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Abstract

Permutation-invariant diffusion models of graphs achieve the invariant sampling and in-
variant loss functions by restricting architecture designs, which often sacrifice empirical
performances. In this work, we first show that the performance degradation may also be
contributed by the increasing modes of target distributions brought by invariant architec-
tures since 1) the optimal one-step denoising scores are score functions of Gaussian mix-
tures models (GMMs) whose components center on these modes and 2) learning the scores
of GMMs with more components is often harder. Motivated by the analysis, we propose
SwinGNN along with a simple yet provable trick that enables permutation-invariant sam-
pling. It benefits from more flexible (non-invariant) architecture designs and permutation-
invariant sampling. We further design an efficient 2-WL message passing network using the
shifted-window self-attention. Extensive experiments on synthetic and real-world protein
and molecule datasets show that SwinGNN outperforms existing methods by a substantial
margin on most metrics. Our code is released at https://github.com/qiyan98/SwinGNN.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021a) have recently emerged
as a powerful class of deep generative models. They can generate high-dimensional data, e.g., images
and videos (Dhariwal & Nichol, 2021; Ho et al., 2022), at unprecedented high qualities. While originally
designed for continuous data, diffusion models have inspired new models for graph generation that involves
discrete data and has a wide range of applications, including molecule generation (Jin et al., 2018), code
completion (Brockschmidt et al., 2019), urban planning (Chu et al., 2019), scene graph generation (Suhail
et al., 2021), and neural architecture search (Li et al., 2022).

∗Work done at Stanford.
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There exist two ways to generalize diffusion models to graphs. The first one is simply treating adjacency
matrices as images and applying existing techniques built for continuous data. The only additional challenge
compared to image generation is that a desirable probability distribution over graphs should be invariant to
the permutation of nodes. Niu et al. (2020); Jo et al. (2022) construct permutation equivariant score-based
models that induce permutation invariant distributions. Post-hoc thresholding is needed to convert sampled
continuous adjacency matrices to binary ones. The other one relies on the recently proposed discrete diffusion
models (Austin et al., 2021) that naturally operate on binary adjacency matrices with discrete transitions.
Vignac et al. (2023) shows that such models learn permutation invariant graph distributions by construction
and achieve impressive results on molecule generation.

In this paper, we first clarify two key concepts of permutation invariance: invariant training losses and invari-
ant sampling. For practical applications, graph generative models should ideally have an invariant sampling
process, ensuring generated graphs that are isomorphic have equal likelihoods regardless of node orders. Pre-
vious works achieve this goal by using invariant diffusion models trained with invariant losses. However, such
invariant models often achieve worse empirical performances than their non-invariant counterparts. This is
likely due to 1) invariant models have more restrictive architecture designs and 2) their target distributions
having more modes. Specifically, since the optimal one-step denoising scores are score functions of Gaussian
mixtures models (GMMs) whose components center on these modes, learning the scores of GMMs with more
components is often harder. Importantly, while an invariant loss is sufficient, it is not necessary for invariant
sampling. We present a simple technique of randomly permuting generated graphs that provably enables
any graph generative model to achieve permutation-invariant sampling.

Motivated by the analysis, we propose a non-invariant diffusion model, called SwinGNN, to embrace more
powerful architecture designs while still maintaining permutation-invariant sampling. Inspired by the ex-
pressive 2-WL graph neural networks (GNNs) (Morris et al., 2021) and SwinTransformers (Liu et al., 2021),
our SwinGNN performs efficient edge-to-edge 2-WL message passing via shifted window based self-attention
mechanism and customized graph downsampling/upsampling operators, thus being scalable to generate large
graphs (e.g., over 500 nodes). Note that directly applying 2-WL GNNs would have significantly higher com-
putational costs whereas directly applying SwinTransformers would lead to worse performances since they
are essentially 1-WL GNNs. Our model aligns with the rationale of k-order GNN (Maron et al., 2019b) or
k-WL GNN (Morris et al., 2019), enhancing network expressivity by utilizing k-tuples of nodes (k = 2 in our
case). Further, we thoroughly investigate the recent advances of diffusion models for image (Karras et al.,
2022; Song & Ermon, 2020) and identify several techniques that significantly improve the sample quality of
graph generation. Extensive experiments on synthetic and real-world molecule and protein datasets show
that our SwinGNN achieves state-of-the-art performances, surpassing the existing models by several orders
of magnitude in most metrics.

2 RELATED WORK

Generative models of graphs (a.k.a., random graph models) have been studied in mathematics, network
science, and other subjects for decades since the seminal Erdős–Rényi model (Erdös & Rényi, 1959). Most of
these models, e.g., Watts–Strogatz model (Watts & Strogatz, 1998) and Barabási–Albert model (Albert &
Barabási, 2002), are mathematically tractable, i.e., one can rigorously analyze their properties such as degree
distributions. In the context of deep learning, deep generative models for graphs (Liao, 2022) prioritize fitting
complex distributions of real-world graphs over obtaining tractable properties and have achieved impressive
performances. They can be broadly classified based on the generative modeling techniques.

The first class of methods relies on diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) that achieve
great successes in image and video generation. We focus on continuous diffusion graph generative models
which treat the adjacency matrices as images. (Niu et al., 2020) proposes a permutation-invariant score-
matching objective along with a GNN architecture for generating binary adjacency matrices by thresholding
continuous matrices. Jo et al. (2022) extends this approach to handle node and edge attributes via stochastic
differential equation framework (Song et al., 2021b). Following this line of research, we investigate the limiting
factors of these models and propose our improvements that achieve state-of-the-art performances.

2



Published in Transactions on Machine Learning Research (06/2024)

Empirical Data Distribution Invariant Effective Target Distribution

PMF

1

1/6

1

PMF

0 0

Figure 1: Data distribution and target distribution for a 3-node tree graph. For permutation matrix Pi and
adjacency matrix Ai, filled/blank cells mean one/zero. The probability mass function (PMF) highlights the
difference in modes. Our example also shows graph automorphism (e.g., P1 and P2).

Besides continuous diffusion, discrete diffusion based graph generative models also emerged recently. Vignac
et al. (2023) proposes a permutation-invariant model based on discrete diffusion models (Austin et al., 2021;
Hoogeboom et al., 2021; Johnson et al., 2021). For the discrete graph data, e.g., binary adjacency matrices
or categorical node and edge attributes, discrete diffusion is more intuitive than the continuous counterpart.

Apart from the above diffusion based models, there also exist models based on generative adversarial networks
(GANs) (De Cao & Kipf, 2018; Krawczuk et al., 2021; Martinkus et al., 2022), variational auto-encoders
(VAEs) (Kipf & Welling, 2016; Simonovsky & Komodakis, 2018; Jin et al., 2018; Vignac & Frossard, 2022),
normalizing flows (Liu et al., 2019; Madhawa et al., 2019; Lippe & Gavves, 2021; Luo et al., 2021), and
autoregressive models (You et al., 2018; Liao et al., 2019; Mercado et al., 2021). Among them, autoregressive
based models enjoy the best empirical performance, although they are not invariant to permutations.

Recently, Han et al. (2023) propose modeling the graph distribution by summing over the isomorphism class
of adjacency matrices with autoregressive models, where a graph G with an adjacency matrix A of n nodes
admits a probability of

p(G) =
∑

Ai∈IA

p(Ai), (1)

where IA is the isomorphism class of A with a size up to O(n!).

3 PRELIMINARIES

Notation. A graph G = (V, E) comprises a node set V with n nodes V = {1, 2, . . . , n} and an edge
set E ⊆ V × V. We focus on simple graphs, i.e., unweighted and undirected graphs without self-loops
or multiple edges1. Such a graph can be represented by an adjacency matrix Aπ ∈ {0, 1}n×n, where
node ordering π implies the matrix’s row/column order. A permutation matrix Pπ1→π2 denotes a bijection
between two node orderings π1, π2, i.e., Aπ2 = Pπ1→π2Aπ1P ⊤

π1→π2
. We omit the node ordering notations

for simplicity. Let Sn be all n! permutation matrices of n nodes. Any P ∈ Sn that maps A to itself,
i.e., A = P AP ⊤ denotes a graph automorphism of A. Two graphs G1,G2 with adjacency matrices A1, A2
are isomorphic if and only if there exists P ∈ Sn such that P A1P ⊤ = A2. The isomorphism class of
A, denoted by IA := {P AP ⊤|P ∈ Sn}, is the set of adjacency matrices isomorphic to A. We observe
i.i.d. samples, A := {Ai}m

i=1 ∼ pdata(A), drawn from the unknown data distribution of graphs pdata(A).
1Weighted graphs (i.e., real-valued adjacency matrices) are easier to handle for continuous diffusion models since the thresh-

olding step is unnecessary. Our model also extends to multigraphs with node and edge attributes (e.g., molecules), detailed
further in the experiment section and App. B.3.
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Graph generative models aim to learn a distribution pθ(A) that closely approximates pdata(A). Denoising
Diffusion Models. A denoising diffusion model consists of two parts: (1) a forward continuous-state
Markov chain that gradually adds noise to observed data until it becomes standard normal noise and (2) a
backward continuous-state Markov chain (learnable) that gradually denoises from the standard normal noise
until it becomes observed data. The transition probability of the backward chain is typically parameterized
by a deep neural network. Two consecutive transitions in the forward (backward) chain correspond to two
noise levels that are increasing (decreasing). One can have discrete-time (finite noise levels) (Ho et al., 2020)
or continuous-time (infinite noise levels) (Song et al., 2021b) denoising diffusion models.

In the context of graphs, if we treat an adjacency matrix A as an image, it is straightforward to apply these
models. In particular, considering one noise level σ, the loss of denoising diffusion models is

Epdata(A)pσ(Ã|A)
[
∥Dθ(Ã, σ)−A∥2

F

]
, (2)

where Dθ(Ã, σ) is the denoising network, Ã is the noisy data (graph), and ∥ · ∥F is the Frobenius norm.
The forward transition probability is a Gaussian distribution pσ(Ã|A) := N (Ã; A, σ2I). Note that we add
i.i.d. element-wise Gaussian noise to the adjacency matrix. Based on the Tweedie’s formula (Efron, 2011),
one can derive the optimal denoiser Dθ∗(Ã, σ) = Ã + σ2∇Ã log pσ(Ã), where the noisy data distribution
pσ(Ã) :=

∫
pdata(A)pσ(Ã|A)dA appears.

Score-based Models. Score-based models aim to learn the score function (the gradient of the log density
w.r.t. data) of the data distribution pdata(A), denoted by s(A) := ∇A log pdata(A). Since pdata(A) is
unknown, one needs to leverage techniques such as denoising score matching (DSM) (Vincent, 2011) to train
a score estimation network sθ. Similar to diffusion models, we add i.i.d. element-wise Gaussian noise to
data, i.e., pσ(Ã|A) = N (Ã; A, σ2I). For a single noise level σ, the DSM loss is

Epdata(A)pσ(Ã|A)
[
∥sθ(Ã, σ)−∇Ã log pσ(Ã|A)∥2

F

]
, (3)

where∇Ã log pσ(Ã|A) = A−Ã
σ2 . Minimizing Eq. (3) almost surely leads to an optimal score network sθ∗(Ã, σ)

that matches the score of the noisy data distribution, i.e., sθ∗(Ã, σ) = ∇Ã log pσ(Ã) (Vincent, 2011).
Further, the denoising diffusion models and score-based models are essentially the same (Song et al., 2021b).
The optimal denoiser of Eq. (2) and the optimal score estimator of Eq. (3) are inherently connected by
Dθ∗(Ã, σ) = Ã + σ2sθ∗(Ã, σ). We use both terms interchangeably in what follows.

DSM Estimates the Score of GMMs. Our training set consists of i.i.d. samples (adjacency matrices)
{Ai}m

i=1. The corresponding empirical data distribution2 is a mixture of Dirac delta distributions, i.e.,
pdata(A) := 1

m

∑m
i=1 δ(A−Ai), from which we can get the closed-form of the empirical noisy data distribution

pσ(Ã) := 1
m

∑m
i=1N (Ã; Ai, σ2I). pσ(Ã) is an m-component GMM with uniform weights, and the DSM

objective in Eq. (3) learns its score function.

4 PERMUTATION INVARIANT LOSS AND SAMPLING

Existing models employ permutation invariant losses to attain permutation invariant sampling, a feature
essential for real-world applications. However, we demonstrate that permutation invariant losses lead to
degraded empirical performances. Alternatively, we introduce a simple yet provable technique to ensure
invariant sampling without requiring an invariant loss, fostering flexibility in model architecture design and
inspiring our non-invariant method.

4.1 Challenges of Permutation Invariant Loss

Theoretical Analysis. As shown in Fig. 1, the empirical graph distribution pdata(A) may only assign
a non-zero probability to a single observed adjacency matrix in its isomorphism class. The ultimate goal
of a graph generative model is to match this empirical distribution, which may be biased by the observed

2With a slight abuse of notation, we refer to both the data distribution and its empirical version as pdata since the data
distribution is unknown and will not be often used.
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Figure 2: Invariant models perform significantly worse than non-invariant models when the number of applied
permutations (l) is small.

permutation. However, the target distribution that generative models are trained to match may differ from
the empirical one, dependent on the model design w.r.t. permutation symmetry. For clarity, we define the
effective target distribution as the closest distribution (e.g., measured in total variation distance) to the
empirical data distribution achievable by the generative model, assuming sufficient data and model capacity.

Previous works (Niu et al., 2020; Xu et al., 2022; Hoogeboom et al., 2022) learn permutation invariant models
pθ(A) with permutation invariant losses via equivariant networks. We argue the induced invariant effective
target distributions are hard to learn. Let the training set only contain one graph A1, e.g., in Fig. 1. Even
if we optimize the invariant model distribution pθ(A) towards the empirical one pdata(A) to the optimum,
they can never exactly match. This is because if it does (i.e., pdata(A = A1) = pθ(A = A1) = 1), pθ(A) will
also assign the same probability to isomorphic graphs of A1 due to permutation invariance, thus violating
the probability sum-to-one rule. Instead, the optimal pθ(A) (i.e., the effective target distribution) will assign
equal probability 1/|IA1 | to isomorphic graphs of A1.

Formally, given a training set of adjacency matrices {Ai}m
i=1, one can construct the union set of each graph’s

isomorphism class, denoted as A∗ =
⋃m

i=1 IAi
. The corresponding mixture distribution is p∗

data(A) :=
1
Z

∑
A∗∈A∗ δ(A−A∗), where Z = |A∗| = O(n!m) is the normalizing constant. Note that Z = n!m may not

be always achievable due to graph automorphism.

Lemma 4.1. Assume at least one training graph has Ω(n!) distinct adjacency matrices in its isomorphism
class. Let P denote all discrete permutation invariant distributions. The closest distributions in P to
pdata, measured by total variation, have at least Ω(n!) modes. If, in addition, we restrict P to be the set of
permutation invariant distributions such that p(Ai) = p(Aj) > 0 for all matrices in the training set {Al}m

l=1,
then the closest distribution is given by arg minq∈P TV (q, pdata) = p∗

data.

Under mild conditions, p∗
data(A) of O(n!m) modes becomes the effective target distribution, which is the

case of prior invariant models using equivariant networks for invariant losses (see App. A for details). In
contrast, if we employ a non-equivariant network (i.e., the underlying training objective is not invariant),
the effective target distribution would be pdata(A) which only has O(m) modes. Moreover, the modes of
the Dirac delta target distributions dictate the components of the GMMs in the diffusion models, with
each component precisely centered on a target mode. With the invariant loss, the GMMs have the form
of p∗

σ(Ã) := 1
Z

∑
A∗

i
∈A∗ N (Ã; Ai, σ2I) with an O(n!) factor more components than the non-invariant loss

(detailed in App. A.3). Arguably, learning with a permutation invariant loss is much harder than a non-
invariant one, implied by the O(n!)-factor surge in modes of target distribution and components of GMMs.
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Empirical Investigation. We typically observe one adjacency matrix from its isomorphism class in training
data {Ai}m

i=1. By applying permutation n! times, one can construct p∗
data from pdata. We define a trade-off

between them, called the l-permuted empirical distribution: pl
data(A) := 1

ml

∑m
i=1

∑l
j=1 δ(A − PjAiP

⊤
j ),

where P1, . . . , Pl are l distinct permutation matrices. pl
data has O(lm) modes governed by l. With proper

permutation matrices, pl
data = pdata when l = 1 and pl

data ≈ p∗
data

3 when l = n!. To study the impact of
the mode count in the effective target distribution on empirical performance, we use pl

data as the diffusion
model’s target by tuning l. An equivariant network matches the invariant target p∗

data, having O(n!m) modes
when l = n!. For l < n!, one must use a non-equivariant network to learn a non-invariant training objective.

To assess empirical performance, we conduct experiments on a toy dataset of 10 random regular graphs, each
with 16 nodes and degrees in [2, 11]. The value of l ranges from 1 to 500 and we ensure training is converged
for all models. We use two invariant models as baselines for learning p∗

data: DiGress (Vignac et al., 2023)
and PPGN (Maron et al., 2019a), with PPGN being notably expressive as a 3WL-discriminative GNN. For
non-invariant models matching pl

data with l < n!, we add index-based positional embedding to PPGN and
compare it with our SwinGNN model (detailed in Sec. 5.1). Please see App. B.1 for more details.

We use recall as the metric, which is defined by the proportion of generated graphs that are isomorphic to
any training graph and ranges between 0 and 1. The recall requires isomorphism testing and is invariant
to permutation, which is fair for all models. A higher recall indicates a strong capacity to capture the toy
data distribution. In Fig. 2, invariant models, regardless of using discrete (DiGress) or continuous (PPGN)
Markov chains in the diffusion processes, fail to achieve high recall. Conversely, non-invariant models perform
exceptionally well when l is small and the target distributions have modest imposed permutations. As l goes
up, the sample quality of non-invariant models drops significantly, indicating the learning difficulties incurred
by more modes4. Notably, in practical applications of non-invariant models, one typically chooses l = 1,
often resulting in empirically stronger performance compared to invariant counterparts.

4.2 Technique to Reclaim Invariant Sampling

While non-invariant models show stronger performances empirically, they cannot guarantee permutation-
invariant sampling. We present the following lemma to restore the invariant sampling.
Lemma 4.2. Let A be a random adjacency matrix distributed according to any graph distribution on
n vertices. Let Pr ∼ Unif(Sn) be uniform over the set of permutation matrices. Then, the induced
distribution of the random matrix Ar = PrAP ⊤

r , denoted as qθ(Ar), is permutation invariant, i.e.,
qθ(Ar) = qθ(P ArP ⊤),∀P ∈ Sn.

This trick is applicable to all types of generative models. Note that the random permutation does not go
beyond the isomorphism class. Although qθ is provably invariant, it captures the same amount of isomorphism
classes as pθ. Graphs generated from qθ must have isomorphic counterparts that pθ could generate. Thus
far, we have uncovered two insights into permutation invariance in graph generative models: 1) invariant loss
ensures invariant sampling but may impair empirical performances, and 2) invariant loss is not a prerequisite
for invariant sampling. These insights prompt rethinking the prevailing design of invariant models using
invariant losses. Aiming to accurately capture the complex real-world graph distributions while preserving
sampling invariance, we introduce a novel diffusion model, integrating non-invariant loss with the invariant
sampling technique in Lemma 4.2.

5 METHOD

5.1 Efficient High-order Graph Transformer

A continuous denoising network for graph data takes a noisy adjacency matrix Ã and its noise level σ as
input and outputs a denoised adjacency matrix. However, unlike in typical graph representation learning, our
model carries out edge regression without clear graph topology (i.e., no sparse binary adjacency matrices).

3They are identical without non-trivial automorphisms.
4Sample complexity analysis for non-invariant models is provided in App. A.4.
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Figure 3: The overall architecture of our SwinGNN.

Approximating 2-WL Message Passing. The vanilla GNNs, such as the GCN (Kipf & Welling, 2017)
have been shown to have the same expressiveness as the 1-dimensional Weisfeiler-Leman graph isomorphism
heuristic (1-WL) in terms of distinguishing non-isomorphic graphs (Xu et al., 2019). Specifically, the graphs
that the 1-WL algorithm fails to distinguish are also provably difficult to handle for classical GNNs. To
address the limitations in expressiveness and performance, higher-order GNNs (Maron et al., 2019b; Morris
et al., 2019) have been proposed to match the theoretical capacity of the higher-dimensional WL test, which
is named k-WL GNNs in contrast to the vanilla GNNs of 1-WL expressiveness. To improve model capacity,
we draw inspiration from the k-order GNN (Maron et al., 2019b) and the k-WL GNN (Morris et al., 2019)
that improve network expressivity using k-tuples of nodes. The k-WL discrimination power characterizes
the isomorphism testing ability, which proves equivalent to the function approximation capacity (Chen et al.,
2019). However, applying any expressive network of k ≥ 2 is challenging in practice due to its poor scalability.
In our case, we view noisy input data Ã ∈ Rn×n as weighted fully-connected graphs with n nodes, which
have O(nk) k-element subsets, leading to a message passing complexity of O(n2k).

To address the computation challenges of k-WL network, we choose k = 2 to simplify the internal order
and introduce a novel graph transformer to approximate the 2-WL (i.e., edge-to-edge) message passing with
efficient attention mechanism. Our model, as shown in Fig. 3, treats each edge value in the input matrix as
a token, apply transformers with self-attention (Vaswani et al., 2017) to update the token representations,
and output final edge tokens for denoising.

Specifically, we apply window-based partitioning to confine self-attention to local representations to improve
efficiency. The model splits the n×n entries into local windows of size M×M in the grid map and computes
self-attention within each window in parallel. With M2 tokens per window and some reasonable M , the self-
attention complexity reduces to O(n2M2), a significant decrease from the original O(n4) in 2-WL message
passing. However, this approach limits inter-window message passing. To enhance cross-window interactions,
we apply a shifted window technique (Liu et al., 2021), alternating between regular and shifted windows to
approximate dense edge-to-edge interactions.

Although SwinGNN shares the same window attention with SwinTransformers (Liu et al., 2021), they are
fundamentally different. SwinGNN is specially designed to approximate the computationally-expensive 2-WL
network, while SwinTransformers can be viewed as 1-WL GNN applied to patch-level tokens. We conduct
experiments in Tab. 1, Tab. 2 and App. B.6 to showcase our model’s superior performances.

SwinTransformers are general-purpose feature extraction backbones for vision tasks. They need to be cus-
tomized by connecting to a task-specific prediction head, which we implement using UperNet (Xiao et al.,
2018) in our baseline experiments. However, we’d like to clarify that SwinTransformers simply treat graphs
as image tensors and do not account for network expressiveness.
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Multi-scale Edge Representation Learning. The window self-attention complexity O(n2M2) is depen-
dent on n2, which hinders scaling for large graphs. To further reduce memory footprint and better capture
long-range interaction, we apply channel mixing-based downsampling and upsampling layers to construct
hierarchical graph representations. As shown in Fig. 3, in the downsampling layer, we split the edge rep-
resentation tensor into four half-sized tensors by index parity (odd or even) along rows and columns, make
concatenation along channel dimension, and update tokens in the downsized tensors independently using an
MLP. The upsampling stage is carried out likewise in the opposite direction, following the skip connection
that concatenates same-size token tensors along channels.

Putting things together, we propose our model, called SwinGNN, that efficiently learns edge representations
via approximating 2-WL message passing.

5.2 Training and Sampling with SDE

We construct the noisy data distribution through stochastic differential equation (SDE) modeling with a
continuous time variable t ∈ [0, T ]. Let noise σ evolve with t and the noisy distribution reads as:

pσ(t)(Ã) = 1
m

m∑
i=1
N (Ã; Ai, σ2(t)I), Ai ∈ A. (4)

Namely, pσ(0) is the Dirac delta data distribution, and pσ(T ) is close to the pure Gaussian noise (sampling
prior distribution). The general forward and reverse process SDEs (Song et al., 2021b) are defined by:

dA+ = fd(A, t)dt + gd(t)dW , (5)
dA− = [fd(A, t)dt− gd(t)2∇A log pt(A)]dt + gd(t)dW , (6)

where the dA+ and dA− denote forward and reverse processes respectively, fd(A, t) and gd(t) are the drift
and diffusion coefficients, and W is the standard Wiener process. We solve for the fd(A, t) and gd(t) so that
the noisy distribution pt in Eq. (6) satisfies Eq. (4), and the solution is given by

f(A, t) = 0, g(t) =
√

2σ̇(t)σ(t),

which can be found in Eq. (9) of Song et al. (2021b) or Eq. (6) of Karras et al. (2022).

We select the time-varying noise strength σ(t) to be linear with t, i.e., σ(t) = t, as in Nichol & Dhariwal
(2021); Song et al. (2021a), which turns the SDEs into

dA+ =
√

2tdW , dA− = −2t∇A log pt(A)dt +
√

2tdW . (7)

Further, we adopt network preconditioning for improved training dynamics following the Elucidating Dif-
fusion Model (EDM) (Karras et al., 2022). First, instead of training DSM in Eq. (3), we use its equiva-
lent form in Eq. (2), and parameterize denoising function Dθ with noise dependent scaling: Dθ(Ã, σ) =
cs(σ)Ã + co(σ)Fθ(ci(σ)Ã, cn(σ)), where Fθ is the actual neural network and the other coefficients are sum-
marized in App. B.4. In implementation, Dθ is a wrapper with preconditioning operations, and we construct
Fθ using our SwinGNN model in Sec. 5.1. Second, we sample σ with ln(σ) ∼ N (Pmean, P 2

std) to select
noise stochastically in a broad range to draw training samples. Third, we apply the weighting coefficients
λ(σ) = 1/co(σ)2 on the denoising loss to improve training stability. The overall training objective is

Eσ,A,Ã

[
λ(σ)∥cs(σ)Ã + co(σ)Fθ(ci(σ)Ã, cn(σ))−A∥2

F

]
. (8)

The target of Fθ is A−cs(σ)Ã
co(σ) , an interpolation between pure Gaussian noise A− Ã (when σ → 0) and clean

sample A (when σ →∞), downscaled by co(σ). These measures altogether ease the training of Fθ by making
the network inputs and targets have unit variance.

Self-Conditioning. We apply self-conditioning (Chen et al., 2023) to let the diffusion model rely on sample
created by itself. Let Â denote the sample created by the denoiser function Dθ during the reverse process,

8
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which is initialized as zero tensors and becomes available after the first sampling step. We have modified the
denoising function to be Dθ(Ã, Â, σ), allowing it to take the previously generated sample Â as an additional
input. In implementation, the backbone network Fθ(Ã, Â, σ) needs to be changed accordingly and includes
a dedicated initial layer to concatenate Ã and Â.

During training, however, we do not conduct iterative denoising sampling, and we do not have direct access
to Â. Following the heuristics in Chen et al. (2023), we manage Â during training as follows: given a noisy
sample Ã, with a 50% probability, we set Â to 0 (placeholder self-conditioning signal); otherwise, we first
obtain Â by running Dθ(Ã, 0, σ) to get the denoised result and then use it for self-conditioning. Note that
we only add additional information created by the diffusion model itself to the network input, and the overall
training loss remains unchanged. During training, when trying to obtain Â, we disable gradient calculation
(e.g., using torch.no_grad()). Therefore, the extra memory overhead is negligible for training, and, on
average, half of the training steps invoke another one-step inference.

Algorithm 1 Sampler w. 2nd-order correction.

Require: Dθ, N, {ti}N
i=0, {γi}N−1

i=0 .

1: sample Ã(0) ∼ N (0, t2
0I), Â

(0)
sc = 0.

2: for i = 0 to N − 1 do
3: sample ϵ ∼ N (0, S2

noiseI) ▷ Variance perturbation
4: t̂i ← (1 + γi)ti ▷ Time perturbation
5: Ã(̂i) ← Ã(i) +

√
t̂2
i − t2

i ϵ ▷ Noise injection from ti to t̂i

6: Â
(̂i)
sc ← Dθ(Ã(̂i), Â

(i)
sc , t̂i) ▷ Self-conditioning signal at current step i

7: di ← (Ã(̂i) − Â
(̂i)
sc )/t̂i ▷ Evaluate dA/dt at t̂i

8: Ã(i+1) ← Ã(̂i) + (ti+1 − t̂i)di ▷ Reverse process from Ãi to Ã(i+1)

# Below is 2nd-order correction.

9: Â
(i+1)
sc ← Dθ(Ã(i+1), Â

(̂i)
sc , ti+1) ▷ Self-conditioning for next step i + 1

10: d′
i ← (Ã(i+1) − Â

(i+1)
sc )/ti+1 ▷ Evaluate dA/dt at ti+1

11: Ã(i+1) ← Ã(i) + 1
2 (ti+1 − t̂i)(di + d′

i) ▷ Heun’s integration for Ã(i+1) correction
12: end for
13: return Ã(N)

Stochastic Sampler with 2nd-order Correction. Our sampler is formally presented in Alg. 1. It is
based on the 2nd-order sampler in Karras et al. (2022). Due to the nature of SDE, one can flexibly select any
N sampling steps in the reverse process and their associated SDE time {ti}N

i=0, which are hyper-parameters
of the sampler. We initialize the denoising samples Ã(0) from standard normal Gaussians and initialize the
self-conditioning signal Â

(0)
sc as zero tensors. In the reverse process, we always apply a perturbed variance

that is slightly larger than the unit variance (L3) to inject Gaussian noise. At the i-th iteration, the sampler
adds noise to Ã(i), moving slightly forward along time to t̂i, whose distance from nominal time ti is governed
by another hyper-parameter γi (L4-5). We then obtain the self-conditioning signal at L6 for the current
perturbed time t̂i based on the denoised signal at the nominal time ti, which is obtained or initialized prior
to the current sampling step. Then, we evaluate dA/dt at perturbed time t̂i, and move the denoising sample
Ã(̂i) backward in time following the reverse process in Eq. (7) to obtain Ã(i+1) (L6-8). The sampler then
evaluates dA/dt at time ti+1 and corrects Ã(i+1) using Heun’s integration (Süli & Mayers, 2003) on L9-11.
Note that we keep track of the generated samples Â

(i)
sc for model self-conditioning (L9) to save computation.

9
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Figure 4: Qualitative results on plain graph and molecule datasets.

6 EXPERIMENTS

We now empirically verify the effectiveness of our model on synthetic and real-world graph datasets including
molecule generation with node and edge attributes.

Experiment Setup. We consider the following synthetic and real-world graph datasets: (1) Ego-small:
200 small ego graphs from Citeseer dataset (Sen et al., 2008), (2) Community-small: 100 random graphs
generated by Erdős–Rényi model (Erdös & Rényi, 1959) consisting of two equal-sized communities, (3) Grid:
100 random 2D grid graphs with |V| ∈ [100, 400], (4) DD protein dataset (Dobson & Doig, 2003), (5) QM9
dataset (Ramakrishnan et al., 2014), (6) ZINC250k dataset (Irwin et al., 2012).

For synthetic and real-world datasets (1-4), we follow the same setup in Liao et al. (2019); You et al. (2018)
and apply random split to use 80% of the graphs for training and the rest 20% for testing. In evaluation,
we generate the same number of graphs as the test set to compute the maximum mean discrepancy (MMD)
of statistics like node degrees, clustering coefficients, and orbit counts. To compute MMD efficiently, we
follow (Liao et al., 2019) and use the total variation distance kernel.

For molecule datasets (5-6), to ensure a fair comparison, we use the same pre-processing and training/testing
set splitting as in Jo et al. (2022); Shi* et al. (2020); Luo et al. (2021). We generate 10,000 molecule graphs and
compare the following key metrics: (1) validity w/o correction: the proportion of valid molecules without
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Table 1: Quantitative results on ego-small and community-small benchmark datasets.

Invariant
Loss

Ego-Small (|V| ∈ [4, 18], 200 graphs) Community-Small (|V| ∈ [12, 20], 100 graphs)
Methods Deg. ↓ Clus. ↓ Orbit. ↓ Deg. ↓ Clus. ↓ Orbit. ↓
GRAN ✗ 3.40e-3 2.83e-2 1.16e-2 4.00e-3 1.44e-1 4.10e-2
EDP-GNN ✓ 1.12e-2 2.73e-2 1.12e-2 1.77e-2 7.23e-2 6.90e-3
GDSS ✓ 2.59e-2 8.91e-2 1.38e-2 3.73e-2 7.02e-2 6.60e-3
DiGress ✓ 1.20e-1 1.86e-1 3.48e-2 8.99e-2 1.92e-1 7.48e-1
GraphVAE-MM ✗ 3.45e-2 7.32e-1 6.39e-1 5.87e-2 3.56e-1 5.32e-2
SPECTRE ✗ 4.61e-2 1.30e-1 6.58e-3 8.65e-3 7.06e-2 8.18e-3
PPGN ✓ 2.37e-3 3.77e-2 4.71e-3 1.14e-2 1.74e-1 4.15e-2
PPGN+PE ✗ 1.21e-3 3.76e-2 4.94e-3 2.20e-3 9.37e-2 3.76e-2
SwinTF ✗ 8.50e-3 4.42e-2 8.00e-3 2.70e-3 7.11e-2 1.30e-3
UNet ✗ 9.38e-4 2.79e-2 6.08e-3 4.29e-3 7.24e-2 8.33e-3
SwinGNN ✗ 3.61e-4 2.12e-2 3.58e-3 2.98e-3 5.11e-2 4.33e-3
SwinGNN-L ✗ 5.72e-3 3.20e-2 5.35e-3 1.42e-3 4.52e-2 6.30e-3

valency correction or edge resampling; (2) uniqueness: the proportion of unique and valid molecules; (3)
Fréchet ChemNet Distance (FCD) (Preuer et al., 2018): activation difference using pretrained ChemNet;
(4) neighborhood subgraph pairwise distance kernel (NSPDK) MMD (Costa & Grave, 2010): graph kernel
distance considering subgraph structures and node features.

Baselines. We compare our method with state-of-the-art graph generative models. For non-molecule
experiments, we include autoregressive model GRAN (Liao et al., 2019), VAE-base GraphVAE-MM (Zahirnia
et al., 2022) and GAN-based SPECTRE (Martinkus et al., 2022) as baselines. We also compare with
continuous diffusion models with permutation equivariant backbone, i.e., EDP-GNN (Niu et al., 2020) and
GDSS (Jo et al., 2022), and discrete diffusion model DiGress (Vignac et al., 2023). We additionally compare
to the PPGN networks used in Sec. 4.1. Moreover, to validate the effectiveness of our SwinGNN, we also
compare it with a recent UNet (Dhariwal & Nichol, 2021) and the vision SwinTransformer(SwinTF) (Liu
et al., 2021) backbones. Specifically, we employ the UperNet on top of the SwinTransformer for the denoising
task (refer to App. B.6 for more details). On molecule datasets, we compare with GDSS (Jo et al., 2022),
DiGress (Vignac et al., 2023), GraphAF (Shi* et al., 2020) and GraphDF (Luo et al., 2021). We re-run all
these baselines with the same data split for a fair comparison.

Implementation Details. We try two model variants: standard SwinGNN (60-dim token) and SwinGNN-L
(96-dim token), trained using exponential moving average (EMA). The same training and sampling methods
are applied to UNet and SwinTF baselines as described in Sec. 5.2. Different node and edge attribute
encoding methods, such as scalar, binary bits, and one-hot encoding, are compared in molecule generation
experiments. Further details are provided in App. B.

6.1 Synthetic Datasets

Fig. 4a showcases samples generated by various models on ego-small, community-small, and grid datasets.
The quality of our generated samples is high and comparable to that of auto-regressive models. Invariant
diffusion models like GDSS can capture structural information for small graphs but fail on larger and more
complicated graphs (e.g., grid). Quantitative maximum mean discrepancy (MMD) results on various graph
statistics are presented in Tab. 1 and Tab. 2. Our SwinGNN consistently outperforms the baselines across
all datasets by several orders of magnitude, and can generate large graphs with around 400 nodes (grid).
Our customized SwinGNN backbone notably outperforms UNet and SwinTF in most metrics, setting itself
apart as a more effective solution compared to the powerful visual learning model.
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Table 2: Quantitative results on grid, and protein benchmark datasets.

Invariant
Loss

Grid (|V| ∈ [100, 400], 100 graphs) Protein (|V| ∈ [100, 500], 918 graphs)
Methods Deg. ↓ Clus. ↓ Orbit. ↓ Deg. ↓ Clus. ↓ Orbit. ↓
GRAN ✗ 8.23e-4 3.79e-3 1.59e-3 6.40e-3 6.03e-2 2.02e-1
EDP-GNN ✓ 9.15e-1 3.78e-2 1.15 9.50e-1 1.63 8.37e-1
GDSS ✓ 3.78e-1 1.01e-2 4.42e-1 1.11 1.70 0.27
DiGress ✓ 9.57e-1 2.66e-2 1.03 8.31e-2 2.60e-1 1.17e-1
GraphVAE-MM ✗ 5.90e-4 0.00 1.60e-3 7.95e-3 6.33e-2 9.24e-2
SPECTRE ✗ OOM OOM OOM OOM OOM OOM
PPGN ✓ 1.77e-1 1.47e-3 1.52e-1 OOM OOM OOM
PPGN+PE ✗ 8.48e-2 5.37e-2 7.94e-3 OOM OOM OOM
SwinTF ✗ 2.50e-3 8.78e-5 1.25e-2 4.99e-2 1.32e-1 1.56e-1
UNet ✗ 9.35e-6 0.00 6.91e-5 5.48e-2 7.26e-2 2.71e-1
SwinGNN ✗ 1.91e-7 0.00 6.88e-6 1.88e-3 1.55e-2 2.54e-3
SwinGNN-L ✗ 2.09e-6 0.00 9.70e-7 1.19e-3 1.57e-2 8.60e-4

Table 3: Quantitative results on QM9 and ZINC250k molecule datasets.

Invariant
Loss

QM9 (|V| ∈ [1, 9], 134,000 molecules) ZINC250k (|V| ∈ [6, 38], 250,000 molecules)
Methods Valid w/o cor.↑ Unique↑ FCD↓ NSPDK↓ Valid w/o cor.↑ Unique↑ FCD↓ NSPDK↓
GraphAF ✗ 57.16 83.78 5.384 2.10e-2 68.47 99.01 16.023 4.40e-2
GraphDF ✗ 79.33 95.73 11.283 7.50e-2 41.84 93.75 40.51 3.54e-1
GDSS ✓ 90.36 94.70 2.923 4.40e-3 97.35 99.76 11.398 1.80e-2
DiGress ✓ 95.43 93.78 0.643 7.28e-4 84.94 99.21 4.88 8.75e-3
SwinGNN (scalar) ✗ 99.68 95.92 0.169 4.02e-4 87.74 99.98 5.219 7.52e-3
SwinGNN (bits) ✗ 99.91 96.29 0.142 3.44e-4 83.50 99.97 4.536 5.61e-3
SwinGNN (one-hot) ✗ 99.71 96.25 0.125 3.21e-4 81.72 99.98 5.920 6.98e-3
SwinGNN-L (scalar) ✗ 99.88 96.46 0.123 2.70e-4 93.34 99.80 2.492 3.60e-3
SwinGNN-L (bits) ✗ 99.97 95.88 0.096 2.01e-4 90.46 99.79 2.314 2.36e-3
SwinGNN-L (one-hot) ✗ 99.92 96.02 0.100 2.04e-4 90.68 99.73 1.991 1.64e-3

6.2 Real-world Datasets

Protein Dataset. We conduct experiments on the DD protein graph dataset, which has a significantly
larger number of nodes (up to 500) and dataset size compared to other benchmark datasets. As shown
in Fig. 4a, our model can generate samples visually similar to those from the training set, while previous
diffusion models cannot learn the topology well. Tab. 2 demonstrates that the MMD metrics of our model
surpass the baselines by several orders of magnitude.

Molecule Datasets. Our SwinGNN can be extended to generate molecule graphs with node and edge
features (see App. B.3 for details). We evaluate our model against baselines on QM9 and ZINC250k using
metrics such as validity without correction, uniqueness, Fréchet ChemNet Distance (FCD) (Preuer et al.,
2018), and neighborhood subgraph pairwise distance kernel (NSPDK) MMD (Costa & Grave, 2010). No-
tably, our models exhibit substantial improvements in FCD and NSPDK metrics, surpassing the baselines
by several orders of magnitude. We include the experimental results on novelty scores in App. B.8 for com-
pleteness. However, we argue that novelty score may not be a reliable indicator for unconditional generative
models, particularly in molecule generation, where novel samples are likely to violate essential chemical
principles (Vignac et al., 2023; Vignac & Frossard, 2022).
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6.3 Ablation Study

6.3.1 Model Runtime Efficiency

Table 4: Comparison of running time using one NVIDIA RTX 3090 (24 GB) GPU.

Method #params Training Inference
GDSS 0.37M 215s 113s

DiGress 18.43M 713s 205s
Unet 32.58M 1573s 795s

SwinGNN 15.31M 100s 54s
SwinGNN-L 35.91M 139s 80s

In Tab. 4, we compare the training and inference time of various methods also on the grid dataset. With the
maximally allowed batch size for each model, we measure the time for training 100 epochs and for generating
a fixed number of samples once (equal to the testing set size). Our model operates much more efficiently than
baselines handling non-downsampled dense tensors, such as GDSS or DiGress. Specifically, when compared
to the DiGress with a similar number of trainable parameters, our model trains approximately 7 times faster
and performs inference about 4 times faster on the grid dataset. Our model (SwinGNN-L) sustains a faster
training and sampling time, even with the largest parameter size. We also compare the GPU memory use
in App. B.5, where our model is more memory-efficient.

6.3.2 Diffusion Model Training Techniques

Table 5: Ablations on various training techniques.

Grid (|V| ∈ [100, 400], 100 graphs)
Model Self-cond. EMA Deg. ↓ Clus. ↓ Orbit. ↓

GDSS

✓ ✓ 1.82e-1 9.70e-3 2.28e-1
✗ ✓ 1.98e-1 9.97e-3 2.24e-1
✓ ✗ 3.18e-1 1.10e-2 3.59e-1
✗ ✗ 3.78e-1 1.01e-2 4.42e-1

DiGress

✓ ✓ 3.89e-1 1.23e-2 0.55
✗ ✓ 4.92e-1 1.02e-2 0.59
✓ ✗ 8.73e-1 1.96e-2 0.97
✗ ✗ 9.57e-1 2.66e-2 1.03

SwinGNN-EDM

✓ ✓ 1.91e-7 0.00 6.88e-6
✗ ✓ 1.14e-5 2.15e-5 1.58e-5
✓ ✗ 5.12e-5 2.43e-5 3.38e-5
✗ ✗ 5.90e-5 2.71e-5 9.24e-5

SwinGNN-DDPM ✓ ✓ 2.89e-3 1.36e-4 3.70e-3
✗ ✗ 4.01e-2 8.62e-2 1.05e-1

In Tab. 5, we perform ablations on grid dataset to assess the impact of self-conditioning and EMA across
GDSS, DiGress and our SwinGNN models on the grid dataset. Both tricks slightly improve the baseline
models, but they still lag behind our models. Additionally, we compare the EDM (Karras et al., 2022)
framework, that incorporates SDE modeling and the objective in Eq. (8), against the vanilla DDPM (Ho et al.,
2020), finding that EDM substantially improves performance. Further, we conduct comparison experiments
in App. B.6 to showcase our model’s superior performance to SwinTF. Discussions on the window size are
available in App. B.7.
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7 CONCLUSION

Invariant graph diffusion models trained with invariant losses face learning challenges from theoretical and
empirical aspects. On the other hand, non-invariant models, despite exhibiting strong empirical performance,
struggle with invariant sampling. To overcome this, we introduce a simple random permutation technique to
help reclaim invariant sampling. We propose a non-invariant model SwinGNN that efficiently approximates
2-WL message passing and can generate large graphs with high qualities. Experiments show that our model
achieves state-of-the-art performance in a wide range of datasets. In the future, it is promising to generalize
our model to the discrete diffusion framework.
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A∗ A Q A∗ A Q A∗/Q A

Figure 5: Different configurations of TV (q, pdata), given fixed A (the support of pdata) and its induced A∗.
Here, we modify Q (the support of q). Left: maximal TV, Q is disjoint from A/A∗. Middle: intermediate
TV, intersecting Q and A/A∗. Right: minimal TV, Q = A∗.

A PROOFS AND ADDITIONAL THEORETICAL ANALYSIS

A.1 Proof of Lemma 4.1

Lemma 4.1. Assume at least one training graph has Ω(n!) distinct adjacency matrices in its isomorphism
class. Let P denote all discrete permutation invariant distributions. The closest distributions in P to
pdata, measured by total variation, have at least Ω(n!) modes. If, in addition, we restrict P to be the set of
permutation invariant distributions such that p(Ai) = p(Aj) > 0 for all matrices in the training set {Al}m

l=1,
then the closest distribution is given by arg minq∈P TV (q, pdata) = p∗

data.

Proof. Recall the definitions on pdata and p∗
data in our context:

pdata(A) = 1
m

m∑
i=1

δ(A−Ai), p∗
data(A) = 1

Z

∑
A∗

i
∈A∗

δ(A−A∗
i )

In other words, pdata and p∗
data are both discrete uniform distributions. We use A and A∗ = IA1 ∪ IA2 · · · ∪

IAm
to denote the support of pdata and p∗

data respectively. Let TV ∗ := TV (p∗
data, pdata) be the “golden

standard" total variation distance that we aim to outperform.

Let q ∈ P without loss of generality. As q is permutation invariant, it must assign equal probability to graphs
in the same isomorphism class. We denote the support of q by Q = {Iqi

}Φ
i=1. q(A) =

∑Φ
i=1 ρi

∑
Ai∈Iqi

δ(A−
Ai), where

∑Φ
i=1 ρi|Iqi

| = 1, ρi > 0, and Φ > 0 stand for the number of isomorphism classes contained in q.
Fig. 5 summarizes the possibilities of TV used in our proof.

Proof of Ω(n!) Modes. This first part of the lemma imposes no constraints on P: we do not require
distributions in P to be uniform on A. We first prove two helpful claims and then use proof by contradiction
to prove our result on Ω(n!) modes.

Claim 1: The maximal TV (q, pdata) is achieved when Q and A∗ are disjoint (so are Q and A).

Proof of Claim 1: Without loss of generality, the TV distance is:

TV (q, pdata) =
Φ∑

i=1

 ∑
A∈Iqi

∩A

∣∣∣∣ρi −
1
|A|

∣∣∣∣ +
∑

A∈Iqi
,A/∈A

ρi

 +
∑

A/∈Q,A∈A

1
|A|

≤
Φ∑

i=1

 ∑
A∈Iqi

∩A

(ρi + 1
|A|

) +
∑

A∈Iqi
,A/∈A

ρi

 +
∑

A/∈Q,A∈A

1
|A|

(triangle inequality)

=
Φ∑

i=1

 ∑
A∈Iqi

∩A

1
|A|

+
∑

A∈Iqi

ρi

 +
∑

A/∈Q,A∈A

1
|A|

=
Φ∑

i=1

∑
A∈Iqi

ρi +
∑

A∈A

1
|A|

= 2

The triangle inequality is strict when
∑Φ

i=1 |Iqi
∩A| > 0, as ρi and 1

|A| are always positive, and |ρi − 1
|A| | <

ρi + 1
|A| holds. If Q and A∗ are disjoint, TV (q, pdata) =

∑Φ
i=1 |Iqi

| × ρi + 1
|A| × |A| = 2, meaning that the

maximum TV distance is achieved when there is no intersection between Q and A∗.
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Claim 2: It is always possible to have a q ∈ P with TV (q, pdata) < 2 by allowing Q and A∗ to intersect on
some isomorphism classes {Iqi}i∈ν . Notice Iqi ∩ A ≠ ∅,∀i ∈ ν as per isomorphism.

Proof of Claim 2:
TV (q, pdata) =

Φ∑
i=1

 ∑
A∈Iqi

∩A

∣∣∣∣ρi −
1
|A|

∣∣∣∣ +
∑

A∈Iqi
,A/∈A

ρi

 +
∑

A/∈Q,A∈A

1
|A|

=
∑
i∈ν

 ∑
A∈Iqi

∩A

∣∣∣∣ρi −
1
|A|

∣∣∣∣ +
∑

A∈Iqi
,A/∈A

ρi

 +
∑
i/∈ν

∑
A∈Iqi

ρi +
∑

A/∈Q,A∈A

1
|A|

=
∑
i∈ν

(
|Iqi
∩ A|

∣∣∣∣ρi −
1
|A|

∣∣∣∣ + (|Iqi | − |Iqi ∩ A|)ρi

)
+

∑
i/∈ν

ρi|Iqi |+
∑

A/∈Q,A∈A

1
|A|

=
∑
i∈ν

|Iqi ∩ A|
(∣∣∣∣ρi −

1
|A|

∣∣∣∣− ρi

)
+

1︷ ︸︸ ︷
Φ∑

i=1
ρi|Iqi |+

1︷ ︸︸ ︷∑
A∈A

1
|A|
−

∑
A∈Q∩A

1
|A|

=
∑
i∈ν

|Iqi ∩ A|
(∣∣∣∣ρi −

1
|A|

∣∣∣∣− ρi

)
−

Φ∑
i=1
|Iqi ∩ A|

1
|A|

+ 2

=
∑
i∈ν

|Iqi ∩ A|

<0︷ ︸︸ ︷(∣∣∣∣ρi −
1
|A|

∣∣∣∣− ρi −
1
|A|

)
−

∑
i/∈ν

=0 if i/∈ν︷ ︸︸ ︷
|Iqi ∩ A|

1
|A|

+ 2

=
∑
i∈ν

|Iqi
∩ A|

<0︷ ︸︸ ︷(∣∣∣∣ρi −
1
|A|

∣∣∣∣− ρi −
1
|A|

)
+2 < 2

The last inequality is strict as ρi, 1
|A| and |Iqi

∩ A| are all strictly positive for i ∈ ν.

Claim 3: Let q∗ ∈ arg minq∈P TV (q, pdata) be a minizizer whose support is Q∗. Q∗ and A∗ must not be
disjoint, i.e., Q∗ intersects A∗ for at least one isomorphism class in A∗.

Proof of Claim 3: Assume Q∗ and A∗ have no intersection, then minq∈P TV (q, pdata) = TV (q∗, pdata) = 2,
which is validated in Claim 1. From Claim 2, we know there must exist another q† ∈ P with TV (q†, pdata) <
2. Therefore, minq∈P TV (q, pdata) ≤ TV (q†, pdata) < 2, which contradicts minq∈P TV (q, pdata) = 2. To
minimize TV (q, pdata), one can enlarge the set ν so that the intersection covers A. Consequently, the
optimal |Q∗| has a lower bound Ω(n!) that does not depend on the size of empirical data distribution |A|.

Proof of Optimality of p∗
data when P is Discrete Uniform on a Superset of A.

Now we proceed to prove the second part of our lemma, which is a special case when P has some constraints
w.r.t. A. Assume A = {Ai}m

i=1 consists of m graphs (adjacency matrices) belonging to k isomorphic
equivalence classes, where m ≥ k due to some potential isomorphic graphs. Subsequently, let A∗ have l
adjacency matrices for all k equivalence classes (l ≥ m), i.e., A∗ = ∪m

i=1IAi
= ∪k

i=1Ici
, where {Ici

}k
i=1

denote k equivalence classes.

Further, let qγ ∈ P and let Qγ ⊇ A be its support. That is, qγ = 1
|Qγ |

∑
Ai∈Qγ

δ(A−Ai), where |Qγ | ≥ m.
The total variation distance is:

TV ∗ = | 1
m
− 1

l
| ×m + 1

l
(l −m) = 2(1− m

l
),

TV (qγ , pdata) =
∣∣∣∣ 1
|Qγ |

− 1
m

∣∣∣∣×m +
∣∣∣∣ |Qγ | −m

|Qγ |

∣∣∣∣ = 2
(

1− m

|Qγ |

)
.

To minimize TV (qγ , pdata) over qγ , we need to minimize |Qγ |. Since A ⊆ Qγ and qγ is permutation
invariant, the smallest |Qγ | would be | ∪m

i=1 IAi | = | ∪k
i=1 Ici | = |A∗| = l . Therefore, we conclude that

min
qγ ∈P

TV (qγ , pdata) = TV ∗ = 2(1− m
l ), and arg min

qγ ∈P
TV (qγ , pdata) = p∗

data.
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Justification on the Constraints of P to Guarantee the Optimality of p∗
data.

In the end, we justify the reason why P has to be discrete uniform on a superset of A (i.e., assign equal
probability to each element in A) for the second part of the lemma to hold. We list all possible conditions
in the table below and give concrete counterexamples for the cases where the optimality of p∗

data is no longer
true, i.e., p∗

data /∈ arg min
q∈P

TV (q, pdata) or equivalently min
q∈P

TV (q, pdata) < TV ∗ = TV (p∗
data, pdata). For ease

of proof, we further divide pdata into two categories based on the existence of isomorphic graphs.

pdata conditions
A has isomorphic graphs A does not have isomorphic graphs

P conditions

support contains A and uniform Our proof in the above: True, min
q∈P

TV (q, pdata) = TV ∗

support contains A and not uniform False, Case 1: min
q∈P

TV (q, pdata) < TV ∗ False, Case 2: min
q∈P

TV (q, pdata) < TV ∗

support does not contain A False, Case 3: min
q∈P

TV (q, pdata) < TV ∗ False, Case 4: min
q∈P

TV (q, pdata) < TV ∗

Consider graphs with n = 4 nodes, let the support of p∗
data (i.e., A∗) be adjacency matrices belonging

to two isomorphism classes Ia and Ib, where |Ia| = 24, |Ib| = 6. Namely, Ia has no automorphism
(e.g., complete disconnected graphs), and the automorphism number of Ib is 4 (e.g., star graphs). Let
Ia := {A1, A2, · · · , A24} and Ib := {A25, · · · , A32}.

Case 1: Let A = {A23, A24, A25} with isomorphic graphs. Let qα(A) = ρa

∑24
i=1 δ(A−Ai)+ρb

∑32
i=25 δ(A−

Ai) be a mixture of Dirac delta distributions, where ρa, ρb > 0. Due to normalization,
∑

A qα(A) =
24ρa + 6ρb = 1 or ρb = 1−24ρa

6 . We can tweak ρa, ρb so that qα is not necessarily uniform over its support,
but qα is permutation invariant by design, i.e., qα(A1) = qα(A2) = · · · = qα(A24) and qα(A25) = qα(A26) =
· · · = qα(A32). The TV is:

TV ∗ = |13 −
1
32 | × 3 + 1

32 × 29 = 29
16 , TV (qα, pdata) = |ρa −

1
3 | × 2 + |ρb −

1
3 |+ 22ρa + 5ρb = 5

3 + 4ρa.

Setting TV (qα, pdata) = 5
3 + 4ρa < TV ∗ = 29

16 , we have: ρa < 7
48 . Let ρa = 1

48 , ρb = 1
12 . We now have:

min
q∈P

TV (q, pdata) ≤ TV (qα, pdata) < TV ∗, and p∗
data is not a minimizer of min

q∈P
TV (q, pdata).

Case 2: Let A = {A24, A25} without isomorphic graphs. Similarly, let qα(A) = ρa

∑24
i=1 δ(A − Ai) +

ρb

∑32
i=25 δ(A−Ai) be a mixture of Dirac delta distributions. The TV is:

TV ∗ = |12 −
1
32 | × 2 + 1

32 × 30 = 15
8 , TV (qα, pdata) = |ρa −

1
2 |+ |ρb −

1
2 |+ 23ρa + 5ρb = 5

3 + 6ρa.

Setting TV (qα, pdata) = 5
3 + 6ρa < TV ∗ = 15

8 , we have: ρa < 5
144 . Let ρa = 1

48 , ρb = 1
12 . Again, we have:

min
q∈P

TV (q, pdata) ≤ TV (qα, pdata) < TV ∗, and p∗
data is not a minimizer of min

q∈P
TV (q, pdata).

Case 3: Let A = {A23, A24, A25} with isomorphic graphs. Let qβ be a uniform discrete distribution on Ib.
qβ is permutation invariant (thus qβ ∈ P) whose support does not contain A. The TV is:

TV ∗ = |13 −
1
32 | × 3 + 1

32 × 29 = 29
16 , TV (qβ , pdata) = |16 −

1
3 |+

1
6 × 5 + 1

3 × 2 = 5
3 .

So, min
q∈P∗

TV (q, pdata) ≤ TV (qβ , pdata) < TV ∗. p∗
data is not a minimizer of min

q∈P∗
TV (q, pdata).

Case 4: Let A = {A24, A25} without isomorphic graphs. We use the same qβ as above. The TV is:

TV ∗ = |12 −
1
32 | × 2 + 1

32 × 30 = 15
8 , TV (qβ , pdata) = |16 −

1
2 |+

1
6 × 5 + 1

2 × 1 = 5
3 .

Again, min
q∈P∗

TV (q, pdata) ≤ TV (qβ , pdata) < TV ∗. p∗
data is not a minimizer of min

q∈P∗
TV (q, pdata).

In fact, in case 3 and 4, p∗
data /∈ P, and by definition, p∗

data cannot be a minimizer of min
q∈P

TV (q, pdata). To

see that, the support of p∗
data must contain A∗ (a superset of A), while the support of any q ∈ P is not a

superset of A∗ as per P conditions in case 3 and 4.
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A.2 Proof of Lemma 4.2

Lemma 4.2. Let A be a random adjacency matrix distributed according to any graph distribution on
n vertices. Let Pr ∼ Unif(Sn) be uniform over the set of permutation matrices. Then, the induced
distribution of the random matrix Ar = PrAP ⊤

r , denoted as qθ(Ar), is permutation invariant, i.e.,
qθ(Ar) = qθ(P ArP ⊤),∀P ∈ Sn.

Proof. Let P(·) denote the probability of a random variable.

qθ(Ar) =
∫

qθ(Ar|A)pθ(A)dA (define the random permutation as conditional)

=
∫

P(PA→Ar )pθ(A)dA (PA→Ar satifies PA→Ar AP T
A→Ar

= Ar)

=
∑

A∈IAr

P(PA→Ar )pθ(A) (permutation cannot go beyond isomorphism class)

Let us define the set of ‘primitive graphs’ that could be generated by pθ: C(IAr ) = {A|pθ(A) > 0, A ∈ IAr}
that corresponds to the isomorphism class IAr

. Let Aut(·) denote the automorphism number. Then, we
have:

qθ(Ar) =
∑

A∈IAr

P(PA→Ar )pθ(A)

=
∑

A∈C(IAr )

P(PA→Ar
)pθ(A)

=
∑

Ar=A,A∈C(IAr )

P(PA→Ar )pθ(A) +
∑

Ar ̸=A,A∈C(IAr )

P(PA→Ar )pθ(A)

=
∑

Ar=A,A∈C(IAr )

Aut(Ar)
n! pθ(A) +

∑
Ar ̸=A,A∈C(IAr )

|{P : PA→Ar
AP T

A→Ar
= Ar}|

n! pθ(A)

=
∑

Ar=A,A∈C(IAr )

Aut(Ar)
n! pθ(A) +

∑
Ar ̸=A,A∈C(IAr )

Aut(Ar)
n! pθ(A)

=
∑

A∈C(IAr )

Aut(Ar)
n! pθ(A)

For the case of Ar = A, P(PA→Ar
) is the probability of obtaining automorphic permutation matrices, which

is Aut(Ar)
n! by definition. As for Ar ̸= A, we need to compute the size of ΩP = {P : PA→Ar AP T

A→Ar
=

Ar, Ar ̸= A}, i.e., how many permutation matrices there are to transform A into Ar. The orbit-stabilizer
theorem states that there are n!

Aut(A) many distinct adjacency matrices in IA (size of permutation group
orbit). For any A, we could divide all the permutation matrices in Sn into ρ = n!

Aut(A) subgroups, where
each group i ∈ {1, 2, · · · , ρ} transforms A to a new adjacency matrix Ai. One of the subgroups transforms A
into itself (i.e., automorphism), and the rest ρ− 1 subgroups transform A into distinct adjacency matrices.
As Ar ̸= A, the size of ΩP is equal to the size of one such subgroup, which is Aut(A). So, we could aggregate
the two cases of Ar = A and Ar ̸= A.

For any A′
r and Ar that are isomorphic to each other, we have:

qθ(A′
r) =

∑
A∈C(IA′

r
)

Aut(A′
r)

n! pθ(A) =
∑

A∈C(IAr )

Aut(Ar)
n! pθ(A) = qθ(Ar)

The second equality holds because Aut(A′
r) = Aut(Ar), IA′

r
= IAr

, and C(IA′
r
) = C(IAr

), which are evident
facts for isomorphic graphs. Thus, any two isomorphic graphs have the same probability in qθ. The random
permutation operation propagates the probability of the primitive graphs to all their isomorphic forms.
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A.3 Invariant Model Distribution via Permutation Equivariant Network

For denoising model, if we consider one noise level, the optimal score network would be the score of the
following noisy data distribution pσ(Ã) = 1

m

∑m
i=1N (Ã; Ai, σ2I), which is a GMM with m components for

the dataset {Ai}m
i=1. This is the case for diffusion models with non-permutation-equivariant networks, and

in what follows, we first show that for equivariant networks, the noisy data distribution is a GMM with
O(n!m) components. As score estimation and denoising diffusion are equivalent, we use the terms ‘score’ or
‘diffusion’ interchangeably.
Lemma A.1. Assume we only observe one adjacency matrix out of its isomorphism class in dataset {Ai}m

i=1,
and the size of isomorphism class for each graph is the same, i.e. |IA1 | = |IA2 | = · · · = |IAm

|. Let seq
θ be a

permutation equivariant score estimator. Under our definitions of p∗
data(A) and pdata(A), the following two

training objectives are equivalent:

Ep∗
data(A)pσ(Ã|A)

[
∥seq

θ (Ã, σ)−∇Ã log pσ(Ã|A)∥2
F

]
(9)

= Epdata(A)pσ(Ã|A)
[
∥seq

θ (Ã, σ)−∇Ã log pσ(Ã|A)∥2
F

]
. (10)

Proof. We conduct the proof from Eq. (10) to Eq. (9). Let P ∈ Sn be an arbitrary permutation matrix and
pSn

be a uniform distribution over all possible permutation matrices Sn.

Epdata(A)pσ(Ã|A)[∥seq
θ (Ã, σ) − ∇Ã log pσ(Ã|A)∥2

F ]

= Epdata(A)pσ(Ã|A)[∥P seq
θ (Ã, σ)P T − P

A − Ã

σ2 P T ∥2
F ] ( Frobenius norm is permutation invariant)

= Epdata(A)pσ(Ã|A)[∥seq
θ (P ÃP T , σ) − P

A − Ã

σ2 P T ∥2
F ] (sθ is permutation equivariant)

= Epdata(A)pσ(B̃|A)[∥seq
θ (B̃, σ) − P

A − P T B̃P

σ2 P T ∥2
F · |Det( dÃ

dB̃
)|] (change of variable B̃ := P ÃP ⊤)

= Epdata(A)pσ(B̃|A)[∥seq
θ (B̃, σ) − P AP ⊤ − B̃

σ2 ∥2
F ·

=1︷ ︸︸ ︷
|Det(P ⊗ P )|]

= Epdata(A)pσ(B̃|A)[∥seq
θ (B̃, σ) − ∇B̃ log pσ(B̃|P AP ⊤)∥2

F ]

= Epdata(A)pSn (P )pσ(B̃|A)[∥seq
θ (B̃, σ) − ∇B̃ log pσ(B̃|P AP ⊤)∥2

F ] (let P ∼ pSn be uniform)

= Ep∗
data(A)pσ(B̃|A)[∥seq

θ (B̃, σ) − ∇B̃ log pσ(B̃|A)∥2
F ] (permuting pdata samples leads to p∗

data samples)

= Ep∗
data(A)pσ(Ã|A)[∥seq

θ (Ã, σ) − ∇Ã log pσ(Ã|A)∥2
F ] (change name of random variable)

The change of variable between Ã and B̃ leverages the fact that permuting i.i.d. Gaussian random variables
does not change the multivariate joint distributions. Conditioned on A and P , we have Ã = A + ϵ; B̃ =
P AP ⊤ + P ϵP ⊤, where the randomness related to ϵ (Gaussian noise) is not affected by permutation due to
i.i.d. property. The second last equality due to our definition of pdata and p∗

data. Recall we take the Dirac
delta function over A to build pdata and over A∗ to build p∗

data, where A∗ is the union of all isomorphism
classes in A. By applying random permutation on samples drawn from pdata, we subsequently obtain samples
following p∗

data. The main idea is similar to the proofs in previous works (Niu et al., 2020; Xu et al., 2022;
Hoogeboom et al., 2022).

If we do not have the assumptions on the size of isomorphism class, the non-trivial automorphism would
make the equality between Eq. (10) and Eq. (9) no longer hold, as each isomorphism class may be weighted
differently in the actual invariant distribution. We can then replace the p∗

data by a slightly different invariant
distribution: l-permuted (l = n!) empirical distribution, defined as follows: pl

data(A) := 1
ml

∑m
i=1

∑l
j=1 δ(A−

PjAiP
⊤
j ), where Sn = {P1, . . . , Pk}. Both pl

data(A) and p∗
data have O(n!m) many modes. Therefore, the

assumptions do not affect the number of GMM components for underlying noisy data distribution, which is
a result we care about.
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More formally, we connect the number of modes in the discrete distribution pdata or p∗
data to the number of

components in their induced GMMs. We show that the noisy data distribution of permutation equivariant
network is p∗

σ(Ã) := 1
Z

∑
A∗

i
∈A∗ N (Ã; Ai, σ2I) of O(n!m) components. Namely, the optimal solution seq

θ∗

to Eq. (9) or equation 10 is ∇Ã log p∗
σ(Ã). Leveraging the results from Vincent (2011), we have

Ep∗
data(A)pσ(Ã|A)

[
∥seq

θ (Ã, σ)−∇Ã log pσ(Ã|A)∥2
F

]
=

Explicit score matching for p∗
σ(Ã)︷ ︸︸ ︷

Ep∗
σ(Ã)

[
∥seq

θ (Ã, σ)−∇Ã log p∗
σ(Ã)∥2

F

]
−C1 + C2,

C1 = Ep∗
σ(Ã)[∥∇Ã log pσ(Ã)∥2

F ], C2 = Ep∗
data(A)pσ(Ã|A)[∥∇Ã log pσ(Ã|A)∥2

F ].

As C1, C2 are constants irrelevant to θ, optimization objective on ∇Ã log p∗
σ(Ã) is equivalent to Eq. (10),

the latter of which is often used as the training objective in implementation.

A.4 Sample Complexity Lower Bound of Non-permutation-equivariant Network

In this part, we study the minimum number of samples (i.e., the sample complexity) required to learn the
noisy data distribution in the PAC learning setting. Specifically, our analysis is mainly applicable for the
non-permutation-equivariant network, where we do not assume any hard-coded permutation symmetry. We
leave the analysis for permutation equivariant network as future work.

Recall that training DSM at a single noise level amounts to matching the score of the noisy data distribution.
Knowing this sample complexity would help us get a sense of the hardness of training DSM since if you can
successfully learn a noisy data distribution then you can obtain its score by taking the gradient. Now we
derive a lower bound of the sample complexity for learning the noisy data distribution (i.e., a GMM).
Lemma A.2. Any algorithm that learns the score function of a Gaussian noisy data distribution that con-
tains l centroids of d-dimension requires Ω(ld/ϵf ) samples to achieve Fisher information distance ϵf with
probability at least 1

2 .

Here the Fisher divergence (or Fisher information distance) (Johnson & Barron, 2004) is defined as
JF(f, g) := Ef(X)

[
∥∇X log f(X)−∇X log g(X)∥2

F

]
where f(X) and g(X) are two absolutely continuous

distributions defined over Rd. Now we apply Lemma A.2 to the graph distribution in our context. Recall we
assume m graphs {Ai}m

i=1 with n nodes in the training set. Similar to our investigation in Sec. 4.1, we use the
GMM corresponding to the l-permuted empirical distribution: pl

σ(Ã) = 1
ml

∑
A∈∪m

i=1{PjAiP ⊤
j

}N (Ã; A, σ2I).
Let qθ(A) denote the estimated distribution returned by a non-permutation-equivariant network.
Corollary A.3. Any algorithm that learns qθ for the target l-permuted distribution pl

σ to ϵf error in
JF(pl

σ, qθ) with probability at least 1
2 requires Ω(mln2/ϵf ) samples.

Corollary A.3 states the condition to learn distribution qθ explicitly with bounded Fisher divergence, from
which one could compute a score estimator sqθ

= ∇Ã log qθ(Ã) with bounded DSM error w.r.t. the target
pl

σ. The sample complexity lower bound holds regardless of the specific learning algorithm.

The highlight is that the sample complexity lower bound has a dependency on Ω(l), which would substantially
increase as l goes to its maximum n!. A more practical implication is that given α training samples drawn
from pl

σ, one could expect, with at least 1
2 probability, a score network to have at least o( mln2

α ) error in
Fisher divergence. If we extend l to the maximum n!, the learning bottleneck would be the size of the graph
n instead of the number of the graphs m, for a single large graph could induce a prohibitively enormous
sample complexity. This analysis also aligns with our experimental investigation in Sec. 4.1, where the recall
metrics drop with l going up.
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Proof of Lemma A.2. We first introduce two useful lemmas before diving into the proof.
Lemma A.4. For twice continuously differentiable distributions f and g defined over Rd, let
JF(f, g) := Ef(X)

[
∥∇X log f(X)−∇X log g(X)∥2

F

]
be the Fisher information distance and let JTV(f, g) :=

supB⊆Rd

∫
B

(f(X) − g(X))dX be the total variation (TV) distance. JF(f, g) ≥ CJ 2
TV(f, g) for some con-

stant C > 0. (Huggins et al., 2018; Ley & Swan, 2013). The exact value of C relies on conditions of f and
g ( c.f. Theorem 5.3 in Huggins et al. (2018)).
Lemma A.5. Any method for learning the class of l-mixtures of d-dimensional isotropic Gaussian distribu-
tion with ϵt error in total variation with probability at least 1

2 has sample complexity Ω(ld/ϵ2
t ) (Suresh et al.,

2014; Ashtiani et al., 2020).

Now we restate Lemma A.2 and show the proof formally.
Lemma A.2. Any algorithm that learns the score function of a Gaussian noisy data distribution that con-
tains l centroids of d-dimension requires Ω(ld/ϵf ) samples to achieve Fisher information distance ϵf with
probability at least 1

2 .

Proof. We derive our results through the distribution learning (a.k.a. density estimation) approach on top
of existing analysis. Without loss of generality, let f(X) and g(X) be two twice continuously differentiable
distributions defined over Rd. Let us assume f(X) to be a GMM whose Gaussian components have isotropic
variance, similar to the noisy data distribution pk

σ in the diffusion model. We consider the general distribution
learning problem where a learning algorithm takes a sequence of i.i.d. samples drawn from the target
distribution f and outputs a distribution g as an estimate for f .

According to Lemma A.4, the Fisher information distance JF(f, g) is lower bounded by the square of TV
distance J 2

TV(f, g) with a positive multiplicative factor C, under some mild conditions. In order to bound
the JF(f, g) by ϵf , JTV(f, g) must be smaller than

√
ϵf

C . Importantly, the target f is a GMM, whose density
estimation problem with TV distance have been well-studied and it admits a sample complexity lower bound
illustrated in Lemma A.5. Plugging in the desired error bound for JTV(f, g) ≤ ϵt =

√
ϵf

C , we obtain a
sample complexity lower bound Ω(ld/ϵf ), where the constant C is absorbed. It has the same PAC-learning
meaning for JTV(f, g) with error bound ϵt =

√
ϵf

C , and for JF(f, g) with error bound ϵf .

We first identify that TV distance is a weaker metric than the Fisher information distance, the latter of
which corresponds to the original score estimation objective. Then, we utilize the recent advances in sample
complexity analysis for learning GMMs with bouned TV error, and thus obtain a sample complexity lower
bound for score estimation. In summary, we use the result of a ‘weaker’ distribution learning task to show
how hard the score estimation objective at least is.

Proof of Corollary A.3.
Corollary A.3. Any algorithm that learns qθ for the target l-permuted distribution pl

σ to ϵf error in
JF(pl

σ, qθ) with probability at least 1
2 requires Ω(mln2/ϵf ) samples.

Proof. We conduct the proof by applying the results from Lemma A.2. We know pl
σ is an GMM with O(ml)

components. Since our samples drawn from the noisy distribution pl
σ are noisy adjacency matrix Ã ∈ Rn×n,

we first vectorize them to be Rn2 . In this way, we can view pl
σ as a GMM with O(ml) components of n2-

dimensions. Recall we inject i.i.d. noise to each entries, so each Gaussian component has isotropic covariance.
The conditions of Lemma A.2 (specifically, Lemma A.5 ) are all satisfied. Plugging in the above parameters,
we obtain the sample complexity lower bound Ω(mln2/ϵf ) for score estimation w.r.t. pl

σ through distribution
learning perspective.
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Figure 6: Toy dataset for the investigation of effective target distributions. The dataset comprises 10
randomly generated regular graphs, each with 16 nodes and degrees ranging from 2 to 11.

B ADDITIONAL EXPERIMENT DETAILS

B.1 Detailed Experiment Setup

Toy Dataset. For the toy dataset experiment, we conduct a sampling process where each model is allowed
to generate 100 graphs. To determine the graph recall rate, we perform isomorphism testing utilizing the
networkx(Hagberg et al., 2008) package. The training set’s visualization is provided in Fig. 6.

Synthetic and Real-world Datasets. We consider the following synthetic and real-world graph datasets:
(1) Ego-small: 200 small ego graphs from Citeseer dataset (Sen et al., 2008) with |V| ∈ [4, 18], (2) Community-
small: 100 random graphs generated by Erdős–Rényi model (Erdös & Rényi, 1959) consisting of two equal-
sized communities whose |V| ∈ [12, 20], (3) Grid: 100 random 2D grid graphs with |V| ∈ [100, 400]. (4)
Protein: real-world DD protein dataset (Dobson & Doig, 2003) that has 918 graphs with |V| ∈ [100, 500].
We follow the same setup in Liao et al. (2019); You et al. (2018) and apply random split to use 80% of the
graphs for training and the rest 20% for testing. In evaluation, we generate the same number of graphs as
the test set to compute the maximum mean discrepancy (MMD) of statistics like node degrees, clustering
coefficients, and orbit counts. To compute MMD efficiently, we follow (Liao et al., 2019) and use the total
variation distance kernel.

Molecule Datasets. We utilize the QM9 (Ramakrishnan et al., 2014) and ZINC250k (Irwin et al., 2012)
as molecule datasets. To ensure a fair comparison, we use the same pre-processing and training/testing set
splitting as in Jo et al. (2022); Shi* et al. (2020); Luo et al. (2021). We generate 10,000 molecule graphs and
compare the following key metrics: (1) validity w/o correction: the proportion of valid molecules without
valency correction or edge resampling; (2) uniqueness: the proportion of unique and valid molecules; (3)
Fréchet ChemNet Distance (FCD) (Preuer et al., 2018): activation difference using pretrained ChemNet;
(4) neighborhood subgraph pairwise distance kernel (NSPDK) MMD (Costa & Grave, 2010): graph ker-
nel distance considering subgraph structures and node features. We defer the discussion on novelty score
in App. B.8.

Data Quantization. In this paper, we learn a continuous diffusion model for graph data. Following DDPM
(Ho et al., 2020), we map the binary data into the range of [-1, 1] and add noise to the processed data during
training. During sampling, we start with Gaussian noise. After the refinement, we map the results from [-1,
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1] to [0, 1]. Since graphs are discrete data, we choose 0.5 as a threshold to quantize the continuous results.
Similar approaches have been adopted in previous works (Niu et al., 2020; Jo et al., 2022).

B.2 Network Architecture Details

Table 6: Architecture details of the proposed SwinGNN and major baselines. ∗The same hyper-parameters
are employed for both SwinGNN and SwinGNN-L, barring specific exceptions outlined in the table. The
UNet is adopted from Dhariwal & Nichol (2021) with their hyperparameters for the ImageNet-64 dataset.

Hyperparameter Ego-small Community-small Grid DD Protein QM9 ZINC250k

SwinGNN

Downsampling block layers [4, 4, 6] [4, 4, 6] [1, 1, 3, 1] [1, 1, 3, 1] [1, 1, 3, 1] [1, 1, 3, 1]
Upsampling block layers [4, 4, 6] [4, 4, 6] [1, 1, 3, 1] [1, 1, 3, 1] [1, 1, 3, 1] [1, 1, 3, 1]
Patch size 3 3 4 4 1 4
Window size 24 24 6 8 4 5
Token dimension 60 60 60 60 60 60
Feedforward layer dimension 240 240 240 240 240 240
Number of attention heads [3, 6, 12, 24] [3, 6, 12, 24] [3, 6, 12, 24] [3, 6, 12, 24] [3, 6, 12, 24] [3, 6, 12, 24]
Number of trainable parameters 15.37M 15.37M 15.31M 15.31M 15.25M 15.25M
Number of epochs 10000 10000 15000 50000 5000 5000
EMA 0.9 0.99 0.99 0.9999 0.9999 0.9999

SwinGNN-L∗

Token dimension 96 96 96 96 96 96
Feedforward layer dimension 384 384 384 384 384 384
Number of trainable parameters 34.51M 35.91M 35.91M 35.91M 35.78M 35.78M
Number of epochs 10000 10000 15000 50000 5000 5000
EMA 0.99 0.95 0.95 0.9999 0.9999 0.9999

UNet-ADM∗

Channel multiplier 64 64 64 64 - -
Channels per resolution [1, 2, 3, 4] [1, 2, 3, 4] [1, 2, 3, 4] [1, 1, 1, 1, 2, 4, 6] - -
Residule blocks per resolution 3 3 3 1 - -
Number of trainable parameters 30.86M 31.12M 29.50M 32.58M - -
Number of epochs 5000 5000 15000 10000 - -
EMA 0.9999 0.99 0.999 0.9 - -

Optimization Optimizer Adam Adam Adam Adam Adam Adam
Learning rate 1.0× 10−4 1.0× 10−4 1.0× 10−4 1.0× 10−4 1.0× 10−4 1.0× 10−4

Our Models and Baselines. Tab. 6 shows the network architecture details of our models and the UNet
baselines on various datasets. Regarding the PPGN (Maron et al., 2019a), we utilize the implementation
in Martinkus et al. (2022). It takes an n × n noisy matrix as input and produces the denoised signal as
output. To build non-permutation-equivariant version of PPGN, sinusoidal positional encoding (Vaswani
et al., 2017) is applied at each layer. We use the same diffusion setup for PPGN-based networks and our
SwinGNN, as specified in Tab. 7. For a fair comparison, we utilize the publicly available code from the other
baselines and run experiments using our dataset splits.

Network Expressivity. Both theoretical and empirical evidence have underscored the intrinsic connec-
tion between the WL test and function approximation capability for GNNs (Mahdavi et al., 2023; Hamil-
ton, 2020; Chen et al., 2019; Morris et al., 2019; Maron et al., 2019b; Xu et al., 2019). The permutation
equivariant PPGN layer, notable for its certified 3-WL test capacity, is deemed sufficiently expressive for
experimental investigation. Further, it is crucial to note the considerable theoretical expressivity displayed
by non-permutation-equivariant GNNs, particularly those with positional encoding (Keriven & Vaiter, 2023;
Fereydounian et al., 2022). We argue that the GNNs employed in our studies theoretically have sufficient
function approximation capacities, and therefore, the results of our research are not limited by the expres-
siveness of the network.

B.3 Node and Edge Attribute Encoding

Molecules possess various edge types, ranging from no bond to single, double, and triple bonds. Also, they
encompass diverse node types like C, N, O, F, and others. We employ three methods to encode the diverse
node and edge attributes: 1) scalar representation, 2) binary bits, and 3) one-hot encoding.

Scalar Encoding. We divide the interval [-1, 1] into several equal-sized sub-intervals (except for the
intervals near the boundaries), with each sub-interval representing a specific type. We quantize the node or
edge attributes in the samples based on the sub-interval to which it belongs as in Jo et al. (2022).
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Binary-bit Encoding. Following Chen et al. (2023), we encode attribute integers using multi-channel
binary bits. For better training dynamics, we remap the bits from 0/1 to -1/1 representation. During
sampling, we perform quantization for the continuous channel-wise bit samples and convert them back to
integers.

One-hot Encoding. We adopt a similar process as the binary-bit encoding, up until the integer-vector
conversion. We use argmax to quantize the samples and convert them to integers.

Network Modifications. We concatenate the features of the source and target node of an edge to the
original edge feature, creating multi-channel edge features as the augmented input. At the final readout
layer, we use two MLPs to convert the shared edge features for edge and node denoising.

B.4 Diffusion Process Hyperparameters

Table 7: Training and sampling hyperparameters in the diffusion process.

cs(σ) = σ2
d

σ2
d

+σ2 co(σ) = σσd√
σ2

d
+σ2

ci(σ) = 1√
σ2
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4 ln(σ)
σd = 0.5, ln(σ) ∼ N (Pmean, P 2
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1
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1
ρ ))ρ

γi = 1Stmin≤ti≤Stmax ·min( Schurn
N ,

√
2− 1)

The hyperparameters of the diffusion model training and sampling steps are summarized in Tab. 7. For
our SwinGNN model, we maintain a consistent setup throughout the paper, unless stated otherwise. This
setup is used for various experiments, including the ablation studies where we compare against the vanilla
DDPM (Ho et al., 2020) and the toy dataset experiments.

The pivotal role of refining both the training and sampling phases in diffusion models to bolster performance
has been emphasized in prior literature (Song et al., 2021a; Nichol & Dhariwal, 2021; Karras et al., 2022).
Such findings, validated across a broad spectrum of fields beyond image generation (Shan et al., 2023; Yang
et al., 2022), inspired our adoption of the most recent diffusion model framework. For a detailed discussion
on the principles of hyperparameter fine-tuning, readers are encouraged to refer to the previously mentioned
studies.

B.5 Model Memory Efficiency

Table 8: Analysis of the GPU memory consumption during the training phase on a single NVIDIA RTX 3090
(24 GB) graphics card, where OOM stands for out-of-memory. Experiments are performed on the protein
dataset that contains 918 graphs, each having a node count ranging from 100 to 500.

Method #params BS=1 BS=2 BS=4 BS=8 BS=16 BS=32
GDSS 0.37M 3008M 4790M 8644M 15504M OOM OOM

DiGress 18.43M 16344M 19422M 22110M OOM OOM OOM
EDP-GNN 0.09M 7624M 13050M 23848M OOM OOM OOM

Unet 32.58M 6523M 10557M 18247M OOM OOM OOM
PPGN 2.96M OOM OOM OOM OOM OOM OOM

PPGN-PE 3.26M OOM OOM OOM OOM OOM OOM
SwinGNN 15.31M 2905M 3563M 5127M 8175M 14325M OOM

SwinGNN-L 35.91M 4057M 5203M 7471M 12113M 21451M OOM
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GPU Memory Usage. Our model’s efficiency in GPU memory usage during training, thanks to window
self-attention and hierarchical graph representations learning, allows for faster training compared to models
with similar parameter counts. In Tab. 8, we compare the training memory costs for various models with
different batch sizes using the real-world protein dataset.

B.6 Comparing against the SwinTransformer Baseline

Table 9: Comparing our SwinGNN against the vanilla visual SwinTransformer (Liu et al., 2021).

Ego-Small Community-Small Grid Protein
Methods Deg. ↓ Clus. ↓ Orbit. ↓ Deg. ↓ Clus. ↓ Orbit. ↓ Deg. ↓ Clus. ↓ Orbit. ↓ Deg. ↓ Clus. ↓ Orbit. ↓

SwinGNN 3.61e-4 2.12e-2 3.58e-3 2.98e-3 5.11e-2 4.33e-3 1.91e-7 0.00 6.88e-6 1.88e-3 1.55e-2 2.54e-3
SwinGNN-L 5.72e-3 3.20e-2 5.35e-3 1.42e-3 4.52e-2 6.30e-3 2.09e-6 0.00 9.70e-7 1.19e-3 1.57e-2 8.60e-4

SwinTF 8.50e-3 4.42e-2 8.00e-3 2.70e-3 7.11e-2 1.30e-3 2.50e-3 8.78e-5 1.25e-2 4.99e-2 1.32e-1 1.56e-1

To further demonstrate the effectiveness of our proposed network in handling adjacency matrices for denoising
purposes, we include an additional comparison with SwinTransformer (Liu et al., 2021). SwinTransformer is
a general-purpose backbone network commonly used in visual tasks such as semantic segmentation, which
also involves dense predictions similar to our denoising task.

In our experiments, we modify the SwinTF + UperNet (Xiao et al., 2018) method and adapt it to output
denoising signals. Specifically, we conduct experiments on the various graphs datasets, and the results are
presented in Tab. 9. The results clearly demonstrate the superior performance of our proposed SwinGNN
model compared to simply adapting the visual SwinTransformer for graph generation.

B.7 Effects of Window Size

Table 10: Effects of window size on SwinGNN models (grid data).

Grid (|V| ∈ [100, 400], 100 graphs)
Model Window Size Deg. ↓ Clus. ↓ Orbit. ↓

SwinGNN (ours)

1 1.46e-1 7.69e-3 2.73e-2
2 3.06e-4 1.75e-4 1.77e-4
4 6.60e-5 2.15e-5 3.11e-4

6 (default) 1.91e-7 0.00 6.88e-6
12 1.92e-5 0.00 1.50e-5

Receptive Field Analysis. The window size must be large enough regarding the number of downsampling
layers and graph sizes to create a sufficient receptive field. Otherwise, the model would perform poorly (e.g.,
window size of 1 or 2 in the grid dataset). Let n be the size of the graph and M be the window size. After k
iterations of shift-window, the receptive field of each edge token is enlarged k times. The effective receptive
field of window attention grows from M ×M into kM × kM . With each half-sizing downsampling operator,
the self-attention receptive field grows 2 times larger in the subsequent window attention layer. Putting
these together, assume each attention layer has k iterations of window shifting, there are t such layers, each
followed by a down-sampling operator, the receptive field is (2kM)t. When k, M and t are suitably chosen,
it is feasible to ensure the receptive field is larger than the graph size n, meaning that the message passing
between any two edge tokens can be approximated by our architecture.

Experimental Results. Tab. 10 summarizes the impact of window size M on empirical performance in
the grid benchmark dataset. When M is considerably small relative to the graph size, the performance tends
to be subpar. Conversely, when M is sufficiently large—covering the entire graph within the receptive field
with an appropriate number of layers—it acts more like a hyper-parameter, requiring tuning to optimize
performance.
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B.8 Additional Results on Molecule Datasets

Table 11: QM9 results with novelty metrics.

QM9
Methods Valid w/o cor.↑ Novelty Unique↑ FCD↓ NSPDK↓
GraphAF 57.16 81.27 83.78 5.384 2.10e-2
GraphDF 79.33 86.47 95.73 11.283 7.50e-2
GDSS 90.36 65.29 94.70 2.923 4.40e-3
DiGress 95.43 27.69 93.78 0.643 7.28e-4
SwinGNN (scalar) 99.68 15.14 95.92 0.169 4.02e-4
SwinGNN (bits) 99.91 13.60 96.29 0.142 3.44e-4
SwinGNN (one-hot) 99.71 17.34 96.25 0.125 3.21e-4
SwinGNN-L (scalar) 99.88 13.62 96.46 0.123 2.70e-4
SwinGNN-L (bits) 99.97 10.72 95.88 0.096 2.01e-4
SwinGNN-L (one-hot) 99.92 11.36 96.02 0.100 2.04e-4
SwinGNN (scalar, novelty-tuning) 97.05 41.01 95.60 0.544 1.95e-3
SwinGNN-L (scalar, novelty-tuning) 97.24 42.31 96.39 0.380 1.19e-3

Table 12: ZINC250k results with novelty metrics.

ZINC250k
Methods Valid w/o cor.↑ Novelty Unique↑ FCD↓ NSPDK↓
GraphAF 68.47 100.0 99.01 16.023 4.40e-2
GraphDF 41.84 100.0 93.75 40.51 3.54e-1
GDSS 97.35 100.0 99.76 11.398 1.80e-2
DiGress 84.94 100.0 99.21 4.88 8.75e-3
SwinGNN (scalar) 87.74 99.38 99.98 5.219 7.52e-3
SwinGNN (bits) 83.50 99.29 99.97 4.536 5.61e-3
SwinGNN (one-hot) 81.72 99.91 99.98 5.920 6.98e-3
SwinGNN-L (scalar) 93.34 95.43 99.80 2.492 3.60e-3
SwinGNN-L (bits) 90.46 95.73 99.79 2.314 2.36e-3
SwinGNN-L (one-hot) 90.68 96.39 99.73 1.991 1.64e-3
SwinGNN (scalar, novelty-tuning) 88.13 100.0 99.94 5.43 7.75e-3
SwinGNN-L (scalar, novelty-tuning) 90.78 99.0 99.95 3.68 5.37e-3

Discussion on Novelty Metric. In the main paper, we do not report novelty on the molecule datasets
following Vignac et al. (2023); Vignac & Frossard (2022). Novelty metric is measured by proportion of
generated samples not seen in the training set. The QM9 dataset provides a comprehensive collection of
small molecules that meet specific predefined criteria. Generating molecules outside this set (i.e., novel
graphs) does not necessarily indicate that the network accurately capture the underlying data distribution.
Further, in ZINC250k dataset, all models show very high novelty, making novelty not distinguishable for
model performance.

Moreover, we argue that training the diffusion models is essentially maximizing the lower bound of likeli-
hood. Diffusion (i.e., score-based) models are essentially maximum likelihood estimators (MLE) (Hyvärinen,
2005). Generating samples resembling the training data is actually consistent with the MLE objective, as
theoretically the closest model distribution to the training distribution would be the Dirac delta functions of
training data. Novelty metric may not be a good indicator of model performance on its own. For example,
a poorly trained generative model may have very high novelty and bad performance.
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Results with Novelty Metric. Nevertheless, for the sake of completeness, we present additional ex-
perimental results including the novelty metrics in the QM9 and ZINC250k molecule datasets, as seen in
and Tab. 12. In the main experimental section (Tab. 3), the optimization of training hyperparameters is
mainly directed towards improving FCD and NSPDK metrics, with the novelty scores presented in the
initial rows. When the novelty scores are considered in the hyperparameter tuning, the results for the
scalar-encoding SwinGNN models are displayed in the concluding rows, demonstrating that our models still
maintain remarkable performance.

On the QM9 dataset (Tab. 11), our model outperforms the DiGress baseline by exhibiting higher novelty and
excelling in FCD, no matter if it is fine-tuned for novelty or not. In comparison, GraphAF, GraphDF, and
GDSS models, despite their competitive uniqueness and novelty, demonstrate deficiencies in validity, FCD,
or NSPDK scores. Specifically, their high novelty suggests the generation of a substantial number of new,
likely undesirable molecules that violate fundamental chemical principles. This is indicative of a significant
deviation from the training distribution, as reflected in their low validity and elevated FCD and NSPDK
scores.

In the ZINC250k dataset (Tab. 12), all models exhibit a high novelty, scoring at least 95%. However, the
baseline models struggle in aspects of validity, FCD, and NSPDK scores, indicating difficulties in effectively
capturing the data distribution. Contrarily, our model (SwinGNN-L) stands out by achieving the best FCD
and NSPDK scores when not specifically optimized for novelty. Furthermore, with dedicated tuning, our
model’s novelty score closely competes with others (e.g., 99.0 vs 100.0), demonstrating a harmonious balance
between fostering novelty and maintaining crucial chemical attributes in the generated molecules.
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B.9 Additional Qualitative Results
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Figure 7: Visualization of sample graphs generated by our model on the ego-small dataset.
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e=49, n=18 e=26, n=14 e=60, n=20 e=37, n=16

Figure 8: Visualization of sample graphs generated by our model on the community-small dataset.
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e=542, n=288 e=389, n=209 e=613, n=324 e=437, n=234

e=576, n=306 e=609, n=323 e=463, n=247 e=425, n=228

Figure 9: Visualization of sample graphs generated by our model on the grid dataset.
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Figure 10: Visualization of sample graphs generated by our model on the DD protein dataset.
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Figure 11: Visualization of sample graphs generated by our model on the QM9 molecule dataset.

Figure 12: Visualization of sample graphs generated by our model on the ZINC250k molecule dataset.
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