of relatedness. Finally, it would also be important to extend our
 489 analysis to embedding models trained specifically for cross-lingual retrieval, in order to assess whether
 490 architectures optimized for cross-lingual alignment exhibit different patterns of semantic convergence
 491 than general-purpose LLMs.

492 5 CONCLUSION

493 Through a novel application of the Information Imbalance measure (Glielmo et al., 2022), we showed
 494 that DeepSeek-V3, the largest publicly available LLM, developed an internal processing phase in
 495 which different inputs that share the same semantics, such as translations and image-caption pairs, are
 496 reflected in representations that are extremely similar. We further ascertained that, on these “semantic”
 497 layers, long token spans meaningfully contribute to the representation. Several of the patterns we
 498 observed in DeepSeek-V3 also emerge in the medium-sized Llama3.1-8b model, but in a weaker
 499 manner, suggesting that deep semantic processing is a hallmark of better models. We also analyzed
 500 visual processing models, finding again the presence of layers that capture deeper semantic similarity,
 501 and whose position depends on the objective the models are trained upon. DeepSeek-V3 textual
 502 representations and vision transformer visual representations of the same concepts are most strongly
 503 aligned in the respective semantic layers.

504 Our work supports the hypothesis that, as deep models improve, they converge towards shared
 505 representations of the world (Huh et al., 2024). We took a first step away from simply verifying that
 506 such representations exist, towards characterizing their nature, by precisely quantifying the degree of
 507 shared information, localizing where they occur in different networks and determining how they are
 508 synthesized from composite inputs. Future research, besides extending the empirical coverage of
 509 our investigation, should further increase the resolution of the measurements, allowing us to go from
 510 observing the holistic behavior of a model with respect to a data set to a full characterization of how
 511 semantic representations are constructed given each specific input instance.

514 6 ETHICS STATEMENT

515 This work adheres to the ICLR Code of Ethics. Our experiments employ publicly available datasets
 516 and open-source models (under their respective licenses). We are not aware of any ethical concerns.
 517 To the contrary, by providing new tools to understand the inner workings of LLMs and other AI
 518 systems, we hope to contribute to a safer and more transparent AI.

522 7 REPRODUCIBILITY STATEMENTS

523 We describe all model configurations, datasets, and computational settings in the main text and
 524 supplementary material to enable independent verification. Upon acceptance, we will release the full
 525 source code and instructions in a public repository to facilitate reproducibility.

528 REFERENCES

530 Qiwei Peng and Anders Søgaard. Concept space alignment in multilingual llms, 2024.

531 Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
 532 Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
 533 Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
 534 Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
 535 Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
 536 model. *Transformer Circuits Thread*, 2025. URL <https://transformer-circuits.pub/2025/attribution-graphs/biology.html>.

538 539 Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. Position: The platonic representation
 540 hypothesis. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria

Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pages 20617–20642. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/huh24a.html>.

Jasdeep Singh, Bryan McCann, Richard Socher, and Caiming Xiong. BERT is not an interlingua and the bias of tokenization. In Colin Cherry, Greg Durrett, George Foster, Reza Haffari, Shahram Khadivi, Nanyun Peng, Xiang Ren, and Swabha Swayamdipta, editors, *Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)*, pages 47–55, Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-6106. URL <https://aclanthology.org/D19-6106/>.

Jannik Brinkmann, Chris Wendler, Christian Bartelt, and Aaron Mueller. Large language models share representations of latent grammatical concepts across typologically diverse languages, 2025.

Diego Doimo, Aldo Glielmo, Alessio Ansuini, and Alessandro Laio. Hierarchical nucleation in deep neural networks. In *Proceedings of NeurIPS*, 2020. URL <https://papers.nips.cc/paper/2020>. Published online:.

Aldo Glielmo, Claudio Zeni, Bingqing Cheng, Gábor Csányi, and Alessandro Laio. Ranking the information content of distance measures. *PNAS Nexus*, 1(2):pgac039, 04 2022. ISSN 2752-6542. doi: 10.1093/pnasnexus/pgac039.

Vittorio Del Tutto, Gianfranco Fortunato, Domenica Bueti, and Alessandro Laio. Robust inference of causality in high-dimensional dynamical processes from the information imbalance of distance ranks. *Proceedings of the National Academy of Sciences*, 121(19):e2317256121, 2024.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025.

Meta. Introducing Meta Llama 3: The most capable openly available LLM to date, 2024. URL <https://ai.meta.com/blog/meta-llama-3/>.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever. Generative pretraining from pixels. In Hal Daumé III and Aarti Singh, editors, *Proceedings of*

594 *the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine*

595 *Learning Research*, pages 1691–1703. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/chen20s.html>.

596

597 598 Maxime Oquab, Timothée Darzet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
599 Fernandez, Daniel Haziza, Francisco Massa, Alaeldin El-Nouby, Mahmoud Assran, Nicolas
600 Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
601 Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut,
602 Armand Joulin, and Piotr Bojanowski. DINOv2: Learning Robust Visual Features without
603 Supervision, February 2024.

604 605 Ilia Sucholutsky, Lukas Muttenthaler, Adrian Weller, Andi Peng, Andreea Bobu, Been Kim, Bradley C.
606 Love, Christopher J. Cueva, Erin Grant, Iris Groen, Jascha Achterberg, Joshua B. Tenenbaum,
607 Katherine M. Collins, Katherine L. Hermann, Kerem Oktar, Klaus Greff, Martin N. Hebart, Nathan
608 Cloos, Nikolaus Kriegeskorte, Nori Jacoby, Qiuyi Zhang, Raja Marjieh, Robert Geirhos, Sherol
609 Chen, Simon Kornblith, Sunayana Rane, Tália Konkle, Thomas P. O’Connell, Thomas Unterthiner,
610 Andrew K. Lampinen, Klaus-Robert Müller, Mariya Toneva, and Thomas L. Griffiths. Getting
aligned on representational alignment, 2024.

611 612 Yamini Bansal, Preetum Nakkiran, and Boaz Barak. Revisiting model stitching to compare neural
613 representations. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
614 editors, *Advances in Neural Information Processing Systems*, volume 34, pages 225–236. Curran
615 Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/01ded4259d101feb739b06c399e9cd9c-Paper.pdf.

616 617 Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Francesco Locatello, and
618 Emanuele Rodolà. Relative representations enable zero-shot latent space communication. In
619 *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=SrC-nwieGJ>.

620 621 Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their equiv-
622 ariance and equivalence. *International Journal of Computer Vision*, 127, 05 2019. doi:
623 10.1007/s11263-018-1098-y.

624 625 Emily Cheng, Diego Doimo, Corentin Kervadec, Iuri Macocco, Lei Yu, Alessandro Laio, and
626 Marco Baroni. Emergence of a high-dimensional abstraction phase in language transformers.
627 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=0fD3iIBhlV>.

628 629 Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
630 network representations revisited. In *Proceedings of ICML*, pages 3519–3529, Long Beach, CA,
631 2019.

632 633 Ben Sorscher, Surya Ganguli, and Haim Sompolinsky. Neural representational geometry under-
634 lies few-shot concept learning. *Proceedings of the National Academy of Sciences*, 119(43):
635 e2200800119, 2022.

636 637 Mayug Manipambil, Raiymbek Akshulakov, Yasser Abdelaziz Dahou Djilali, Sanath Narayan,
638 Mohamed El Amine Seddik, Karttikeya Mangalam, and Noel O’Connor. Do vision and language
639 encoders represent the world similarly? In *Proceedings of CVPR*, pages 14334–14343, Seattle,
640 WA, 2024.

641 642 Chris Wendler, Veniamin Veselovsky, Giovanni Monea, and Robert West. Do llamas work in
643 English? on the latent language of multilingual transformers. In Lun-Wei Ku, Andre Martins,
644 and Vivek Srikumar, editors, *Proceedings of the 62nd Annual Meeting of the Association for
645 Computational Linguistics (Volume 1: Long Papers)*, pages 15366–15394, Bangkok, Thailand,
646 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.820.
647 URL <https://aclanthology.org/2024.acl-long.820/>.

648 649 Yiran Zhao, Wenxuan Zhang, Guizhen Chen, Kenji Kawaguchi, and Lidong Bing. How do
650 large language models handle multilingualism? In A. Globerson, L. Mackey, D. Bel-
651 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, *Advances in Neural In-
652 formation Processing Systems*, volume 37, pages 15296–15319. Curran Associates, Inc.,

648 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/1bd359b32ab8b2a6bbafaled2856cf40-Paper-Conference.pdf.

649

650

651 Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality: Reverse engineering
652 how networks learn group operations. In *International Conference on Machine Learning*, pages
653 6243–6267. PMLR, 2023.

654

655 Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
656 neural networks: Training neural networks with low precision weights and activations. *Journal of
657 Machine Learning Research*, 18(187):1–30, 2018. URL <http://jmlr.org/papers/v18/16-456.html>.

658

659 Yunhui Guo. A Survey on Methods and Theories of Quantized Neural Networks, 2018.

660

661 Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Bi-
662 narized neural networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Gar-
663 nett, editors, *Advances in Neural Information Processing Systems*, volume 29. Curran Asso-
664 ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf.

665

666 Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
667 Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language models.
668 *arXiv preprint arXiv:2310.11453*, 2023. doi: 10.48550/arXiv.2310.11453.

669

670 Alexander G. Anderson and Cory P. Berg. The high-dimensional geometry of binary neural networks.
671 In *International Conference on Learning Representations*, 2018. URL <https://openreview.net/forum?id=B1IDRdeCW>.

672

673 Santiago Acevedo, Alex Rodriguez, and Alessandro Laio. Unsupervised detection of semantic
674 correlations in big data. *Communications Physics*, 8(1):202, May 2025. ISSN 2399-3650. doi:
675 10.1038/s42005-025-02115-z.

676

677 Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, and Anna Rumshisky. BERT busters: Outlier
678 dimensions that disrupt transformers. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli,
679 editors, *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, pages 3392–
680 3405, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
681 findings-acl.300. URL <https://aclanthology.org/2021.findings-acl.300/>.

682

683 Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable transformers: Removing
684 outliers by helping attention heads do nothing. In *Thirty-seventh Conference on Neural Information
685 Processing Systems*, 2023. URL <https://openreview.net/forum?id=sbusw6LD41>.

686

687 Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
688 models. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=F7aAhfitX6>.

689

690 Richard Antonello and Emily Cheng. Evidence from fMRI supports a two-phase abstraction process
691 in language models. In *UniReps: 2nd Edition of the Workshop on Unifying Representations in
692 Neural Models*, 2024. URL <https://openreview.net/forum?id=VZipjFlBpl>.

693

694 Jörg Tiedemann. Parallel data, tools and interfaces in OPUS. In Nicoletta Calzolari, Khalid Choukri,
695 Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Asuncion Moreno,
696 Jan Odijk, and Stelios Piperidis, editors, *Proceedings of the Eighth International Conference on
697 Language Resources and Evaluation (LREC’12)*, pages 2214–2218, Istanbul, Turkey, May 2012.
698 European Language Resources Association (ELRA). URL http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf.

699

700 Languages used on the Internet. *Wikipedia*, April 2025.

701 Common Crawl Foundation. Common crawl language statistics. <https://commoncrawl.github.io/cc-crawl-statistics/plots/languages.html>, 2025. Accessed:
702 2025-02-14.

702 Jia Deng, Wei Dong, Richard Socher, Lia-Ji Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
 703 image database. In *Proceedings of CVPR*, pages 248–255, Miami Beach, FL, 2009.

704

705 Lucrezia Valeriani, Diego Doimo, Francesca Cuturrello, Alessandro Laio, Alessio Ansuini, and
 706 Alberto Cazzaniga. The geometry of hidden representations of large transformer models. *Advances
 707 in Neural Information Processing Systems*, 36:51234–51252, 2023.

708 Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
 709 denotations: New similarity metrics for semantic inference over event descriptions. *Transactions
 710 of the Association for Computational Linguistics*, 2:67–78, December 2014. ISSN 2307-387X.
 711 doi: 10.1162/tacl_a_00166.

712

713 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 714 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 715 models from natural language supervision. In *International conference on machine learning*, pages
 8748–8763. PMLR, 2021.

716

717 Pedro Henrique Martins, Patrick Fernandes, João Alves, Nuno M. Guerreiro, Ricardo Rei, Duarte M.
 718 Alves, José Pombal, Amin Farajian, Manuel Faysse, Mateusz Klimaszewski, Pierre Colombo, Barry
 719 Haddow, José G.C. De Souza, Alexandra Birch, and André F.T. Martins. Eurollm: Multilingual
 720 language models for europe. *Procedia Computer Science*, 255:53–62, 2025. ISSN 1877-0509. doi:
 721 10.1016/j.procs.2025.02.260. Publisher Copyright: © 2025 The Authors. Published by Elsevier
 722 B.V.; 2nd EuroHPC user day, EuroHPC 2024 ; Conference date: 22-10-2024 Through 23-10-2024.

723

724 Ahmet Üstün, Viraat Aryabumi, Zheng Yong, Wei-Yin Ko, Daniel D’souza, Gbemileke Onilude,
 725 Neel Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, Freddie Vargus, Phil Blunsom, Shayne
 726 Longpre, Niklas Muennighoff, Marzieh Fadaee, Julia Kreutzer, and Sara Hooker. Aya model: An
 727 instruction finetuned open-access multilingual language model. In Lun-Wei Ku, Andre Martins,
 728 and Vivek Srikumar, editors, *Proceedings of the 62nd Annual Meeting of the Association for
 729 Computational Linguistics (Volume 1: Long Papers)*, pages 15894–15939, Bangkok, Thailand,
 730 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.845.
 URL <https://aclanthology.org/2024.acl-long.845/>.

731

732 Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
 733 Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. SGLang:
 734 Efficient execution of structured language model programs. In *The Thirty-eighth Annual Confer-
 735 ence on Neural Information Processing Systems*, 2024. URL [https://openreview.net/
 forum?id=VqkAKQibpq](https://openreview.net/forum?id=VqkAKQibpq).

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756
757
758
759

Supplementary Information

760
761

A COMPUTE RESOURCES

762
763
764
765
766
767
768

We run DeepSeek-V3 on a cluster of 16 H100 GPUs (80GB each), using the SGLang framework (Zheng et al., 2024). For LLama3.1-8B, a single GPU from a DGX H100 system is sufficient. For our experiments on text and image-caption pairs, 1TB of RAM is enough, moving to the GPU a couple of layers at a time. Image-Image experiments are done using up to five NVIDIA A30 GPUs and 500 GB of RAM.

769
770
771

opus books: https://huggingface.co/datasets/Helsinki-NLP/opus_books ; licence: CC BY 4.0.

772
773
774

DeepSeek-V3: <https://huggingface.co/deepseek-ai/DeepSeek-V3> ; Model licence.

775
776
777

Llama3.2-1b: <https://huggingface.co/meta-llama/Llama-3.2-1B> ; license: llama3.2

778
779
780

Llama3.2-3b: <https://huggingface.co/meta-llama/Llama-3.2-3B> ; license: llama 3.2

781
782
783

Llama3.1-8b: <https://huggingface.co/meta-llama/Llama3.1-8b-3.1-8B> ; license: llama3.1

784
785
786

BERT: <https://huggingface.co/google-bert/bert-base-multilingual-cased> ; licence: apache-2.0

787
788
789

Flickr dataset: https://huggingface.co/datasets/clip-benchmark/wds_flickr30k ; subject to flickr terms of use.

Imagenet: <https://image-net.org/> ; terms of access: <https://image-net.org/download.php>

790
791
792

DinoV2: <https://github.com/facebookresearch/dinov2/tree/main> ; licence: Apache 2.0

image-gpt-large: <https://github.com/openai/image-gpt> ; licence: Modified MIT

C TRANSLATIONS DATASET

793
794
795

We filter pairs of translated sentences from Helsinki-NLP/opus_books (Tiedemann, 2012) that have a number of tokens between 40 and 80, avoiding trivial sentences and incorrect translations, while keeping roughly 5000 thousands sentences of comparable length. We avoid truncating the translated sentences, preserving their full meaning. We excluded the last two tokens of each sentence from the analysis, as they consistently correspond to punctuation marks (e.g., a period or a period followed by a quotation mark), which introduce trivial similarities in the representations.

796
797
798

D AVERAGE TOKEN COMPARISON

800
801
802

Fig. 5 shows the Information Imbalance between DeepSeek-V3 representations of English and Spanish translations, using 20 tokens of each sentence, with and without taking the average over the token axis. Note that for the case of concatenated tokens, the curve is the same as in Fig. 2 of the main article, for direct comparison. When taking the average, we use the L_2 distance and we clip and normalize the inputs, as Huh et al. (2024). When using all 20 tokens we binarize activations and we use the Hamming distance, as in the main text. While the results are qualitatively consistent, they differ significantly in quantitative terms. Across all layers—most notably in the first and last—averaging leads to a marked increase in mutual predictability (lower Information Imbalance), due to the elimination of positional information, which is most relevant in the initial and last layers, i.e., before and after the semantic region.

Figure 5: Information Imbalance between English (en) and Spanish (es) representations generated by DeepSeek-V3’s as a function of depth. ‘Concat’ stands for the results obtain with the concatenation of the 20 last tokens of each sentence. ‘Average’ stands for the average of the same 20 tokens. The standard deviation is computed with a Jackknife procedure, subsampling 2000 samples out of 5000 five times, and it is smaller than marker size.

E MISALIGNMENT OF TRANSLATIONS ERASES SEMANTIC SIMILARITY

As a consistency check, Fig 6 shows the Information Imbalance for DeepSeek-V3’s and Llama3.1-8b representations using misaligned translations, namely performing a batch-shuffle in one of the datasets. Since the semantic correspondence between sentences is destroyed, the representations are not informative about each other, and thus the Information Imbalance is close to one, for all layers. The same occurs with misaligned image pairs, Information Imbalance being around one when pairs do not share the same class, for all layers.

Figure 6: Information Imbalance between English (en) and Spanish (es) representations generated by DeepSeek-V3 and Llama3.1-8b, for the “non-informative case”, namely a misaligned dataset in which we batch-shuffle the Spanish translations. The (hardly visible) shaded area corresponds to one standard deviation, computed with a Jackknife procedure subsampling 2000 samples out of 5000.

F COMPARISON BETWEEN NEIGHBORHOOD OVERLAP AND INFORMATION IMBALANCE

To quantify representation similarity, Huh et al. (2024) used the neighborhood overlap, namely the average fraction of shared k nearest neighbors. In particular, they found this metric to be more suitable than linear metrics, like Central Kernel Alignment (CKA), providing a stronger signal. In this section we compare our results from Fig. 1.a) of the main article with the neighborhood overlap computed on the same representations. To measure the neighborhood overlap we follow the pipeline

of Huh et al. (2024), namely we clip the activations using quantiles of order 0.05% and 95%, we normalize each vector, and we measure the distances between them with the L_2 metric. Fig 7 shows that the neighborhood overlap between representations increases and reaches a plateau concurrently with the local minimum plateau of the Information Imbalance, thus both methods give qualitative the same results. We note that the neighborhood overlap, being defined between 0 and 1, here only reaches a value around 0.2. Similar small values were also observed and even highlighted in Huh et al. (2024), although the authors do not provide arguments to understand the reasons behind this property. We note that if the k -th neighbor of representation A is instead the $k + 1$ neighbor of representation B , automatically that point counts as outside the k -neighborhood, even if it is extremely close, rendering the alignment value very low. This effect doesn't take place in the Information Imbalance, which, instead of evaluating if k neighbors are shared, measures what is the rank in space B of k neighbors in space A , and vice-versa.

Figure 7: Information Imbalance between English (en) and Spanish (es) representations generated by DeepSeek-V3 from Fig. 2 of the main article, compared with the neighborhood alignment metric from Huh et al. (2024). The (hardly visible) shaded area corresponds to one standard deviation, computed with a Jackknife procedure subsampling 2000 samples out of 5000.

G BINARIZING HIGH DIMENSIONAL REPRESENTATIONS HAS A MARGINAL EFFECT ON THE INFORMATION IMBALANCE

Fig. 8 includes again, as reference, the Information Imbalance between DeepSeek-V3 representations of English and Spanish translations, using the last 20 tokens of each sentence, binarizing the activations and using the Hamming distance, (results of Fig. 2 from main text). To investigate the effects of binarizing the representations, we show the Information Imbalance using the same data where, instead of taking the sign of the activations to generate binary variables, we clip them using quantiles of order 0.05% and 95%, we normalize vectors to unit norm, and we use the L_2 distance, similar to Huh et al. (2024). Remarkably, binarizing has marginal effects on the Information Imbalance computed with full precision (for DeepSeek-V3's representations, BF16), which is possible in this setup given that we are working with 20 tokens.

Figure 8: In circles, Information Imbalance between English (en) and Spanish (es) representations generated by DeepSeek-V3, binarizing the activations and using the Hamming distance. In crosses, the Information Imbalance clipping and normalizing activations, and using the L_2 metric. The standard deviation, computed with a Jackknife procedure subsampling 2000 samples out of 5000, is smaller than marker size.

H BINARY INTRINSIC DIMENSION OF DEEPSPEEK-V3 REPRESENTATIONS

The Binary Intrinsic Dimension (BID) is defined in Acevedo et al. (2025) through the probability distribution of Hamming distances between samples of binary high dimensional vectors. If we consider N -dimensional vectors σ with components σ_i , $i = 1, \dots, N$ uniformly distributed in $\{0, 1\}$, then the probability of observing Hamming distance r between any two samples is exactly $P_0(r) = \frac{1}{2^N} \binom{N}{r}$. The BID is defined as the coefficient d_0 of the following Ansatz:

$$P(r) = \frac{1}{2^{(d_0+d_1)r}} \binom{N}{d_0 + d_1 r}, \quad (1)$$

where d_1 is a second variational parameter. We perform a second-order optimization of the Kullback-Leibler divergence between the model equation 1 and the empirical distribution of distances, computing numerical derivatives with JAX’s autodiff. For more details on the BID computation, see Acevedo et al. (2025). We used hyperparameters $\alpha_{min} = 0.15$, and $\alpha_{max} = 0.4$. Fig. 9 shows the Binary Intrinsic Dimension (BID) of DeepSeek-V3’s representations processing English sentences from opus books with length between 40 and 80 tokens. We take the last 10 and the last 20 tokens of the binarized representation, and we find two dimensionality peaks that roughly coincide with the beginning (around 0.4) and the end (around 0.9) of the semantic region found in Fig. 2. These results align with recent evidence of abstract spaces presenting dimensionality peaks in deep representations (Cheng et al., 2025; Antonello and Cheng, 2024). The missing points at the beginning of the blue curve correspond to failed optimizations due to the strong multimodality of the empirical distribution of distances.

Figure 9: Binary Intrinsic Dimension (BID) normalized by the number of bits (neurons), in the representation generated by DeepSeek-V3 processing English text. In the legend, n_{tokens} stands for the number of tokens concatenated in the representation, starting from the last. Shaded area corresponds to one standard deviation, computed with a Jackknife procedure, subsampling 2000 samples out of 5000, ten times.

I TOKEN-LEVEL INFORMATION IMBALANCE AND CAUSAL ASYMMETRY ACROSS LANGUAGES

Figure 10: **Panel a)** In solid markers, the “backward” Information Imbalance, i.e., from the last token to a previous token at token-distance τ , as a function of τ , for DeepSeek-V3 representations at layer 43 and sentences in several languages. In dashed lines, the reciprocal “forward” Information Imbalance. **Panel b)** Asymmetry \mathcal{A} between forward and backward Information Imbalance, averaged over τ , as a function of DeepSeek’s relative depth. The Jackknife error bars (five repetitions subsampling 1,000 of 2,000 sentences) are too small to show; the marker sizes act as an upper bound on these errors.

Fig. 10a) focuses on a semantic layer from DeepSeek-V3, and it shows token-token Information Imbalance as a function of token distance for several languages. We present the Information Imbalance in both directions: The “backward” Information Imbalance, from the last token, T , to a previous token at distance τ , $\Delta(T \rightarrow T - \tau)$, and the reciprocal or “forward” Information Imbalance, $\Delta(T - \tau \rightarrow T)$. We observe that English deep representations are much more correlated than the representations in the other languages. We conjecture that this is a sign of better quality, consistent with Fig. 2b), where the presence of English in a pair results in the best predictability (lowest Information Imbalance scores). At the opposite extreme, note that single-language German and Hungarian representations are the least correlated in Fig. 10a), and the German-Hungarian translations have indeed the worst mutual predictability score (highest Information Imbalance) in Fig. 2. Furthermore, Spanish and Italian have the second and third most correlated inner representations in Fig. 10a), coherently with the profiles of the English-Spanish and English-Italian pairs in Fig. 2b) (lowest and second lowest Information Imbalance values, respectively).

Finally, Fig. 10a) shows that, for English, as the distance between tokens τ increases, the relative information content between past and future tokens gets increasingly asymmetric. In particular, earlier tokens are more informative of the last one than the other way around. This could be expected, since causal models like DeepSeek-V3 are trained to predict future tokens, and text itself has a natural causal asymmetry. Nonetheless, Fig. 10a) shows that this past-to-future asymmetry is heterogeneous across languages. To further study the effect, we first define the *asymmetry* as $\mathcal{A} = \Delta(T \rightarrow T - \tau) - \Delta(T - \tau \rightarrow T)$. When \mathcal{A} is positive, the earlier token predicts the last one more than the latter predicts the earlier token, whereas a negative \mathcal{A} has the opposite interpretation. Fig. 10b) shows the information asymmetry \mathcal{A} of DeepSeek-V3 as a function of its layers for the all languages we studied. For initial layers (i.e., relative depth less than roughly 0.4, see Fig. 2), we observe that all representations have a comparable amount of causal asymmetry. Instead, for semantic layers there are strong heterogeneities between languages. English remains causally asymmetric until the last few layers of the network, while the other languages present earlier negative values of \mathcal{A} . Intriguingly, Spanish and Italian, the two languages with the lowest Information Imbalance values from English, have a later dip in \mathcal{A} compared to German and Hungarian. These results call for further experiments to study possible relationships between these observed information asymmetries, model performance, and linguistic structure. We leave them as material for future research. In Sec. J we study this information asymmetry for a non autoregressive model.

J BERT’S FORWARD-BACKWARD ASYMMETRY PROFILE

In this section we study, the asymmetry in II between two tokens at distance τ , $\mathcal{A} = \Delta(T \rightarrow T - \tau) - \Delta(T - \tau \rightarrow T)$, where T is the last token, to see if the observed asymmetries are similar to those of DeepSeek-V3 (Fig. 10b). Fig. 11 shows the asymmetry \mathcal{A} for similar English sentences from opus books as those used in Fig. 10b), processed by BERT. Contrary to what was observed in Fig. 10b), BERT’s representations present a positive asymmetry close to the initial and final layers, and negative asymmetry in central layers. This strong difference of asymmetry profiles opens the door for further studies on the asymmetry of correlations in several different models and architectures, and its potential relations to downstream tasks.

Figure 11: Asymmetry \mathcal{A} between forward and backward Information Imbalance, averaged over token all distances as a function of BERT’s relative depth. The shaded area corresponds to one standard deviation computed subsampling half out of 7500 samples, five times.

K IMAGE-CAPTIONS PAIRS

In Fig. 12, we report additional results for the image-caption experiments: we consider different windows of tokens, using the last 200 tokens for images –as we do in the main text– vs a smaller windows of 50 tokens and the average. In general, results are qualitatively similar across setups. We observe that the choice of the number of tokens comes with a trade-off: more tokens convey more information; at the same time, having more tokens implies working with bigger objects.

Figure 12: Information Imbalance for image-caption pairs. We consider three scenarios: (i) 50 tokens; (ii) 200 tokens; and (iii) the mean token. The results are qualitatively similar.

In Fig. 13, we show how the alignment between models changes when the number of tokens is increased: on the left, we report the case for DinoV2, comparing it with DeepSeek-V3, in the image-caption case, and with itself for the pairs of images. On the right, we report the same analysis for image-gpt.

Finally, we performed three analyses on the flickr30k image-caption pairs to probe how CLIP’s joint training influences representational alignment.

1. DinoV2 → CLIP-Image: comparing a purely visual model with CLIP’s visual branch.
2. DeepSeek-V3 → CLIP-Text: comparing a purely textual model with CLIP’s text branch.
3. DeepSeek-V3 → CLIP-Image: comparing a purely textual model with CLIP’s visual branch.

Results are in Fig. 14. In all cases we compute the Information Imbalance in both directions (from the source model to the target and vice-versa), always indicating the direction in the figure legends. The DeepSeek-V3 → CLIP-Image comparison directly tests whether a visual encoder trained to align with text predicts textual representations better than a unimodal vision model. Its minimum Information Imbalance is approximately 0.3 ($\approx 15\%$ shared features), which is lower than the ≈ 0.40 minimum for DeepSeek-V3 → DinoV2 (main text Fig. 4). The DinoV2 → CLIP-Image Information Imbalance remains extremely low (≈ 0.01) past a relative depth of ≈ 0.8 , consistent with a near-identical visual representation. Conversely, the DeepSeek-V3 → CLIP-Text Information Imbalance decreases more gradually and stabilizes around 0.4, indicating weaker alignment of CLIP’s text branch to purely textual models. Shaded regions in Fig. 14 show 95% bootstrap confidence intervals.

Figure 13: Information Imbalance for varying windows of tokens. We report the minimum of the Information Imbalance, a proxy of alignment, for growing windows of tokens. On the left, we report the results for DinoV2 in both the image-caption (dotted blue line) and the image-image case (dashed blue line). On the right, we report the results for the image-gpt in both the image-caption (dotted green line) and the image-image cases (dashed green line).

1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

DinoV2 vs CLIP-Image
Source Layer: 24 (DinoV2), Tokens: 200DeepSeek-V3 vs CLIP-Text
Source Layer: 52 (DeepSeek), Tokens: 9DeepSeek-V3 vs CLIP-Image
Source Layer: 52 (DeepSeek), Tokens: 9

Figure 14: Information Imbalance on flickr30k involving CLIP representations. Top: DinoV2 image vs. CLIP image. Middle: DeepSeek-V3 text (layer 52) vs. CLIP text. Bottom: DeepSeek-V3 text vs. CLIP image (new cross-modal analysis). Lower Information Imbalance indicates stronger semantic predictivity. Shaded areas show 95% bootstrap confidence intervals.