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Abstract001

Inductive link prediction is emerging as a key002
paradigm for real-world knowledge graphs003
(KGs), where new entities frequently appear004
and models must generalize to them without005
retraining. Predicting links in a KG faces006
the challenge of guessing previously unseen007
entities by leveraging generalizable node fea-008
tures such as subgraph structure, type annota-009
tions, and ontological constraints. However,010
explicit type information is often lacking or011
incomplete. Even when available, type infor-012
mation in most KGs is often coarse-grained,013
sparse, and prone to errors due to human an-014
notation. In this work, we explore the poten-015
tial of pre-trained language models (PLMs) to016
enrich node representations with implicit type017
signals. We introduce TyleR, a Type-less yet018
type-awaRe approach for subgraph-based in-019
ductive link prediction that leverages PLMs020
for semantic enrichment. Experiments on stan-021
dard benchmarks demonstrate that TyleR out-022
performs state-of-the-art baselines in scenarios023
with scarce type annotations and sparse graph024
connectivity. To ensure reproducibility, we025
share our code at https://anonymous.4open.026
science/r/tyler-7C2C/.027

1 Introduction028

Knowledge graphs (KGs) represent complex rela-029

tionships between entities in a structured, graph-030

based format (Hogan et al., 2021). Their ability to031

encode semantic information and support reason-032

ing makes them valuable in a variety of applica-033

tions, such as natural language processing (Peters034

et al., 2019), recommendation systems (Wang et al.,035

2024), and biomedical research (Gema et al., 2023).036

However, KGs are notoriously incomplete: many037

valid relations are absent, reducing their effective-038

ness in downstream tasks (Rossi et al., 2021).039

Link prediction aims to infer these missing rela-040

tionships by analyzing the existing graph’s struc-041

ture and patterns. Traditional link prediction meth-042

ods aim to predict links among entities observed 043

during training. Although effective in static set- 044

tings, they are limited in dynamic environments 045

where new entities are incrementally introduced. 046

Inductive link prediction (ILP) addresses this chal- 047

lenge by aiming to generalize to previously unseen 048

entities, leveraging transferable features such as 049

structural information and type information. 050

Prior work has demonstrated that incorporating 051

entity type information can enhance the general- 052

ization capability of ILP models. For instance, 053

Zhou et al. (2023) explicitly integrate type anno- 054

tations and ontological constraints into the learn- 055

ing process. Yet, these methods face a critical 056

bottleneck: the explicit type information avail- 057

able in real-world KGs is often coarse-grained, in- 058

complete, or even erroneous. This limitation is 059

particularly acute when facing structural sparsity. 060

Consider, for instance, the triple 〈Lionel Messi, 061

playedFor, Barcelona FC〉. A model might as- 062

sign similar plausibility to 〈Cristiano Ronaldo, 063

playedFor, Barcelona FC〉 if both subject enti- 064

ties (i.e., Lionel Messi and Cristiano Ronaldo) 065

lack distinct neighborhood information and are cat- 066

egorized only under the broad type "Footballer". 067

This highlights a fundamental inadequacy of type- 068

informed ILP approaches when explicit type sig- 069

nals are weak and local graph structure is uninfor- 070

mative. 071

To address this gap, our idea is to leverage the 072

rich semantic knowledge captured by pre-trained 073

language models (PLMs). We hypothesize that 074

the semantic understanding these models acquire 075

during their extensive pre-training on vast textual 076

corpora (Petroni et al., 2019; Hao et al., 2023) of- 077

fers a pathway to a more fine-grained representa- 078

tion of entities. This "inner knowledge," encoded 079

within the PLM’s parameters, offers a dense repre- 080

sentation of diverse semantic facets. For example, 081

prompting a PLM like BERT (Devlin et al., 2019) 082

with "Paris is located in ," generates a hidden rep- 083

1

https://anonymous.4open.science/r/tyler-7C2C/
https://anonymous.4open.science/r/tyler-7C2C/
https://anonymous.4open.science/r/tyler-7C2C/


resentation for the missing token that (ideally) en-084

ables it to correctly predict "France," reflecting the085

model’s "understanding" of the Paris’s geographi-086

cal location. We aim to utilize the implicit semantic087

insights of PLMs to derive fine-grained entity repre-088

sentations, overcoming limitations in explicit type089

information. We start from these two observations:090

(i) an entity can be described by a set of asser-091

tions defining its properties; (ii) the same asser-092

tions, when used as prompts for a PLM, can elicit093

dense, multifaceted representations that implicitly094

capture a "type-aware" understanding of the entity.095

This potential led us to ask: Can PLM-derived en-096

tity representations compensate for structural and097

type sparsity in inductive knowledge graph com-098

pletion? To investigate this question, we introduce099

TyleR–Type-less yet type-awaRe–a novel inductive100

link prediction framework that leverages PLMs to101

embed implicit type-aware signals within node rep-102

resentations, thus eliminating reliance on explicit103

type annotations. Our contributions are:104

1. We introduce a novel methodology for har-105

nessing PLMs to derive and embed implicit106

type semantics within an ILP model, thereby107

enabling nuanced entity representations with-108

out relying on explicit type data.109

2. We demonstrate TyleR’s effectiveness on mul-110

tiple benchmark datasets, showing its capa-111

bility to perform competitively, especially in112

settings with limited or coarse-grained type113

information and sparse graph structures.114

3. We conduct an empirical analysis investigat-115

ing the interplay between PLM-derived se-116

mantic features and varying levels of type and117

structural sparsity, thereby characterizing the118

resilience of our approach.119

The remainder of the paper is organized as120

follows: Section 2 introduces the idea behind121

subgraph-based relational inference; Section 3 de-122

tails the methodology; Section 4 describes the ex-123

perimental setup and evaluation; Section 5 presents124

the results; Section 6 reviews related work; and125

Section 7 concludes with future directions.126

2 Background and Motivation127

Inductive link prediction aims to predict the likeli-128

hood of triples (h, r, t), where h and t are unseen129

entities. In practice, this is done by means of a scor-130

ing function f(h, r, t). At training time, f is opti-131

mized on the triples in a training graph Gtrain. At132

test time, the same scoring function is used to pre- 133

dict the plausibility of triples (h′, r, t′) belonging 134

to a test graph Gtest, based on the triples in an in- 135

ference graph Ginf . Unlike traditional embedding- 136

based approaches, subgraph-based relation predic- 137

tion methods such as GraIL (Teru et al., 2020) can 138

be viewed as learning logical rules that capture 139

entity-independent relational semantics. For exam- 140

ple, one can derive the simple rule: 141

spouse_of(X,Y )∧lives_in(Y,Z)→lives_in(X,Z). 142

As demonstrated by Zhou et al. (2023), the rea- 143

soning capabilities of GraIL can be enhanced by 144

incorporating explicit type information about enti- 145

ties. This additional semantic context enables the 146

model to induce more precise and type-aware rules: 147

Employee(X)∧Department(Y )∧Office(Z)∧
∧part_of(X,Y )∧located_in(Y,Z)→works_in(X,Z).

148

Type-constrained rules enhance both accuracy 149

and interpretability in relational inference by reduc- 150

ing spurious predictions and enforcing semantic 151

validity. However, explicit type information is of- 152

ten incomplete or missing in real-world knowledge 153

graphs. To address this, we propose learning a 154

function τPLM , parameterized by a pre-trained lan- 155

guage model, that maps entities to implicit type rep- 156

resentations capturing their latent semantics. These 157

PLM-derived embeddings enable type-aware rea- 158

soning without explicit type labels and can be inte- 159

grated into the logical rule induction process. For 160

example, a type-aware rule may take the form: 161

τPLM(X)∧τPLM(Y )∧τPLM(Z)∧part_of(X,Y )∧
∧ located_in(Y,Z)→works_in(X,Z),

162

with τPLM(X), τPLM(Z), and τPLM(Z) such that 163

τPLM(X) ≈ Employee(X),

τPLM(Y ) ≈ Department(Y ),

τPLM(Z) ≈ Office(Z),

164

where τPLM(·) for X is an approximation of the 165

logical statement Employee(·) while, for Y and Z, 166

τPLM(·) is an approximation of their types, Depart- 167

ment and Office, respectively (more details in Sec- 168

tion 3). This guides the rule induction process 169

towards more meaningful and generalizable pat- 170

terns, allowing us to infuse latent type semantics 171

into subgraph-based link prediction models, even 172

when explicit type information is absent. 173
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Figure 1: Overview of TyleR. The process begins with 1⃝ extracting the enclosing subgraph and 2⃝ applying a node
labeling strategy. Multi-faceted, semantic representations are then derived using a pre-trained language model 3a⃝,
3b⃝. Finally, a graph neural network 4⃝ integrates structural and semantic information to obtain the final prediction.

3 Methodology174

In this section, we introduce TyleR (Type-less175

yet type-awaRe inductive link prediction with pre-176

trained language models). Building on Graph In-177

ductive Learning (Teru et al., 2020), which infers178

relations from local subgraph patterns, TyleR lever-179

ages PLM-derived semantics to enrich node repre-180

sentations. However, integrating PLMs into full-181

graph models is computationally expensive due to182

high-dimensional embeddings and large graph size.183

TyleR adopts a subgraph-reasoning approach, re-184

stricting triple scoring to compact and informative185

subgraphs, making PLM integration tractable.186

As illustrated in Figure 1, TyleR ’s pipeline con-187

sists of four stages: 1⃝ extracting an enclosing188

subgraph, 2⃝ structurally labeling nodes (follow-189

ing GraIL (Teru et al., 2020)), 3a⃝, 3b⃝ enriching190

nodes with PLM-based semantic embeddings, and191

4⃝ feeding the enhanced subgraph into a GNN ar-192

chitecture from Zhou et al. (2023). The following193

sections provide further details on each step.194

Subgraph Extraction 1⃝ Given a target triple195

(u, rt, v), we define Nk(u) and Nk(v) as the sets of196

k-hop neighboring nodes of u and v, respectively.197

We also define a specific distance metric d(i, u) as198

the shortest path from a node i to u that does not199

pass through v, and d(i, v) is similarly the shortest200

path distance from i to v that does not pass through 201

u. The enclosing subgraph of triple (u, rt, v) is 202

computed by (i) forming an initial set of candidate 203

nodes by taking the intersection Nk(u) ∩ Nk(v) 204

and (ii) pruning nodes that are either isolated (i.e., 205

have no edges connecting it to other nodes within 206

the subgraph after this pruning step) or for which 207

d(i, u) > k or d(i, v) > k. The remaining nodes 208

and their edges form the enclosing subgraph. 209

Subgraph Labeling 2⃝ Each node i in the ex- 210

tracted subgraph is labeled with a pair of shortest 211

path distances (d(i, u), d(i, v)) to the target nodes 212

u and v, respectively, within the subgraph. This 213

pair captures the relative position of node i with 214

respect to the target nodes u and v. The final posi- 215

tional embedding h
pos
i is: 216

h
pos
i = one-hot(d(i, u))⊕ one-hot(d(i, v)), (1) 217

where ⊕ denotes the concatenation operator and 218

one-hot(·) is the one-hot encoding function. All 219

nodes in the enclosing subgraph are within k hops 220

of u or v, so h
pos
i ∈ R2k+2. 221

Semantic Enrichment 3a⃝ 3b⃝ Semantic enrich- 222

ment leverages a pre-trained language model 223

(PLM), supporting either masked token predic- 224

tion or next-token generation. A straightforward 225

approach for encoding entity type semantics in- 226

3



volves prompting the PLM with an explicit query227

to elicit the most plausible type for a given en-228

tity. For masked language models (MLMs) (e.g.,229

RoBERTa), this operation results in a prompt such230

as “The type of Paris is [MASK]”, with the type231

semantics encoded in the last hidden layer rep-232

resentation of the [MASK] token; for causal lan-233

guage models (CLMs) (e.g., Llama), this repre-234

sentation corresponds to the last hidden represen-235

tation of the final sequence token. However, re-236

lying solely on representations derived from such237

direct type queries can be suboptimal. Prior re-238

search has shown that transformer-based represen-239

tations tend to be highly anisotropic, often concen-240

trated in narrow cones (Ethayarajh, 2019), which241

can limit their discriminative utility. To address242

this, we propose to refine type semantics through243

multiple prompts, designed to extract different se-244

mantic aspects. Given an entity i with textual245

label li, we define a set of assertion prompts246

P = {p1, p2, . . . , pn}, where each pk targets a247

semantic facet of the entity (e.g., type, location,248

membership). Each prompt pk(li) is processed by249

the PLM ( 3a⃝) to yield a latent representation:250

zpk,i = Extract(PLM(pk(li))). (2)251

Here, PLM(·) denotes the forward pass of the lan-252

guage model given an input prompt, and Extract(·)253

selects the relevant hidden state (i.e., the [MASK]254

token’s final hidden layer for MLMs or the last255

token’s representation for CLMs). These represen-256

tations zpk,i are refined and projected into a unified257

space using an assertion-specific projection block:258

zhpk,i = WpkLN(zpk,i) + bpk , (3)259

where Wpk and bpk are specific learnable parame-260

ters for each assertion prompt pk, and LN denotes261

layer normalization (Ba et al., 2016). We aggregate262

(AGG(·)) the prompt representations with different263

strategies such as sum, mean or concatenation:264

z
agg
i = AGGp({zhpk,i}

n
k=1). (4)265

The semantic embedding hsemi is obtained as:266

hsem
i ≡ τPLM(i) = σ(WoReLU(z

agg
i ))), (5)267

where τPLM(i) is a function capturing the semantics268

of i by aggregating multiple prompt-based repre-269

sentations via a PLM (as introduced in Section 2),270

and σ(·) is the sigmoid function. Given a node i,271

we then construct the embedding h0i as ( 3b⃝):272

h0
i = [hpos

i ⊕ hsem
i ]. (6)273

GNN Scoring 4⃝ As suggested by Zhou 274

et al. (2023), our base GNN follows the R- 275

GCN (Schlichtkrull et al., 2018) architecture. At 276

layer l, the embedding for a node i is computed as: 277

h
(l)
i = ReLU(W

(l)
0 h

(l−1)
i + a

(l)
i ), (7) 278

where W(l)
0 is a self-loop learnable matrix and a

(l)
i 279

is the AGGREGATE function, based on edge atten- 280

tion (Teru et al., 2020) and entity-relation composi- 281

tion (Vashishth et al., 2020): 282

a
(l)
i =

∑
r∈R

∑
j∈N r(i)

α
(l)
rrtji

W(l)
r (h

(l−1)
j − e(l−1)

r ),

(8)
283

where W
(l)
r is a relation-specific transformation 284

matrix at layer l, N r(i) is the set of outgoing neigh- 285

boring nodes of node i under relation r. We adopt 286

basis sharing (Schlichtkrull et al., 2018) as reg- 287

ularization for the W
(l)
r transformation matrices, 288

whereas e(l)r is the relation embedding at layer l: 289

e(l)r = W
(l)
rele

(l−1)
r . (9) 290

The edge attention weight α(l)
rrtji

quantifies the im- 291

portance of an edge (j, r, i) when inferring relation 292

rt at layer l. 293

α
(l)
rrtji

= σ(W(l)
α s

(l)
rrtji

+ b(l)α ), (10) 294
295

s
(l)
rrtji

= ReLU(W(l)
s [h

(l−1)
j ⊕ h

(l−1)
i

⊕ e(l−1)
r ⊕ e(l−1)

rt ] + b(l)
s ).

(11) 296

To obtain the final representation of a node, Teru 297

et al. (2020) suggests adopting JK-Connections (Xu 298

et al., 2018), i.e., by concatenating all the 299

intermediate-layer representations. After the ag- 300

gregation, the final score is computed as 301

f(u,rt,v)=W
T
f

L⊕
l=1

[h
(l)
G (u,rt,v)⊕ h(l)

u ⊕ h(l)
v ⊕ eLrt ],

(12)
302

where h
(l)
G (u, rt, v) is the subgraph representation, 303

obtained via average pooling over all node repre- 304

sentations at level l in the subgraph. 305

Loss Function We adopt a margin-based pair- 306

wise loss function, which aims at maximizing the 307

score on positive triples and minimizing the score 308

on randomly sampled negative triples: 309

L=
∑

(u,rt,v)∈G

max(0,fe(u
′,rt,v

′)−fe(u,rt,v)+γ),

(13)
310
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where γ is a margin hyperparameter, (u, rt, v) is a311

positive triple and (u′, rt, v
′) is a negative triple.312

4 Experimental Setup313

In this section we detail our experimental setup, in-314

cluding datasets, baselines, training and evaluation315

details. Experiments were conducted with Python316

3.8.19 and PyTorch 2.3.0, using an NVIDIA Am-317

pere A100 GPU (64GB VRAM) and CUDA 12.1.318

4.1 Datasets319

We conduct experiments on YAGO21K-610 (Zhou320

et al., 2023) and three FB15K-237 (FB237 in321

short) variants (v1–v3) from Teru et al. (2020).322

Dataset statistics are in Appendix A, Table 4. For323

YAGO21K-610, we use the original splits with the324

provided ontology graph and type links; test en-325

tities are unseen during training, while relations326

are shared. Each FB237 variant contains disjoint327

train and inductive test graphs with distinct entities328

but shared relations. For each FB237 variant, we329

train on its designated training set and evaluate us-330

ing its corresponding "ind" (inductive) set as the331

inference graph, with testing performed on its test332

set. For YAGO21K-610, when evaluating a specific333

target triple, the inference graph includes all other334

test triples (excluding the target itself), following335

Zhou et al. (2023). Since FB237 lacks concept336

annotations, we build ontology graphs and type337

links for all variants using Freebase-Wikidata map-338

pings (see Appendix A). Dataset density, defined339

as 2|T |/|E| (Pujara et al., 2017), is the lowest for340

YAGO21K-610 train (3.67) and increases across341

FB237 variants (i.e., from 5.33 to 9.80). This pat-342

tern also holds for the inference graphs (density343

ranging from 3.54 for YAGO21K-610 to 5.92 for344

FB237-V3), allowing us to analyze the impact of345

type information under varying graph sparsity.346

4.2 Metrics347

We evaluate models using Mean Reciprocal Rank348

(MRR) and Hits@K for K ∈ {1, 10}, averaging349

over 5 evaluation runs. Following standard pro-350

tocol (Teru et al., 2020), each positive test triple351

is ranked against 50 negative triples generated by352

randomly corrupting either its head or tail entity.353

Tie resolution markedly affects these metrics.354

While methods like random tie-breaking (Rossi355

et al., 2021)—which randomly assign ranks among356

tied entities—are prevalent, they can lead to an357

overestimation of true model performance. This is-358

sue is particularly evident in sparse settings where359

ID Aspect Template

p1 type Paris is a type of
p2 geographic Paris is located in
p3 membership Paris is member of
p4 equivalence Paris is equivalent to
p5 difference Paris is different from
p6 similarity Paris is similar to

Table 1: Assertion prompts (p1-p6) used in the semantic
enrichment step (Section 3). These templates, with a
placeholder for the entity, are fed to the Pre-trained Lan-
guage Model to elicit representations capturing different
semantic aspects (type, geographic context, member-
ship, equivalence, difference, similarity) of the entity.

limited structural or type information leads to fre- 360

quent ties, an issue amplified by the candidate pool 361

of 50. To address these concerns and provide a 362

more stringent and reliable evaluation, we adopt a 363

strict tie-breaking strategy. This approach as- 364

signs the positive triple the highest (i.e., worst- 365

case/pessimistic) rank when its score is identical to 366

one or more negative triples. 367

4.3 Models 368

To isolate the contribution of our semantic- 369

enrichment module, we focus the comparison on 370

methods that share a similar subgraph-reasoning 371

backbone as Tyler. We evaluate TyleR against 372

GraIL (Teru et al., 2020), a type-agnostic baseline 373

that relies solely on subgraph structure, and the 374

ontology-enhanced method of Zhou et al. (2023), 375

which explicitly incorporates type information via 376

learnable embeddings and ontological constraints, 377

even though its effectiveness is tied to the availabil- 378

ity and quality of type annotations and ontology 379

triples. In contrast, Tyler is designed for scenarios 380

where explicit type information is scarce as it is 381

able to infer implicit type semantics from PLMs. 382

Our semantic enrichment strategy, detailed in Sec- 383

tion 3, is model-agnostic and compatible with any 384

PLM supporting masked or causal language mod- 385

eling. We use RoBERTa-Large (Liu et al., 2019) 386

and Llama3-8B (Dubey et al., 2024) without fine- 387

tuning, aggregating representations from six manu- 388

ally crafted assertion prompts (Table 1). 389

5 Results 390

Experiments aim to answer three core questions: 391

RQ1. Does explicit type information improve 392

subgraph-based inductive link prediction? 393

5



Inductive LP Model FB237-V1 FB237-V2 FB237-V3 YAGO21K-610

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

GraIL (Teru et al., 2020) .456 34.97 64.44 .618 50.46 82.70 .609 49.94 82.26 .661 62.76 68.68
Zhou et al. (2023) .398 27.85 64.55 .576 44.69 82.45 .554 41.85 81.42 .673 60.36 76.56
TyleR-RoBERTa-L (2025) .470 35.66 69.95 .602 47.51 83.28 .630 50.60 86.72 .660 58.26 79.68
TyleR-Llama3-8B (2025) .481 36.88 70.63 .610 49.37 82.01 .620 49.94 84.46 .651 59.70 69.30

Table 2: Link Prediction (LP) evaluation on multiple FB237 variants and YAGO21K-610. Best and second-best
scores are in bold and underlined, respectively. Evaluation uses the strictest tie-breaking policy (Section 4.2),
assigning the highest (worst) possible rank to the positive triple in case of ties.

PLM Aggregation MRR Hits@1 Hits@10

TyleR-RoBERTa-L TYPE-ONLY .442 32.93 66.49
TyleR-RoBERTa-L SUM .470 35.66 69.95
TyleR-RoBERTa-L MEAN .468 35.22 68.05
TyleR-RoBERTa-L CONCAT .455 34.10 67.76

TyleR-Llama3-8B TYPE-ONLY .477 37.12 68.29
TyleR-Llama3-8B SUM .481 36.88 70.63
TyleR-Llama3-8B MEAN .465 35.51 68.73
TyleR-Llama3-8B CONCAT .474 35.95 71.12

Table 3: Ablation study on the FB15K-237-V1 dataset,
evaluating the impact of different Pre-trained Language
Models and aggregation functions (Equation 4) for se-
mantic embeddings within TyleR. ’TYPE-ONLY’ uses
only the representation from the p1 prompt (Table 1).

RQ2. Can PLMs enhance node representations for394

subgraph-based inductive link prediction?395

RQ3. Can PLMs mitigate type and structural spar-396

sity challenges in inductive link prediction?397

5.1 Type Information in Subgraph-Based398

Inductive Link Prediction (RQ1)399

Table 2 presents link prediction results across var-400

ious models and datasets, emphasizing the role401

of type information in inductive link prediction.402

GraIL, which operates without type information,403

performs competitively overall. It achieves strong404

results in both MRR and Hits@10, and obtains405

the highest Hits@1 on the sparse YAGO21K-610406

dataset. This suggests its ability to rank correct407

entities precisely in low-density settings without408

relying on type cues. When explicit type infor-409

mation is incorporated, as in Zhou et al. (2023),410

performance patterns shift: while Hits@10 often411

remain competitive—or even surpass GraIL on412

sparse datasets like YAGO21K-610 —Hits@1 con-413

sistently decline. This indicates that explicit types414

may mitigate sparsity by providing useful semantic415

signals, but also introduce complexity that reduces416

precision in top-ranked predictions. As dataset den-417

sity increases, the performance gap between GraIL418

and type-informed models narrows, and in some419

cases, GraIL even outperforms the latter. This trend420

suggests that explicit type information becomes 421

less helpful—and potentially detrimental—in 422

denser graphs, where structural cues are already 423

sufficient. In contrast, implicit type information, 424

as leveraged by TyleR, generally leads to more 425

robust and consistent improvements. While not 426

always achieving the best Hits@1, models using 427

implicit types (TyleR variants) rank first or second 428

across most datasets for both Hits@10 and Hits@1. 429

These models show particular strength on sparse 430

datasets, such as YAGO21K-610, where the gap in 431

Hits@10 is most pronounced. This suggests that 432

implicit typing is more robust against topolog- 433

ical variations in the data, exhibiting a higher 434

generalization potential. 435

Addressing RQ1, the benefit of explicit type infor- 436

mation is dataset-dependent. It aids relational in- 437

ference in sparse graphs lacking rich topology, but 438

can add detrimental complexity in denser graphs. 439

Implicit type signals, however, consistently en- 440

hance inference, particularly by mitigating struc- 441

tural sparsity. 442

5.2 Usefulness of PLM Representations for 443

Implicit Type Signal (RQ2) 444

The results in Table 2 provide compelling evidence 445

that PLMs can significantly enhance node represen- 446

tations in subgraph-based link prediction. However, 447

the impact of PLMs is not uniform across all 448

datasets. For example, on FB237-V1 and FB237- 449

V3, RoBERTa-L and Llama3-8B models exhibit 450

competitive performance, especially in terms of 451

Hits@1 and MRR, suggesting that PLMs provide 452

a strong inductive bias for relational reasoning. In 453

contrast, models without PLMs, like GraIL, show 454

lower performance on these datasets, particularly 455

regarding the Hits@10 metric. This highlights the 456

ability of PLMs to generalize and make more ac- 457

curate predictions in larger, more complex graphs, 458

where non-PLM models may struggle. Table 3 459

shows the impact of different aggregation strate- 460

gies on the FB237-V1 dataset, with SUM showing 461
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Figure 2: Link Prediction (Hits@10) evaluation under
varying structural sparsity conditions (i.e., the num-
ber of edges L in the enclosing subgraph of the target
triple) on FB237-V1 (top) and YAGO21K-610 (bottom).

the most consistent results. For example, Llama3-462

8B with SUM outperforms GraIL across all metrics.463

In addition, we compare the results of different ag-464

gregation strategies with the scenario where only465

the "type" prompt is considered (i.e., p1 in Table 1),466

showing consistent improvements.467

Regarding RQ2, PLMs effectively enhance node468

representations for subgraph-based inductive link469

prediction. By providing richer semantic features,470

models like RoBERTa-L and Llama3-8B improve471

relational inference. Aggregating diverse PLM-472

derived semantic embeddings (i.e., from different473

prompts) boosts representation expressiveness.474

5.3 Effect on Type and Structural Sparsity475

(RQ3)476

To investigate the effect of our approach on type477

sparsity, we categorize entities into four groups478

based on the number of explicit type annotations479

they possess. Group 0 consists of entities with480

no explicit type. Group 1 includes entities with481

exactly one explicit type. The remaining entities482

(those with more than one type) are split into two483

additional groups based on the median number of 484

types in this subset: the lower 50% form the group 485

labeled “>1 (1st)”, and the upper 50% form “>1 486

(2nd)”. For each test triple, we determine the group 487

membership of the known entity (irrespective of 488

the type information available for the candidate 489

entities) and report the model performance in Fig- 490

ure 3. We report the average Hits@10 across the 491

three FB237 variants for each group. Group 0 rep- 492

resents the most type-sparse setting with entities 493

lacking any explicit type; in this scenario, both vari- 494

ants of TyleR consistently outperform the typeless 495

baseline GraIL across all dataset variants. This 496

reinforces the intuition that type signals derived 497

from PLMs can enhance inference capabilities 498

in sparse settings. For instance, on FB237-V1, 499

TyleR (RoBERTa-L) yields a 6.15% relative im- 500

provement over the non-PLM baselines, while on 501

FB237-V2, it achieves an even greater gain of 502

10.75% over GraIL. Interestingly, in the case of 503

entities with multiple types, TyleR continues to out- 504

perform the explicit-type-based method of Zhou 505

et al. (2023). This suggests that while explicit type 506

information is useful, its effectiveness may dimin- 507

ish when type annotations are noisy or overly nu- 508

merous, highlighting the need for better strategies 509

to aggregate multiple type signals. 510

We further analyze the role of implicit type in- 511

formation in addressing structural sparsity. For 512

this analysis, we consider the two datasets with the 513

lowest graph density: YAGO21K-610 and FB237- 514

V1. Evaluation triples are grouped into four bins 515

based on the number of edges in their enclosing 516

subgraphs, using percentiles to capture varying lev- 517

els of sparsity. Figure 2 presents Hits@10 across 518

these structural sparsity conditions. The results 519

indicate that PLM-based approaches, particularly 520

those using RoBERTa-L, demonstrate strong per- 521

formance in extremely sparse subgraphs. For exam- 522

ple, RoBERTa-L performs best in scenarios with 523

one or fewer edges (for YAGO21K-610) and more 524

than 152 edges (for FB237-V1), demonstrating 525

its robustness at both ends of the sparsity spec- 526

trum. However, in moderate sparsity settings (e.g., 527

2 < L ≤ 37 in FB237-V1), models such as GraIL 528

and Zhou et al. (2023) perform comparably or bet- 529

ter, due to their reliance on structural patterns that 530

are still informative in such contexts. 531

Answering RQ3, PLM-based approaches such 532

as TyleR address both type and structural sparsity. 533

They consistently outperform baselines in scenarios 534

with minimal explicit type information or sparse 535
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Figure 3: Hits@10 performance across four type sparsity groups for three FB237 variants, computed according to
the number of explicit types linked to each entity (details in Section 5.3). The groups, from left to right, represent
scenarios with an increasing number of explicit types associated with the known entity.

subgraph structures by inferring meaningful se-536

mantics from PLMs. Although challenges persist537

with moderate sparsity and noisy types, PLMs show538

significant potential.539

6 Related Work540

Inductive Link Prediction. Inductive Link Pre-541

diction (ILP) in Knowledge Graphs (KGs) aims to542

infer missing links that involve entities unseen dur-543

ing training, thereby enabling models to generalize544

to evolving KGs. Unlike traditional embedding-545

based models (Lin et al., 2015; Bordes et al., 2013;546

Wang et al., 2014), inductive methods explicitly547

handle unseen entities. Early approaches relied on548

rule-based reasoning (Yang et al., 2017; Meilicke549

et al., 2018), but graph neural networks (GNNs)550

soon became dominant (Hamilton et al., 2017),551

with GraIL (Teru et al., 2020) leveraging enclosing552

subgraph structures for relational inference. Exten-553

sions include CoMPILE (Mai et al., 2021), empha-554

sizing relational directionality, and TACT (Chen555

et al., 2021), introducing relation-level reasoning.556

Zhou et al. (2023) incorporate ontological data, but557

assume complete type information, an assumption558

that seldom holds in real-world KGs.559

Entity Representation with Language Models.560

Pre-trained language models (PLMs) capture fac-561

tual and relational knowledge from large cor-562

pora (Petroni et al., 2019; Brown et al., 2020), en-563

coding rich entity semantics (Zhu et al., 2024) and564

retrieving factual information via prompting (Wei565

et al., 2023). This makes PLMs well-suited for566

link prediction because they can enrich entity rep-567

resentations. For example, KGBERT (Yao et al.,568

2019) verbalizes triples as text and fine-tunes BERT569

to classify their plausibility. Subsequent meth- 570

ods (Zhang et al., 2020; Daza et al., 2021; Wang 571

et al., 2021) integrate entity descriptions into KG 572

completion to induce embeddings for new entities 573

via PLMs. BERTRL (Zha et al., 2022) exemplifies 574

this trend by injecting GNN-discovered reasoning 575

paths into a BERT-based model. A promising di- 576

rection involves integrating LLMs with subgraph- 577

based methods to reduce model queries while pre- 578

serving structural reasoning. Li et al. (2025) pro- 579

pose CATS, a hybrid model that leverages latent 580

type cues and neighbor facts to fine-tune an LLM 581

for triple scoring, combining semantic understand- 582

ing with explicit subgraph evidence. Unlike prior 583

approaches that fine-tune PLMs, our method ex- 584

tracts semantic knowledge from a frozen PLM, 585

and we investigate how effectively such pre-trained 586

models enable a subgraph-reasoning module to cap- 587

ture the type semantics underlying each relation. 588

7 Conclusion 589

We present TyleR, a novel inductive link-prediction 590

approach designed to handle incomplete or noisy 591

type information. By leveraging pre-trained lan- 592

guage models (PLMs), TyleR enriches node repre- 593

sentations with implicit type signals, overcoming 594

the limitations of methods reliant on explicit anno- 595

tations. Experiments show that TyleR exhibits com- 596

petitive performance, particularly when type data 597

are sparse or unreliable. The results underscore 598

the potential of PLMs for semantic enrichment, en- 599

abling robust link prediction without complete type 600

supervision. Future work will examine domain- 601

specific PLMs, more embedding-aggregation strate- 602

gies, and broader applications to graph-based tasks. 603
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Limitations604

Our study employs a set of predefined prompts,605

which, while effective for the scope of our experi-606

ments, may not represent the most informative or607

optimal configurations. More sophisticated strate-608

gies for adaptive prompt selection or prompt tuning609

could potentially enhance model performance. Ex-610

ploring these approaches is left as a direction for611

future research. Additionally, the hyperparameters612

for our models were selected empirically, based613

on extensive experimentation and informed judg-614

ment. While this approach yielded strong results, it615

may not guarantee optimal configurations. A more616

systematic or exhaustive hyperparameter search617

could lead to improved outcomes. Nonetheless, the618

computational cost and complexity associated with619

such procedures, particularly given the scale and re-620

source demands of our training setup, render them621

infeasible within the constraints of this study.622
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Appendix800

This appendix provides supplementary material to801

support the main paper. It is organized as follows:802

• Dataset Details (Appendix A): Provides a803

summary table (Table 4) and further informa-804

tion on the datasets used in our experiments.805

The section includes the procedure for extract-806

ing ontology graphs and entity-type links for807

the FB237 variants, which initially lack such808

annotations. It also details the methodology809

for splitting ontology triples into training, val-810

idation, and test sets.811

• Hyperparameter Details (Appendix B): Out-812

lines the hyperparameter settings employed813

for training our proposed model, TyleR, as814

well as the baseline models. Key parameters815

such as learning rates, number of hops for sub-816

graph extraction, embedding dimensions, and817

early stopping criteria are specified to ensure818

reproducibility.819

• Examples of Predictions (Appendix C):820

Presents a qualitative example (Table 5) com-821

paring the link predictions made by TyleR822

and baseline models for a specific target triple,823

particularly in a scenario with a sparse en-824

closing subgraph. This section illustrates how825

different models rank candidate entities and826

highlights the impact of the strict tie-breaking827

strategy.828

• Embedding Visualization (Appendix D): In-829

cludes a 2D visualization of entity embed-830

dings (obtained via PCA). This offers a quali-831

tative insight into the learned representations832

and their spatial distribution for a sample set833

of entities (Figure 4 and Figure 5).834

A Dataset Details835

Table 4 provides a statistical overview of the836

datasets utilized in our experiments, detailing their837

key characteristics, including the number of enti-838

ties, relations, triples, types, meta-relations, ontol-839

ogy triples, type links, and textual labels.840

The model from Zhou et al. (2023) relies on ex-841

plicit entity-type pairs and an ontology graph for842

training. FB237 initially lacks these annotations.843

Therefore, we processed the FB237 variants to ex-844

tract the necessary type information and construct845

a corresponding ontology using the following pro-846

cedure.847

To construct the ontology graph for our experi- 848

ments we mapped all the freebase entities appear- 849

ing in the dataset to their Wikidata identifier, us- 850

ing the publicly available Freebase-Wikidata map- 851

pings 1. Using the public Wikidata API 2, we then 852

retrieved for every mapped entity its respective 853

textual label and the values associated with its “in- 854

stance of ” property, which indicates the type(s) an 855

entity is associated to. With the set of relevant con- 856

cepts established, we constructed the schema-level 857

ontology. For each concept identified in the previ- 858

ous step, its full set of concepts was fetched from 859

Wikidata. 860

A schema-level triple 〈Concept1 PropertyLabel 861

Concept2〉 was generated and added to our onthol- 862

ogy graph if, and only if, the target value of a Con- 863

cept (Concept2) was itself one of the recognized 864

concepts. 865

In the entity triples, the entities in the test set 866

do not appear in the train set and valid set, while 867

the relations in both the test set and valid set are 868

included in the train set. We train on the train 869

graph and test on the test graph. In addition, to 870

achieve ontology training, we randomly divide the 871

ontology triples into a train set, a valid set, and a 872

test set using hold-out splitting in the ratio of 80%, 873

10%, 10%, respectively. 874

B Hyperparameter Details 875

Baselines are trained using the hyperparameter set- 876

tings reported in their original papers. For our 877

model, we adopt the configuration from Zhou et al. 878

(2023) to ensure fair comparison, tuning only the 879

learning rate, which we set empirically to 1e-3. All 880

models are trained for 50 epochs with early stop- 881

ping (patience of 100 iterations) and a batch size of 882

16. We adopt the Adam optimizer. For all models, 883

the number of hops in the enclosing subgraph is 3. 884

We set the semantic embedding dimension to 24, 885

the layer-0 embedding dimension to 32, and the 886

margin γ in the loss function to 10. 887

C Examples of Predictions 888

This section provides a qualitative example to il- 889

lustrate the behavior of TyleR in comparison to 890

baseline models, particularly in challenging scenar- 891

ios characterized by extreme structural sparsity. We 892

focus on a specific instance from the YAGO21K- 893

610 dataset where the enclosing subgraph for the 894

1https://developers.google.com/freebase
2https://www.wikidata.org/w/api.php
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Dataset Split Entities Relations Triples Types Meta Rel. Onto. Triples Type Links Text Labels

train 1594 180 4245 458 29 680 2163 1516
valid 567 103 489 124 15 86 756 539fb237_v1
test 550 102 492 113 13 85 764 517

fb237_v1_ind
train 1093 142 1993 458 29 680 1525 1041
valid 287 66 206 124 15 86 406 275
test 301 68 205 113 13 85 434 289
train 2608 200 9739 575 33 865 3586 2489
valid 1139 143 1166 160 15 109 1511 1083fb237_v2
test 1142 140 1180 153 16 108 1515 1094

fb237_v2_ind
train 1660 172 4145 575 33 865 2257 1561
valid 548 92 469 160 15 109 757 516
test 562 107 478 153 16 108 745 524
train 3668 215 17986 732 31 1060 5114 3484
valid 1882 183 2194 196 17 133 2575 1787fb237_v3
test 1871 179 2214 192 16 133 2520 1773

fb237_v3_ind
train 2501 183 7406 732 31 1060 3426 2379
valid 973 120 866 196 17 133 1275 920
test 981 128 865 192 16 133 1290 924
train 16357 30 30000 610 24 1983 4861 16357
valid 4388 21 3000 166 14 248 1783 4388YAGO21K-610
test 3938 25 6970 159 13 248 1898 3938

Table 4: Statistics of the datasets used in our experiments. The YAGO21K-610 (Zhou et al., 2023) dataset includes
ontology triples and entity-type links, while the FB237 dataset variants (Teru et al., 2020) are further processed to
extract ontology triples, type links and textual labels.

target triple lacks any connecting edges.895

Table 5 presents the top-ranked predictions896

for the target triple (Christos Kagiouzis,897

isAffiliatedTo, Kastoria F.C.), where the898

task is to predict the tail entity (Kastoria F.C.).899

This triple was chosen because its 3-hop enclosing900

subgraph presents a worst-case scenario for struc-901

tural reasoning. Specifically, the subgraph contains902

no path that could link the head entity (Christos903

Kagiouzis) to the correct tail entity (Kastoria904

F.C.), beside the target link. This lack of struc-905

tural information within the subgraph presents a906

significant challenge for models that heavily rely907

on graph patterns. The evaluation follows the stan-908

dard protocol (Section 4.2), where the correct tail909

entity is ranked against 50 randomly corrupted neg-910

ative samples. Crucially, as detailed in Section 4.2,911

ranking employs the strict tie-breaking strategy, as-912

signing the worst possible rank to the positive triple913

in case of score ties.914

C.1 Analysis915

TyleR (RoBERTa-L). Despite the absence of di-916

rect structural paths in the enclosing subgraph,917

TyleR ranks the correct entity (Kastoria F.C.)918

2nd. This strong performance is attributed to its919

ability to leverage rich semantic information de-920

rived from the PLM (RoBERTa-L). The PLM’s 921

understanding of entities and their likely affilia- 922

tions, learned from vast text corpora, allows TyleR 923

to infer plausible connections even when explicit 924

graph structure is missing. The top-ranked entity, 925

(Southern United FC), is also a football club, in- 926

dicating that TyleR correctly identifies the semantic 927

category of plausible tail entities for the relation 928

(isAffiliatedTo) with (Christos Kagiouzis) 929

(likely a footballer). The scores assigned by TyleR 930

are relatively distinct, suggesting a higher degree 931

of confidence in its ranking. 932

GraIL. In contrast, GraIL, which relies purely on 933

subgraph structures for relational inference, per- 934

forms poorly. It ranks the correct entity (Kastoria 935

F.C.) at 50th (last among the 50 candidates consid- 936

ered for ranking this positive triple). The identical 937

scores for all top 50 entities (all -11.888) indicate 938

that GraIL cannot differentiate between the can- 939

didates due to the lack of structural cues in the 940

enclosing subgraph. This highlights a key limi- 941

tation of purely structural methods in extremely 942

sparse settings. 943

Zhou et al. (2023). This model, which incorpo- 944

rates explicit type information and ontology rea- 945

soning, ranks the correct entity 16th. While this 946

is significantly better than GraIL, it falls short of 947
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Rank Triple Score

TyleR (RoBERTa-L)

1 Christos Kagiouzis → isAffiliatedTo → Southern United FC -1.951
2 Christos Kagiouzis → isAffiliatedTo → Kastoria F.C. (gold) -1.953
3 Christos Kagiouzis → isAffiliatedTo → Deltras F.C. -1.985
4 Christos Kagiouzis → isAffiliatedTo → Yunnan Hongta F.C. -1.998
5 Christos Kagiouzis → isAffiliatedTo → Chainat Hornbill F.C. -4.957
6 Christos Kagiouzis → isAffiliatedTo → Hoàng Anh Gia Lai F.C. -5.172
7 Christos Kagiouzis → isAffiliatedTo → Great Britain women’s Olympic football team -5.529
8 Christos Kagiouzis → isAffiliatedTo → APEP F.C. -5.604
9 Christos Kagiouzis → isAffiliatedTo → Basketball League Belgium -5.698

10 Christos Kagiouzis → isAffiliatedTo → Baltimore Blast (1980–92) -5.706

GraIL

41 Christos Kagiouzis → isAffiliatedTo → Darko Vukić -11.888
42 Christos Kagiouzis → isAffiliatedTo → Connecticut Pride -11.888
43 Christos Kagiouzis → isAffiliatedTo → Hoàng Anh Gia Lai F.C. -11.888
44 Christos Kagiouzis → isAffiliatedTo → Southern United FC -11.888
45 Christos Kagiouzis → isAffiliatedTo → Helgi Sigurðsson -11.888
46 Christos Kagiouzis → isAffiliatedTo → Conor Powell -11.888
47 Christos Kagiouzis → isAffiliatedTo → Samuel Cunningham (footballer) -11.888
48 Christos Kagiouzis → isAffiliatedTo → Ferdinand Daučík -11.888
49 Christos Kagiouzis → isAffiliatedTo → Ertan Demiri -11.888
50 Christos Kagiouzis → isAffiliatedTo → Kastoria F.C. (gold) -11.888

Zhou et al. (2023)

10 Christos Kagiouzis → isAffiliatedTo → SC 07 Bad Neuenahr 4.330
11 Christos Kagiouzis → isAffiliatedTo → Chicago Power 4.330
12 Christos Kagiouzis → isAffiliatedTo → Baltimore Blast (1980–92) 4.330
13 Christos Kagiouzis → isAffiliatedTo → Peristeri B.C. 4.330
14 Christos Kagiouzis → isAffiliatedTo → Deltras F.C. 4.330
15 Christos Kagiouzis → isAffiliatedTo → ADET 4.330
16 Christos Kagiouzis → isAffiliatedTo → Kastoria F.C. (gold) 4.330
17 Christos Kagiouzis → isAffiliatedTo → Łukasz Tumicz -6.757
18 Christos Kagiouzis → isAffiliatedTo → Ertan Demiri -6.757
19 Christos Kagiouzis → isAffiliatedTo → Ferdinand Daučík -6.757

Table 5: Example of ranking predictions on the YAGO21K-610 dataset for the target triple (Christos Kagiouzis,
isAffiliatedTo, Kastoria F.C.), when the tail is to be predicted. In this case, the target triple has no links in
the associated enclosing subgraph. As discussed in Section 4.2, ranking is done using the strict tie-breaking strategy.

TyleR’s performance. The explicit type information948

likely provides some signal ("(Kastoria F.C.) is949

a Club"). However, this explicit information might950

be coarser-grained or less directly informative for951

this specific prediction compared to the nuanced952

semantic representations captured by TyleR. The953

presence of many ties in the scores (e.g., ranks954

10-16 all have score 4.330) suggests that while955

types help narrow down possibilities, they do not956

offer the same fine-grained discriminative power957

as TyleR’s PLM-based semantic enrichment in this958

particular sparse scenario.959

This example underscores the advantage of960

TyleR’s approach, particularly its semantic enrich-961

ment stage using PLMs. By infusing node repre-962

sentations with implicit type-aware signals, TyleR963

can effectively reason about entity relationships964

even when the local graph structure is uninforma-965

tive, thereby mitigating the challenges posed by 966

structural sparsity. 967

D Embedding Visualization 968

This section provides a qualitative analysis of en- 969

tity embeddings through 2D visualization to illus- 970

trate how different models represent candidate en- 971

tities in a challenging link prediction task charac- 972

terized by structural sparsity. We utilize Principal 973

Component Analysis (PCA) to project the final- 974

layer GNN embeddings hL
v of 50 candidate tail 975

entities onto a 2D plane. The specific task visu- 976

alized is predicting the missing tail entity for the 977

triple <Andrei Gashkin, playsFor, ?> from 978

the YAGO21K-610 dataset. Notably, this example 979

is chosen for its extreme structural sparsity. The 980

enclosing subgraph constructed around the head 981

entity Andrei Gashkin and the correct tail entity 982
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FC KAMAZ Naberezhnye Chelny is very sparse.983

Furthermore, for many of the 49 negative candi-984

date entities considered alongside the correct tail,985

their respective enclosing subgraphs (when con-986

sidered with the head Andrei Gashkin) also lack987

rich structural information, making it difficult for988

models relying heavily on graph patterns to make989

accurate distinctions. We compare the embeddings990

generated by:991

• The ontology-enhanced model from Zhou992

et al. (2023), which leverages explicit type993

information (Figure 4).994

• Our proposed model, TyleR (RoBERTa-L),995

which uses PLM-derived implicit type signals996

(Figure 5).997

D.1 Analysis998

Figure 4 visualizes the PCA-projected embeddings999

from the model by Zhou et al. (2023). In this visu-1000

alization:1001

• The correct tail entity, FC KAMAZ1002

Naberezhnye Chelny (highlighted or1003

labeled distinctly if possible in the actual1004

figure), is positioned among a cluster of other1005

football clubs and sports-related entities. For1006

instance, it might be spatially close to other1007

entities like SV Grödig or Egri FC if they1008

were among the candidates.1009

• The embeddings of many semantically sim-1010

ilar entities (e.g., various football clubs) are1011

tightly clustered. This suggests that while the1012

explicit type information used by this model1013

(e.g., "Football Club" type) helps group enti-1014

ties by their broad category, it may not provide1015

sufficient fine-grained discriminative power in1016

this structurally sparse scenario.1017

• The model appears to struggle to clearly dis-1018

tinguish FC KAMAZ Naberezhnye Chelny1019

from other plausible (same-type) but incorrect1020

candidate entities based solely on the explicit1021

type signals and the limited structural infor-1022

mation available in the sparse subgraph. The1023

representation reflects a general categorical1024

understanding rather than a nuanced, context-1025

specific one for the playsFor relation with1026

Andrei Gashkin.1027

Figure 5 displays the PCA-projected embeddings1028

from our TyleR-RoBERTa-L model for the same1029

set of 50 candidate entities.1030

• The correct tail entity, FC KAMAZ 1031

Naberezhnye Chelny, is noticeably 1032

more separated in the embedding space 1033

compared to its representation in Figure 4. 1034

While it would still likely be in a region 1035

associated with sports entities, its position 1036

relative to other incorrect candidate football 1037

clubs is more distinct. 1038

• This improved separation suggests that 1039

TyleR’s semantic enrichment, derived from 1040

RoBERTa-L, provides more nuanced and dis- 1041

criminative features. The model benefits 1042

from the implicit propagation of semantic in- 1043

formation related to the head entity Andrei 1044

Gashkin (a known footballer) through the 1045

PLM’s understanding. 1046

• The PLM’s pre-trained knowledge helps in- 1047

fer a more fine-grained "type-awareness" and 1048

contextual understanding for the playsFor re- 1049

lation. Even with sparse explicit graph struc- 1050

ture, TyleR can leverage the rich semantics 1051

encoded by the PLM (and potentially GNN 1052

mechanisms like self-loop connections that 1053

reinforce entity identity) to better characterize 1054

and differentiate the correct tail entity. 1055

This visual comparison underscores the bene- 1056

fit of TyleR ’s approach in handling structurally 1057

sparse scenarios. The ontology-enhanced model 1058

(Zhou et al. (2023)), while utilizing explicit types, 1059

produces less distinguishable embeddings for se- 1060

mantically similar entities when graph structure 1061

is poor. In contrast, TyleR, by incorporating rich 1062

implicit type signals from a pre-trained language 1063

model, achieves a more fine-grained characteriza- 1064

tion and better separation of the correct entity in 1065

the embedding space. This highlights the potential 1066

of PLM-derived semantic enrichment to compen- 1067

sate for deficiencies in explicit type annotations 1068

and structural connectivity, leading to more robust 1069

inductive link prediction. This supports our pa- 1070

per’s argument that implicit type signals enable a 1071

more nuanced understanding, particularly crucial 1072

in sparse settings. 1073
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Figure 4: Visualization of last layer embeddings (using PCA) for the ontology-enhanced model of Zhou et al. (2023)
for 50 candidate entities when predicting the missing tail for triple <Andrei Gashkin, playsFor, ?>. For all the
50 candidates, there is no enclosing subgraph.
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Figure 5: Visualization of last layer embeddings (using PCA) for TyleR (RoBERTa-L) for 50 candidate entities
when predicting the missing tail for triple <Andrei Gashkin, playsFor, ?>. For all the 50 candidates, there is
no enclosing subgraph.
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