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Abstract

This paper presents a novel task, detecting
Spatial Relation Markers (SRMs, like English
in the bag), across languages, alongside a
model for this task, RUIMTE . Using a mas-
sively parallel corpus of Bible translations, the
model is evaluated against existing and baseline
models on the basis of a novel evaluation set.
The model presents high quality SRM extrac-
tion, and an accurate identification of situations
where language have zero-marked SRMs.

1 Introduction

Massively parallel corpora, where the same source
text has been translated into many different lan-
guages, form a unique opportunity to compare
how the languages of the world express the same
message, allowing for both fine-grained (utterance
level) and large-scale comparisons (Mayer and
Cysouw, 2012; Wälchli, 2014; Levshina, 2016; As-
gari and Schütze, 2017; Liu et al., 2023). While
earlier studies (e.g. Wälchli, 2014) applied manual
extraction procedures, automated methods for re-
trieving the translation-equivalent markers across
languages, at the level of parallel utterance tokens,
are necessary to study crosslinguistic variation at
scale. Substantial progress has been made in de-
veloping such methods (e.g. Wälchli, 2014; Asgari
and Schütze, 2017; Liu et al., 2023; Beekhuizen
et al., 2024). However, to date, none of these meth-
ods has undergone substantial intrinsic evaluation.

Here, I consider the typologically interesting and
well-studied domain of spatial relation marking (i.e.
prepositions like in the cup and onto the moun-
tain in English and their translation equivalents;
Levinson et al., 2003; Feist, 2008; Viechnicki et al.,
2024). This domain can be expected to be chal-
lenging for automated extraction procedures due to
the great degree of crosslinguistic variation in how
languages divide up spatial relational meanings
(Levinson et al., 2003; Feist, 2008; Viechnicki et al.,

doculect example SRM(s)

English On their heads were something . . . on
Indonesian . . . dan di atas kepala mereka . . . di, atas
Quechua . . . kansapa umankunapi kurimanta -pi
German . . . und auf ihren köpfen wie . . . auf
Kilivila . . . leikatububulaisi paila kabilia

opwanetasi eisikamsi . . .
o-

Mixtec . . . saá ná’a ña kánóo sini ñii ñii . . . ∅
Nigerian
Pidgin

. . . war wetin dey dia head bi like gold ∅

Table 1: Equivalent Spatial Relation Markers in Rev. 7:9

2024), the diversity of means of expression (as af-
fixes or adpositions), and the extensive presence of
zero marking of the spatial relation – marginally
present in English expressions like I’m _ home and
I’m going _ home, but prevalent in many other lan-
guages (Stolz et al., 2014; Haspelmath, 2019).

This paper presents five contributions, with Ma-
terials at https://github.com/dnrb/ruimte.

• a dataset for evaluating the extraction of spa-
tial relation markers (SRMs) in 18 languages;

• the formulation of two novel tasks for assess-
ing the extraction quality (1) of the SRMs
themselves, and (2) of the identification of the
absence of any SRM;

• a novel model, RUIMTE , for extracting SRMs
from a massively parallel corpus;

• an evaluation of it against comparable models;
• a brief demonstration of downstream insight

of these results for the typology of spatial re-
lation marking.

2 Data and seed set

For typological coverage, I used a corpus of Bible
translations. As the Parallel Bible Corpus (Mayer
and Cysouw, 2014) is not publicly available, Bible
translations were downloaded through the API
of faithcomesbyhearing.com (N=1, 367), and
from aboriginalbibles.org.au (N=14). Given
translation availability, only New Testament data
were used. Each unique translation (identified with
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the language’s 3-character ISO-939 code followed
by a 3-character identifier) was considered one
‘doculect’.1 Under copyright agreements, trans-
lations cannot be reproduced but the materials con-
tain a list of doculects.

To the best of my knowledge, there are no lan-
guages with spatial relation markers (SRMs) that
are not polysemous with non-spatial (temporal and
metaphorical/abstract) meanings, and as such no
surface form of a (set of) markers can be used as a
‘clean’ seed to the extraction procedure. Instead, I
manually created a seed set of exclusively spatial
usages of English prepositions, as follows:

All prepositional phrases with nominal comple-
ments and one of the prepositions in, on, at, to, onto,
into, from, out, off were identified in the World
English Bible (ENGWEB) translation using the
SpaCy dependency parser (Honnibal and Montani,
2017), and subsequently manually annotated for
whether (1) whether they involved a spatial relation,
(2) the dynamicity of the relation: static (‘Loca-
tive’), dynamic towards a Ground (‘Allative’) or
dynamic away from a ground (‘Ablative’; using
the terminology of Haspelmath, 2019), (3) the spa-
tial relation, using the finest-grained categories of
Levinson et al. (2003), and (4) the ground type,
or the semantic class of the ground, using distinc-
tions made in Haspelmath (2019) alongside sev-
eral bottom-up identified categories. Examples are
given in Appendix A.

3 Extraction methods

The task at hand is to extract, given a spatial re-
lation marker (SRM) token in one doculect, all
and only the translation equivalent SRMs in other
doculects. Table 1 exemplifies the challenge: some
languages have adpositions (English, German),
others affixal SRMs (Kilivila, Quechua). Many
doculects use one SRM, but Indonesian uses two,
and Mixtec and Nigerian Pidgin use no explicit
SRM in this example. In this section, I define
several components of a model addressing this ex-
traction problem. The critical components of the
pipeline are: (1) morphological segmentation, (2)
an alignment/extraction heuristic, and (3) the post-
processing of allomorphy and complex SRMs.

1I adapt the term ‘doculect’ (Cysouw and Good, 2013)
in order to reflect the fact that one ‘language’ (i.e., an ISO-
939 code) may have multiple translations, each representing
one ‘documented variety’, and to stress the somewhat tenuous
relation between the documentation of a language through a
text with potentially culturally foreign content that is often
created (to a large extent) by a non-native speaker.

3.1 Morphological segmentation
Given that SRMs can be affixal, the extraction pro-
cedure should be able to consider affixes as candi-
date extractions. Some extraction procedures (e.g.
Liu et al., 2023) already consider sub-word strings,
but others might require the space-bound words
to be further segmented into the stems and bound
morphemes prior to extraction. Given that for the
majority of the 1,381 doculects in the corpus no off-
the-shelf morphological segmentation procedure is
available, we will have to rely on unsupervised seg-
mentation procedures that can be trained on the
parallel Bible corpus itself. Here, I consider three
unsupervised models.

MORFESSOR (Virpioja et al., 2013), first, can be
trained on wordlists derived from the Bible corpus.
Word frequencies affect the likelihood of segmen-
tation in the model – I used the three suggested
transformations of word frequency: the type model
assigns a frequency of 1 to each type, log-token
the log-transformed token frequency and token the
token frequency. As MORFESSOR does not provide
a distinction between stems and affixes, FLATCAT

(Grönroos et al., 2014) was applied to determine
the morphological status of the segments.

Second, MORSEL (Lignos, 2010) is a precision-
oriented unsupervised procedure based on a best-
first heuristic processing the space of possible mor-
phological transforms. Like MORFESSOR, it relies
on word lists and frequencies. I used the two pre-
defined parameter settings Aggressive and Con-
servative, differing only in their approach to the
detection of stem compounds.

Finally, VORM (Beekhuizen, 2025), is an unsu-
pervised model that leverages translations to con-
strain the search space of morphological transforms
and follows the intuition of MORSEL in making a
best-first pass through the hypothesized morpholog-
ical transforms. The minimal number of instances
of a morphological transform was set to N = 10.

3.2 Extraction procedures
The second component of the pipeline is the ex-
traction procedure itself. I will introduce the novel
model, after which I present comparison models.

3.2.1 The RUIMTE extraction model
The Ground nouns and their translations form rel-
atively easily identified anchors of spatial relation
marking, with SRMs expected to occur close by.
The RUIMTE (‘Retrieval of Unique Instances of
Markers of Topological Essence’) model leverages
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Figure 1: Exemplification of the RUIMTE model: main steps and postprocessing

this fact to identify SRMs, using intuitions similar
to the noun-case extraction model of Weissweiler
et al. (2022), namely that the overrepresentation
inside the window of a target noun is a cue for ex-
traction. Figure 1 provides an example, to follow
along with the description of the steps below.

In Step 1 of the procedure, translations of all
Ground nouns are extracted with an adapted for-
ward pass of the Liu et al. (2023) method. This
procedure determines, for a seed noun type n, the
character string smax in the target language with the
strongest statistical association to n, based on their
co-occurrence frequency across Bible verses. More
precisely, let U be the set of verses containing n, V
the set of verses whose translation contains a char-
acter string s, and A the set of all utterances for
which translations are available. The association
between n and s is then defined as the negative log
probability of a one-tailed Fisher Exact test over
the following 2× 2 table:

|U ∧ V | |U \ V |
|V \ U | |A \ (U ∨ V )|

Two constraints on smax eliminate spurious asso-
ciations, namely that |U ∧ V | > 0.10 × |U | and
|U ∧ V | > 0.10 × |V |. Next, any space-bound
strings in the translations of utterances in U con-
taining smax are extracted as translation-equivalent
ground noun tokens (TEGNs) of n, and the utter-
ances in |U ∧ V | are removed from U , A, and V .
The procedure is repeated until no more valid can-
didates can be extracted.

Step 2, next, determines SRM candidates. For

each seed item, all target language words in a 3-
word window around each of the item’s TEGN
tokens (including the TEGN token) are retrieved
and morphologically segmented using a morpho-
logical model. Each segment, combined with its
position (whether it occurs before the TEGN, after
it, or is part of it), forms a candidate SRM. Keeping
track of the position is informative for the model,
as adpositions typically occur on one side of the
head noun. Given the extracted candidate SRMs,
we then calculate the association of each candidate
SRM type to the full set or a subset of the seed
items. The association score of a candidate SRM
is defined as the maximal negative log probability
of a one-tailed Fisher Exact test applied to the fol-
lowing 2× 2 table, maximizing Ux from the set of
U and any Uf used:

|Ux ∧ C| |N ∧ C|
|Ux ∧D| |N ∧D|

where:
• U is the set of verses containing a seed item,
• Uf is the set of verses containing seed items

with a specific annotated feature value or com-
bination of feature-values,

• N is the set of verses containing any seed
noun in a non-prepositional (and therefore al-
most certainly non-locative) context,

• C is the set of verses whose translation con-
tains the candidate SRM,

• D is the set of verses whose translation does
not contain the candidate SRM.

We can define Uf variably. First, the spatial re-
lation itself (‘rel’) can be used, defining three
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nodes in the taxonomy of Levinson et al. (2003):
Ucontainment (annotated instances of ‘IN-2D’ and
‘IN-3D’), Usupport (instances of ‘ON’, ‘ON-TOP’,
and ‘ATTACHMENT’), and Ucolocation (instances
of ‘COLOCATION’). This allows us to find associ-
ations with SRMs that are exclusively used for one
but not the other relation, effectively introducing
a prior from the typological literature on what lan-
guages frequently do. Another such prior comes
from the dynamicity (‘dtc’) of the spatial relation,
defining three seed sets Ustatic, Ugoal, and Usource (cf.
Haspelmath, 2019). A third option is to combine
them (‘dtc&rel’). Fourth, we can use no Ufs (‘all’),
and finally, we can use the English prepositions
(‘prp’) as an easily accessible seed type. We call
these five settings the seed types.

SRMs with scores < − log 1e−6 are omitted.
The resulting set still contains spurious markers. To
remove these, Step 3 implements a backtranslation
filter that eliminates candidate target SRMs that
are more strongly associated with frequently co-
occurring context words of the seed SRMs (e.g. go
in the context of go into their house). To do so,
the forward-pass of the Liu et al. model is ap-
plied to each seed language word occurring with
a frequency ≥ 10 in a 3-word window around any
seed item noun (excluding the prepositions). This
procedure gives us a statistical association score
between the seed language word and the candidate
SRMs that is comparable to the association score
retrieved in the previous step. If a context word has
a stronger association with a candidate SRM than
the seed, that candidate SRM is deleted, as it is
more likely a translation of a frequent context word
of a spatial relation marker in the seed language.

Finally, Step 4 takes one seed item token at a
time, and finds the TEGN token whose candidate
SRMs are most strongly associated with the Uf of
the seed item. This ensures the correct extraction
for sentences with multiple seed SRMs (e.g. the
second sentence in Figure 1. A further constraint
imposed is that only the highest-ranked affix is
extracted, as spatial relations are not expected to be
expressed through multiple affixes the same noun.

3.2.2 CONCEPTUALIZER

A first comparable model is the procedure of Liu
et al. (2023), CONCEPTUALIZER, which, given a
set of seed utterances in which a particular marker
occurs, iteratively finds the substrings in a target
language that are statistically most strongly asso-
ciated with that set of seed utterances. As with

the RUIMTE model, we can use various Uf inde-
pendently as seeds and concatenate the results. In
particular, I define the same five seed types as for
RUIMTE. I further used the parameter settings cited
in the paper (‘original’) as well as a loosening of
some of the stricter settings (‘bare’: allowing up to
30 iterations, and only considering target-language
substrings occurring in ≥ 0.1% of Uf).

3.2.3 Alignment-based baseline models
Both the CONCEPTUALIZER and RUIMTE models
are designed for the task of marker extraction in
massively parallel corpora. As informed baseline
models, I consider models based on unsupervised
word alignment. Word alignment models allow
us to create a bigraph between the seed language
utterances and the (morphologically segmented)
target language utterances. Extracting all aligned
segments (words and affixes) to the seed SRMs
can be expected to perform reasonably well as an
extraction procedure. I apply two alignment proce-
dures, EFLOMAL (Östling and Tiedemann, 2016)
and FASTALIGN (Dyer et al., 2013), to the bitext be-
tween the seed language and each target language,
retrieving any alignment to seed item prepositions.

As in previous models, we can vary the seed
types, replacing the tokens of seed item preposi-
tions in the bitext by a string identifying their fea-
ture representation. Similarly, we vary the mor-
phological segmentation procedure used to pre-
process the target language. Two final model pa-
rameters for aligner-based extraction procedures
are symmetrization heuristics and a frequency fil-
ter (as proposed by Liu et al., 2023). Alongside
the seed-to-target alignments (‘fwd’) and target-
to-seed alignments (‘rev’), we can consider their
union and intersection, as well as three sym-
metrization heuristics that add and remove further
alignments, namely ‘diag-grow’, ‘diag-grow-final’
and ‘diag-grow-final-and’ (implemented in atools
Dyer et al., 2013). For the frequency filter, I con-
sider no filter (‘> 0’), an expected frequency of an
extracted SRM given a seed type of more than 1
(‘> 1’), or of more than 1% of the size of the set
of seed types it was aligned to (‘> 1%’).

3.3 Postprocessing

Two postprocessing steps were found to improve
extraction quality on the development doculects
(see Section 4.2). They are modular steps that
can be applied to the outputs of any of the extrac-
tion procedures defined above. First, many lan-
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guages display allopmorphy, either in their adpo-
sitions (German in, im, ins, ‘in’) or affixes (Turk-
ish -da/de/ta/te ‘locative case’). I define a simple
heuristic to automatically merge these:

An agenda is initialized with all extracted SRMs
per doculect ranked by frequency. Starting with
the most frequent SRM, all remaining SRMs
in the agenda are considered in turn, merging
them with the current target SRM and its already-
merged other SRMs if either they are formally near-
identical (i.e., string identity after stripping diacrit-
ics and ignoring whether it is an affix vs. an adpo-
sition and preposition vs. postposition) or if they
are formally possible allomorphs (i.e., having a low
string edit distance) and have functionally similar
patterns. Such allomorphs are then removed from
the ranked list and the next marker is considered.
At the end, all instances of allomorphs are replaced
by the most frequent allomorph.

For the ‘functional similarity’ constraint, we
consider per SRM (or cluster of already merged
SRMs) which feature-value combination (from
among whichever features are used in the seed type
for that language; defaulting to both dynamicity
and relation if the seed type was ‘all’ or ‘prp’)
leads to the greatest Information Gain in classi-
fying whether a seed item is translated with that
SRM (of: one SRM from that SRM cluster) or not.
If the values overlap for at least one feature (i.e.,
one SRM has ‘containment’ and ‘colocation’ for
‘relation’ as its feature-values optimally discrimi-
nating it, while the other has just ‘containment’)
and do not contrast (i.e., the same two SRMs do not
have non-overlapping values for the other feature,
‘dynamicity’ – e.g., ‘static’ for the first SRM and
‘goal’ for the latter), the two SRMs are considered
functionally similar.

Second, complex adpositions were identified
through layering: first, the set of SRMs that (1)
minimally overlap with each other w.r.t. the TEGNs
they occur with and (2) jointly cover the largest
set of tokens is extracted as Layer-1, after which
the procedure is repeated on the remaining mark-
ers to find a possible Layer-2. Affixal markers
are eliminated from the second layer, as (obliga-
tory) locative case marking should take place on the
layer with the greatest coverage, and any affixes
found on Layer 2 in the development doculects
were false positives. Any unlayered markers are
eliminated. Note that this step may aid in quality
but was initially conceived for analytic purposes.
Many languages have complex adpositions (e.g.,

Indonesian in Table 1) and being able to determine
which adpositions form a paradigm is an important
step in characterizing SRM systems.

4 Experimental set-up

4.1 Preprocessing

As not all Bibles come in Roman script, and as
several morphological models depend on ASCII
encoding, I transduced the text with an isomorphic
mapping into ASCII for each doculect that at least
partially used Roman characters (e.g. Vietnamese),
and applied unidecode to transliterate the unicode
characters into ASCII in other cases (e.g. Persian).

4.2 Annotation

Comparably little structured evaluation on the ex-
traction of translation equivalent linguistic ele-
ments from massively parallel corpora has been
carried out. Here, I introduce a dataset of 180 seed
items for which I manually extracted (using gram-
mars and dictionaries, alongside Google Translate)
the SRMs in each of a typologically diverse set of
18 doculects. The 180 items were randomly sam-
pled by selecting 60 seed items of each dynamicity
value (locative, allative, ablative).

Zero coding was decided as follows: if no trans-
lation of the ground noun was found, the category
‘noTEGN’ was assigned. If the verbal predicate
entailed the relation between the subject and the
ground noun (like enter or ascend), or if some
other non-spatial relation (commitatives like with
and partitives like of are common) was marked,
‘nonSpatialRelation’ was assigned. Finally, if there
was a translation-equivalent ground noun and a spa-
tial relation to some verbal or nominal head that
did not entail the relation, but no overt marking,
‘trueZero’ was assigned.

Table 5 in Appendix C presents the doculects,
along with their top-3 markers and their proportion
of zeros (both nonSpatialRelation and trueZero). I
split the data into a development set of the top 9
doculects and a test set of the last 9, further only
considering the even items of the development set
when developing and tuning the various models.

4.3 Evaluation procedure

With these data, we can define an evaluation proce-
dure. I formulate the extraction of SRMs and the
correct identification of zero marking as separate
tasks, given the interest in the typological literature
in zero marking.
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SRM extraction is a multi-class classification
problem (multiple SRNs may simultaneously ap-
ply). Moreover, the strings in the extracted data
may not match the annotated data exactly, due to
variation in extraction and allomorphy. The pro-
posed metric of evaluation is able to work with
these constraints. First, given a set of extracted
SRMs E = {e1, e2, . . . , en} and a set of annotated
SRMs A = {a1, a2, . . . , an}, each defining a set of
seed tokens U(x), where x is an SRM from A or E,
we find the injective mapping M between A and
E that maximizes the model’s extraction accuracy,
by maximizing the sum of the cardinalities of the
intersections of U(ai) and U(M(ai)), or: the seed
items in which ai occurs resp. the seed items in
which some ej in E, mapped to by M(ai) occurs.

With this mapping, we can determine, for each ai
mapping to some ej = M(ai), how many True Pos-
itives (|U(ai) ∩ U(ej)|), False Positives (|U(ej) \
U(ai)|) and False Negatives (|U(ai) \ U(ej)|) it
has, and sum those across all ai → M(ai) map-
pings. The token count of any unmapped annotated
items is added to the False Negatives, while un-
mapped extracted items are added to the False Pos-
itives. This allows us to define, for each doculect,
the Precision, Recall, and F1-score.

For the evaluation of zero extraction Precision,
Recall, and F1-score were defined as usual for a
binary categorization problem. Predictions of ze-
ros were compared against annotated cases, and
counted as correct if ‘trueZero’ or ‘nonSpatialRela-
tion’ was annotated; instances of ‘noTEGN’ were
left out of consideration.

5 Results

5.1 Basic pipelines

I first consider the basic pipelines without postpro-
cessing. The two alignment procedures have fur-
ther hyperparameters like alignment symmetriza-
tion and frequency filtering that multiply out to a
large number (1730) of unique models. The Mate-
rials present a full spreadsheet with performance
per doculect for each unique model.

To narrow down the scope I consider only model
components that perform substantially better than
others; Figure 4 in Appendix D presents these
comparisons. I only keep models that use (if ap-
plicable) the ‘forward’ symmetrization heuristic
(which provides a good balance on the perfor-
mance on both SRM extraction and zero extrac-
tion), and a frequency filter of ≥ 1%, which per-

forms better than the other two filters on both tasks.
The MORFESSOR ‘token’ and ‘logtoken’ mod-
els never performed as well as the ‘type’ model
and were eliminated from consideration; similarly,
using no morphological segmentation performed
consistently worse. Between the alignment mod-
els, FASTALIGN had consistently lower scores than
EFLOMAL and was not considered further.

Table 2 presents the performance of the remain-
ing models on both SRM extraction (left columns)
and zero extraction (right columns), reporting F1-
scores averaged over 18 doculects or over the 5
‘zero doculects’, i.e., doculects with ≥ 10% ze-
ros. The best-performing model on both tasks
(F1 = 66.4 for SRM extraction and F1 = 77.4
for zero extraction) is the RUIMTE model us-
ing MORSEL-Aggressive. Notably, the optimal
seed differs between the tasks: English preposi-
tions (‘prp’) are optimal for SRM extraction while
seeding on any spatial relation (‘all’) works better
for zero extraction, due to the lower numbers of
spurious markers extracted in the latter case. The
VORM morphological model performs almost as
well on both tasks at F1 = 66.1 resp. F1 = 77.2.

5.2 Effects of post-processing
Next, I assess the effect of the postprocessing
steps, merging and layering, on the extraction of
SRMs and zeros, considering the same models as
in the last section. Table 3 presents the results, nar-
rowing the seed types down to only ‘all’ and ‘prp’
as no optimal performances were found among the
semantic-feature based seed types. We find that in
particular the merging step has a positive influence
on extraction. The best SRM-extraction models,
i.e., VORM with a ‘dtc’ or ‘prp’ seed and using
the merging step (F1 = 70.6 resp. F1 = 69.6),
outperform the counterpart without merging (the
‘basic’ model) (F1 = 66.1 resp. F1 = 64.2) by
> 4 points. Layering, however, does not appear to
have the anticipated impact, with scores similar or
somewhat lower than the basic model.

5.3 Performance analysis
What models by and large get right, are the most
frequent SRMs per doculect, for which the sta-
tistical association is unequivocally strong. The
remainder of this section considers where varia-
tion between the models was found and what the
varying performance could be attributed to.

Looking at individual doculects might lead to
insight in the variation. Figure 2 presents the Preci-

6



SRM extraction Zero extraction
aligner; morphological model all dtc dtc&rel prp rel all dtc dtc&rel prp rel

CONCEPTUALIZER-bare 17.4 17.2 16.5 16.7 17.3 33.3 36.7 33.7 30.7 32.1
CONCEPTUALIZER-original 10.2 14.9 17.3 17.6 12.8 44.2 43.2 44.2 41.3 44.7
EFLOMAL; MORFESSOR-type 48.7 53.6 53.5 49.7 49.3 48.9 48.0 48.9 56.4 48.2
EFLOMAL; MORSEL-agg. 50.9 55.5 55.3 52.2 51.6 45.5 49.3 46.3 51.8 49.7
EFLOMAL; MORSEL-con. 50.1 54.3 54.4 50.4 50.6 45.1 47.6 49.7 53.6 47.4
EFLOMAL; VORM 49.7 55.2 55.4 50.5 51.5 42.3 44.4 45.2 50.7 45.8
RUIMTE; MORFESSOR-type 57.8 60.2 60.1 60.6 59.1 76.9 69.4 67.4 70.4 74.4
RUIMTE; MORSEL-agg. 62.5 65.0 65.2 66.4 62.6 77.4 65.0 64.1 66.8 72.4
RUIMTE; MORSEL-con. 61.6 64.1 64.4 65.8 63.0 76.3 65.6 64.9 67.6 72.5
RUIMTE; VORM 63.6 64.2 64.3 66.1 63.2 77.2 67.2 65.2 70.4 73.0

Table 2: Basic models. Mean F1-scores for SRM extraction (left) and zero extraction (right) per combination of
aligner and morphological model (rows) and seed type (columns) for the best-performing model components.

SRM extraction Zero extraction
morphological model; seed basic merge layer both basic merge layer both

MORFESSOR-type; seed = all 57.8 58.4 55.1 55.7 76.9 76.9 75.8 75.8
MORFESSOR-type; seed = prp 60.6 61.5 59.8 59.3 70.4 70.4 71.1 70.1
MORSEL-aggressive; seed = all 62.5 64.7 58.4 60.6 77.4 77.4 75.9 75.9
MORSEL-aggressive; seed = prp 66.4 69.4 65.2 65.5 66.8 66.8 70.3 66.6
MORSEL-conservative; seed = all 61.6 63.9 58.1 60.4 76.3 76.3 75.7 75.7
MORSEL-conservative; seed = prp 65.8 68.1 64.9 64.9 67.6 67.6 71.0 67.4
VORM; seed = all 63.6 65.0 61.8 63.3 77.2 77.2 76.6 76.6
VORM; seed = prp 66.1 70.6 65.7 69.0 70.4 70.4 71.0 71.6

Table 3: Postprocessing steps. Mean F1-scores for SRM extraction (left) and zero extraction (right) per combination
of aligner and morphological model (rows) and combination of postprocessing steps (columns).

sion and Recall, per doculect, for a select number
of models: the best-performing CONCEPTUALIZER,
FASTALIGN, and EFLOMAL models (prior to post-
processing) alongside the top-7 best performing
RUIMTE models. For SRM extraction, the results
for 5 illustrative doculects are shown in Figure 2
with the full set in Figure 5 in Appendix E. There
are two types of doculects: those where the two
alignment-based models (EFLOMAL and FASTAL-
IGN) perform more like RUIMTE and those where
they perform more like CONCEPTUALIZER.

This distinction seems to line up with the mor-
phological expression of the SRMs: affixal SRMs,
like in Cree and Kilivila, are not as well extracted
with alignment-based extraction as with RUIMTE,
while for doculects with primarily adpositional
SRMs, like German and Vietnamese, the differ-
ences between alignment-based models and the
RUIMTE are smaller. It is possible that he increased
space of possible alignments for morphologically

complex doculects decreases the alignment qual-
ity. This explanation is supported by the finding
that the most-frequent SRM in Cree, -ihk, is in
alignment-based models aligned to the seed item in
only a subset of the cases for which it is annotated,
suppressing the Recall. Moreover, 20+ unique non-
spatial markers are (spuriously) aligned to the seed
items, suppressing the Precision.

For zero marking (See Figure 6 in App. E),
we notice, first, that the RUIMTE-based mod-
els achieve near-perfect Recall across the 5 zero-
marking doculects, meaning that most annotated
zeros are indeed extracted as zeros. The challenge,
however, is Precision, i.e. : the model detecting a
zero SRM where there is a non-zero SRM present.
This effect is particularly strong for Bambara and
Somali. For both, Precision is poor due to the
high degree of polysemy of the SRMs (as noun
classifiers in the former and highly general verbal
particles in the latter) which leads to their spurious
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Figure 2: Precision and Recall on SRM extraction in 9 select models (see text) for 5 doculects.

presence in windows where the true marker is zero.

Considering doculects that show low perfor-
mance, we find Mixtec, Finnish, and Malayalam,
all with F1 < 70 in any model. Weak performance
for Mixtec can be attributed to the doculect’s fre-
quent use of zero marking. Lower-frequency prepo-
sitions (sata, nandoso, ndaa) did not reach the sig-
nificance threshold of Step 2, and several spurious
markers were instead extracted where zeros should
be predicted. For Finnish and Malayalam, the mor-
phological complexity might lead to an increased
number of missegmented cases. Further, allomor-
phy (for Finnish) presents challenges. While allo-
morphy is generally resolved correctly, some non-
allomorphs that are formally and functionally sim-
ilar, such as -lla/-llä ‘adessive’ and -lle ‘allative’,
tend to be merged erroneously. For Malayalam,
a final challenge consists of its stacked locative
cases, which the model cannot extract given the
‘one-affix’ constraint.

When considering the doculects for which the
model performs well (F1 > 80 on the top model,
i.e., German, Indonesian, Dutch, Vietnamese, and
Bambara), we find that the most common SRMs
are correctly identified in a vast majority of cases
(often well over 90%). Three sources of remaining
errors can be identified. First, there are instances
where the target-language SRM falls outside of the
3-word window around the Translation-Equivalent
Seed Noun and is thus not extracted. Second, the
3-word window may contain spurious, but more
strongly associated markers (e.g., when two adposi-
tional phrases occur closeby to each other). Third,
we find cases of failure to extract SRMs when they
are either of low frequency or have a more frequent
homonymous meaning (e.g. Dutch te ‘to, at’ is also

the infinitive marker, like English to). In both sce-
narios, the association score with the seed SRMs
in Step 2 is suppressed, leading to non-extraction.

5.4 Discussion

Reasonably good performance was achieved on
the tasks of extracting SRMs and zeros across 18
doculects. Components of the best performing
models included the novel RUIMTE extraction pro-
cedure and Precision-oriented morphological seg-
mentation (MORSEL and the novel VORM model),
as well as using the English prepositions as seed
items. The latter was particularly surprising, given
that most doculects do not encode spatial relations
exactly along the lines of English SRMs.

Among the extraction procedures, CONCEPTU-
ALIZER performed remarkably poorly, in contrast
with its compelling performance as reported by Liu
et al. (2023), as well as its reliability as a compo-
nent in the RUIMTE model for extracting TEGNs.
This suggests that CONCEPTUALIZER works well
for lexical, open-class items, but not so much for
more closed-class ones. Nonetheless, its compo-
nents and general intuitions (regarding the use of
co-occurrence statistics) translate well to this do-
main and form the engine of the RUIMTE model.
Furthermore, Precision-oriented segmentation pro-
cedures such as MORSEL and VORM outperform
the MORFESSOR baseline substantially for SRM
extraction, suggesting that oversegmentation is
harmful to the extraction, likely because it intro-
duces noisy candidate SRMs.

6 Applications

To study potential use for typology, I briefly ex-
plore the best-performing model, RUIMTE +VORM,

8



Figure 3: Exponential PCA space

with ‘prp’ seed type and merging. Markers in 1161
doculects were extracted. All seed items for which
> 66.7% of doculects had no TEGN and subse-
quently all doculects for which > 66.7% of the
seed items had no TEGN were eliminated, leaving
a 1966× 912 (tokens by doculects) table.

These extractions allow us to compare doculects
on a token level. The main axes of crosslinguistic
variation can be visualized with dimensionality re-
duction, here using Exponential PCA (Collins et al.,
2001). Figure 3 shows 6 different colour codings of
the same space, with each marker representing one
seed item: the top three panels display the three an-
notated features – dynamicity, relation, and ground
type. Notably, the values of all three features are
reasonably separable in the 2-dimensional PCA
space, meaning that there are doculects drawing
SRM contrasts on the basis of each of these fea-
tures. Indeed, we see some of those patterns play
out in the two doculects in the right panels: while
the English prepositions align with all three fea-
tures, Indonesian neatly splits out dynamicity and
relation between two sets (layers) of prepositions.

Second, these data allow us to assess typologi-
cal claims concerning zero marking. Based on a
survey of grammars, Stolz et al. (2014) conclude
that zero marking is crosslinguistically more com-
mon in locatives and allatives than in ablatives.
My data supports this finding. Per item, the pro-
portion of zero-extractions across doculects was
calculated. Aggregating those proportions, we find
that the median locative item has zero marking
in 34% (IQR: 27-41%) of doculects, the median

allative in 31% (IQR: 25-38%), and the median ab-
lative in 25% (IQR: 20-34%), with the differences
between each pair significant (independent t-test;
P < .001). It further suggests that locatives may
be more commonly zero-marked than the allatives.
While a fuller considerations is beyond the scope
of this paper, these initial explorations demonstrate
the potential for the typology of SRMs.

7 Conclusion

This paper introduces a novel procedure for ex-
tracting Spatial Relation Markers (SRMs) across
languages, and evaluates it on a novel dataset. The
method is shown to have good potential for answer-
ing typological questions about SRMs.

Interestingly, the components of my pipeline, as
well as others working on similar tasks (Wälchli,
2014; Weissweiler et al., 2022; Liu et al., 2023), are
mostly using simple statistics and best-first extrac-
tion procedures, rather than more complex Machine
Learning techniques (e.g., seq2seq models) using
global optimization. This is not a coincidence: the
size of the data, combined with the nature of the
hypothesis space (the number of SRMs – 0, 1, or
2; affixes vs. adpositions), makes extraction proce-
dures that explicitly constrain the search space on
priorly motivated grounds more successful.

This paper intends to contribute to the growing
body of work on computational semantic typology
with this paper, by introducing more rigorous eval-
uation techniques, providing annotated seed and
evaluation data, and suggesting novel ways that
spatial relation markers can be extracted.
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Limitations

The work presented here was run on a corpus of
Bible translations. The question whether the same
methodology works well on other parallel corpora
in different genres and dealing with different topics
has not been positively answered, thus potentially
constituting a limitation of the method that future
work would have to settle.
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A Seed annotation methods

The basis of the features used throughout this pa-
per involves a token-level manual annotation of
several dimensions of the spatial relation. While
manual (semantic) annotation is admittedly prone
to challengeable decisions and reductively frames
the spatial relations as mutually exclusive, the pa-
per hopefully demonstrates that it leads to useful
and interpretable results.

The decision procedure for annotating the ‘Rela-
tion’ feature was based on the finest-grained foci
(relations) of Levinson et al. (2003):

• ‘Containment’ was assigned if the boundaries
of the Ground could be conceptualized as re-
stricting the movement of the Figure in two
(‘In-2D’; in a boat, into his ear) or three (‘In-
3D’; in his house, into the prison) dimensions;

• ‘Support’ was assigned if either the Figure
was higher than the Ground and not touching
it (‘Over’; [hang s/t] above his head) or if the
surface contact with the Ground could be con-
ceptualized as restricting the movement of the
Figure – specifically, the relation annotated
was:

– ‘On-Top’ if contact was with the high-
est vertical region of the Ground (on the
housetop, [put s/t] on his head);

– ‘Attachment’ if contact was with a non-
vertical region of the Ground and was
maintained mechanically through an ex-
ternal source of Force (pinning, adhesion,
clamping; on the stake; [sew s/t] on a gar-
ment),

– ‘On’ otherwise (on the throne, [pour s/t]
on his face)

• ‘Under’ was annotated if English uses under
(under his feet, [take s/o] under her wing). Be-
ing a very small category, Under was excluded
from the analysis.

• the residual category ‘At3’ breaks down into
‘Near’ relations, assigned whenever English
uses near, at or by and no Figure-Ground con-
tact is entailed (e.g., at the fire, [let s/o down]
by the wall), and ‘Colocation’ otherwise. No-
tably, Colocation contains all cases where the
Ground denotes a ‘place’, a (named) symbol-
ically defined region (at Jerusalem, in Judea,

to the country, in heaven), following Van Lan-
gendonck (2007) in considering their dimen-
sionalities as irrelevant.

For the Dynamicity feature, ‘Allative’ was as-
signed whenever a (caused) motion predicate was
present with a preposition marking a Ground that
is a Goal of the motion predicate (to, in(to), on(to)),
‘Ablative’ if there was a (caused) motion predicate
with a Source-marking preposition (from, out of,
off of ), and ‘Static’ otherwise.

For types of Grounds (‘Ground Type’), I de-
veloped a categorization schema based on obser-
vations that Places, Named Places, and Human
Grounds are occasionally marked differently from
regular object-denoting Grounds (Stolz et al., 2017;
Haspelmath, 2019), the existence of aquatic adposi-
tions (Levinson et al., 2003), and that the mobility
of the Ground affects the lexical choice (Klavan
et al., 2015), as well as a bottom-up categorization
of prevalent ground types in the corpus, distinguish-
ing:

• Places: a region that is not easily conceptu-
alized as a ‘thing’ but rather as inherently
a ‘location’ of something else (to the place,
in heaven), including Toponyms (in Asia,
to Mount Sinai) and Buildings – an Object
with unique relevance to humans as shelter,
dwelling (in the temple, into the house);

• Object: a bound, countable physical, natural
or artificial, entity (to the ship, in his hand);

• Human (bring him to the high priest)

B The intuition of the VORM
segmentation model

The VORM model (‘Vertaling Ondersteunt Rede-
lijke Morfologie’; Dutch for ‘Translations support
reasonable morphology’) is an unsupervised mor-
phological segmentation procedure. Here, I present
the intuition briefly; for a complete treatment see
Beekhuizen (2025). Like MORSEL, VORM first
finds recurrent character string transformations be-
tween pairs of words and makes a best-first pass
through the word list to obtain derivations based on
such transformations. However, only those pairs
of words are inspected for the presence of poten-
tial transformations that are translation equivalents
of the same word in a reference language (here:
the seed translation ENGWEB). Distributional se-
mantic information has long been used to bootstrap
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doculect Turkish Finnish
word sofradakiler polveutuu
meaning ‘them at the table’ ‘descends’
gold sofra -da -ki -ler polvi -ua -tuu

MORFESSOR-type sofrada -kiler polveutu -u
MORFESSOR-logtok. sofrada -kiler polve -utuu
MORFESSOR-token sofrada -kiler polveutuu
MORSEL-aggressive sofradakiler polveutu -u
MORSEL-cons. sofradakiler polveutu -u
VORM sofra -da -ki -ler polvi -i/ea -a/utuu

Table 4: Examples of the morphological models

morphological segmentation (Schone and Jurafsky,
2000; Narasimhan et al., 2015), but the proposal
here is that translation is similarly a strong signal
to constrain the unsupervised learning of morpho-
logical segmentation, as has been argued for other
tasks, like PoS tagging (Eskander et al., 2020).

While this initial step provides a high-precision
inventory of (sequences of) morphological trans-
formations, many morphologically related words
do not map onto the same translation equivalent in
other languages and are as such not yet linked to
each other. In a second step, all possible derivations
of all words are generated, on the basis of the set
of transformation sequences found in the first step.
An agenda with all words is initialized, after which
a best-first procedure finds the stem that has the
largest morphological family size (i.e., occurs in
the candidate derivations of the most words). The
modeled words are removed from the agenda and
the procedure is repeated until the agenda is empty.

Table 4 presents examples for the morphological
extraction procedure applied to two words from
Turkish and Finnish and compares it to the other
models.

C Information on the annotated doculects

See Table 5.

D Model component comparison

See Figure 4 for an aggregated comparison of the
model components.

E Doculect-level performance analysis

Figures 5 and 6 present the Precision and Recall
per doculect, for all doculects on both tasks.
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name (iso); affiliation macroarea most common three markers % zeros

Plains Cree (CRKWCV) Algic, North-America -ihk (141) oci (39) isi (10) 7.3
German (DEUD05) Indo-European, Eurasia in (51) aus (34) auf (32) 1.2
Finnish (FINELC) Finno-Ugric, Eurasia -an (51) -sta (46) -ssa (24) 6.1
Indonesian (INDNTV) Austronesian, Oceania di (61) dari (52) ke (40) 3.9
Kilivila (KIJPNG) Austronesian, Oceania o- (67) wa (33) metoya (29) 28.5
Mixtec (MIMTBN) Mixe-Zoque, North-Am. noo (33) ini (7) ndaa (2) 62.0
Nigerian Pidgin (PCMTSC) Creole, Africa for (47), from (47) inside (7) 26.2
Somali (SOMSIM) Afro-Asiatic, Africa ku (59) ka (52) soo (35) 17.9
Turkish (TURBLI) Turkic, Eurasia -ya (57) -dan (53) -da (51) 3.4

Bambara (BAMLSB) Mande, Africa la (63) bo (41) kono (26) 23.2
Basque (EUSNLT) isolate, Eurasia -an (61) -tik (58) -ra (49) 1.7
Malayalam (MALNIB) Dravidian, Eurasia -il (101) -kku (34) ninnu (32) 10.1
Dutch (NLDDSV) Indo-European, Eurasia in (43) uit (34) op (31) 0.0
Persian (PESTPV) Indo-European, Eurasia az (49) bah (40) dar (38) 9.0
San Martín Quechua (QVSTBL) Quechuan, South-Am. -pi (77), -manta (41), -man (29) 0.0
Rundi (RUNBSB) Niger-Congo, Africa mu (83) i (35) ku (25) 9.5
Spanish (SPABDA) Indo-European, Eurasia en (59) de (44) a (34) 6.7
Vietnamese (VIELHG) Austroasiatic, Eurasia tu (35) trên (19) o (18) 9.0

Table 5: The 18 annotated doculects. The top nine are development doculects; bottom nine test doculects

Figure 4: Comparison of model components (columns) on the performance (F-score, averaged across 18 doculects)
of SRM extraction (top row) and zero extraction (bottom row).
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Figure 5: Precision and Recall on SRM extraction per doculect for the best models per aligner and the top-7 models
of RUIMTE

Figure 6: Precision and Recall on zero-marker extraction per zero-marking doculect for the best models per aligner
and the top-7 models of RUIMTE.
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