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ABSTRACT

Time series forecasting has historically been a key area of academic research and
industrial applications. In multi-horizon and multi-series forecasting tasks, accu-
rately capturing the local information in a sequence and effectively sharing global
information across different sequences are very challenging, due to the complex
dependencies over time in a long sequence and the heterogeneous nature across
multiple time series. In this paper, from the perspective of causal inference, we
give a theoretical analysis of these difficulties and establish a causal graph to iden-
tify the confounding relationship that generates harmful bias and misleads the time
series model to capture the spurious correlations. We propose a causal triple at-
tention time series forecasting model with three interpretable attention modules,
which leverages the front-door adjustment to remove the confounding effect and
help the model effectively utilize the local and global temporal information. We
evaluate the performance of our model on four benchmark datasets and the results
demonstrate the superiority over the state-of-the-art methods.

1 INTRODUCTION

Multi-horizon and multi-series time series forecasting has become a very intensive field of research.
Compared to one-step-ahead predictions, multi-horizon forecasts provide the estimates for multiple
future time points, enabling better decision making beforehand. Besides, multi-series forecasting
from related time series not only provides richer information by utilizing inter-relationships across
all time series but also alleviates the labor-intensive feature engineering and model design required
for each time series. However, due to the native complex dependencies over time in a long se-
quence and the heterogeneous nature across multiple time series, the multi-horizon and multi-series
time series forecasting has been always facing two major challenges: (1) how to leverage the lo-
cal knowledge lying in a long sequence, and (2) how to effectively take advantage of the global
knowledge extracted from multiple related time series.

Recent deep learning methods (Salinas et al., 2019; Rangapuram et al., 2018; Wen et al., 2017)
based on recurrent and convolutional neural networks provide a data-driven manner to deal with
time series forecasting tasks and achieve great accuracy in most application fields. Due to complex
dependencies over time of recurrent networks and the limits of convolutional filters, these methods
have difficulties in modeling long-term and complex relations in the time series data. Considering
the dependencies of each time point in a sequence, attention-based methods (Fan et al., 2019; Li
et al., 2019) are proposed by assigning different importance to the different time points. In these
models, the local dependencies are effectively utilized for the prediction, but the global information
of the relationship among different series is still unexplainable. Matrix factorization methods (Yu
et al., 2016) and Bayesian methods that share information via hierarchical priors (Chapados, 2014)
are used to learn multiple related time series by leveraging hierarchical structure (Hyndman et al.,
2011). However, how to extract and share the right global information across different time series is
still not fully exploited.

In this paper, we approach these two challenges from a new perspective, causal inference. Based on
the Structural Causal Model (Pearl et al., 2016; Pearl & Mackenzie, 2018), the multi-horizon and
multi-series forecasting tasks can be abstracted into a causal intervention problem with unobserved
confounders. We refer to the confounder as common sense inferred from the time series data that
can be seen as the summarized knowledge for a certain part of series, e.g., “a part of products
sell extraordinarily well at a certain season”, “The sales of new products continue to grow in a
short-range due to new launches”, and so on. However, these common senses usually are only
applicable for part of the time points. The goal of such causal models is to remove the confounding

1



Under review as a conference paper at ICLR 2022

effect caused by unrelated common senses and focus on the mediator that is the predictive local and
global information. Intuitively, such a philosophy of causal intervention can help us clarify how
to extract and share the right local and global dependencies with the related time series. However,
the common sense in time series tasks is usually hard to quantify. We cannot directly observe and
stratify the confounder, and thus are unable to design causal intervention by deploying the simplest
backdoor adjustment. Alternatively, we adopt front-door adjustment (Pearl, 1995) that does not
require any knowledge on the confounder. Besides, the front-door adjustment can provide a more
comprehensible way to understand the mediator, that is how the local and global information is
utilized.

In conclusion, we design a Causal Triple aTtention Time series forecasting model (CTTT) based
on a deep encoder-decoder recurrent architecture, which uses temporal and pattern attentions to ac-
complish front-door adjustment. We provide an intuitive understanding and causal theoretical proofs
for leveraging these two attentions to complete the front-door adjustment. Then, the temporal and
pattern attentions can theoretically shed light on how the local and global knowledge is effectively
extracted from the data and how the right knowledge is accurately utilized to benefit the prediction
of different series. Finally, we adopt transformer attention to associate the decoder with the encoder
sequence to determine which parts of the encoder are more engaged for the decoder prediction and
further improve forecast accuracy. CTTT utilizes these three attention modules to accomplish the
front-door adjustment and help the model capture useful local and global knowledge without abusing
unrelated information.

2 RELATED WORK

Time Series Forecasting. While traditional statistical methods focus on parametric models, i.e.,
ARIMA models (Box & Jenkins, 1968), autoregressive (AR) (Box et al., 2015), exponential smooth-
ing (Gardner Jr, 1985; Winters, 1960), and structural time series models (Harvey, 1990), current deep
learning methods provide a data-driven manner to deal with time series forecasting tasks (Ahmed
et al., 2010). With increasing data availability and computing power, deep learning methods have
showed the promising results, such as sequence-to-sequence deep RNNs architecture (Zhang et al.,
2019; Salinas et al., 2020), deep state space models (Rangapuram et al., 2018), temporal convolu-
tional network (Bai et al., 2018), deep transformer models (Wu et al., 2020). In contrast to these
work, our model integrates the causal inference and proposes a interpretable high-performance time
series forecasting model. It provides insightful explanations about how to utilize the local and global
knowledge implicit in long sequence and different multiple time series.

Causal Inference. Causal inference (Pearl, 2000; Rubin, 2005) has been an attractive research topic
for a long time as it provides an effective way to uncover causal relationships in real-world problems.
Nowadays, the combination of the incisive ideas in the causal inference and various deep learning
model can help improve existing methodologies in a wide range of fields (Yao et al., 2020), such
as treatment effect estimation with observational data (Li & Fu, 2017; Yao et al., 2018; Chu et al.,
2020b), causality analysis of graph networked data (Chu et al., 2021), continual learning (Hu et al.,
2021; Chu et al., 2020a), natural language processing task (Yang et al., 2021; Niu et al., 2021; Ab-
basnejad et al., 2020), few-shot learning (Yue et al., 2020; 2021), domain adaptation (Bengio et al.,
2019). In this work, we aim to incorporate causal inference into time series forecasting task. In
general, the backdoor adjustment is the most direct causal inference method to eliminate the con-
founding effect by splitting the detailed confounder into various strata. However, the confounder
is unobservable in time series forecasting scenario. Therefore, we exploit the front-door adjust-
ment (Pearl, 1995) to mitigate the dataset bias, which is a fundamental causal inference technique
for deconfounding the unobserved confounder.

3 BACKGROUND

Our Causal Triple aTtention Time series forecasting model (CTTT) is based on one deep encoder-
decoder recurrent architecture with triple interpretable attentions for multi-horizon and multi-series
forecasting, which removes the invisible confounding relationship existed in multi-series data. This
confounding relationship can cause harmful bias that misleads the time series model to focus on
the spurious correlations in data and thus reduce prediction accuracy. In this section, we will first
present the problem statement and analyze the causality involved in the time series forecasting task.
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3.1 PROBLEM STATEMENT

Our purpose is to predict the multiple future target values for multiple time series. Denoting the
target value of time series i at time t by yi,t, our goal is to model the conditional distribution

P (yi,t0:T |yi,1:t0−1,xi,1:T ), (1)

where yi,t0:T =
{
yi,t0 , yi,t0+1, . . . , yi,T

}
denotes the target values of future time from time point t0

for series i and yi,1:t0−1 =
{
yi,1, . . . , yi,t0−2, yi,t0−1

}
denotes the target values of past time before

time point t0 for time series i. t0 denotes the time point from which we assume yi,t to be unknown.
Besides, xi,1:T ∈ Rm are covariates that contain observed covariates and known covariates. The
observed covariates are only available in the past and are unknown beforehand. Known covariates
can be predetermined and they are known for all time points. The covariates xi,1:T can be series-
dependent, time-dependent, or both. If some covariates do not depend on time, they are repeated
along the time dimension. The information about absolute time and series are only available to the
model through covariates by time parsing and series embedding. Besides, additional information
about the series or time can be added into the covariate vectors, e.g., features about series item,
variables predictive of outcome, and special time points (festivals or holidays). Due to the complex
dependencies over long time and vanishing gradients problem of recurrent network, we adopt the
rolling window procedure to split all of the series and we keep the total length T for each window,
including conditioning window from 1 to t0 − 1 and prediction window from t0 to T .

Due to the rolling window procedure, we totally obtain n windows and mix them together. Our
model opts for using a sequence-to-sequence setup, including one encoder network for the condi-
tioning window and one decoder network for the prediction window. Information about the obser-
vations in the conditioning window is transferred to the prediction window by the encoder-decoder
framework. We apply our model to each window. During the training stage, both conditioning and
prediction windows have to lie in the past so that the yi,t are observed, but during the prediction
stage yi,t is only available in the conditioning window. Note that the time index t is relative, i.e.
t = 1 can correspond to a different actual time point for each i.

3.2 INTUITIVE UNDERSTANDING OF CAUSAL TRIPLE ATTENTION

The core of our CTTT model is the combination of three attention modules, i.e., temporal attention,
pattern attention, and transformer attention. Prior to giving the theoretical support, we first provide
the intuitive understanding of each attention module.

Temporal Attention. Similar to the self attention of each sentence in BERT (Devlin et al., 2018), to
explore the dependencies of each time point and reveal the trend in each time series window, we ap-
ply the temporal attention to each series window relating different positions of a single window. The
attention mechanism assigns different importance to the different time points of the input window
and gives more attention to the more relevant time points.

Pattern Attention. Due to the heterogeneous nature across multiple time series, sharing information
across all time series is difficult to accomplish in practice. Worse than that, it may bring extra bias
to data, resulting in the reduction of prediction accuracy. Therefore, to effectively capture the shared
information across all time series without abusing the extracted global information to the unrelated
or inapplicable windows, we apply one pattern attention to all windows, so that the more informative
windows are given larger weights for the sake of more pattern attention. Therefore, each window
can only absorb valuable information for itself, avoiding being misled by irrelevant information.

Transformer Attention. Another challenge with recurrent neural networks is that learning long
sequences can be difficult due to complex dependencies over time and vanishing gradients (Chang
et al., 2017). The sequence-to-sequence model sequentially links two RNNs, i.e., an encoder and a
decoder, through the last encoder cell state. This can be limiting as it forms a potential bottleneck
between the encoder and decoder. Furthermore, earlier inputs have to pass through several layers to
reach the decoder (Wu et al., 2020). The transformer attention is utilized to associate the decoder
with the encoder sequence to determine which parts of the encoder are more engaged for the decoder
prediction and thus further improve forecast accuracy.

3.3 CAUSALITY ANALYSIS

Based on the Structural Causal Model (Pearl et al., 2016; Pearl & Mackenzie, 2018), we provide
the theoretical supports for the temporal attention and pattern attention modules. The predicted
target values yi,t0:T in the prediction window are conditioned by the combination of known target
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values yi,1:t0−1 in condition window and covariates xi,1:T in condition and prediction windows. For
convenience, we use ri to denote this combination of all inputs in i-th window. In fact, not all of
the information (all time points, known target values, and covariates) are useful for the prediction of
target values yi,t0:T . Instead of directly relationship R → Y , there exists one mediator M , which
refers to the knowledge extracted from original input R and used for the prediction of target values
Y , i.e., R→M → Y .

Besides, the heterogeneous nature across different time series brings bias into the dataset. The
dataset bias is essentially caused by the confounder C that makes input R and target values Y corre-
lated via C indirectly. In this case, we refer to the confounder C as common sense inferred from the
data, e.g., “high-velocity items can exhibit qualitatively different behavior than low-velocity items”,
“a part of products sell extraordinarily well at a certain festival”, “The sales of new products con-
tinue to grow in a short-range due to new launches”, and so on. However, these common senses
are not applicable for all series windows, so that this confounding relationship may cause harm-
ful bias that misleads the time series model to focus on the spurious correlations in data and thus
reduce prediction accuracy, e.g., if one window conforms to this extracted common sense, it will
enjoy the great benefit; if not, the prediction accuracy of this window will be compromised by this
spurious knowledge. In conclusion, we present this causal graph in Figure 1. R → M denotes the
hidden knowledge extracted from the input; C → R denotes that real scenarios are generated by
common sense; M → Y denotes the prediction based on the predictive knowledge inferred from
input observations. In addition, this Y is also influenced by common sense C.

Figure 1: Causal
relationship in
the multi-series
forecasting dataset.

Besides the legitimate causal path from input R via mediator M to Y , the
“backdoor” path R← C →M → Y also contributes an effect to Y via con-
founder C, which will induce spurious correlation between R and Y . There-
fore, if we directly train the model based on the correlation P (Y |R) without
intervention on confounders, no matter how large the amount of training data
is, the model can never identify the true causal effect from R to Y (Pearl,
2000; Rubin, 2005). To remove the confounding relationship between R and
Y , we should block R ← C → Y to get the causal effect between R and Y .
The backdoor adjustment is the most direct method to eliminate the spurious
correlation by approximating the “physical intervention” (Pearl & Mackenzie,
2018; Yang et al., 2021). To use the backdoor adjustment, we need to know
the details of the confounder for splitting it into various strata. However, in
time series tasks, we have no idea about what common sense constructs the
confounders in the dataset, thus we are unable to deploy the backdoor adjustment. Alternatively, we
adopt front-door adjustment that does not require any knowledge on the confounder. Besides, the
front-door adjustment can provide a more comprehensible way to understand the mediator, that is
how the local and global information is utilized.

Therefore, instead of the likelihood P (Y |R), we use the causal intervention P (Y |do(R)) (Pearl,
1995) for the time series forecasting to get the true causal relationship between R and Y . The front-
door adjustment calculates P (Y |do(R)) along with the front-door path R → M → Y , which is
constructed from two partially causal effects P (M |do(R)) and P (Y |do(M)), i.e., P (Y |do(R)) =∑

m P (M = m|do(R))P (Y |do(M = m)).

Similarly, to calculate P (M = m|do(R)), we should block the backdoor path R ← C → Y ←
M between R and M . We can observe there is a collider (C → Y ← M ) in this backdoor
path. The result of having a collider in the path is that the collider blocks the association between
the variables that influence it (Pearl, 1995). Thus, the collider does not generate an unconditional
association between the variables that determine it. Therefore, this path is naturally blocked and we
have P (M = m|do(R)) = P (M = m|R).

For P (Y |do(M)), we need to block the backdoor path M ← R ← C → Y between M and
Y . Since we do not know the details about the confounder C, thus we have to block this path by
intervening R, i.e., P (Y |do(M = m)) =

∑
r P (Y |M = m,R = r)P (R = r). Finally, we can get:

P (Y |do(R)) =
∑

m
P (M = m|R)

∑
r
P (R = r)[P (Y |M = m,R = r)]. (2)
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Figure 2: Our causal triple attention time series forecasting model (CTTT) contains two parts, i.e.,
the representation model and the prediction model. The representation model is used for learning
the representation vector for each time point, which utilizes gated residual network to select rele-
vant features and gated linear units to suppress unnecessary information. The prediction model is a
encoder-decoder recurrent network with LSTM cells to predict the target values based on the rep-
resentation vectors learned from the representation model. Three attention modules are deployed to
help model capture the local and global information and mitigate the confounding effect.

4 OUR PROPOSED FRAMEWORK

4.1 REPRESENTATION MODEL

As shown in Fig. 2, Our CTTT consists of two main components, i.e., representation model and
prediction model. In the following, we present the details of each component.

Most real-world time series datasets contain features with less predictive content, thus variable se-
lection is necessary to help with model performance. Inspired by the variable selection network in
Lim et al. (2021), we propose a representation model, which is independent of the following pre-
diction model and is trained before the training of the prediction model. The covariates X are input
into the gated residual network (GRN) with gated linear units (GLUs) to generate the representation
vectors R. To make the representation vectors rich with more predictive information, we put them
in one supervised learning of target value y in the conditioning window. The purpose of this model
is to obtain the representation vector for each time point, which will be used in the prediction model.

This representation model is necessary in two ways. First, it is trained by predicting observed tar-
get values yi,t0:T , so that we can get the representation vectors ri,1:T that include the information
predictive of the target value. Second, it can provide insights into which variables are most signifi-
cant for the target prediction and also remove any unnecessary noisy inputs which could negatively
impact the performance (Lim et al., 2021).

We use entity embeddings for series item and categorical variables, and linear transformations for
continuous variables, so that m covariates and one series item are transformed into m + 1 d-
dimensional vectors e(k)j,t ∈ Rd, which denotes the k-th transformed input at time t for window

j. Let ξj,t be the concatenation of flattened transformed inputs e(1)j,t , . . . , e
(m+1)
j,t . Variable selec-

tion weights vj,t are generated by feeding ξj,t through a GRN, followed by a Softmax layer, i.e.,
vj,t = Softmax (GRNv(ξj,t)). Except for the GRNv for the weights, the transformed input has its

own GRN, i.e., ẽ(k)j,t = GRNe(k)

(
e
(k)
j,t

)
, where k = 1, . . . ,m+1 and ẽ(k)j,t is the filtered transformed

input. GRNv and GRNe(k) are shared across all time points t and all windows j. The representa-
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tion vector rj,t are obtained by weighted sum of filtered transformed inputs ẽ(k)j,t and their variable

selection weights vj,t, i.e., rj,t =
∑m+1

k=1 v
(k)
j,t ẽ

(k)
j,t , where v(k)j,t is the k-th element of vector vj,t.

In this representation model, we note that the known covariates are input into both the conditioning
window and the prediction window, which are known all time points. If there are observed covariates
in the dataset, which are only available in the past and are unknown beforehand, we only input them
into the conditioning window. Because each covariate has its own GRN and the final representation
rj,t is calculated by weighted sum (the dimension is unchanged), we only need to rescale the variable
selection weights vj,t in the prediction window to adapt to the absence of observed covariates.
Therefore, there’s no limit to the type of covariates in our model.

4.2 PREDICTION MODEL

According to the causality analysis for the imbalanced time series data, we are introducing how to
utilize the temporal and pattern attention modules to accomplish this front-door adjustment (Eq. (2))
in a deep framework. We can parameterize the predictive distribution P (Y |M,R) as a network
g(·), which is one encoder-decoder recurrent neural network with LSTM cell, i.e., P (Y |M,R) =
g(M,R). Besides, we need to sample R, i.e.,

∑
r P (R = r) and M , i.e.,

∑
m P (M = m|R), and

feed them into the network to complete P (Y |do(R)) according to expression of Eq. (2). Because
the network forward-pass consumption for all of these samples is prohibitively expensive, we apply
Normalized Weighted Geometric Mean (NWGM) approximation (Xu et al., 2015; Srivastava et al.,
2014) to absorb the outer sampling into the feature level and thus only need to forward the “absorbed
input” in the network for once (Yue et al., 2020; Hu et al., 2021; Yang et al., 2021). By NWGM
approximation,

∑
m P (M = m|R) and

∑
r P (R = r) in Eq. (2) can be absorbed into the network:

P (Y |do(R)) ≈ g(M̂ , R̂), where M̂ =
∑

m
P (M = m|h(R))m, R̂ =

∑
r
P (R = r|f(R))r, (3)

where h(·) and f(·) denote query embedding functions which can transform the representation vec-
tors R into two query sets.

Following the idea about the attention in Yang et al. (2021), the estimations R̂ and M̂ in Eq. (3)
are classic attention network calculates. The nature of attention mechanism can be summarized as
the common Q-K-V notation. Attention mechanism scales values V based on relationships between
keys K and queries Q i.e., Attention(Q,K,V ) = A(Q,K)V , where A(·) is a normalization
function. A common choice is scaled dot-product attention (Vaswani et al., 2017), i.e., (Q,K) =
Softmax(QKT /

√
dattn).

To improve the learning capacity of the standard attention mechanism, multi-head attention is pro-
posed in (Vaswani et al., 2017), employing different heads for different representation subspaces:

MultiHeadAttention(Q,K,V ) = H̃ WH , (4)

H̃ =
1

H

∑H

h=1
Attention(QW

(h)
Q ,K W

(h)
K ,V W

(h)
V ), (5)

where h = 1, . . . ,H is the indicator of head,WH is used for final linear mapping andW (h)
K ,W (h)

Q ,

W
(h)
V are head-specific weights for keys, queries and values.

Specifically, the estimation of M̂ can be expressed as temporal attention, i.e.,
MultiHeadAttention(QTem, KTem, VTem). In this case, all the KTem and VTem come
from one window and they are the representation vector of each time point rj,1, . . . , rj,T . Because
this is one self-attention, QTem is h(R) and also comes from the representation vector. For
ATem(QTem,KTem), each attention vector aTem is the network estimation of the probability
P (M = m|h(R)). For the estimation R̂, it is a pattern attention i.e., MultiHeadAttention(QPat,
KPat, VPat), where KPat and VPat come from the other windows in the data, and QPat comes
from f(R). In this case, aPat approximates P (R = r|f(R)). In the implementation, because
it is impossible to calculate the pattern attention by using all windows in the data, we set KPat

and VPat as the global dictionaries compressed from the whole dataset. This step also can help to
summarize the information and remove the noise. We initialize this dictionary by using K-means
over all the windows’ representation vectors, i.e., Concatenate[rTj,1, . . . , r

T
j,T ] (j = 1, . . . , n), the

concatenated flatten representation vectors of each time point in one window. In this way, VPat
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Figure 3: The transformed series item and covariates are input to learn the representation vectors
and then to estimate the temporal and pattern attention.

and VTem stay in the same representation space, which guarantees that the estimations of temporal
attention and pattern attention: Ẑ and X̂ in Eq. (3) have the same distribution.

To sum up, as shown in Figure 3, m̂j,t and r̂j,t are respectively estimated by temporal attention
and pattern attention. Therefore, we can get new representation vectors space S after the front-door
adjustment, i.e, sj,t = Concatenate[m̂T

j,t, r̂
T
j,t]

T . Now, we can input the S into our encoder-
decoder recurrent network g to estimate the P (Y |do(R)).

The simplest encoder-decoder model consists of two RNNs based on LSTMs, i.e., one for the en-
coder and the other for the decoder. Encoder RNN reads the source sentence and the final state is
used as the initial state of the decoder RNN. The hope is that the final encoder state ”encodes” all
information about the source, and the decoder can generate the target sentence based on this vector.
However, its performance degrades with long sentences because it cannot adequately encode a long
sequence into the intermediate vector even with LSTM cells. Therefore, we add one transformer
attention into the encoder-decoder model. At each decoder step, it decides which encoder parts are
more important. In this setting, the encoder does not have to compress the whole source into a single
vector, it takes all RNN states into account, instead of the last one of encoder.

4.3 QUANTILE OUTPUTS

In line with previous work, CTTT also generates prediction intervals on top of point forecasts. This
is achieved by the simultaneous prediction of various percentiles (e.g. 10th, 50th and 90th) at each
time step. Quantile forecasts are generated by one neural network z based on the output from the
decoder part, i.e., ŷ(q, j, t) = z(g(sj,t)), where q is the specified quantile. CTTT is trained by
jointly minimizing the quantile loss (Wen et al., 2017), summed across all quantiles, windows, and
time points in prediction window:

L =
∑n

j=1

∑
q∈Q

∑T

t=t0

QL (yj,t, ŷ(q, j, t), q)

mτmax
(6)

QL(y, ŷ, q) = q(y − ŷ)+ + (1− q)(ŷ − y)+, (7)

where Q is the set of quantiles and Q = {0.1, 0.5, 0.9}. (.)+ = max(0, .). For out-of-sample test,
we define Ω as the domain of test windows. We evaluate the normalized quantile losses and compare
P50 and P90 risk for consistency with previous work (Salinas et al., 2019; Rangapuram et al., 2018;
Li et al., 2019):

q-Risk =
2
∑

j∈Ω

∑T
t=t0

QL (yj,t, ŷ(q, j, t), q)∑
j∈Ω

∑T
t=t0
|yj,t|

. (8)

5 EXPERIMENTS

5.1 DATASETS

In line with previous work (Salinas et al., 2019; Rangapuram et al., 2018; Li et al., 2019; Lim et al.,
2021), we choose four commonly used benchmarks, i.e., Electricity, Traffic, Retail, and Volatility.
The UCI Electricity Load Diagrams Dataset (Electricity) contains hourly time series of the electric-
ity consumption of 370 customers (Yu et al., 2016; Salinas et al., 2019). The UCI PEM-SF Traffic
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Dataset (Traffic) contains the hourly occupancy rate, between 0 and 1, of 440 SF Bay Area free-
ways. For the Electricity and Traffic datasets, we use the past week (i.e. 168 hours) to forecast over
the next 24 hours. Favorite Grocery Sales Dataset (Retail) is from the Kaggle competition (Favorita,
2018), which combines metadata for different products and the stores. We forecast log product sales
30 days, using 90 days of past information. The OMI realized library (Volatility) (Heber et al., 2009)
contains daily realized volatility values of 31 stock indices computed from intraday data, along with
their daily returns. We consider forecasting over the next week using information over the past year.
The detailed information about datasets is presented in Table 1. For each dataset, we partition all
time series into 3 parts – a training set for learning, a validation set for hyperparameter tuning, and a
test set for performance evaluation. Hyperparameter optimization is conducted via random search,
using 60 iterations. Full search ranges for all hyperparameters are listed in Table 2.

Table 1: Information on Four Benchmarks.

Dataset Details Electricity Traffic Retail Volatility

Target Type R [0, 1] R R
Num. Series 370 440 130k 41
Num. Samples 500k 500k 500k 100k
Con. Window Size 168 168 90 252
Pre. Window Size 24 24 30 5
Num. Variables 5 5 20 8

Table 2: Model Hyperparameters.

Hyperparameters Full Search Ranges

Dropout Rate 0.1, 0.2, 0.3
Minibatch Size 64, 128, 256
Learning Rate 0.0001, 0.001, 0.01
Num. Head 1, 4
Num. LSTM Layers 2,3
Num. LSTM Nodes 30, 40
Representation Size 10, 20, 30, 40

5.2 BASELINE METHODS

We extensively compare our model to previous work for multi-series and multi-horizon forecasting,
such as the classical forecasting methods ARIMA (Box & Jenkins, 1968) and ETS (Gardner Jr,
1985), the recent matrix factorization method TRMF (Yu et al., 2016), simple sequence-to-sequence
models with global contexts (Seq2Seq), the multi-horizon quantile recurrent forecaster (MQRNN)
(Wen et al., 2017), DeepAR (Salinas et al., 2019), DSSM (Rangapuram et al., 2018), the transformer-
based architecture of (Li et al., 2019) with local convolutional processing, and temporal fusion
transformers with interpretable attention and variable selection (TFT) (Lim et al., 2021). Because
iterative models assume that all input covariates are known, we accommodate this by imputing
unknown future inputs with their last available value. The results for previous work have been
reproduced from Li et al. (2019); Lim et al. (2021) for consistency.

Table 3: P50 and P90 quantile losses on four real-world datasets. Lower q-Risk better.

Electricity ARIMA ETS TRMF DeepAR DSSM

P50 losses 0.154 0.102 0.084 0.075 0.083
P90 losses 0.102 0.077 - 0.040 0.056

ConvTrans Seq2Seq MQRNN TFT CTTT

P50 losses 0.059 0.067 0.077 0.055 0.052
P90 losses 0.034 0.036 0.036 0.027 0.025

Traffic ARIMA ETS TRMF DeepAR DSSM

P50 losses 0.223 0.236 0.186 0.161 0.167
P90 losses 0.137 0.148 - 0.099 0.113

ConvTrans Seq2Seq MQRNN TFT CTTT

P50 losses 0.122 0.105 0.117 0.095 0.091
P90 losses 0.081 0.075 0.082 0.070 0.065

Volatility DeepAR CovTrans Seq2Seq MQRNN TFT CTTT

P50 losses 0.050 0.047 0.042 0.042 0.039 0.038
P90 losses 0.024 0.024 0.021 0.021 0.020 0.018

Retail DeepAR CovTrans Seq2Seq MQRNN TFT CTTT

P50 losses 0.574 0.429 0.411 0.379 0.354 0.347
P90 losses 0.230 0.192 0.157 0.152 0.147 0.139
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5.3 PERFORMANCE

Table 3 shows the performance of our model and baseline methods on the four datasets, i.e., Electric-
ity, Traffic, Retail, and Volatility. We report the results of q-Risk defined in Eq. (8) on the test sets.
CTTT achieves the best performance concerning P50 and P90 quantile losses in all four datasets. In
fact, compared to other deep neural network models, our model has a similar composition: all are
based on the sequence-to-sequence network, recurrent structures, and attention module. Compared
with other state-of-the-art models, the accuracy improvement of our model has mainly benefited
from the causal inference front-door adjustment to help the model effectively utilize the shared
global knowledge along with the series and across different series.

To prove the usefulness of each attention module, we perform two ablation studies of CTTT. Because
the temporal attention and pattern attention share the task of front-door adjustment, we remove them
together and create the CTTT (w/o Front-door) instead, where the representation vectors learned
from the representation model are directly input into the encoder-decoder recurrent network. The
second ablation study is CTTT (w/o Trans) where the transformer attention is removed and there is
only one original encoder-decoder network connecting via the last encoder cell state. As shown in
Figure 4, the performance becomes poor after removing either the transformer attention or the tem-
poral and pattern attention, compared to the original CTTT. Therefore, these three attention modules
are essential components of our model. Besides, to visualize the importance of each variable, we
present the variable selection weights defined in section 4.1. Figure 5 shows that only a subset of
covariates is important for the prediction of the target value.

Figure 4: The results of ablation studies CTTT (w/o Front-door) and CTTT (w/o Trans).

Figure 5: The importance of each variable in Electricity, Traffic, Volatility, and Retail datasets. The
size of square represents the relative importance compared with other variables in the same dataset.
6 CONCLUSION

The proposed CTTT is one multi-horizon and multi-series forecasting model based on the deep
encoder-decoder recurrent architecture with triple interpretable attention modules, i.e., temporal at-
tention, pattern attention, and transformer attention. From the perspective of causal inference, we
present the confounding relationship hidden in the complex time series data and utilize the atten-
tion mechanism to help the model capture the useful local and global knowledge without abusing
unrelated information. Experimental results on four datasets show that CTTT is highly adaptable to
complicated time series forecasting tasks and has significant forecasting performance improvements.
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