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ABSTRACT

Large Language Models (LLMs) deliver strong performance across a wide range
of NLP tasks, but their massive sizes hinder deployment on resource-constrained
devices. To reduce their computational and memory burden, various compression
techniques have been proposed, including quantization, pruning, and knowledge
distillation. Among these, post-training quantization (PTQ) is widely adopted for
its efficiency, as it requires no retraining and only a small dataset for calibration,
enabling low-cost deployment. Recent advances for post-training quantization
have demonstrated that even sub-4-bit methods can maintain most of the origi-
nal model performance. However, 1-bit quantization that converts floating-point
weights to±1, remains particularly challenging, as existing 1-bit PTQ methods of-
ten suffer from significant performance degradation compared to the full-precision
models. Specifically, most of existing 1-bit PTQ approaches focus on weight
alignment, aligning the full-precision model weights with those of the quantized
models, rather than directly aligning their outputs. Although the output-matching
approach objective is more intuitive and aligns with the quantization goal, naively
applying it in 1-bit LLMs often leads to notable performance degradation. In this
paper, we investigate why and under what conditions output-matching fails, in the
context of 1-bit LLM quantization. Based on our findings, we propose a novel
data-aware PTQ approach for 1-bit LLMs that explicitly accounts for activation
error accumulation while keeping optimization efficient. Empirical experiments
demonstrate that our solution consistently outperforms existing 1-bit PTQ meth-
ods with minimal overhead.

1 INTRODUCTION

Large language models (LLMs) (Wei et al., 2022; Radford et al., 2019b; Zhang et al., 2022;
Brown et al., 2020b) have become a focal point of both academic research and industrial devel-
opment, thanks to their strong capabilities across a wide range of natural language processing
tasks (Hendrycks et al., 2020; Bisk et al., 2020b), including question answering (Devlin et al.,
2019), machine translation (Fan et al., 2020; Lepikhin et al., 2020), summarization (Zhang et al.,
2019; Lewis et al., 2019) and language generation (Radford et al., 2019a; Brown et al., 2020a).
Despite these advances, the massive scale of modern LLMs, which often involving billions of pa-
rameters, poses substantial challenges for efficient inference and deployment. To address this, the
community has explored various compression approaches, such as neural architecture search (Zoph
& Le, 2016), knowledge distillation (Hinton et al., 2015), network quantization (Choi et al., 2018;
Frantar et al., 2023), and pruning (Han et al., 2015). However, many of these approaches depend
on large-scale training data and costly retraining, which limits their practicality. In contrast, post-
training quantization (PTQ) (Liu et al., 2025; Sun et al., 2025) requires only a small calibration set
and modest computational resources, making it a practical choice for compressing LLMs. Despite
the impressive performance of sub-4-bit PTQ methods, the most extreme case, 1-bit quantization,
remains challenging, which maps floating-point parameters to binary states, and can greatly lower
memory consumption.

Existing 1-bit quantization approaches can be broadly grouped into two categories: (1) weight-
matching methods, which minimize ∥W − Ŵ∥ (referred as the Weight Error, i.e., the distance
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between full-precision weights W and binarized weights Ŵ ) (Xu et al., 2018; Shang et al., 2023),
and (2) output-matching methods, which minimize ∥X̂W − X̂Ŵ∥ (referred to as Activation-
conditioned Error, since it compares outputs given the same quantized model’s layer inputs X̂ (Li
et al., 2024).

In the context of LLM quantization, the primary objective is to align the outputs of the quan-
tized model with those of the full-precision model. Weight-matching methods, which minimize
||W − Ŵ ||, are simple and stable but do not directly optimize the output-alignment objective. De-
spite recent advances, most 1-bit PTQ techniques remain weight-centric (Huang et al., 2024; Li
et al., 2024; Dong et al., 2024; Shang et al., 2023). ARB-X (Li et al., 2024) is an exception, which
incorporates Activation-conditioned Error, i.e., minimizing ∥X̂W − X̂Ŵ∥. However, ARB-X
has two primary limitations. Firstly, it naively applies output alignment in a layer-wise manner,
which does not guarantee improvement at the block-level or at the final output due to inter-layer
dependencies. Secondly, by conditioning on X̂ rather than the true full-precision input X , the ob-
jective ||X̂W − X̂Ŵ || is only an approximation; as quantization errors accumulate across layers,
the approximated target outputs WX̂ diverge from the true full-precision target WX , reducing the
effectiveness of layer-wise output alignment in PTQ.

Motivated by the above analysis, in this paper, we propose a selective layer-wise output match-
ing method to ensure block-level loss reduction. Our objective explicitly accounts for accumulated
quantization errors by directly matching the output of the quantized model with the true target out-
put Output Error, i.e., ||WX − Ŵ X̂||. Furthermore, we observe that the effectiveness of output
alignment is architecture-dependent: indiscriminate application can significantly degrade attention
mechanisms, particularly in architectures such as LLaMA. To mitigate this issue, we introduce a
novel masking mechanism, termed Attention Matrix Preservation (AMP), which preserves attention
behavior and prevents performance degradation. These design choices collectively yield a simple
yet effective data-aware 1-bit quantization strategy for LLMs.

The main contributions of this paper can be summarized as follows:

• We systematically examine the influence of calibration data on 1-bit post-training quantiza-
tion for LLMs, revealing the insight that while output matching aligns with the quantization
objective, its effectiveness can vary depending on model architecture and layer characteristics.

• Our study identifies three key challenges in naive layer-wise output alignment: (i) it does
not necessarily reduce block-level loss, (ii) quantization errors accumulate across layers, di-
minishing alignment effectiveness, and (iii) indiscriminate output matching can disrupt token
interactions, degrading attention mechanisms, particularly in LLMs.

• To address these challenges, we propose a selective layer-wise output alignment strategy that
modifies the quantization objective to explicitly account for accumulated errors. Moreover, we
also introduce an attention-aware masking mechanism AMP to preserve attention behavior.

• Extensive experiments demonstrate that our method consistently improves performance over
existing 1-bit PTQ techniques for LLMs.

2 RELATED WORKS

Quantization in LLMs. Post-Training Quantization (PTQ) has emerged as the most practical
strategy for compressing large language models (LLMs), as it applies quantization directly to pre-
trained models with minimal calibration data, avoiding the prohibitive cost of Quantization-Aware
Training (QAT). A range of PTQ methods have been developed to mitigate quantization error in-
cluding GPTQ (Frantar et al., 2023) that leverages second-order Hessian information for layer-wise
error compensation; AWQ (Lin et al., 2023) and SmoothQuant (Xiao et al., 2023) that incorporate
activation statistics to identify and preserve critical weights; and ZeroQuant (Yao et al., 2022) that
introduces fine-grained schemes for improved flexibility. More recent efforts such as QuIP (Tseng
et al., 2024) and QuaRot (Ashkboos et al., 2024) extend PTQ with rotation or vector quantization
to better distribute outliers, though often at the expense of higher computational overhead. Col-
lectively, these efforts have helped LLMs maintain strong performance under moderate precision
settings (e.g., 4–8 bits), yet the models still suffer from substantial degradation when pushed to
extreme regimes such as 1-bit quantization.
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1-Bit Quantization for Language Languages Models. Binarization, where weights are restricted
to ±1, represents the most aggressive form of quantization. It was first explored in computer vision
with specialized binary architectures such as XNOR-Net (Rastegari et al., 2016) and Bi-Real Net
(Liu et al., 2018), which showed that binary parameters could still capture meaningful representa-
tions. Follow-up studies (Guo et al., 2017; Xu et al., 2018) improved 1-bit quantization through en-
hanced coding schemes and optimized search strategies, enabling more accurate approximations of
full-precision weights. Inspired by these advances, recent work has extended binarization to LLMs.
Training-based approaches, such as BitNet (Wang et al., 2023), demonstrated that end-to-end train-
ing with binary weights is feasible. In contrast, post-training quantization (PTQ) approaches aim
to binarize pretrained models with minimal retraining. BiLLM (Huang et al., 2024) selectively
quantizes salient weights with low-bit precision while binarizing the rest, guided by Hessian-based
importance and residual-aware masks. STB-LLM (Dong et al., 2024) combines pruning and quan-
tization with fine-grained grouping, achieving sub-1-bit average precision while maintaining accu-
racy, albeit with added kernel and storage costs. Other methods leverage codebook representations
to capture repeating binary patterns, improving compression without requiring sparsity. Most re-
cently, research has shifted toward data-aware and fine-grained quantizers tailored for 1-bit PTQ.
ARB (Li et al., 2024) introduces grouping and refinement strategies to reduce quantization error,
and its data-aware extension ARB-X further optimize the output alignment.

3 PRELIMINARY ANALYSIS

In the following, we provide a preliminary analysis of how data and output alignment affect 1-bit
LLM quantization. Although Activation-Conditioned Error is more aligned with the quantization
objective, most existing 1-bit PTQ for LLMs approaches instead try to minimize Weight Error
during the quantization process. We aim to understand why output alignment is less widely adopted,
and why naive output alignment does not necessarily improve model performance.

3.1 EFFECT OF LAYER OUTPUT MATCHING ON BLOCK-LEVEL PERFORMANCE

Quantization objectives are typically formulated at the layer-wise, block-wise, or network-wise
level. Prior work such as BRECQ (Li et al., 2021) has shown that block-wise quantization is par-
ticularly effective, since layers within the same block are highly interdependent. This suggests that
minimizing the error at the block level is more critical than focusing solely on individual layers.

To assess the impact of layer-wise output matching on block-level loss, we conduct a preliminary
analysis using ARB and ARB-X Li et al. (2024). ARB performs layer-wise weight alignment by
minimizing the Weight Error ||W − Ŵ ||, whereas ARB-X extends this to layer-wise output align-
ment, i.e., the Activation-conditioned Error. The evaluation is performed on the LLaMA-2-7B
model using the C4 calibration set. For each transformer block, we measure the block-level output
loss when applying ARB or ARB-X to an individual layer while keeping all other layers in the block
at full precision, as illustrated in Fig. 1. Notably, some layers show higher block-level loss under
ARB-X compared to ARB, despite ARB-X reducing the corresponding layer-level loss. This result
demonstrates that naive layer-wise output alignment does not necessarily improve block-level per-
formance relative to weight alignment, revealing a fundamental limitation of ARB-X and its output
matching.

3.2 IMPACT OF ACCUMULATED QUANTIZATION ERROR ON OUTPUT ALIGNMENT

We next study how accumulated error affects the quantized model over time, which can influence the
effectiveness of the output alignment objective. To do so, we leverage ARB-X (Li et al., 2024) as the
baseline for output alignment analysis, and evaluate it on the Llama-2-7B model using C4 calibration
sets. We evaluate two types of errors: (1) Activation-conditioned Error, i.e., ||X̂W − X̂Ŵ ||,
which is the objective of ARB-X (Li et al., 2024), and (2) Output Error, i.e., ||XW − X̂Ŵ ||, the
discrepancy between the quantized and full-precision layer outputs. In parallel, we present cosine
similarity measures, by replacing the MSE loss with the cosine similarity, denoted as (1) Activation-
conditioned Similarity and (2) Output Similarity. Both metrics are measured in a block-wise
manner across all 32 blocks of the architecture during the quantization process.
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Figure 1: Comparison of block-level loss under ARB (weight alignment) versus ARB-X (layer-
wise output alignment) for each layer of LLaMA-2-7B. Bar color denotes which method incurs
lower block loss: blue for ARB, red for ARB-X. Several layers demonstrate that minimizing layer-
level loss via ARB-X does not necessarily achieve lower block-level loss than ARB, indicating the
limitations of naive layer-wise output alignment.
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Figure 2: Accumulated quantization error in LLaMA-2-7B under ARB-X. The top plot reports
cosine similarity and MSE between block outputs of the quantized and full-precision models. While
ARB-X maintains low cosine similarity loss between pre- and post-quantization outputs, the MSE
relative to the full-precision baseline grows with depth, indicating error accumulation. The bottom
plot reports the MSE loss for token similarity matrices, computed as pairwise cosine similarities
between token representations within each sample. These matrices also drift from the full-precision
baseline after quantization, suggesting that ARB-X’s output alignment may degrade the learned
attention mask in subsequent layers.

As shown in the upper-right panel of Figure 2, ARB-X maximizes the cosine similarity between the
layer outputs before and after the quantization of that layer, X̂W and X̂Ŵ . However, the mean
squared error (MSE) remains substantial, and the cosine similarity with the actual full-precision
output XW decreases throughout the quantization process. This illustrates the limitation of naive
output alignment: as quantization errors accumulate across layers, the optimization objective pro-
gressively deviates from the true target, thereby diminishing its effectiveness.

3.3 EFFECT OF OUTPUT MATCHING ON ATTENTION MECHANISM

The growing discrepancy in layer outputs suggests that token-to-token interactions, which underlie
attention patterns, may be affected during quantization. To investigate this, we extend the eval-
uation protocol described in Section 3.2 and analyze the Llama-2-7B model using ARB-X. For
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each sample X̂i, we compute token similarity matrices as X̂iŴŴ⊤X̂⊤
i , after row-normalizing

X̂iŴ , so that entry (j, k) represents the cosine similarity between tokens j and k in the quantized
layer output. For methods minimizing Activation-conditioned Error, the target similarity matrix
is X̂iWW⊤X̂⊤

i , while for methods minimizing Output Error, it is XiWW⊤X⊤
i . These matrices

serve as a proxy for the attention mask learned by the model. We quantify deviations using (1)
Activation-conditioned token-similarity error, defined as

∑
i

∥∥X̂iŴŴ⊤X̂⊤
i − X̂iWW⊤X̂⊤

i

∥∥,
and (2) Output token-similarity error, defined as

∑
i

∥∥X̂iŴŴ⊤X̂⊤
i −XiWW⊤X⊤

i

∥∥.

This evaluation captures how well the quantized model preserves self-attention interactions. As
shown in the lower part of Figure 2, the token similarity matrices gradually diverge from the full-
precision baseline as depth increases. These results suggest that naive output alignment frameworks
such as ARB-X may inadvertently distort attention masks in deeper layers, thereby weakening the
token-level relational structure. This arises because, when the output matching loss remains large,
the optimization tends to prioritize reducing errors along high-magnitude channels. While this re-
duces Euclidean distance, it often comes at the expense of preserving the directional alignment of
representations, ultimately degrading similarity across tokens.

By focusing on token-level interactions, this insight complements the previous analysis: it highlights
that output alignment should be designed with awareness of attention patterns to better preserve the
learned token relationships in deeper layers.

4 METHOD

In this section, we present our data-aware quantization strategy for 1-bit post-training quantization
(PTQ) of large language models (LLMs). Our design is motivated by three key observations from
the preliminary analysis: (i) layer-wise output matching does not necessarily lead to block-level loss
reduction, (ii) activation mismatches can accumulate across layers, and (iii) naive output alignment
may disrupt token interactions, thereby degrading the attention mask. To address these issues, our
strategy (a) applies output matching selectively at the block level, (b) modifies the quantization ob-
jective to account for accumulated errors, and (c) introduces attention-aware adjustments to preserve
attention behavior.

Consider a neural network with L layers, trained with a loss function ℓ on a calibration dataset of
size n. Let W ∈ Rdin×dout denote the full-precision weight matrix and Ŵ its quantized version.
Given the full-precision layer input X ∈ Rn×din , the full-precision layer output is Z = XW . In the
quantized model, the input X̂ denotes the activations produced after quantizing all previous l − 1

layers, and the corresponding layer output of the quantized model is Ẑ = X̂Ŵ .

Most PTQ methods for 1-bit LLMs minimize the weight alignment loss for the layer l as follows:

L(X, l) = ∥W − Ŵ∥2F , (1)

where ∥.∥F denotes the Frobenius norm. ARB-X (Li et al., 2024), a recent PTQ method, proposes
to minimize the layer-wise output reconstruction error for the layer indexed by l as follows:

L(X, l) =
∥∥∥X̂W − X̂Ŵ

∥∥∥2
F
= Tr

[
(W − Ŵ )⊤S(W − Ŵ )

]
, (2)

where Ŝ = X̂⊤X̂ is the Gram matrix of the quantized activations. However, this objective does not
take into account the accumulation error of the quantization process from prior layers. Therefore,
we modify the optimization objective, by adopting the full-precision input X for the target output as
follows:

L(X, l) =
∥∥∥XW − X̂Ŵ

∥∥∥2
F
= Tr

[
(XW − X̂Ŵ )(XW − X̂Ŵ )⊤

]
. (3)

We following a similar strategy in ARB-RC (Li et al., 2024) to parameterize the quantized model
weight Ŵ = diag(αr)B diag(αc), where B ∈ {−1, 1}din×dout , αr ∈ Rdin and αc ∈ Rdout and
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diag(.) denotes the diagonal matrix. The optimization objective can then be written as follows:

L(X,L) = ∥fQ(X)− fFP (X)∥2F
= Tr

[
(XW − X̂Ŵ )(XW − X̂Ŵ )⊤

]
= Tr

[
(XW − X̂ diag(αr)Bdiag(αc))(XW − X̂ diag(αr)Bdiag(αc))

⊤
]
.

(4)

We have three parameters to optimize, including αr, αc and B. Regarding the parameter αc, we can
obtain its optimal closed-form by setting the gradient of αc to 0. The optimal solution for αc can be
derived as follows:

α∗
c =

Diag(B⊤diag(αr)SW )

Diag(B⊤diag(αr)Ŝdiag(αr)B)
(5)

with S = X̂⊤X , and Diag(.) denotes the diagonal vector of the input.

For the binary matrix B, as it has binary constraint, we cannot get its optimal solution by setting
the gradient of the objective loss B to 0. However, inspired by (Shen et al., 2015), we can derive
the optimal closed-form solution for each row i in B while keeping other rows of B fixed. Let
N = diag(αr)Sdiag(αr), K = diag(αc ⊙ αc) and P = diag(αc)W

⊤Sdiag(αr). Each row of B
then has the optimal closed-form solution as follows:

B∗
i,: = sign(NFBK − 2P )i,:, (6)

where NF = N − diag(diagonal(N)) is the matrix N but its diagonal is set to 0.

Regarding the parameter αr, we approximate its closed-form solution by solving the following:(
Ŝ ⊙ C

)
αr = Diag

(
SWdiag(αc)B

⊤) , (7)

where C = B diag(αc ⊙ αr)B
⊤. This yields the closed-form expression.

α∗
r =

(
Ŝ ⊙ C

)−1
Diag

(
SWdiag(αc)B

⊤) , (8)

where
(
Ŝ ⊙ C

)−1
denotes the Moore–Penrose pseudoinverse. In practice, directly computing the

pseudoinverse can be numerically unstable. Instead, we employ the torch.linalg.lstsq
function to obtain a stable least-squares solution. Full derivations for all variables are provided
in Appendix B.

4.1 ATTENTION MATRIX PRESERVATION

As demonstrated in Section 3.3, LLM architectures such as Llama witness significant degradation
in the attention masks when using output alignment. In order to mitigate this problem during the
quantization process, we propose a novel Attention Matrix Preservation (AMP) mechanism, that
avoids the degradation of the attention masks. Specifically, the token-similarity matrix of the model’s
output at a layer l of input X̂ is defined as X̂Ŵ Ŵ⊤X̂⊤ after normalizing X̂Ŵ . Similarly, the token-
similarity matrix of the full precision output is denoted as XWW⊤X⊤. Since the attention mask
is closely correlated with the similarity matrix across tokens, the objective to minimize the attention
degradation problem is defined as:

maxLAMP =
∥∥∥(X̂Ŵ Ŵ⊤X̂⊤)⊙ (XWW⊤X⊤)

∥∥∥
= Tr

[
X̂Ŵ Ŵ⊤X̂⊤XWW⊤X⊤

]
= Tr

[
Ŵ⊤ X̂⊤XWW⊤X⊤X̂︸ ︷︷ ︸ Ŵ]

= Tr
[
Ŵ⊤ M Ŵ

]
(9)

For each quantization parameter αc, αr and B, we assign them an AMP mask, defined as the sign
of the gradient of LAMP w.r.t. these parameters:

M c = AMP (αc) = sign(Diag(B⊤diag(αr)MŴ ))

Mr = AMP (αr) = sign(Diag(MŴdiag(αc)B
⊤))

MB = AMP (B) = sign(diag(αr)MŴdiag(αc))

(10)
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In order to avoid the degradation of the token similarity matrix, once we obtain the AMP mask for
each variable αc, αr and B, we update them with:

αr = αr ∗ (1−Mr) + α∗
r ∗Mr

αc = αc ∗ (1−M c) + α∗
c ∗M c

Bi,: = Bi,: ∗ (1−MB
i,:) +B∗

i,: ∗MB
i,:

(11)

4.2 FINAL OPTIMIZATION

Using the closed-form solution above, we jointly optimize all three variables until convergence.
However, as shown in Section 3.1, naively applying output alignment to all layers within a block
does not necessarily minimize the block-level loss. To address this, we adopt a selective layer-wise
output approach, by restricting the output alignment to only the last fully connected layer of each
block, since it has the most direct impact on the block loss, while employing weight alignment
methods such as ARB-RC (Li et al., 2024) for quantizing the remaining layers of each block. Our
complete algorithm is provided in Algorithm 1 (see Appendix E).

5 EXPERIMENTS

In this section, we conduct extensive experiments to validate the effectiveness and superiority of our
proposed method compared to current SOTA 1-bit LLM quantization frameworks.

5.1 SETUP

Models and datasets. Our experiments are conducted on the OPT (Zhang et al., 2022), covering
parameter scales from 1.3B up to 30B, and LLaMA model families, including LLaMA-2 (Touvron
et al., 2023) and the recently released LLaMA-3 (Dubey et al., 2024). We do not include LLaMA-1
in our evaluation since the original pretrained checkpoints are not officially available through Hug-
ging Face or other standard model hubs. For evaluation, we adopt widely used benchmarks in prior
1-bit LLM quantization works. Perplexity is reported on WikiText2 (Merity et al., 2016), PTB
(Marcus et al., 1993), and C4 (Raffel et al., 2020), which are standard for measuring language mod-
eling quality. To further assess downstream capability, we also measure zero-shot performance on
seven QA datasets: ARC-Easy and ARC-Challenge (Clark et al., 2018), PIQA (Bisk et al., 2020a),
BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021)
and OBQA (Mihaylov et al., 2018). Additionally, we also provide the zero-shot performance of
our method on Llama models, adding LAMBADA Paperno et al. (2016) for long-context reasoning
evaluation. Please refer to the Appendix for the zero-shot results on Llama models.

Baseline methods. We compare our method against several state-of-the-art 1-bit PTQ methods,
including BiLLM (Huang et al., 2024), ARB-LLM(Li et al., 2024) and PB-LLM (Shang et al.,
2023), ensuring that all implementations adhere to the details provided in their respective papers.
BiLLM (Huang et al., 2024), ARB-LLM(Li et al., 2024) and PB-LLM (Shang et al., 2023) all utilize
the PTQ approach for model calibration through OBQ based method of GPTQ. For ARB-LLM, we
evaluate two of its best performing variants, ARB-X and ARB-RC. The ARB-RC results in Tables
1 and 2 were obtained by running the original ARB-RC implementation.

5.2 EXPERIMENTAL RESULTS

Results on Language Generation Tasks. We evaluate our method in terms of perplexity for both
OPT and LLaMA models. Table 1 presents perplexity results for OPT models across the C4 and
WikiText-2 datasets, including OPT-1.3B, OPT-2.7B, OPT-6.7B, OPT-13B, and OPT-30B. Table 1
also reports the average accuracy of our method on seven zero-shot QA datasets for OPT models.
For LLaMA models, Table 2 reports results for LLaMA-2-7B, LLaMA-2-13B, and LLaMA-3-8B.
Our method consistently outperforms previous state-of-the-art quantization approaches across all
benchmarks. Notably, for more challenging settings such as OPT-1.3B and OPT-2.7B, we achieve
up to 4.85 and 3.42 reductions in perplexity, highlighting the robustness and effectiveness of our
approach. For the performance of the method on Llama models, we achieve from 0.22-2.22 re-
duction across benchmarks, with the exception of Llama-2-7B model evaluated on PTB dataset.
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Table 1: Comparison of our method with different 1-bit quantization methods for OPT models.
Perplexity (↓) is reported for C4, WikiText2, and PTB, while Accuracy (↑) is reported for Zero-
shot QA datasets. Alignment Type denotes if the method use Weight Alignment (WA) or Output
Alignment (OA)

Dataset Metric Method Alignment Type Block Size Weight Bits 1.3B 2.7B 6.7B 13B 30B

WA OA

Full Precision - - - 16 16.07 14.34 12.71 12.06 11.45
PB-LLM ✓ 128 1.7 168.12 222.15 104.78 57.84 27.67

C4 PPL (↓) BiLLM ✓ 128 1.11 64.14 44.77 42.13 19.83 16.17
ARB-RC ✓ 128 1.11 27.70 21.46 16.97 15.07 13.34
ARB-X ✓ 128 1.11 47.60 34.97 22.54 17.71 14.71
Ours ✓ 128 1.11 24.69 19.90 16.22 14.71 13.15

Full Precision - - - 16 14.62 12.47 10.86 10.13 9.56
PB-LLM ✓ 128 1.7 239.81 278.27 144.25 74.59 28.30

WikiText2 PPL (↓) BiLLM ✓ 128 1.11 69.05 48.61 47.65 18.75 13.86
ARB-RC ✓ 128 1.11 26.40 19.84 14.92 13.10 11.19
ARB-X ✓ 128 1.11 45.40 34.37 20.07 15.47 12.36
Ours ✓ 128 1.11 24.30 18.25 14.56 12.84 10.94

Full Precision - - - 16 20.29 17.97 15.77 14.52 14.04
PB-LLM ✓ 128 1.7 324.62 183.97 169.49 101.00 41.87

PTB PPL (↓) BiLLM ✓ 128 1.11 115.94 88.52 69.41 27.16 21.41
ARB-RC ✓ 128 1.11 43.03 31.77 22.31 19.09 16.88
ARB-X ✓ 128 1.11 71.96 54.28 31.23 23.46 19.28
Ours ✓ 128 1.11 38.18 28.35 21.45 18.85 16.75

PB-LLM ✓ 128 1.7 36.60 37.06 35.95 37.40 43.70
AveQA Acc. (↑) BiLLM ✓ 128 1.11 38.89 40.44 38.27 47.00 49.61

ARB-RC ✓ 128 1.11 45.22 48.25 52.58 55.01 57.11
ARB-X ✓ 128 1.11 40.52 42.21 46.57 49.19 51.77
Ours ✓ 128 1.11 45.76 49.03 53.33 55.06 57.70

Table 2: Perplexity (↓) of LLaMA-2 and LLaMA-3 models under different quantization methods
for C4, WikiText2, and PTB datasets. Alignment Type denotes if the method use Weight Alignment
(WA) or Output Alignment (OA)

Dataset Method Alignment Type Block Size Weight Bits LLaMA-2 LLaMA-3

WA OA 7/8B 13B 8B

Full Precision - - - 16 7.26 6.73 9.45
PB-LLM ✓ 128 1.7 80.69 184.67 104.15

C4 BiLLM ✓ 128 1.06 39.38 25.87 61.04
ARB-RC ✓ 128 1.06 20.4 14.77 36.04
ARB-X ✓ 128 1.06 28.02 19.82 41.86
Ours ✓ 128 1.06 19.25 13.8 35.14

Full Precision - - - 16 5.47 4.88 6.14
PB-LLM ✓ 128 1.7 66.41 236.40 73.08

WikiText2 BiLLM ✓ 128 1.06 32.31 21.35 55.80
ARB-RC ✓ 128 1.06 16.25 12.47 27.42
ARB-X ✓ 128 1.06 21.61 14.86 31.98
Ours ✓ 128 1.06 15.42 11.5 27.20

Full Precision - - - 16 37.91 50.93 11.18
PB-LLM ✓ 128 1.7 657.24 816.31 106.25

PTB BiLLM ✓ 128 1.06 5243.01 309.12 87.25
ARB-RC ✓ 128 1.06 763.19 197.70 47.88
ARB-X ✓ 128 1.06 681.24 182.10 53.86
Ours ✓ 128 1.06 3166 196.64 45.66

However, the large perplexity indicates that the metric cannot provide a meaningful evaluation. For
the evaluation on QA datasets, our method consistently outperforms all other methods, up to 0.78%
improvement.
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Table 3: Layer-wise ablation (AMP) for
LLaMA-2-7B and OPT-6.7B.

Model / Mtd. PPL (↓)
C4 WikiText2

LLaMA-2-7B No AMP 29.12 26.24
AMP 19.25 15.42

OPT-6.7B No AMP 16.35 14.74
AMP 16.22 14.56

Table 4: Ablation on activation/output error ob-
jectives for LLaMA-2-7B and OPT-6.7B.

Model / Obj PPL (↓)
C4 WikiText2

LLaMA-2-7B Act. Error 19.97 15.66
Out. Error 19.25 15.42

OPT-6.7B Act. Error 16.91 14.83
Out. Error 16.22 14.74

5.3 ABLATION STUDY

To analyze the effectiveness of our proposed method, we perform ablation experiments on OPT and
Llama models. Please refer to our Appendix for more ablation studies and results.

Impact of activation accumulation error. To investigate the impact of accumulated error on
model performance and assess the effectiveness of our method, we conduct an ablation study where
we optimize our method using the Activation-conditioned Error (the same objective as ARB-
X Li et al. (2024)) instead of the Output Error. The results are presented in Table 4. As shown,
explicitly accounting for accumulated error in our optimization objective yields a 0.7 improvement
in perplexity on the C4 dataset.

Impact of Attention Matrix Preservation. To evaluate the impact of our proposed Attention Ma-
trix Preservation (AMP) on model performance, we conduct an ablation study comparing settings
with and without AMP (Table 3). Figure 3 in the Appendix visualizes the token similarity matri-
ces of LLaMA-2-7B under our method using the C4 calibration set. Overall, model performance
degrades for both OPT and LLaMA models without AMP. Notably, LLaMA suffers severe degra-
dation, with perplexity increasing by over 10 points, indicating that its token similarity deteriorates
more than in OPT. We hypothesize that this sensitivity arises because LLaMA uses RMSNorm in-
stead of LayerNorm: RMSNorm normalizes each token to unit norm before applying a learned scale,
making the model more dependent on the direction of representations and therefore more vulnerable
to quantization-induced deviations. AMP plays a key role in mitigating this degradation by pre-
serving the token similarity structure, which helps maintain the integrity of attention patterns during
quantization.

Overhead Analysis. Please refer to Appendix D

6 CONCLUSION

In this work, we investigated the role of calibration data in 1-bit post-training quantization of large
language models. Our analysis revealed important insights: layer-wise output matching does not
necessarily reduce block-level error; activation mismatches can accumulate across layers; and naive
output alignment may degrade attention masking, all of which can negatively impact the effective-
ness of output matching for 1-bit post-training quantization. These findings provide a deeper un-
derstanding of the limitations of existing PTQ objectives and constitute a contribution on their own.
Building on these insights, we introduced a quantization strategy that selectively applies output
alignment at the block level, incorporates attention-aware masking, and reformulates the quantiza-
tion objective to account for accumulated error. Extensive experiments demonstrate that our method
consistently outperforms prior 1-bit PTQ approaches for LLMs.
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A APPENDIX

THE USE OF LARGE LANGUAGE MODELS We used a large language model (ChatGPT)
to help with editing this paper. It was only used for simple tasks such as fixing typos, rephrasing
sentences for clarity, and improving word choice. All ideas, experiments, and analyses were done
by the authors, and the use of LLMs does not affect the reproducibility of our work.

B DERIVATION OF CLOSED-FORMS

Derivation for αc The gradient of the objective w.r.t αc is:

∂L
∂diag(αc)

=
∂L

∂(XW − X̂Ŵ )

∂(XW − X̂Ŵ )

∂αc

= −2 ∗B⊤diag(αr)X̂
⊤(XW − X̂Ŵ )

= −2 ∗B⊤diag(αr)X̂
⊤(XW − X̂diag(αr)Bdiag(αc))

(12)

Setting the diagonal of this gradient to 0, we have:

diagonal(B⊤diag(αr)Ŝdiag(αr)B)⊙ αc = diagonal(B⊤diag(αr)SW )

=⇒ αc =
diagonal(BTdiag(αr)SW )

diagonal(BTdiag(αr)Ŝdiag(αr)B)

(13)

Derivation for αr

∂L
∂diag(αr)

=
∂L

∂(XW − X̂Ŵ )

∂(XW − X̂Ŵ )

∂αr

= −2 ∗ X̂⊤(XW − X̂Ŵ )diag(αc)B
⊤

= −2 ∗ X̂⊤(XW − X̂diag(αr)Bdiag(αc))diag(αc)B
⊤

(14)

Setting the diagonal of this gradient to 0, we have:

diagonal(Ŝdiag(αr)Bdiag(αc ⊙ αc)B
⊤︸ ︷︷ ︸ ) = diagonal(SWdiag(αc)B

⊤)

=⇒ diagonal(Ŝdiag(αr) B ) = diagonal(SWdiag(αc)B
⊤)

=⇒ (Ŝ ⊙ B)αr = diagonal(SWdiag(αc)B
⊤)

(15)

Derivation for B Explanding the objective loss L(.) out we have:

L(X,L) = Tr
[
(XW − X̂Ŵ )(XW − X̂Ŵ )T

]
= Tr

[
X̂Ŵ Ŵ⊤X̂⊤ − 2 ∗XWŴ⊤X̂⊤ + const

]
∝ Tr

[
X̂⊤X̂Ŵ Ŵ⊤

]
− 2 ∗ Tr

[
X̂⊤XWŴ⊤

]
= Tr

[
ŜŴ Ŵ⊤

]
− 2 ∗ Tr

[
SWŴ⊤

]
= Tr

[
diag(αr)Sdiag(αr)︸ ︷︷ ︸B diag(αc ⊙ αc)︸ ︷︷ ︸B⊤

]
− 2 ∗ Tr

[
diag(αc)SWdiag(αr)︸ ︷︷ ︸B⊤

]
= Tr

[
N B K B⊤] − 2 ∗ Tr

[
P B⊤]

(16)

We denote B̃−i and Ñ−i respectively as the matrix B and N exclude the row i. Similarly, Ñi,−j

denotes the row i of matrix N excluded the j element. Given a row i of B, keeping the other row of

14
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B as constant, the loss can be expanded as a function of Bi,: as:

LMSE(X,L) ∝ Tr
[
NBKB⊤]− 2 ∗ Tr

[
PB⊤]

=
∑
i

(Ni,:BKB⊤
i,: − 2Pi,:B

⊤
i,:)

=
∑
i

(Ni,iBi,:KB⊤
i,: + Ñi,−iB̃−iKB⊤

i,: − 2Pi,:B
⊤
i,:)

∝
∑
i

(Ñi,−iB̃−iK − 2Pi,:)B
⊤
i,:

(17)

Since Bi,: is a binary vector, it has a closed-form solution:

Bi,: = sign(Ñi,−iB̃−iK − 2Pi,:) (18)

The more compacted form of the whole B using this closed-form for each row can be computed as:
B = sign(NFBK − 2P ) (19)

with NF = N − diag(diagonal(N)) is the matrix N setting its diagonal to 0.

C VISUALIZATION OF THE IMPACT OF AMP MASK TO ATTENTION
MECHANISM DEGRADATION

We provide visualization of the impact our AMP mask in mitigating the attention degradation prob-
lem of output alignment.

0 5 10 15 20 25 30
Layer

0

1

2

3

4

5

6

M
SE

AMP
No AMP

Figure 3: Block-wise MSE reconstruction error between quantized and full-precision attention score
in LLaMA-2-7B. Two curves represent the errors of quantized models with and without the AMP
mask, computed over C4 calibration data.

D ADDITIONAL RESULTS

Additional Details of Experiments. All experiments are implemented in PyTorch and executed
on a single NVIDIA GeForce RTX A100 GPU. Consistent with prior studies such as GPTQ (Frantar
et al., 2023) and BiLLM (Huang et al., 2024), we use the C4 dataset with a sequence length of 2048
as calibration data to enable fair comparison. The quantization block size is fixed at 128 following
ARB (Li et al., 2024)
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Table 5: Ablation study of applying our method to different layers (Q, K, V, Out, Final) of each
block for LLaMA-2-7B and OPT-6.7B, evaluated on C4 and WikiText2.

Model / Layer PPL (↓)
C4 WikiText2

Llama-2-7B

Query 20.08 15.85
Key 20.80 16.75

Value 21.44 17.82
Attn Out 21.02 18.11
Final FC 19.25 15.42

OPT-6.7B

Query 17.15 15.15
Key 17.13 15.06

Value 17.12 14.81
Attn Out 17.05 15.55
Final FC 16.22 14.56

Ablation study for output alignment of different layers. To investigate the impact of output
alignment at different layers on model performance, we conduct an ablation study applying our
method to individual layers within each block of OPT and Llama models. The results are presented
in Table 5. As observed, output alignment is most effective and consistent when applied to the final
layer of each block, for both Llama and OPT models.

Inference and Storage Overhead Analysis. Our method introduces no additional inference or
storage overhead, as it does not add any new quantization parameters and leaves both the model
architecture and forward-pass computations unchanged. Consequently, the memory footprint and
runtime during inference are identical to ARB-RC. As reported in ARB (Li et al., 2024), ARB-
RC achieves similar inference time to BiLLM (Huang et al., 2024), 4.3–4.6× faster than PB-
LLM (Shang et al., 2023) and 4.4–5.1× faster than the full-precision model, hence these perfor-
mance gains also apply to our method.

Quantization Overhead. We provide in detail the quantization time of our method, compared
to ARB-X and ARB-RCLi et al. (2024), across architecture. While our method incurs slightly
higher overhead than ARB-RC due to the additional closed-form computations and AMP mask, it
remains more efficient than ARB-X. Importantly, post-training quantization for LLMs is already
highly efficient; for example, quantizing Llama-2-13B requires only about two hours on a single
A100 GPU. Since quantization is a one-time process, this modest overhead is practically negligible
and does not affect inference speed or deployment efficiency.

Table 6: Quantization time comparison between 1-bit LLM methods and ours across different mod-
els.

Model ARB-X ARB-RC Ours
OPT-6.7B 87m 65m 90m
Llama-2-7B 91m 54m 73m
Llama-2-13B 147m 100m 116m

Additional zero-shot QA results for LLama models. We provide additional results of our
method using 8 different zero-shot QA datasets, over Llama architectures

16
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Table 7: Evaluation the accuracy (↑) of LLaMA models using ARB-RC and our method over zero-
shot QA benchmarks.

Model Size Method Bits Boolq Lambada Piqa OPQA Winogrande Arc-E Arc-C Hellaswag Avg

LLaMA-2-7B ARB-RC 1.06 67.74 51.87 65.51 29.8 59.98 46.8 28.24 48.1 49.75
Ours 1.06 66.45 52.53 68.12 29.8 56.99 30.3 51.56 49.24 50.62

LLaMA-2-13B ARB-RC 1.06 74.86 66.23 71.16 33.0 62.04 57.37 33.36 50.46 56.06
Ours 1.06 72.02 68.99 72.58 36.0 63.14 59.85 33.7 53.92 57.53

LLaMA-3-8B ARB-RC 1.06 67.58 48.85 62.73 29.2 57.38 42.97 24.57 43.63 47.11
Ours 1.06 66.54 49.35 63.33 30.4 56.2 45.66 26.02 44.21 47.71

Ablation study for the hyper-parameter k We provide additional ablation study for the hyper-
parameter k in Table 8. In practice, we adopt k = 5 for stable performance across architecture.

Table 8: Ablation study for the hyper-parameter k.

Model k PPL ↓
C4 WikiText2

OPT-6.7B
1 16.24 14.67
5 16.22 14.56

10 16.21 14.40

LLaMA2-7B
1 20.16 16.26
5 19.25 15.42

10 20.00 16.42

E PROPOSED LEARNING ALGORITHM

Algorithm 1 Our-RC

1: procedure OUR-RC(W,S, Ŝ, T, k)
2: ▷ W ∈ Rdin×dout : full-precision weight ◁

3: ▷ S ∈ Rdin×din : Gram matrix X⊤X̂ ◁
4: ▷ Ŝ ∈ Rdin×din : Gram matrix X̂⊤X̂ ◁
5: ▷ T : iteration rounds ◁
6: Initialize Ŵ , αr, αc, B
7: Initialize M ← SWWTST

8: for iter = 1:T do
9: α∗

r ← REFINE-αr(S, Ŝ,W,B, αc,M )
10: Mr ← AMP-αr(M,B,αr, αc)
11: αr ← αr ∗ (1−Mr) + α∗

r ∗Mr

12: if (iter + 1) mod k == 0 then
13: α∗

c ← refine-αc(S, Ŝ,W,B, αr)
14: M c ← AMP-αc(M,B,αr, αc)
15: αc ← αc ∗ (1−M c) + α∗

c ∗M c

16: B∗ ← REFINE-B(S, Ŝ,W,B, αc)
17: MB , i← AMP-B(M,B,αr, αc)
18: Bi,: ← Bi,: ∗ (1−MB

i,:) +B∗
i,: ∗MB

i,:

19: B∗ ← REFINE-B(S, Ŝ,W,B, αc)
20: MB , i← AMP-B(M,B,αr, αc)
21: Bi,: ← Bi,: ∗ (1−MB

i,:) +B∗
i,: ∗MB

i,:

22: return Ŵ
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Algorithm 2 Auxiliary functions

1: procedure REFINE-αr(S, Ŝ,W,B, αc,M )
2: B = B diag(αc ⊙ αr)B

⊤

3: matrix := Ŝ ⊙ B
4: target := SWdiag(αc)B

⊤

5: αr ← SOLVE(matrix, target)
6: return αr

7: procedure REFINE-αc(S, Ŝ,W,B, αr)
8: num := Diag(B⊤diag(αr)SW )
9: den :=

Diag(B⊤diag(αr)Ŝdiag(αr)B)
10: αc := num/den
11: return αc

12: procedure REFINE-B(S, Ŝ,W, αr, αc)
13: N = diag(αr)Sdiag(αr)
14: K = diag(αc ⊙ αc)
15: P = diag(αc)W

⊤Sdiag(αr)
16: B = NFBK − 2P

17: B∗ = sign(B)
18: i← argmaxj

∑
k (B ⊙B)j,k

19: return B∗, i

20: procedure AMP B(M,B,αr, αc)
21: Ŵ = diag(αr)Bdiag(αc)

22: MB = sign(diag(αr)MŴdiag(αc))
23: return MB

24: procedure AMP-αr(M,B,αr, αc)
25: Ŵ = diag(αr)Bdiag(αc)

26: Mr = sign(Diag(MŴdiag(αc)B
⊤))

27: return Mr

28: procedure AMP-αc(M,B,αr, αc)
29: Ŵ = diag(αr)Bdiag(αc)

30: M c = sign(Diag(B⊤diag(αr)MŴ ))
31: return M c
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