
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A QUANTITATIVE ANALYSIS OF SEMANTIC INFORMA-
TION IN DEEP REPRESENTATIONS OF TEXT AND IMAGES

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks are known to develop similar representations for semantically
related data, even when they belong to different domains, such as an image and
its description, or the same text in different languages. We present a method for
quantitatively investigating this phenomenon by measuring the relative information
content of the representations of semantically related data and probing how it
is encoded into multiple tokens of large language models (LLMs) and vision
transformers. Looking first at how LLMs process pairs of translated sentences,
we identify inner “semantic” layers containing the most language-transferable
information. We find moreover that, on these layers, a larger LLM (DeepSeek-V3)
extracts significantly more general information than a smaller one (Llama3.1-
8B). Semantic information of English text is spread across many tokens and it is
characterized by long-distance correlations between tokens and by a causal left-
to-right (i.e., past-future) asymmetry. We also identify layers encoding semantic
information within visual transformers. We show that caption representations in
the semantic layers of LLMs predict visual representations of the corresponding
images. We observe significant and model-dependent information asymmetries
between image and text representations.

1 INTRODUCTION

Current research explores the conjecture that Large Language Models (LLMs) possess a universal
language of thought, enabling them to process concepts across different languages Peng, Søgaard
(2024); Lindsey et al. (2025); Huh et al. (2024); Singh et al. (2019); Brinkmann et al. (2025). A
compelling example comes from Anthropic’s study of the Claude model Lindsey et al. (2025), which
shows that the network occasionally reasons within a shared conceptual space across languages.
Intriguingly, the extent of this cross-lingual alignment appears to grow with model size, suggesting
that universality may be an emergent property of scale. Ref. Huh et al. (2024) further argues more
generally that representations in deep networks, including but not limited to LLMs, are converging,
potentially pointing toward shared underlying conceptual structures.

In this work, we seek to turn the qualitative notion that deep networks develop semantically meaningful
shared representations into quantitative measures, identifying where in the network, and to what
extent, semantic information is encoded. We can cast the identification of shared semantic content
as a problem of relative information: different networks learn distributions defined on different
data domains, such as images and captions. Those distributions loosely span a common underlying
subspace, associated with shared semantic information. The support of the different distributions does
not reduce to this subspace, but spans other subspaces, which are data and architecture specific. To
quantify relative information we need a similarity criterion that is both (i) asymmetric, as there may
be a partial order relation between models and representations (qualitatively, the subspaces which
are data specific might have different dimensions); (ii) computationally efficient for representations
of dimension of order 105 − 106, which is the typical number of neurons in a deep representation.
Cross-entropy measures how difficult it is to encode an event from a distribution into another and
would be the ideal choice, but estimating it is computationally difficult due to the dimension of the
representations. On the other hand, local methods like the average number of nearest neighborsDoimo
et al. (2020); Huh et al. (2024) fail to capture the asymmetry between spaces. To overcome the
limitations, we employ the information imbalance Glielmo et al. (2022): a method that leverages
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conditional ranking to provide an asymmetric measure of relative mutual predictivity, which has been
shown to be an excellent proxy of the cross entropy Tatto et al. (2024).

We analyze the representation of translations of the same sentences in different languages, using one
of the most powerful open-source language models, DeepSeek-V3 with 671B parameters DeepSeek-
AI et al. (2025), comparing it to the mid-sized Llama3.1-8b LLM Meta (2024). Moreover, we analyze
the deep representations of pairs of images and of human-generated descriptions, and of pairs of
images depicting the same object, with the goal of capturing the alignment between image and caption
representations in different architectures and the relative predictive power of images and texts. As
visual models, we employ image-gpt-large Chen et al. (2020) and DinoV2-large Oquab et al. (2024).

Our main contributions are as follows:

• We analyze the DeepSeek-V3 language model and measure, layer by layer, the relative
information content between representations of sentence pairs that are translations of each
other. This reveals a broad region of the network, robust across language pairs, that
consistently encodes shared semantic content, and whose extent increases with model size.

• We show that in deep layers, information is distributed across tokens through long-range
correlations. Moreover, we observe that better semantic representations present stronger
token-token correlations. In the most semantically informative layers of DeepSeek-V3
processing English text, past tokens predict future tokens more accurately than the reverse,
highlighting a causal asymmetry in semantic representations.

• We also identify semantic layers in vision transformers by processing pairs of images that
share the same class. These semantic layers are also the most informative about DeepSeek-
V3 representations of descriptive image captions, where we observe significant information
asymmetries between image and text representations.

Related work. The presence of semantic layers containing shared information in deep networks
is connected to the notion of representation alignment Sucholutsky et al. (2024). Two different
models can be ‘stitched’ together with Bansal et al. (2021) or without Moschella et al. (2023) a
trainable stitching layer at several different stages of the network. For instance, two vision models
can effectively use similar low-level features Lenc, Vedaldi (2019). Nonetheless, the types of features
that we probe for in a semantic layer are instead abstract, encoding the collective relationships
between the input constituents, independently of the particular way in which they were expressed in
the specific input modality at disposal. The general representations we are probing lie behind the
so-called Platonic representation hypothesis, postulating that, as model quality improves, models
converge to similar representations Huh et al. (2024). We significantly extend our understanding of
the nature of these shared representations with respect to Huh et al. (2024), since for autoregressive
language models, the authors take the average across the token axis, reducing the dimensionality of
the problem, whereas for vision models, they only consider the “class” token. We address instead
where semantic information is encoded within the network, namely across different tokens and
different layers. The representation of language has also been studied in Ref. Cheng et al. (2025)
using, among other techniques, the Information Imbalance. This work is focused on the analysis of
the last-token representation of the same text in different models, and not on multimodal data.

Other earlier works point to deep similarities across architectures and modalities Kornblith et al.
(2019); Sorscher et al. (2022); Maniparambil et al. (2024). Again, these works do not focus on
determining the location and nature of the shared semantic layers. Moreover, they do not include a
latest-generation, huge model such as DeepSeek-V3. Our work also relates to studies that probe the
extent to which multilingual LLMs produce shared representations across languages (and whether
this is due to English acting as a pivot language), e.g.: Peng, Søgaard (2024); Singh et al. (2019);
Brinkmann et al. (2025); Wendler et al. (2024); Zhao et al. (2024). To this research line, we contribute
a method to compute similarity that allows us to take long spans of tokens into account and to capture
asymmetry between language-specific representations.

2 THE INFORMATION IMBALANCE

Given two feature spaces A and B pertaining to a collection of data points, the II is a measure that
quantifies how much information on feature space B is carried by feature space A and vice-versa.
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For an introduction to the II with simple examples, we refer the reader to Ref. Glielmo et al. (2022).
In this work, the data points are the high-dimensional representations generated by artificial neural
networks. The central idea is to compute the distance between every data point in each feature space
separately, obtaining for each point i, two sets of distances dAi,j and dBi,j , i, j = 1, ..., Ns, respectively,
where Ns is the number of samples. Then, for each data point i, all other points j are ranked in each
feature space in increasing order, obtaining two sets of integer ranks rAi,j and rBi,j . The II between
feature spaces A and B, denoted by ∆(A → B), is proportional to the average rank of points in
space B of the nearest neighbors in space A:

∆(A → B) =
2

Ns − 1
⟨rB |rA = 0⟩ ≈ 2

Ns − 1

1

N

∑
i,j

δrAij ,0r
B
ij , (1)

where in the last step we estimate the expected value over the dataset, ⟨.⟩, as the sample mean, and
δrAij ,0 is a Kronecker delta fixing data samples i, j to be first neighbours in space A. Intuitively, if A
predicts B to a large degree, the rank in space B of the first neighbors in space A should be small
(equal to zero in the case of perfect predictability). Importantly, the II can be asymmetric: if for
example A contains more information about B than B about A, ∆(A → B) < ∆(B → A). The
normalization is chosen such that if feature space A is non-informative about B ∆(A → B) = 1.
While feasible to compute numerically, the II is formally connected to the theory of copula variables
Glielmo et al. (2022), given that distance ranks are their discrete version, and it provides an upper
bound to a conditional mutual information Glielmo et al. (2022); Tatto et al. (2024). Implementation
details are in Supp. Inf., Sec. C.

In this work, we study how the information is spread across the tokens using models where the
embedding dimension is of the order of a few thousands and the number of tokens ranges from 40 to
1024, bringing to high-dimensional feature spaces of dimension up to O(106). Thus, to save memory,
we binarize the activations through the application of the sign function, a ‘quantization method’
which has been successfully applied in neural network training Hubara et al. (2018); Guo (2018);
Hubara et al. (2016); Wang et al. (2023), and in the analysis of representations. For example, it has
been shown that it approximately preserves the angles between weights and activations Anderson,
Berg (2018), and recently it was shown to be suitable for calculating the intrinsic dimension of
many-token data representations Acevedo et al. (2025). It is common practice to clip activations at a
fixed quantile and normalize vectors before computing distances, in order to mitigate the effects of
outlier dimensions Kovaleva et al. (2021); Bondarenko et al. (2023) and extreme activation values Sun
et al. (2024). Binarization implicitly achieves both: it clips all activations to ±1 and ensures that
vectors of the same length have equal norm. For a case in which we can compute the II in full
precision, we show in Sec. H of the Supp. Inf. that binarizing and computing distances with the
Hamming distance leads to remarkably similar results to those obtained with normalized real-valued
activations and L2 distances.

3 RESULTS

3.1 THE LOCAL GEOMETRY OF LLM REPRESENTATIONS OF TRANSLATED SENTENCES
ALLOWS THE IDENTIFICATION OF SEMANTIC LAYERS

We consider sets of features Al and Bl in two different languages. The index l labels different layers
and ranges from 1 to L. If a sentence in the language associated with space Al is tokenized into
T tokens, then at each layer l, Al ∈ RT×E , where E denotes the embedding dimension of the
language model processing the sentence. What we refer to as the semantic content (or meaning) of a
sentence, is a global property, emerging from the interaction of all the symbols present in it. However,
in the deep representations the attention mechanism can move information across the tokens, and
eventually concentrate it in a specific token, as indeed happens by construction in the last layer of
causal models. One of the goals of this work is studying explicitly where the information is stored
in the deep layers. This will be addressed in Section 3.1.2. We use human-made translations from
Helsinki-NLP/opus_books. Data processing details are in Supp. Inf. D.

Starting with English-Spanish translations, we compute the information imbalance between Al and
Bl for every layer in the network, excluding the embedding layer, using the last 20 tokens of each
representation (in Sec. 3.1.2 we study the dependence of the II on the number of tokens). Note that
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Figure 1: Panel a) Information Imbalance (II) from English to Spanish, using representations
generated at equal depth from translated sentences of opus_books, as a function of the relative
network depth, for DeepSeek-V3 and Llama3.1-8b. A smaller value of the II correspond to higher
predictive power. We used the concatenation of the last 20 tokens for the computation. Panel b)
II between equal-layer representations of DeepSeek-V3 processing different translation pairs. For
each language pair in the legend, we show the II from the first language to the second. Error bars
computed with 5 repetitions of a Jackknife procedure, subsampling 2000 sentences out of 5000, are
smaller than marker size.

Al and Bl are generated independently, with the network reading one language at a time, without
any specific prompt or instruction. Results are shown in panel a) of Fig. 1. Since the initial layers of
LLMs must process the input, the corresponding representations are strongly language-dependent,
and hence not highly informative about each other. As we consider deeper layers, we observe that
they become progressively more informative about the deep representations in the other language.
Since the information shared by both input languages must be semantic in nature, this analysis
confirms that the data structure of deep representations seems to encode information in a universal,
language-independent manner. For the very last layers of DeepSeek-V3, we observe a sudden rise in
Information Imbalance (II), since those layers are generating the output in a specific language, which
cannot be universal.

Note that for an ideal dataset of translations, an ideal network separately processing the sentence
pairs should generate equivalent representations, namely somewhere in the network the II from
one language to the other should be close to zero. Thus, better semantic representations in our
experiments have a higher predictability and a lower II. In Fig. 1, for English-Spanish pairs the
II of DeepSeek-V3’s representations has a very broad minimum of order 0.2, roughly between
relative depths 0.4 and 0.9. This number is impressively small, considering that the dimension of
the representations which are compared is 20 · 7000 ∼ 150, 000. As a comparison, if the data were
generated by Gaussian processes, one would observe an II of 0.2 if approximately 20% of the features
were shared between the two representations (see Supp. Inf., Sec. C). Instead, for Llama3.1-8b the
minimum II is significantly higher, of order 0.3, corresponding to approximately 15% shared features.
Moreover, the minimum is narrower, around a relative depth of 0.3, suggesting that bigger and better
models generate representations of higher semantic content.

We also measured the intrinsic dimensionality of DeepSeek-V3’s representations using the BID
estimator Acevedo et al. (2025). We find two local maxima of roughly the same height that co-
incide with the beginning (around 0.4) and the end (around 0.9) of the semantic region observed
in Fig. 1, see Supp. Inf., Sec. I. Although these peaks suggest that semantic encoding leverages a
higher-dimensional abstract space—echoing findings from brain-similarity studies Antonello, Cheng
(2024)—we defer a deeper investigation of representation dimensionality to future work.

As a sanity check, we show in Supp. Inf. F that performing batch-shuffling on any of the datasets
leads to completely uninformative representations (II gives 1 for every layer), since the semantic
correspondence between translations is destroyed. Furthermore, in Supp. Inf. G we show that our
results are compatible with those obtained using the overlap neighborhood metric from Ref. Huh et al.
(2024). In Supp. Inf. E we also show that, if instead of considering many-token representations as
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Figure 2: Panel a) Minimum Information Imbalance (II) across depth, from English to Spanish
representations, as a function of the number of tokens used in the computation, for DeepSeek-V3 and
Llama3.1-8b, when considering shorter (40 to 80 tokens, in circles) or longer (100 to 200 tokens, in
triangles) sentences. Panels b) and c) II from the last token to a previous token at token-distance τ ,
using English sentences, computed on the representations generated by DeepSeek-V3 in panel a) and
by Llama3.1-8b in panel b), in different layers. Long-distance token-token correlations are maximal
(II increases most slowly) for representations on the inner semantic layers (43 for DeepSeek-V3, 23
for Llama3.1-8b), and the effect is dramatically stronger in DeepSeek-V3. Error bars computed with
5 repetitions of a Jackknife procedure, subsampling 2000 sentences out of 5000, are smaller than
marker size.

we do in Fig. 1, one reduces the dimensionality by averaging all tokens, as done in Ref. Huh et al.
(2024), the results are qualitatively compatible, but present significant quantitative differences. For
all layers, but most strongly on the first and the last layers, we observe that averaging significantly
increases the level of mutual predictability.

3.1.1 HETEROGENEITY OF DEEPSEEK’S REPRESENTATIONS FOR DIFFERENT LANGUAGE
PAIRS

We repeated the previous translation experiment with other language pairs, in particular English-
Italian, English-Spanish, Italian-Spanish and German-Hungarian. We considered again sentences
taken from opus_books Tiedemann (2012) and applied the same filtering procedure regarding their
number of tokens, as in Fig. 1a).

Fig. 1b) shows the same qualitative behavior observed for English-Spanish pairs (low information
imbalance in the deep layers) but with major quantitative differences. Even if the training dataset of
DeepSeek-V3 contains several languages in which the network can perform well, the quality of the
representations is heterogeneous across languages, since it depends on the amount of data seen in
each language. Fig. 1b) shows that the information imbalance between English and Italian is higher
than between English and Spanish. We conjecture that this difference is due to the greater online
presence of the Spanish language relative to Italian Lan (2025), and the consequent difference in
the amount of training data. Aligned with this argument, we observe that, even though Spanish and
Italian are linguistically closer than either is to English, the Information Imbalance between Spanish
and Italian is higher than between English-Spanish or English-Italian translation pairs. Finally, we
observe that translations involving a less common language, namely Hungarian, are associated with a
significantly higher II (the minimum value is 0.5).

3.1.2 SEMANTIC INFORMATION IN LLMS IS SPREAD ACROSS MANY TOKENS

Having shown that long-span Information Imbalance captures the semantic similarity of sentences in
different languages, we turn our attention to the extent to which different tokens are contributing to
cross-linguistic similarity. Fig. 2a) shows the minimum II across all layers as a function of the number
of tokens involved in the calculation, again for English-Spanish translations from opus_books. The
span is determined starting from the end and moving back towards the sentence beginning. The main
result here, for both models, is that the addition of more tokens significantly increases the mutual
predictivity of the translation representations, proving that semantic information is not concentrated
in the last tokens, but spread over many of them.
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Focusing first on DeepSeek-V3, we note that, up to about 10 tokens, the results do not change much
between shorter (40 to 80 tokens) and longer (100 to 200 tokens) sentences. In both cases adding
more tokens significantly boosts the information content. However, for shorter sentences we observe
that the II reaches its lowest value at around 20 tokens, and it increases with the addition of further
tokens. We conjecture that this is because the last added tokens are close to the start of the sentence,
and thus they do not carry much information about the semantic content of the whole sentence,
given the autoregressive nature of the attention mechanism in the considered language models. In
contrast, for longer sentences, we observe that adding tokens leads to a rapid decrease in II, which
converges to very low values (around 0.05) at around 50 tokens and stays there. On the one hand,
this reflects the fact that, as longer sentences contain more information, their translation will contain
more shared information at the semantic level. On the other hand, it further confirms that information
is spread across a large number of tokens. We observe similar trends for Llama3.1-8b II, although
the curves are systematically above the DeepSeek-V3 ones. Similar to what we observed in Fig 1a),
this confirms that bigger and better performing models generate representations of better quality,
capturing deep semantic similarity across different languages. Finally, this result shows that not every
token contributes homogeneously to the semantic similarity between representations, and thus this
analysis suggests to take the concatenation of roughly the last 20 tokens as representative of the
sentence content.

3.1.3 INNER REPRESENTATIONS HAVE LONGER-RANGE CORRELATIONS

The previous analysis implies that the representation of a sentence in the deep layers, where it is
transferrable between different languages, is encoded in several tokens. One wonders if the activations
of the tokens in those layers are uncorrelated or not. If activations were independent, one could
argue that different tokens are associated to different “directions” in semantic space. If they are
correlated, this would suggest that the model is building a joint semantic representation of sentences
spreading its information across its component tokens. We address this question by measuring how
informative two distinct tokens of the same sentence are about each other. Fig. 2 (panels b) and
c)) shows how much the II between two token positions depends on their distance, for sentences in
English. Concretely, we measure ∆(T → T − τ), the II between the token at position T , and tokens
at position T − τ , for τ = 1, 2, .... We report this measure for the first and last layers, as well as
an intermediate layer from the semantic region (layers 43 of DeepSeek-V3 and 23 of Llama3.1-8b,
respectively). For both LLMs, the II rapidly grows as a function of τ for the initial layers and saturates
to 1, clearly showing that the first layer is short-range correlated. For the deeper layers that were
shown in Fig. 1 to correspond to the phase of shared cross-linguistic information, the II exhibits the
slowest growth, meaning that far away tokens are predictive about each other, i.e., in these layers the
information is mostly shared between tokens. DeepSeek’s deep representations have notably lower
II across tokens than Llama3.1-8b’s, making it evident that better-quality semantic representations
more clearly capture long-distance correlations. A clear separation in effect strength between the
intermediate semantic layer and the last layer (61 for DeepSeek-V3, 32 for Llama3.1-8b) is moreover
only present for DeepSeek-V3. Still, even for DeepSeek-V3 the last layer has II values clearly below
those of the first layer, suggesting that, while the last layer is optimized to write the output, it still
carries semantic content.

3.1.4 CORRELATIONS BETWEEN TOKENS AS A HALLMARK OF QUALITY IN SEMANTIC
REPRESENTATIONS

Fig. 3a) focuses on a semantic layer from DeepSeek-V3, and it shows token-token II as a function of
token distance for several languages. We present the II in both directions: The "backward" II, from
the last token, T , to a previous token at distance τ , ∆(T → T − τ), and the reciprocal or “forward”
II, ∆(T − τ → T ). We observe that English deep representations are much more correlated than the
representations in the other languages. We conjecture that this is a sign of better quality, consistent
with Fig. 1b), where the presence of English in a pair results in the best predictability (lowest II
scores). At the opposite extreme, note that single-language German and Hungarian representations are
the least correlated in Fig. 3a), and the German-Hungarian translations have indeed the worst mutual
predictability score (highest II) in Fig. 1. Furthermore, Spanish and Italian have the second and third
most correlated inner representations in Fig. 3a), coherently with the profiles of the English-Spanish
and English-Italian pairs in Fig. 1b) (lowest and second lowest IIs, respectively).
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Figure 3: Panel a) In solid markers, the “backward” Information Imbalance (II), i.e., from the last
token to a previous token at token-distance τ , as a function of τ , for DeepSeek-V3 representations
at layer 43 and sentences in several languages. In dashed lines, the reciprocal “forward” II. Panel
b) Asymmetry A between forward and backward II, averaged over τ , as a function of DeepSeek’s
relative depth. Error bars computed with 5 repetitions of a Jackknife procedure, subsampling 1000
sentences out of 2000, are smaller than marker size.

Finally, Fig. 3a) shows that, for English, as the distance between tokens τ increases, the relative
information content between past and future tokens gets increasingly asymmetric. In particular,
earlier tokens are more informative of the last one than the other way around. This could be
expected, since causal models like DeepSeek-V3 are trained to predict future tokens, and text itself
has a natural causal asymmetry. Nonetheless, Fig. 3a) shows that this past-to-future asymmetry
is heterogeneous across languages. To further study the effect, we first define the asymmetry as
A = ∆(T → T − τ)−∆(T − τ → T ). When A is positive, the earlier token predicts the last one
more than the latter predicts the earlier token, whereas a negative A has the opposite interpretation.
Fig. 3b) shows the information asymmetry A of DeepSeek-V3 as a function of its layers for the all
languages we studied. For initial layers (i.e., relative depth less than roughly 0.4, see Fig. 1), we
observe that all representations have a comparable amount of causal asymmetry. Instead, for semantic
layers there are strong heterogeneities between languages. English remains causally asymmetric until
the last few layers of the network, while the other languages present earlier negative values of A.
Intriguingly, Spanish and Italian, the two languages with the lowest IIs from English, have a later dip
in A compared to German and Hungarian. These results call for further experiments to study possible
relationships between these observed information asymmetries, model performance, and linguistic
structure. We leave them as material for future research.

3.2 IMAGES SHARING HIGH LEVEL SEMANTICS

We extend the analysis to pairs of images and measure how vision transformers (ViTs) capture
semantic information for two systems: image-gpt Chen et al. (2020) and DinoV2 Oquab et al. (2024).
Image-gpt performs next-token prediction after it (i) down-scales the images; (ii) unrolls them,
juxtaposing the rows; (iii) quantizes the colors. It mimics the strategy of LLMs: the last layers must
perform next-token prediction; previous work suggests that semantics appears in the middle Chen
et al. (2020). DinoV2 encodes salient features. It trains a student network to mimic its teacher and
reconstruct different instances of the same image. The final layer should be the most semantically
rich: its output is the input to downstream tasks such as depth estimation, image segmentation, and
instance retrieval.

We first compare representations for pairs of images from the Imagenet1k dataset Deng et al. (2009).
Each couple shares the same class, which we take as a proxy of similar semantics: we process the
pairs of instances with the same architecture and compute the information imbalance on a random
subset of 2500 same-class pairs of images, which we sample without repetition. We replicate the
procedure five times to quantify uncertainty. We report the results in the left panel of Fig. 4. As the
assignment of same-pair images to two spaces used to compute II is arbitrary, we report the average
of II in the two directions. The minimum of the information imbalance is in the middle for image-gpt
and at the end for DinoV2, consistently with previous work Valeriani et al. (2023). The information
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Figure 4: Panel a) Information imbalance for image pairs from the Imagenet1k dataset. We sample
2500 pairs of images from the same class at random; averaging over five replications. We report
the mean and standard deviation. Panel b) Information imbalance between image and caption
representations on the flickr30k dataset. Images are encoded using DinoV2 and image-gpt-large,
while captions are processed with DeepSeek-V3. We report the imbalance as a function of the relative
depth in the vision transformer, using the 52nd layer of DeepSeek-V3 (inside the semantic region)
for captions. Results are averaged over 5000 samples, with uncertainty estimated via bootstrapping
(100 replicas of 200 samples each). Dotted lines indicate information flow from caption to image;
dashed lines, from image to caption.

imbalance is lower for DinoV2 (≈ 0.43): this would correspond to roughly 10% shared features in
the Gaussian case, see Supp. Inf., Sec. C.

3.3 IMAGES AND CAPTIONS: MULTIMODAL DATA SHARING SEMANTIC CONTENT

Image-caption pairs encode the same semantic content in different modalities: we are interested in
their representations as semantics must play a key role in alignment. We process text with DeepSeek-
V3 and images with DinoV2 and image-gpt. The dataset is flickr30k Young et al. (2014): it contains
pairs of images and captions; the captions are the concatenations of five different human-generated
descriptions. We next repeat the analysis of Fig. 2a), estimating the minimum Information Imbalance
between the image transformer and DeepSeek-V3 as a function of the number of image tokens
concatenated from the end of the sequence. For DeepSeekV3, we fix the token window to 9, which
corresponds to the point where the steep decrease of II observed in Fig. 2a) essentially saturates. We
find that, for both DinoV2 and image-gpt, it is necessary to concatenate the last 200 tokens to capture
the relevant shared information. Results obtained with shorter windows (last 50 tokens) and with
mean-token are reported for comparison in Supp. Inf., Sec. J.

In Fig. 4 we report the information imbalance between layer 52 of DeepSeek-V3 (captions), DinoV2
and image-gpt (images). We select layer 52 of DeepSeek-V3 because it is a layer in which the
representations of text in different languages is highly mutually predictive, see Fig. 1. We recover the
exact same semantic regions provided by the analysis of the image-image pairs: towards the end for
DinoV2 and in the middle for image-gpt. DinoV2 has a lower information imbalance of 0.4. Using
the Gaussian process as a reference (Supp. Inf., Sec. C), this would correspond to approximately
10% of shared features. The minimum II for image-gpt is ≈ 0.6, corresponding to 5% of shared
features. The dashed lines in Fig. 4 report the information imbalance from the image to the text
representation. Remarkably, for the image-gpt model the II is considerably larger than in the text-to-
image direction. In particular, the minimum value of the II is ≈ 0.7. The difference between the II in
the two direction is significantly higher than the error bars estimated by bootstrap, indicating that the
effect is statistically significant. This difference is likely due to the better quality of the DeepSeek-V3
representations. The asymmetry in the information imbalance is reversed for the DinoV2 model. In
this case the image representation predicts the text representation marginally better than the reverse.
This can be due to the fact that DinoV2 is explicitly trained to extract semantically meaningful visual
features, and indeed the largest asymmetry is observed in the last layer.
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To directly test whether joint text–image training facilitates cross-modal alignment, we performed a
set of experiments with the ViT-L/14 visual encoder of the multimodal CLIP system (Radford et al.,
2021) on the same flickr30k dataset (Supp. Inf., Sec. J). We computed the information imbalance (II)
between CLIP image representations and DeepSeek-V3 text representations and compared it with the
DinoV2–DeepSeek-V3 baseline. We found that the DeepSeekV3-CLIP Image II reaches a minimum
of approximately 0.3 (≈ 15% of shared features), which is lower than the minimum II observed for
DinoV3-DeepSeeV3, indicating that CLIP’s visual encoder aligns more closely to the text semantics
than a purely visual model of comparable capacity.

4 LIMITATIONS

It would be interesting to extend our analyses to a further variety of models of intermediate sizes
and diverse architectures, including diffusion models, for example quantifying the depth and the
length of the semantic regions found as a function of the number of parameters in the model, and
to consider models that specifically target multilinguality Martins et al. (2025); Üstün et al. (2024).
In our experiments with translations, we used human translations from opus_books Tiedemann
(2012), in which the different language pairs may correspond to translations from different novels,
introducing an extra source of variation not taken into account in our analysis. We explicitly avoided
using LLMs to generate the translations to avoid the introduction of biases in the analyses. Indeed,
we found that, for the case of English-Italian, DeepSeek-generated translations have more similar
representations than those obtained from opus_books. More generally, in our multilingual analyses
of DeepSeek-V3, there are more comparisons to be made, such as fixing English as a pivot language
and then systematically considering different translations of the same English text into languages
with different online presence, and of different degree of relatedness.

5 CONCLUSION

Through a novel application of the information imbalance measure Glielmo et al. (2022), we showed
that DeepSeek-V3, the largest publicly available LLM, developed an internal processing phase in
which different inputs that share the same semantics, such as translations and image-caption pairs,
are reflected in representations that are extremely similar. We further ascertained that, on these
“semantic” layers, long token spans meaningfully contribute to the representation, and long-distance
correlations in encoded information cue high-quality representations. Several of the patterns we
observed in DeepSeek-V3 also emerge in the medium-sized Llama3.1-8b model, but in a less distinct
manner, suggesting that deep semantic processing is a hallmark of better models. We also analyzed
visual processing models, finding again the presence of layers that capture deeper semantic similarity,
and whose position depends on the objective the models are trained upon. DeepSeek-V3 textual
representations and vision transformer visual representations of the same concepts are most strongly
aligned in the respective semantic layers.

Our work supports the hypothesis that, as deep models improve, they converge towards shared
representations of the world Huh et al. (2024). We took a first step away from simply verifying that
such representations exist, towards characterizing their nature, by precisely quantifying the degree of
shared information, localizing where they occur in different networks and determining how they are
synthesized from composite inputs. Future research, besides extending the empirical coverage of
our investigation, should further increase the resolution of the measurements, allowing us to go from
observing the holistic behavior of a model with respect to a data set to a full characterization of how
semantic representations are constructed given each specific input instance.

6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our experiments employ publicly available datasets
and open-source models (under their respective licenses). We are not aware of any ethical concerns.
To the contrary, by providing new tools to understand the inner workings of LLMs and other AI
systems, we hope to contribute to a safer and more transparent AI.
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7 REPRODUCIBILITY STATEMENTS

We describe all model configurations, datasets, and computational settings in the main text and
supplementary material to enable independent verification. Upon acceptance, we will release the full
source code and instructions in a public repository to facilitate reproducibility.
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Supplementary Information
A COMPUTE RESOURCES

We run DeepSeek-V3 on a cluster of 16 H100 GPUs (80GB each), using the SGLang frame-
work Zheng et al. (2024). Input sequences consist of 40–80 tokens and are processed in batches of
30. For LLama3.1-8B, a single GPU from a DGX H100 system is sufficient. For our experiments on
text and image-caption pairs, 1TB of RAM is enough, moving to the GPU a couple of layers at a
time. Image-Image experiments are done using up to five NVIDIA A30 GPUs and 500 GB of RAM.

B ASSETS

Opus books: https://huggingface.co/datasets/Helsinki-NLP/opus_books ; licence: CC BY 4.0.

DeepSeek-V3: https://huggingface.co/deepseek-ai/DeepSeek-V3 ; Model li-
cence.

Llama3.1-8b: https://huggingface.co/meta-llama/Llama3.1-8b-3.1-8B ; license: llama3.1

Flickr dataset: https://huggingface.co/datasets/clip-benchmark/wds_flickr30k ; subject to flickr terms
of use.

Imagenet: https://image-net.org/ ; terms of access: https://image-net.org/download.php

DinoV2: https://github.com/facebookresearch/dinov2/tree/main ; licence: Apache 2.0

image-gpt-large: https://github.com/openai/image-gpt ; licence: Modified MIT

C INFORMATION IMBALANCE: IMPLEMENTATION DETAILS AND GAUSSIAN
COMPARISONS

Implementation details The representations of deep transformers are (very) high dimensional:
the number of tokens ranges from a few tens for short sentences, to thousands for long sentences
or images, and typical (per token) embedding dimensions are of the order O(103). These two
contributions rapidly generate representations where the total dimensionality can be of order O(106).
Estimating the information imbalance in such a large space can be very costly, especially with sample
sizes of order 103, like those used in this work. To speed up computations, we follow the approach
introduced in Ref. Wild et al. (2025). Instead of directly computing all-to-all distances between the
N samples, we randomly split the data, selecting two subsets of points, that we call origins and
destinations. We call No and Nd the number of samples in both subsets, respectively. Computing the
information imbalance without splitting is costly for two reasons. First, it is necessary to compute
the pairwise distances between all N data points, instead of using only the No origins. Second, the
ranking operations sort N − 1 elements instead of Nd − 1 elements, which strongly affects compute
time, as sorting operations grow more than linearly with the number of elements. In this work, we
found a good number of origin points to be ≈ 200− 500. Indeed, with these numbers the statistical
uncertainty on the II is small enough to assess subtle differences between the languages, as shown
in the figures in the main text (notice that the error bars are smaller than the marker size in all the
figures except in Fig. 4, where the error bars are explicitly shown).

Interpreting II To provide an interpretation of the value of the information imbalance observed in
our analysis of the representations of images and text, we computed the II in an idealized scenario,
in which the dimensions of the feature spaces resemble the one in neural networks: we generate set
Y with 2000 samples from a Gaussian distribution with zero-mean, identity variance matrix, and
p = 105 components. We fix X to be the first k components of Y , with k = 1, 2, . . . , 105. We
compute the information imbalance ∆(X → Y ) to quantify how adding features changes the II. We
repeat the analysis by binarizing the features, namely following the same procedure used for the
activations in the neural networks. In the real case, we use the L2 distance; in the binary case we
employ the Hamming distance. We report the results in Fig.5: we average the results over 10 replicas.
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We see that the information imbalance between X and Y decreases as the number of shared features
increases in a highly nonlinear manner, and that the results with and without binarization are within
statistical error. In Sec. H we further show that binarization also preserves the Information Imbalance
calculated with activations generated by DeepSeek-V3.
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Figure 5: Information imbalance for growing shared components in simulated data. We compute the
information imbalance ∆(X → Y ), where Y is the target space and X is the origin space: it consists
of the first k features of Y , with k = 1, . . . , 105. We report both the real (Euclidean distance) and the
binary cases (Hamming distance). The results are averaged across ten repetitions; the shades are the
1-sigma bootstrap errors.

D TRANSLATIONS DATASET

We filter pairs of translated sentences from Helsinki-NLP/opus_books Tiedemann (2012) that have
a number of tokens between 40 and 80, avoiding trivial sentences and incorrect translations, while
keeping roughly 5000 thousands sentences of comparable length. We avoid truncating the translated
sentences, preserving their full meaning. We excluded the last two tokens of each sentence from the
analysis, as they consistently correspond to punctuation marks (e.g., a period or a period followed by
a quotation mark), which introduce trivial similarities in the representations.

E AVERAGE TOKEN COMPARISON

Fig. 6 shows the Information Imbalance between DeepSeek-V3 representations of English and
Spanish translations, using 20 tokens of each sentence, with and without taking the average over
the token axis. Note that for the case of concatenated tokens, the curve is the same as in Fig. 1
of the main article, for direct comparison. When taking the average, we use the L2 distance and
we clip and normalize the inputs, as Ref. Huh et al. (2024). When using all 20 tokens we binarize
activations and we use the Hamming distance, as in the main text. While the results are qualitatively
consistent, they differ significantly in quantitative terms. Across all layers—most notably in the
first and last—averaging leads to a marked increase in mutual predictability (lower Information
Imbalance), due to the elimination of positional information, which is most relevant in the initial and
last layers, i.e., before and after the semantic region.
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Figure 6: Information Imbalance between English (en) and Spanish (es) representations generated by
DeepSeek-V3’s as a function of depth. ‘Concat’ stands for the results obtain with the concatenation
of the 20 last tokens of each sentence. ‘Average’ stands for the average of the same 20 tokens. The
standard deviation is computed with a Jackknife procedure, subsampling 2000 samples out of 5000
five times, and it is smaller than marker size.

F MISALIGNMENT OF TRANSLATIONS ERASES SEMANTIC SIMILARITY

As a consistency check, Fig 7 shows the Information Imbalance for DeepSeek-V3’s and Llama3.1-
8b representations using misaligned translations, namely performing a batch-shuffle in one of the
datasets. Since the semantic correspondence between sentences is destroyed, the representations are
not informative about each other, and thus the II is close to one, for all layers. The same occurs with
misaligned image pairs, II being around one when pairs do not share the same class, for all layers.
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Figure 7: Information Imbalance between English (en) and Spanish (es) representations generated
by DeepSeek-V3 and Llama3.1-8b, for the "non-informative case", namely a misaligned dataset in
which we batch-shuffle the Spanish translations. The (hardly visible) shaded area corresponds to one
standard deviation, computed with a Jackknife procedure subsampling 2000 samples out of 5000.

G COMPARISON BETWEEN NEIGHBORHOOD OVERLAP AND INFORMATION
IMBALANCE

To quantify representation similarity, Ref. Huh et al. (2024) used the neighborhood overlap, namely
the average fraction of shared k nearest neighbors. In particular, they found this metric to be more
suitable than linear metrics, like Central Kernel Alignment (CKA), providing a stronger signal. In
this section we compare our results from Fig. 1.a) of the main article with the neighborhood overlap
computed on the same representations. To measure the neighborhood overlap we follow the pipeline
of Ref. Huh et al. (2024), namely we clip the activations using quantiles of order 0.05% and 95%, we
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normalize each vector, and we measure the distances between them with the L2 metric. Fig 8 shows
that the neighborhood overlap between representations increases and reaches a plateau concurrently
with the local minimum plateau of the Information Imbalance, thus both methods give qualitative
the same results. We note that the neighborhood overlap, being defined between 0 and 1, here
only reaches a value around 0.2. Similar small values were also observed and even highlighted in
Ref. Huh et al. (2024), although the authors do not provide arguments to understand the reasons
behind this property. We note that if the k-th neighbor of representation A is instead the k + 1
neighbor of representation B, automatically that point counts as outside the k-neighborhood, even if
it is extremely close, rendering the alignment value very low. This effect doesn’t take place in the
Information Imbalance, which, instead of evaluating if k neighbors are shared, measures what is the
rank in space B of k neighbors in space A, and vice-versa.
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Information Imbalance (en --> es)
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Alignment(es,en)

Figure 8: Information Imbalance between English (en) and Spanish (es) representations generated by
DeepSeek-V3 from Fig. 1 of the main article, compared with the neighborhood alignment metric
from Ref. Huh et al. (2024). The (hardly visible) shaded area corresponds to one standard deviation,
computed with a Jackknife procedure subsampling 2000 samples out of 5000.

H BINARIZING HIGH DIMENSIONAL REPRESENTATIONS HAS A MARGINAL
EFFECT ON THE INFORMATION IMBALANCE

Fig. 9 includes again, as reference, the Information Imbalance between DeepSeek-V3 representations
of English and Spanish translations, using the last 20 tokens of each sentence, binarizing the activa-
tions and using the Hamming distance, (results of Fig. 1 from main text). To investigate the effects
of binarizing the representations, we show the Information Imbalance using the same data where,
instead of taking the sign of the activations to generate binary variables, we clip them using quantiles
of order 0.05% and 95%, we normalize vectors to unit norm, and we use the L2 distance, similar to
Ref. Huh et al. (2024). Remarkably, binarizing has marginal effects on the Information Imbalance
computed with full precision (for DeepSeek-V3’s representations, BF16), which is possible in this
setup given that we are working with 20 tokens.
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Figure 9: In circles, Information Imbalance between English (en) and Spanish (es) representations
generated by DeepSeek-V3, binarizing the activations and using the Hamming distance. In crosses,
the II clipping and normalizing activations, and using the L2 metric. The standard deviation, computed
with a Jackknife procedure subsampling 2000 samples out of 5000, is smaller than marker size.

I BINARY INTRINSIC DIMENSION OF DEEPSEEK-V3 REPRESENTATIONS

The Binary Intrinsic Dimension (BID) is defined in Ref. Acevedo et al. (2025) through the probability
distribution of Hamming distances between samples of binary high dimensional vectors. If we
consider N -dimensional vectors σ with components σi, i = 1, ..., N uniformly distributed in
{0, 1}, then the probability of observing Hamming distance r between any two samples is exactly
P0(r) =

1
2N

(
N
r

)
. The BID is defined as the coefficient d0 of the following Ansatz:

P (r) =
1

2(d0+d1r)

(
N

d0 + d1r

)
, (2)

where d1 is a second variational parameter. We perform a second-order optimization of the Kullback-
Leibler divergence between the model equation 2 and the empirical distribution of distances, comput-
ing numerical derivatives with JAX’s autodiff. For more details on the BID computation, see Acevedo
et al. (2025). We used hyperparameters αmin = 0.15, and αmax = 0.4. Fig. 10 shows the Binary
Intrinsic Dimension (BID) of DeepSeek-V3’s representations processing English sentences from
opus_books with length between 40 and 50 tokens. We take the last 10 and the last 20 tokens of
the binarized representation, and we find two dimensionality peaks that roughly coincide with the
beginning (around 0.4) and the end (around 0.9) of the semantic region found in Fig. 1. These results
align with recent evidence of abstract spaces presenting dimensionality peaks in deep representa-
tions Cheng et al. (2025); Antonello, Cheng (2024). The missing points at the beginning of the blue
curve correspond to failed optimizations due to the strong multimodality of the empirical distribution
of distances.
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Figure 10: Binary Intrinsic Dimension (BID) normalized by the number of bits (neurons), in the
representation generated by DeepSeek-V3 processing English text. In the legend, n_tokens stands
for the number of tokens concatenated in the representation, starting from the last. Shaded area
corresponds to one standard deviation, computed with a Jackknife procedure, subsampling 2000
samples out of 5000, ten times.

J IMAGE-CAPTIONS PAIRS

In Fig. 11, we report additional results for the image-caption experiments: we consider different
windows of tokens, using the last 200 tokens for images - as we do in the main text - vs a smaller
windows of 50 tokens and the average. In general, results are qualitatively similar across setups. We
observe that the choice of the number of tokens comes with a trade-off: more tokens convey more
information; at the same time, having more tokens implies working with bigger objects.
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Figure 11: Information imbalance for image-caption pairs. We consider three scenarios: (i) 50 tokens;
(ii) 200 tokens; and (iii) the mean token. The results are qualitatively similar.

In Fig. 12, we show how the alignment between models changes when the number of tokens is
increased: on the left, we report the case for DinoV2, comparing it with DeepSeek-V3, in the
image-caption case, and with itself for the pairs of images. On the right, we report the same analysis
for image-gpt.

Finally, we performed three analyses on the flickr30k image–caption pairs to probe how CLIP’s joint
training influences representational alignment.

1. DinoV2 → CLIP-Image: comparing a purely visual model with CLIP’s visual branch.

2. DeepSeek-V3 → CLIP-Text: comparing a purely textual model with CLIP’s text branch.

3. DeepSeek-V3 → CLIP-Image: comparing a purely textual model with CLIP’s visual branch.
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Results are in Fig. 13. In all cases we compute the information imbalance (II) in both directions
(from the source model to the target and vice-versa), always indicating the direction in the figure
legends. The DeepSeek-V3 → CLIP-Image comparison directly tests whether a visual encoder
trained to align with text predicts textual representations better than a unimodal vision model. Its
minimum II is approximately 0.3 (≈ 15% shared features), which is lower than the ≈ 0.40 minimum
for DeepSeek-V3 → DinoV2 (main text Fig. 4). The DinoV2 → CLIP-Image II remains extremely
low (≈ 0.01) past a relative depth of ≈ 0.8, consistent with a near-identical visual representation.
Conversely, the DeepSeek-V3 → CLIP-Text II decreases more gradually and stabilizes around 0.4,
indicating weaker alignment of CLIP’s text branch to purely textual models. Shaded regions in
Fig. 13 show 95% bootstrap confidence intervals.
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Figure 12: Information imbalance for varying windows of tokens. We report the minimum of the
information imbalance, a proxy of alignment, for growing windows of tokens. On the left, we report
the results for DinoV2 in both the image-caption (dotted blue line) and the image-image case (dashed
blue line). On the right, we report the results for the image-gpt in both the image-caption (dotted
green line) and the image-image cases (dashed green line).
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Figure 13: Information imbalance (II) on flickr30k involving CLIP representations. Top: DinoV2
image vs. CLIP image. Middle: DeepSeek-V3 text (layer 52) vs. CLIP text. Bottom: DeepSeek-V3
text vs. CLIP image (new cross-modal analysis). Lower II indicates stronger semantic predictivity.
Shaded areas show 95% bootstrap confidence intervals.
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