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Abstract

An Achilles heel of Large Language Models (LLMs) is their tendency to hallucinate non-
factual statements. A response mixed of factual and non-factual statements poses a challenge
for humans to verify and accurately base their decisions on. To combat this problem, we
propose Highlighted Chain-of-Thought Prompting (HoT), a technique for prompting LLMs
to generate responses with XML tags that ground facts to those provided in the question.
That is, given an input question, LLMs would first re-format the question to add XML tags
highlighting key facts, and then, generate a response with highlights over the facts referenced
from the input. Compared to vanilla chain of thought prompting (CoT), HoT reduces the
rate of hallucination and separately improves LLM accuracy consistently on over 22 tasks
from arithmetic, reading comprehension, to logical reasoning. When asking humans to verify
LLM responses, highlights help time-limited participants to more accurately and efficiently
recognize when LLMs are correct. Yet, surprisingly, when LLMs are wrong, HoTs tend to
fool users into believing that an answer is correct. Code is available at: Github.

1 Introduction

Chains of Thoughts (CoT) enable LLMs to generate step-by-step solutions to questions, improving both (1)
accuracy on many tasks (Wei et al., 2022) that benefit from problem decomposition and (2) transparency in
how a model arrives at a final answer. However, a major weakness of LLMs is their tendency to hallucinate
non-factual statements (Zhang et al., 2023), making it difficult for humans to verify whether an LLM answer
is correct.

Based on this observations, we aim to mitigate it by proposing Highlighted Chain-of-Thought (HoT), a
prompting technique that instructs LLMs to generate a CoT answer but with in-line XML tags, grounding
in-response facts to in-question facts (Fig. 1). We hypothesize that HoT may improve LLM accuracy on
downstream tasks and also user verification accuracy.

Existing methods attempt to combat hallucination and improve verifiability by forcing LLMs to cite websites
(Perplexity; SearchGPT, 2024), documents (Bai et al., 2024) or paragraphs (Cohen-Wang et al., 2024) to
support statements in the response. Yet, there is no work that enables LLMs to generate regular CoTs but
with references back to the in-question facts.

In HoT, first, an LLM re-formats the input question to wrap XML tags around key facts. Second, it generates
its response but with XML tags around the facts that come from the input, enabling colored highlights
(Fig. 1). Such highlights enable users to trace which statements in the response correspond to which facts in
the input, which we hypothesize to make human verification faster and more accurate.

We test HoT on 5 LLMs including Gemini-1.5-Flash ( ), Gemini-1.5-Pro ( ) (Reid et al., 2024),
Llama-3.1-70B ( ), Llama-3.1-405B ( ) (Dubey et al., 2024), and GPT-4o ( ) (OpenAI, 2024) across 22
tasks from arithmetic, logical reasoning, reading comprehension, long-context to puzzle, conditioned maths
questions. Our main findings are:
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Reformatted Question: Let a,b,c,d be positive real 
numbers such that a+b+c+d=10. Find the maximum 
value of ab²c³d⁴ if a=10, b=c=d=0

Answer: Given that a=10 and b=c=d=0, the expression 
we want to maximize is ab²c³d⁴. Substituting the 
given values, we get: 10*(0)²*(0)³*(0)⁴=10*0*0*0=0. 
Since the expression is a product of terms involving 
zero raised to non-negative powers, the entire 
expression evaluates to 0. There for the maximum 
value of ab²c³d⁴ under the given condition is 0.

Answer: To find the maximum value ab²c³d⁴ given the 
constraint a+b+c+d=10, we can use the method of 
Lagrange multipliers or analyze the function 
directly. ...

Let’set c=d=x and b=y. Then the constraint becomes:
a+y+x+x=10 implies a+y+2x=10.
…Thus the maximum value is 
ab²c³d⁴ = 1(2)²(3)³(4)⁴=27658❌

Highlighted Chain of ThoughtChain of Thought

Question: Let a,b,c,d be positive real numbers such that a+b+c+d=10. Find the maximum value of ab²c³d⁴ if 
a=10, b=c=d=0

Figure 1: CoT and HoT (ours) responses for a MATH500 question in ReasoningTrap benchmarks (Jang
et al., 2025), both generated by Gemini-1.5-Flash . Left: CoT misses the key constraint b = c = d = 0,
giving an incorrect answer. Right: HoT (a re-formatted question and answer) applies the key constraint
b = c = d = 0 to the expression ab2c3d4, yielding the correct answer of 0. The full reasoning traces of both
methods are provided in Tab. 38.

1. HoT substantially reduces hallucination rate compared to CoT (from 21.22% to 14.92%) across
multiple datasets, as measured by SelfCheckGPT (Manakul et al., 2023) (Sec. 5.1).

2. Compared to few-shot CoT, HoT consistently improves LLM accuracy across 5 LLMs and 22
datasets. On average, across arithmetic, question-answering, logical reasoning, long-context, and
puzzle tasks, HoT gains +2.61, +2.58, +2.53, +2.03, +11.38 percentage points (pp), respectively
(Sec. 5.2).

3. HoT outperforms other advanced prompting techniques (Least-to-Most (LtM) (Zhou et al., 2022),
Tree-of-Thought (ToT) (Yao et al., 2023), Self-Refine (Madaan et al., 2023), and Chain-of-Verification
(CoVE) (Dhuliawala et al., 2023)) on challenging datasets including r-GSM, Seven Objects, and Date.
Furthermore, when combined with Self-Consistency (Wang et al., 2022), ComplexCoT (Fu et al.,
2022) methods, HoT achieves superior performance than each of these methods alone and HoT alone
(Sec. 5.4).

4. Both components of HoT, repeating the question and highlighting facts via XML, independently
improve LLM accuracy (Sec. 5.5).

5. The colored highlighting in HoT responses improves the users’ speed in verifying the accuracy of
LLM answers by ∼25% (62.38s → 47.26s) and also their accuracy (Sec. 5.6).

6. Fine-tuning small LLMs on HoT responses not only enhances accuracy but also strengthens their
ability to attend more effectively to input context compared to base and CoT fine-tuned models
(Sec. 5.7).

2 Related Work

Generating references to documents Recent works have trained LLMs to answer questions by generating
responses that include citations to the documents from which they extract supporting information (Cohen-
Wang et al., 2024; Bai et al., 2024; Gao et al., 2023; Press et al., 2024; Taylor et al., 2022; Bohnet et al.,
2022). Another approach is to generate citations post-hoc, i.e., by having one LLM generate the answer first
and another LLM search for citations that support facts in the answers (Ramu et al., 2024; Sancheti et al.,
2024; Dasigi et al., 2021). Commercial LLM-powered search engines recently also rolled out their citation
feature (Anthropic, 2025; SearchGPT, 2024; BingSearch; Perplexity), which references web pages and online
documents that support statements in the responses.

Unlike above works, we focus on generating references to phrase-level and sentence-level facts (Figs. 1 and 5)
in the question instead of references to context documents or paragraphs.
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Prompting techniques Interestingly, inputting the exact question twice to an LLM improves its answer
accuracy slightly (Xu et al., 2024). Similarly, given a question, asking an LLM to first repeat the question and
then answer it also improves accuracy compared to vanilla CoT (Mekala et al., 2024). Our work is similar in
that we also ask LLMs to re-generate the question; however, the difference is that our re-generated question
contains XML tags around key facts. Furthermore, unlike the above two works, HoT-prompted LLMs include
tags in the answer, which further improve LLM accuracy as shown in our ablation study (Sec. 5.5).

Retrieval-Augmented Generation (RAG) Some systems first retrieve relevant documents given an
input question and then feed the documents along with the original question to an LLM for generating an
answer (Asai et al., 2023; Jin et al., 2024). While they generate references to the retrieved documents (Liu,
2022), HoT generates references to fact phrases in the input question. In RAG systems, feeding HTML
tags in web pages instead of plain text improves the accuracy of the retrieved knowledge (Tan et al., 2024).
Functionally similar to HTML tags, our XML tags around key facts here make LLMs answer more accurately.

Span prediction is a core NLP task that requires a model to read a question and a paragraph and predict
the (start, end) index of the answer embedded in the paragraph (Rajpurkar et al., 2016; Dasigi et al., 2019).
Similarly to span prediction, we ask LLMs to identify key phrases in the input question. However, HoT
instructs LLMs to perform an extra step of generating the answer with references to the selected spans (i.e.,
highlighted in-question facts).

Impact of highlights on human cognition In cognitive science, studies have found that selective
emphasis techniques, such as text highlighting, can improve comprehension and learning for humans (Fowler
& Barker, 1974; Ramírez et al., 2019). In contrast, inappropriate highlighting could harm human accuracy in
reading comprehension (Gier et al., 2009; Ramírez et al., 2019). To our knowledge, we are the first to study
how key-fact highlights may help users verify the accuracy of an LLM’s answer.

3 Method

Our goal is to prompt LLMs to produce a response consisting of two parts: (1) a version of the original
question with XML tags (<fact1>, </fact1>, etc.) wrapped around key facts in the input query and (2) an
answer that explicitly links statements in the answer to the highlighted facts in the question (Fig. 1). Our
hypothesis is that asking the LLM to decide which facts are worth wrapping in XML tags encourages the
model to better attend to these important facts, thereby reducing hallucinations (Sec. 5.1) and improving
the accuracy of the final answer (Sec. 5.2). Additionally, these XML tags can be transformed through regex
and CSS to become highlighted in the GUI when the LLM answer is presented to users for verification. We
experiment with different XML tag names and find that <fact{i}></fact{i}> where i = 1,2,3 results in the
best LLM accuracy (Appendix H).

3.1 Highlighted Chain-of-Thought (HoT)

To prompt LLMs to generate HoTs (Fig. 3), we design the following prompt structure (Fig. 2) and use it for
all datasets. First, the 8-shot demonstration examples (which are CoT demonstrations but with XML tags)
would show LLMs how to insert tags and answer questions. Second, the HoT instruction would be a short,
explicit request that asks LLMs to insert tags into questions and answer it.

{Question 1} {Reformatted Q1} {Answer 1}
{Question 2} {Reformatted Q2} {Answer 2}
...
{Question 8} {Reformatted Q8} {Answer 8}
{Question}
{HoT Instruction}

Figure 2: 8-shot HoT examples are
provided in addition to the explicit
directions (HoT Instruction) (see Ap-
pendix J) to help LLMs understand
the expected format. See Tab. 34 for
one entire example prompt.

For each dataset, we make separate 8-shot examples (Brown et al., 2020) to demonstrate tag insertion, as
instructing LLMs to do this zero-shot is non-trivial, especially since different datasets may require highlighting
different types of linguistic structures.
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Reformatted Question: Edward 
spent $6 to buy 2 books each 
costing him the same amount of 
money. Now he has $12. How much 
did each book cost?
Answer: Edward spent $6 on 2 
books, meaning each book cost 
$6/2 = 3 dollars. The answer is 
{3}.

Question: Edward 
spent $6 to buy 2 
books each 
book costing him 
the same amount 
of money. Now he 
has $12. How much 
did each book 
cost?

Reformatted Question: Edward spent 
<fact1>$6</fact1> to buy <fact2>2 
books</fact2> each costing him the same 
amount of money. Now he has $12. How much 
did each book cost?
Answer: Edward spent <fact1>$6</fact1> on 
<fact2>2 books</fact2>, meaning each book 
cost <fact1>$6</fact1>/<fact2>2</fact2> = 
3 dollars. The answer is {3}.

Input Query HoT output by HoT output (Regex + CSS)

Figure 3: LLMs generate HoT responses by wrapping XML tags around the information that the model
determines is the most important. Regex and CSS are then used to visualize the highlights for user readability
(see the code to convert XML tags to highlights in Appendix K).

3.2 Annotating HoT in-context examples

Generating demonstrations (i.e., few-shot HoT in-context examples) for each dataset from scratch can be
time-consuming for humans. Therefore, we propose a 3-step, LLM-assisted approach for humans to quickly
create high-quality HoT demonstrations for a given dataset, and apply the same procedure for all datasets.
We begin by manually creating 15 HoT question-answer pairs across multiple domains. These HoT examples
will then be used to generate extra demonstrations tailored to each dataset.

Step 1: Humans to insert highlights into HoT meta demonstrations We take, in total, 15 different
CoT question-answer pairs from multiple datasets in a variety of domains including arithmetic, logical
reasoning and question-answering tasks. Then, we manually add XML tags to these questions following
the leave-one-out principle (Li et al., 2016) for identifying important tokens. That is, a fact (to be wrapped
around, e.g., <fact1></fact1>) is a key phrase in the question that when removed would render the question
unanswerable. Any details that are not directly relevant to answering the final question should not be tagged.

After tagging all key phrases in the question, we examine the answer to find semantically matching phrases
referring to the same entity (e.g., “ab2c3d4” vs. “10 ∗ (0)2 ∗ (0)3 ∗ (0)4” in Fig. 1) and surround them with
XML tags. That is, every tag in the answer must correspond to an existing tag in the question. These 15
human-annotated examples (see Github repo) are then used as meta demonstrations for LLMs to generate
few-shot demonstrations for a specific dataset (Step 2).

Step 2: LLMs to generate CoT responses for 8 questions in a given dataset To fairly compare HoT
and CoT under the common 8-shot CoT setting, we need to create 8 HoT demonstrations for each dataset.
To do that, we (a) ask GPT-4o to generate standard CoT answers for 8 random questions in each dataset;
and (b) convert these CoT examples into HoT examples in Step 3, leveraging the 15 meta demonstrations
(generated in Step 1).

Step 3: LLMs to insert XML tags into CoT responses for a given dataset We prompt GPT-4o with
the 15 demonstrations from Step 1 as few-shot examples, along with a question from Step 2, to generate
a reformatted question containing XML tags (see prompts in Appendix N), producing 8 tagged questions.
Finally, using the same 15 demonstrations and each tagged question, we instruct GPT-4o to generate a tagged
answer, resulting in 8 tagged question-answer pairs per dataset.

4 Evaluation over 22 benchmarks and 5 LLMs

We evaluate our method across 22 tasks spanning five domains: arithmetic, question answering, logical
reasoning, reading comprehension, and hard, long-context benchmarks. See Appendix P for more dataset
details (e.g., number of instances). We test , , , , and using their default temperatures. The
configuration details of each model are listed in Appendix I.
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4 Arithmetic We test on arithmetic tasks taken from (Wei et al., 2022): SVAMP (Patel et al., 2021),
and AQUA (Ling et al., 2017). We also examine the performance of our method on R-GSM (Chen et al.,
2024), which focuses on changing the question premise order to challenge LLM reading comprehension in an
arithmetic setting. Finally, we evaluate on GSM-Symbolic dataset (Mirzadeh et al., 2024), which changes the
original GSM8K questions through a symbolic template (i.e. changing the numerical values).

5 Logical reasoning We choose five tasks from BigBench Hard (Suzgun et al., 2023): Logical Deduction
Five Objects, Logical Deduction Seven Objects, Reasoning about Colored Objects, Causal Judgement, and
Navigate. For brevity, we refer to these datasets as Five Objects, Seven Objects, Colored Objects, Judgement,
and Navigate.

3 Question answering We choose StrategyQA (Geva et al., 2021), SpartQA (Mirzaee et al., 2021), and
Date (Suzgun et al., 2023) to evaluate our method on question-answering tasks.

2 Reading comprehension We use the Break and Census subsets of the DROP reading comprehension
benchmark (Dua et al., 2019).

5 Hard, long-context To validate HoT on more challenging and long-context tasks, we evaluate HoT on
GPQA Diamond (Rein et al., 2024) and four BigBench Extra Hard (BBEH) (Kazemi et al., 2025) tasks:
Time Arithmetic, Spatial Reasoning, Shuffle Objects, and Causal Judgement.

3 ReasoningTrap datasets LLMs often default to familiar reasoning templates, a tendency referred to as
reasoning rigidity (Jang et al., 2025). To evaluate whether HoT can overcome this limitation, we test on two
complementary datasets. The first, PuzzleTrivial, consists of logic puzzles that are subtly modified from
their original forms, requiring models to move beyond rote solution patterns. The second, 2 Conditioned
Math, is derived from the AIME and MATH500 benchmarks, where problems are augmented with additional
constraints. This design yields mathematically challenging tasks that specifically test a model’s ability to
adapt its reasoning under nonstandard conditions.

5 Results

5.1 HoT prompting makes LLMs hallucinate less and answer questions more consistently

To better quantify and understand how the grounding effect in HoT improves accuracy, we use the Self-
CheckGPT framework (Manakul et al., 2023) to measure whether HoT mitigates hallucinations. This
method outputs a hallucination likelihood score that is correlated with the prevalence of hallucinations in
LLM-generated responses. We evaluate hallucination across five representative datasets from distinct domains
to cover different types of reasoning: r-GSM and GSM-Symbolic (arithmetic), SpartQA (question answering),
Break (reading comprehension), and Seven Objects (logical reasoning).

Experiment The core idea supporting SelfCheckGPT (Appendix S) is that when an LLM truly knows a
fact, multiple stochastic generations from the same prompt should yield consistent statements. In contrast,
hallucinated facts are often inconsistent across multiple independent responses. Given an LLM response
R, SelfCheckGPT generates N additional samples {S1, S2, . . . , SN } from the same prompt and uses a judge
LLM (here, GPT-4o) to evaluate the consistency of each sentence ri in R with respect to the N samples.

We run Gemini-1.5-Flash using HoT prompting on a set of five diverse benchmarks: r-GSM, GSM-
Symbolic, SpartQA, Break, and Seven Objects, and compute the answers’ hallucination and consistency rates.
We repeat for CoT prompting and compare the two methods.
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Table 1: HoT prompting makes
Gemini-1.5-Flash hallucinate consis-
tently less over a diverse set of tasks. Table shows
the SelfCheckGPT hallucination scores. (Lower is
better.)

Prompt R-GSM GSM-Symbolic SpartQA Break Seven Objects Avg
CoT 12.75 44.60 17.33 8.57 22.87 21.22
HoT 7.01 36.18 16.24 4.88 10.31 14.92

Table 2: The rates (%) of unanimous responses from
Gemini-1.5-Flash across 5 independent runs
show that HoT prompting makes LLMs more
consistent in the final answers.

Prompt r-GSM GSM-Symbolic SpartQA Break Seven Objects
CoT 89.55 89.55 93.75 84.75 51.20
HoT 95.00 93.00 97.00 87.25 62.40

Results HoT consistently reduces hallucination scores for across all 5 datasets (from 21.22 → 14.92 in
Tab. 1). This improvement occurs because CoT more often misses key facts in the input question, leading to
higher hallucination scores (e.g., Tabs. 46 and 47).

The relationship between hallucination reduction and accuracy increase is not necessarily linear. For example,
on Seven Objects, ’s SelfCheckGPT hallucination score nearly halves under HoT, yet accuracy increases
by only +4.40 points (see Tabs. 1 and 6). This is because a model’s reasoning could be highly consistent (as
measured by SelfCheckGPT), but its final answer does not match the groundtruth for a task (measured by
task accuracy). That is, hallucination reduction and accuracy measure different aspects of model behavior
and are not perfectly correlated.

Given that HoT produces more unanimous responses than CoT (e.g., +11.2 in Seven Objects in Tab. 2),
HoT achieves lower hallucination scores regardless of correctness, while CoT’s varied responses appear more
hallucinatory despite slightly lower accuracy.

5.2 HoT prompting consistently improves LLM accuracy over CoT across 5 models & 22 datasets

Since HoT makes Gemini-1.5-Flash provide much more consistent answers and hallucinate less over indepen-
dent runs (Sec. 5.1), we test whether HoT can help LLMs improve accuracy over regular question-answering
tasks.

We hypothesize that HoT prompting could encourage LLMs to identify and then leverage facts in the question
in their chain of thoughts, thereby improving accuracy and reducing hallucinations.

Experiment We compare 8-shot CoT and 8-shot HoT on five LLMs, including the proprietary models
GPT-4o ( ), Gemini-1.5-Flash ( ), Gemini-1.5-Pro ( ) and open-source models Llama-3.1-70B ( ),
Llama-3.1-405B ( ) across 22 tasks. Both the CoT and HoT few-shot demonstration examples use the same
questions and answers. The key difference is that HoT examples contain XML tags, while CoT examples do
not.

Results HoT consistently improves over CoT across most datasets and models. On average, HoT improves
LLM accuracy on arithmetic, question answering, logical reasoning, and long-context tasks by +2.61 (Tab. 4),
+2.58 (Tab. 5), +2.53 (Tab. 6), and +2.03 pp (Tab. 7), respectively. Especially, HoT significantly increases
LLM accuracy on three hard datasets: Puzzle and Conditioned Math (AIME, MATH500) by +11.38 (Tab. 3).

On recent adversarial, more challenging versions of GSM8K (i.e., r-GSM and GSM-Symbolic), HoT shows
substantial improvements of +3.09 and +0.87 pp (Tab. 4), respectively.

HoT also outperforms CoT on benchmarks involving long and complex reasoning. Specifically, HoT achieves
a +5.55 over CoT on GPQA Diamond (38.38% vs. 32.83%) and a +4.50 gain on BBEH Causal Judgement
(53.00% vs. 48.50%) (Tab. 7). In contrast, on BBEH Spatial Reasoning and BBEH Shuffle Objects, where
questions are extremely long, HoT does not show a significant advantage over CoT.

Compared to CoT, HoT reduces contradictory errors by +10.00 on StrategyQA, +26.70 on SpartQA, and
+3.30 on AQUA (see Tab. 36). Furthermore, in AQUA, CoT answers in fail to even produce the answer
in 7.7% of cases, while HoT has no such failures.

Qualitative insights: The substantial gains on Puzzle and Conditioned Math (+11.38 in Tab. 3) and most
other hard datasets can be explained from an observed phenomenon that HoT encourages LLMs to make
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use of the important facts already given in the input more (e.g., Fig. 1, Tab. 37). In contrast, with
vanilla CoT prompting, LLMs may overlook important facts, e.g. not using b = c = d = 0 in the calculation
(Fig. 1), leading to incorrect answers. This ability to pay attention to facts is important for adversarial
datasets (e.g. PuzzleTrivial, AIME, MATH500 (Conditioned Math), r-GSM).

Table 3: HoT outperforms CoT across 3 ReasoningTrap tasks, with significant gains in MATH500
(Conditioned Math) (+18.00 , an example shown in Fig. 1) and PuzzleTrivial (+12.50 , an example
shown in Tab. 37).

Prompt PuzzleTrivial AIME
(Conditioned Math)

MATH500
(Conditioned Math) Task Mean (∆)

CoT 66.25 44.12 36.00 48.79
HoT (∆) 73.75 (+7.50) 52.94 (+8.82) 54.00 (+18.00) 60.23 (+11.44)

CoT 65.00 41.12 44.00 40.50
HoT (∆) 71.25 (+6.25) 50.00 (+8.88) 56.00 (+12.00) 59.08 (+18.58)

CoT 38.75 20.58 28.00 29.11
HoT (∆) 45.00 (+6.25) 26.47 (+5.89) 38.00 (+10.00) 36.49 (+7.38)

CoT 50.00 17.65 24.00 30.55
HoT (∆) 62.50 (+12.50) 23.50 (+5.85) 30.00 (+6.00) 38.67 (+8.12)

Model Mean ∆ +8.13 +7.36 +11.50 +11.38

Table 4: Over all 5 LLMs, HoT consistently improves accuracy over CoT across four arithmetic tasks.
Notably, HoT achieves the largest performance gains in AQUA (+14.64 for ) and R-GSM (+12.73 for ).

Model Method SVAMP AQUA R-GSM GSM-Symbolic Task Mean (∆)
CoT 92.80 81.42 85.91 81.67 85.45
HoT (∆) 94.80(+2.00) 96.06(+14.64) 86.36(+0.45) 83.67(+2.00) 90.22(+4.77)
CoT 94.70 82.68 78.18 85.67 85.31
HoT (∆) 95.80(+1.10) 91.73(+9.05) 90.91(+12.73) 86.33(+0.66) 91.19(+5.89)
CoT 93.00 90.94 89.09 82.33 88.84
HoT (∆) 95.10(+2.10) 87.01(-3.93) 89.09 82.33 88.38(-0.46)
CoT 93.70 87.40 90.91 90.33 90.59
HoT (∆) 95.50(+1.80) 88.98(+1.58) 91.82(+0.91) 90.00(-0.33) 91.58(+0.99)
CoT 94.60 79.13 89.09 87.33 87.54
HoT (∆) 95.20(+0.60) 82.68(+3.55) 90.45(+1.36) 89.33(+2.00) 89.42(+1.88)

Model Mean ∆ +1.52 +4.98 +3.09 +0.87 +2.61

Table 5: Over all 5 LLMs, HoT consistently improves accuracy over CoT across three QA tasks (StrategyQA,
SpartQA, Date Understanding) and two reading comprehension tasks (Break & Census). The largest
gains are observed in StrategyQA (+15.07 for ) and SpartQA (+11.88 for ).

Model Method StrategyQA SpartQA Date Break Census Task Mean (∆)
CoT 76.55 47.28 85.24 83.61 90.00 76.54
HoT (∆) 79.74 (+3.19) 59.16 (+11.88) 85.79 (+0.55) 86.25 (+2.64) 90.00 80.19 (+3.65)
CoT 81.75 61.88 93.31 86.39 91.75 83.02
HoT (∆) 83.45 (+1.70) 64.85 (+2.97) 95.82 (+2.51) 87.36 (+0.97) 92.50 (+0.75) 84.80 (+1.78)
CoT 69.30 66.09 91.36 88.75 94.25 81.95
HoT (∆) 84.37 (+15.07) 67.08 (+0.99) 91.92 (+0.56) 88.89 (+0.14) 94.25 85.30 (+3.35)
CoT 85.33 69.80 95.54 90.28 93.50 86.89
HoT (∆) 88.43 (+3.10) 72.28 (+2.48) 97.49 (+1.95) 90.28 94.50 (+1.00) 88.60 (+1.71)
CoT 83.89 55.00 96.66 86.75 86.25 81.81
HoT (∆) 85.37 (+1.48) 59.75 (+4.75) 97.21 (+0.55) 87.50 (+0.75) 90.75 (+4.50) 84.12 (+2.41)

Model Mean ∆ +4.91 +4.61 +1.22 +0.90 +1.25 +2.58
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Table 6: HoT outperforms CoT across five logical reasoning tasks from BigBench Hard with notable gains
in Judgement (+15.5 for ) and Five Object (+6.00 for ).

Model Method Five Objects Seven Objects Colored Objects Judgement Navigate Task Mean (∆)
CoT 78.80 74.80 94.00 71.66 92.80 82.41
HoT (∆) 82.00 (+3.20) 79.20 (+4.40) 95.20 (+1.20) 71.66 92.80 84.17 (+1.76)
CoT 92.80 86.00 96.40 74.87 92.00 88.41
HoT (∆) 98.80 (+6.00) 88.80 (+2.80) 97.20 (+0.80) 75.40 (+0.53) 96.40 (+4.40) 91.32 (+2.91)
CoT 92.80 79.60 92.00 67.91 87.60 83.98
HoT (∆) 94.00 (+1.20) 83.60 (+4.00) 93.60 (+1.60) 71.12 (+3.21) 90.40 (+2.80) 86.54 (+2.56)
CoT 95.60 89.60 96.80 67.91 95.20 89.02
HoT (∆) 97.20 (+1.60) 90.00 (+0.40) 97.20 (+0.40) 74.33 (+6.42) 97.20 (+2.00) 91.19 (+2.16)
CoT 93.60 85.20 98.40 73.80 96.40 89.48
HoT (∆) 92.80 (-0.80) 86.40 (+1.20) 98.80 (+0.40) 89.30 (+15.5) 96.40 92.74 (+3.26)

Model Mean ∆ +2.24 +2.56 +0.88 +5.13 +1.84 +2.53

Table 7: HoT outperforms CoT across five hard, long-context tasks, with notable gains in Causal Judgement
(+4.50 ) and GPQA Diamond tasks (+5.55 ).

Prompt BBEH
Time Arithmetic

BBEH
Shuffle Objects

BBEH
Spatial Reasoning

BBEH
Causal Judgement

GPQA
Diamond Task Mean (∆)

CoT 31.00 3.00 9.50 48.50 32.83 24.97
HoT (∆) 32.00 (+1.00) 7.00 (+4.00) 10.00 (+0.50) 53.00 (+4.50) 38.38 (+5.55) 28.08 (+3.11)

CoT 46.00 17.00 10.00 53.50 41.92 33.68
HoT (∆) 48.50 (+2.50) 19.00 (+2.00) 10.50 (+0.50) 58.00 (+4.50) 43.43 (+1.51) 35.89 (+2.21)

CoT 26.50 14.00 10.00 47.00 21.21 23.74
HoT (∆) 29.00 (+2.50) 15.00 (+1.00) 10.00 50.00 (+3.00) 25.25 (+4.04) 25.85 (+2.11)

CoT 41.00 17.00 10.00 56.00 23.23 29.45
HoT (∆) 41.50 (+0.50) 17.00 11.00 (+1.00) 56.00 25.25 (+2.02) 30.15 (+0.70)

Model Mean ∆ +1.63 +1.75 +0.5 +3.00 +3.28 +2.03

5.3 Span-Level LLM Judging Reveals Lower Hallucination Rates with HoT

SelfCheckGPT (Manakul et al., 2023) primarily measures response consistency (see Sec. 5.1) and does not
directly localize which parts of an output are hallucinated. To obtain span-level hallucination annotations,
we instead use an LLM-as-a-judge setup (see Appendix T), which can flag specific hallucinated spans.

Aligning with (Cossio, 2025; Li et al., 2024), we use four broad hallucination types: contradiction, missing
context, calculation error, and logical error.

1. Contradiction : Answer directly contradicts a specific fact in the question.
2. Missing Context : Answer ignores crucial information from the question that affects the reasoning.
3. Calculation Error : The arithmetic computation itself is mathematically incorrect.
4. Logical Error : The reasoning step is logically flawed or misinterprets the problem.

Experiment We apply LLM-as-Judge using Gemini-2.5-Flash to evaluate Gemini-1.5-Flash HoT responses
across five diverse benchmarks: r-GSM, GSM-Symbolic, SpartQA, Break, and Seven Objects. Hallucination
rate is computed as the proportion of questions containing at least one hallucinated span, and the same
evaluation is repeated for CoT responses. We report both hallucination rate and task accuracy to assess
whether HoT reduces hallucinations while preserving or improving performance compared to CoT (see Tabs. 8
and 9).

Results We observe that while HoT reduces the hallucination rate in Seven Objects by 9.00 points but only
improves the accuracy by 2.80 points. One possible explanation is that the Seven Objects dataset requires
complex multi-step reasoning to reach the final answer. Hallucinations often appear in intermediate reasoning
steps, yet the model can still produce the correct final answer. Consequently, fixing these hallucinations
yields only minimal accuracy improvements.
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Table 8: HoT reduces the hallucination rate mea-
sured as the fraction of responses containing halluci-
nations.

Hallucination Rate ↓ R-GSM GSM-Symbolic SpartQA Break Seven Objects
CoT 12.00 14.50 80.00 14.50 21.50
HoT 6.00 14.50 74.00 14.00 12.50
∆(CoT − HoT) 6.00 0.00 6.00 0.50 9.00

Table 9: Accuracy comparison between CoT and
HoT across different benchmarks.

Accuracy ↑ R-GSM GSM-Symbolic SpartQA Break Seven Objects
CoT 78.18 85.67 61.88 86.39 86.00
HoT 90.91 86.33 64.85 87.36 88.80
∆(HoT − CoT) 12.73 0.66 2.97 0.97 2.80

For reading comprehension datasets (Break, SpartQA), hallucinations primarily arise from misusing or
ignoring passage information, so we evaluate them using Contradiction and Missing Context. In contrast,
hallucinations in arithmetic and logical reasoning datasets (r-GSM, GSM-Symbolic, Seven Objects) mainly
result from faulty computation or invalid inference, and are therefore labeled as Calculation Error and Logical
Error. This dataset-specific labeling aligns evaluation with each dataset’s dominant failure modes.

5.4 HoT outperforms CoT and other advanced prompting methods

Given that HoT provides consistent gains over CoT prompting, sometimes substantial on hard and adversarial
benchmarks (Sec. 5.2), it is natural to ask: Q1: How would HoT fare against other advanced prompting
techniques? Q2: Can HoT be used in tandem with other techniques to even further improve LLM accuracy?

We first examine whether HoT outperforms the Repeated Question prompting (RQ) (Mekala et al., 2024), then
extend our comparison by integrating both HoT and CoT with Self-Consistency (SC) and the ComplexCoT
strategy. That is, SC takes multiple LLM responses to the same prompt and selects the most frequent answer
among these outputs, whereas ComplexCoT selects the most complex answer.

Additionally, we evaluate HoT against multi-step promptings including Least-to-Most (LtM), Tree-of-Thought
(ToT), Self-Refine, and Chain-of-Verification (CoVE) (see details at Appendix U).

Experiment We evaluate HoT, CoT, RQ, CoT + SC and HoT + SC, ComplexCoT, and ComplexHoT
(HoT + ComplexCoT) across five independent runs on 17 benchmarks (7 Arithmetic, 5 Logical Reasoning, 3
Question Answering, and 2 Reading Comprehension, details of each dataset are in Appendix P) and two
models ( , ) (Tabs. 4 to 6) and report the mean and standard deviation (std) to ensure reliability. Mean
accuracies across all benchmarks are in Tab. 10.

We also compare HoT against four other state-of-the-art prompting techniques on 3 datasets (r-GSM, Seven
Objects, and Date) across 5 runs and two models ( , ). The reported mean accuracies are in Tab. 11.

Result Over 17 datasets, HoT outperforms both RQ and CoT (Tab. 10). Interestingly, HoT even surpasses
CoT + SC by +1.02 (87.24 vs. 86.22; Tab. 10).

When combining HoT with SC, the resultant HoT + SC method surpasses HoT alone and even CoT+SC.
Similarly, ComplexHoT outperforms HoT alone and ComplexCoT alone consistently (Tab. 10). That is, HoT
provides a distinct benefit to LLMs as their accuracy continues to improve as HoT prompting is used in
combination with other approaches that reward consistency (SC) and longer thinking (ComplexCoT).

Table 10: Over 5 runs across 17 benchmarks, HoT consistently outperforms both CoT and Repeating
Questions (RQ), and even CoT + Self-Consistency (SC), and ComplexCoT. ComplexHoT and HoT + SC
also outperforms their counterparts (ComplexCoT and CoT + SC) showing that HoT can complement these
methods.

Model CoT RQ HoT CoT + SC HoT + SC ComplexCoT ComplexHoT
83.21±0.82 83.51±1.98 85.17±1.85 83.68 87.18 83.79 86.37
87.61±1.09 88.35±1.52 89.31±0.92 88.76 90.39 89.11 90.71

Mean ± std 85.41±0.96 85.93±1.75 87.24±1.38 86.22 88.79 86.45 88.54

On average over 5 runs and 3 datasets, HoT alone is still the most performing method compared to all other
advanced prompting methods of CoT, LtM, CoVE, Self-Refine, and ToT (Tab. 11). Under other prompting
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techniques, we observe LLMs often miss critical facts (e.g., overlooking temporal indicators like “yesterday” in
Date), causing incorrect answers. In contrast, LLMs tend to focus better on key facts under HoT prompting.

Table 11: Mean ± standard deviation over 5 runs across r-GSM, Seven Objects, and Date comparing HoT
against LtM, ToT, Self-Refine, and CoVE. HoT consistently outperforms these advanced methods.

Model CoT LtM CoVE Self-Refine ToT HoT
81.41±0.90 75.94±1.42 74.07±1.34 70.32±0.72 81.98±1.70 84.21±1.45
88.94±2.07 84.38±0.62 81.54±1.27 81.74±1.66 87.39±0.92 91.87±0.91

Mean 85.18±3.77 80.16±4.22 77.81±3.73 76.03±5.71 84.69±2.71 88.04±3.83

5.5 Ablation study: Repeating the question and adding <fact> tags improves accuracy

As HoT consistently outperforms CoT over many tasks (Secs. 5.2 and 5.4), a burning question is: What
components contribute to HoT’s success?

HoT consists of two steps: (a) regenerating the question but with XML tags around key facts; and (b) adding
tags to the answer. Interestingly, concurrent work showed that repeating the question alone can help improve
LLM accuracy (Mekala et al., 2024). Therefore, we perform an ablation study to understand the impact
of each HoT component: (1) Repeating the question alone (no tags); (2) Repeating and adding tags to the
question; and (3) Adding tags to the answer, but not to the question.

Experiment We compare the following variations: (a) CoT: Few-shot CoT baseline (Wei et al., 2022); (b)
Repeated Question (R-Q): Repeat the input question and then generate the regular CoT answer (Mekala
et al., 2024).
(c) Tags in Question (T-Q): Repeat the question and wrap key facts in it with XML tags while leaving the
answer untagged.
(d) Tags in Answer (T-A): Repeat the question and wrap key facts in the answer with XML tags.
(e) Tags in Question and Answer (HoT): The full HoT recipe, i.e. wrapping XML tags around key facts
in the reformatted question and also adding corresponding tags to the answer.

For each variation, we evaluate 4 models ( , , , ) on 400 randomly sampled instances across 6
diverse, representative datasets (AQUA, StrategyQA, R-GSM, Seven Objects, Judgement, & Navigate).
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Figure 4: HoT ablation study: Every component—
repeating the question (R-Q), adding tags to only
question (T-Q), adding tags to only answer (T-
A)—independently contributes to the overall ac-
curacy of HoT prompting (+). Each component
also outperforms the vanilla CoT (-×-). y-axis
shows mean accuracy across 6 datasets (the de-
tailed accuracy of each dataset is in Appendix M).

Results First, on average across 6 datasets and 4 LLMs, every variation (R-Q, T-Q, T-A, and HoT)
outperforms the baseline CoT (Fig. 6). That is, each HoT component is an improvement over CoT. Second,
for some smaller LLMs ( , ), adding each component monotonically increases accuracy while the trend
is weaker for larger models ( ).

Interestingly, examining the results of the T-A method shows that, for larger LLMs (i.e. and ), while we
instruct them via demonstrations to insert tags exclusively to the answer (but not the question), these two
models still generate, on average, 3.27 and 2.27 tags, respectively, in each question (Tab. 29). As the result,
instructing LLMs to generate tags exclusively in the answer (T-A) is sufficient for large LLMs to
gain accuracy over not having tags at all (CoT, and R-Q).

We also find that intentionally scrambling tags in the QA pairs in the few-shot examples significantly reduces
HoT’s accuracy across datasets (-2.13 pp Appendix F). However, even with mismatched tags, HoT still
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outperforms CoT by +1.21 pp (Appendix F) perhaps because LLMs do not highlight tags randomly as shown
in the demonstrations.

5.6 HoT highlights help humans improve their speed of verifying LLM answers

High-quality text highlights in classification tasks reduce decision time and effort, while low-quality highlights
harm user accuracy (Ramírez et al., 2019). Here, we also aim to assess how our highlights in HoT impact
user decision verification accuracy and time. That is, users are asked to decide whether the final answer is
accurate given the input question, and the HoT answers. To our knowledge, this would be the first study in
the LLM literature that studies how highlights in chains of thought impact users on a downstream task.

Experiment To evaluate the impact of highlights to humans on arithmetic and reading comprehension
problems, we measure user accuracy in verifying whether LLM responses (of , , , and ) are
accurate for GSM-Symbolic and DROP questions. This verification task is known as distinction (Kim et al.,
2022) or verification task (Taesiri et al., 2022; Nguyen et al., 2021).

We select 30 incorrect and 30 correct HoT responses from each dataset, forming a balanced pool of questions
with 120 cases of HoT. We then remove the XML <fact> tags from HoT responses, resulting in 120 HoT and
120 CoT responses for user verification.

We recruit 63 users, consisting of undergraduate and graduate students, each verifying 10 LLM responses
to questions from GSM-Symbolic and DROP via an online interface (see Appendix A). Users are randomly
assigned to see exclusively HoT or CoT responses and then have to predict if a response is correct or
incorrect. To simulate real-world constraints, users are given a maximum of 2 minutes per question, after
which, they are required to make a decision.

Method Avg Time
(secs)

Accuracy (%)
LLM is correct

Accuracy (%)
LLM is incorrect

HoT 47.26 84.48 ± 20.28 54.83 ± 30.13
CoT 62.38 78.82 ± 28.26 72.21 ± 21.99

Table 12: Users spend ∼25% less time when verifying
HoT answers (compared to no highlights, i.e. CoT). High-
lights make users accept LLM answers more, yielding higher
accuracy in correct cases but worse in incorrect ones.

Results On average, over all 240 cases including both correct and incorrect answers, users spend
nearly 25% less time (47.26 vs. 62.38 seconds, i.e. +15.12 seconds faster) when making decisions with
highlights (Tab. 12). Interestingly, users perform better on correct cases (84.48 vs. 78.82) but worse on
incorrect cases (54.83 vs. 72.21). That is, HoT highlights tend to make users believe that an answer
is accurate (Appendix B), making them more likely to accept the answer. This aligns with recent findings
(Jaźwińska & Chandrasekar, 2025; Wu et al., 2025) showing that search engines and LLMs often generate
misleading citations, causing users to wrongly trust their answers.

In practice: LLMs are often more correct than wrong. Therefore, the ratio of correct/incorrect cases
is far above 50/50. That is, we report user accuracy on these two subsets separately (Tab. 12) as taking
an average might lead to misleading interpretation. For real-world datasets, highlights in HoT is still
estimated to improve the user verification accuracy over an entire dataset, i.e., both correct and
incorrect cases (Appendix D).

5.7 Learning to highlights make LLMs improve OOD accuracy and pay more attention to key facts

Our previous sections showed that HoT prompting improves the accuracy consistently for large LLMs
including Gemini and Llama families. However, prior research also found that smaller LLMs tend to struggle
in following instructions (Brown et al., 2020). Similarly, our preliminary results reveal that HoT few-shot
prompting does not help small LLMs of a few billion parameters—they fail to highlight facts appropriately.

To smaller LLMs generate highlighted chains of thoughts, we first use HoT few-shot prompting to generate
SFT training examples and and repeat the same procedure to generate CoT examples separately. Then,
we finetune small open-weight LLMs on these two datasets and compare HoT-finetuned and CoT-finetuned
LLMs against the baselines. One might also ask: Would fine-tuning improve LLM performance on
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out-of-distribution (OOD) datasets? Our answer: Yes! We observe that HoT-finetuned models can
recall input facts more accurately, resulting in more accurate answers (Tab. 13).

To shed light on why accuracy improves after finetuning on HoT examples, we perform an attention entropy
analysis (Zhang et al., 2024) and find that HoT-finetuned models pay more attention to tagged facts than
the baseline and CoT-finetuned models.

Experiment We finetune LLaMA-3.2-1B (Meta, 2024) and Qwen2.5-1.5B (Yang et al., 2024) on 3,187 CoT
responses, and 3,187 HoT responses in total that Gemini-1.5-Pro generates for 17 datasets (i.e., those
datasets previously shown in Tabs. 4 to 6). Then, we compare the accuracy of 3 models (original model,
model finetuned on CoT, and finetuned on HoT) across 5 OOD benchmarks (Tab. 13). We also measure the
attention entropy of three models on PuzzleTrivial questions (Tab. 14) to gain insights into why HoT-training
may improve LLM accuracy.

Table 13: HoT-finetuned LLMs consistently outperform both the LLMs finetuned on CoT and the base model
across 5 OOD tasks including: 3 ReasoningTrap (PuzzleTrivial, AIME, and MATH500), and 2 long-context,
logical tasks (BBEH Causal Judgement, BBEH Time Arithmetic), an example shown in Fig. 5).

Model PuzzleTrivial AIME
(Conditioned Math)

MATH500
(Conditioned Math)

BBEH
Causal Judgement

BBEH
Time Arithmetic Mean (∆)

Qwen-2.5-1.5B 13.75 14.70 20.00 39.50 18.50 21.30
+ SFT on CoT 28.75 11.76 18.00 15.00 10.00 16.70
+ SFT on HoT 38.75 29.40 28.00 40.00 28.50 32.94

Llama-3.2-1B 11.20 2.90 10.00 21.00 30.50 15.12
+ SFT on CoT 13.75 5.90 2.00 29.50 45.00 19.24
+ SFT on HoT 18.75 11.80 10.00 32.00 52.50 27.02

Results Llama-3.2-1B finetuned on HoT examples achieves the best accuracy compared to the CoT-finetuned
model and the base model (27.02 vs 19.24 and 15.12). Similarly, Qwen-2.5-1.5B finetuned on HoT examples
achieves the best accuracy compared to the CoT fine-tuned model and base model (32.94 vs 21.30 and 16.70)
(see Tab. 13). After finetuning on HoT, LLMs does not need few-shot prompting anymore. Instead, they
generate answers directly with highlights over facts (see Fig. 5).

Interestingly, we find LLMs finetuned on HoT training examples demonstrate a more focus attention maps,
i.e., consistently lower attention entropy (e.g., 1.524 for HoT-finetuned Llama-3.2-1B vs. 1.671 for the base
Llama-3.2-1B; Tab. 14). Qualitatively, over hard, adversarial datasets such as PuzzleTrivial, HoT-finetuned
LLMs accurately recall the key facts that may be uncommon (e.g., “permanently infertile lions” ; Fig. 5) to
answer tricky questions correctly. In contrast, the base LLMs or CoT-finetuned models often overlook such
facts (Fig. 5; Left), yielding wrong answers.

Attention
Entropy Qwen2.5-1.5B Llama-3.2-1B

Base 2.150 1.671
+ SFT on CoT 2.141 1.847
+ SFT on HoT 1.773 1.524

Table 14: LLMs finetuned on HoT show lower atten-
tion entropy on PuzzleTrivial questions than the CoT-
finetuned and base models. Attention entropy is computed
as H(A) = −

∑
i pi log(pi), where A denotes the attention

distribution over tokens and pi is the normalized attention
weight assigned to token i.

6 Limitations

First, while larger models such as , and are generally able to follow the format reliably, smaller
models like and can exhibit inconsistencies, sometimes repeating the few-shot examples (Appendix L).
Smaller LLMs might incorrectly repeat the question (in Appendix O) or fail to adhere to the tag format, as
demonstrated in the few-shot examples (Appendix L). Second, HoT prompting inherently requires LLMs
to repeat the question, which costs extra tokens and could be problematic for long-context questions (see
Appendix C). Third, HoT prompting requires task-specific demonstrations, for which we manually create 8
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Reformatted Question: A pair of permanently 
infertile lions is placed in a field. Every month, 
each fertile mature pair produces another pair. 
Lions take one month to mature. How many pairs are 
there after 13 months?

Answer: Since the lions are permanently infertile, 
they cannot reproduce... Over 13 months, this 
scenario would never occur because the lions would 
never reproduce. The answer is (1).

Answer: Step 1: Determine the initial number of 
fertile pairs.
Initially, we have 2 fertile pairs.
Step 2: Calculate the number of fertile pairs over 
time.
Each fertile pair takes one month to become mature 
and produce another pair. Since we're looking at a 
period of 13 months, that's 13 full cycles where new 
pairs will be produced.
... Final calculation $2^13$=8192 pairs.❌

Highlighted Chain of ThoughtChain of Thought

Question: A pair of permanently infertile lions is placed in a field. Every month, each fertile mature pair 
produces another pair. Lions take one month to mature. How many pairs are there after 13 months?

Figure 5: Left: After finetuned via SFT on CoT examples, Qwen-2.5-1.5B answers incorrectly an adversarial
question from PuzzleTrivial as it does not factor in the key fact of “permanently infertile lions” . Right: In
contrast, HoT-finetuned counterpart LLM can highlight facts and answer correctly using the fact (“the lions
would never reproduce”).

examples per dataset. However, highlighting is a costly human effort and may be non-trivial to even define
for some domains.

7 Discussions and Conclusion

We further fine that HoT few-shot prompting causes both Llama-3.1-70B and Llama-3.1-405B to assign more
attention mass to the XML tags tokens (e.g., <fact1>) than to other tokens outside the tags (Appendix E).
Internally, such attention pattern may improve LLM focus on key facts, thus improving accuracy and reducing
hallucination. Additionally, finetuning thinking LLMs DeepSeek-R1 to highlight facts and intermediate
results in their long reasoning chains (see Appendices Q and R) might improve their accuracy and help users
interpret their complex reasoning chains faster.

In this paper, we find the highlights to reduce the verification speed of users substantially; however, do
highlights improve the verification accuracy of another LLM judge? Our preliminary results do not find clear
evidence supporting this hypothesis (Appendix G), which requires further research.

We present HoT, a novel prompting approach that enables LLMs to directly reference text from the input
question in their responses. HoT improves LLM accuracy on arithmetic, question answering, and logical
reasoning tasks. Furthermore, highlights in HoT answers also improve user verification speed.
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