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Abstract

In the information age, continuous streams of data from connected devices require
intelligent models that ensure security, privacy and transparency. Federated learning
enables knowledge sharing while adhering to the principles of trustworthy AI.
This work synthesizes the Trustworthy and Explainable Federated System for
Extracting Descriptive Rules in a Data Streaming Environment (TEFeS-SDR)
[1] study, which introduces an evolutionary single-objective federated system for
extracting descriptive rules while prioritizing privacy and security through advanced
encryption techniques (binary, symmetric, and asymmetric). It ensures traceability
and transparency, and experimental results confirm its resilience to concept drift
while maintaining high quality models, advancing responsible AI by integrating
explainability, security and efficiency.
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1 Introduction

The accelerated increase in continuous data generation from interconnected devices requires real-
time learning models that preserve user privacy. Federated learning addresses this challenge by
enabling distributed model training without sharing raw data, but it still faces issues related to security,
transparency, and explainability.

This study presents a condensed overview of Trustworthy and Explainable Federated System for
Extracting Descriptive Rules in a Data Streaming Environment (TEFeS-SDR) [1], a federated system
designed to enhance security, explainability, and reliability in federated learning. It integrates an
evolutionary algorithm based on emerging pattern mining (EPM) to generate interpretable rules while
employing a hybrid encryption scheme (binary, symmetric, and asymmetric) for secure knowledge
sharing. By combining the inherent explainability of EPM algorithms (absent in existing secure
federated learning approaches [2, 3, 4]) with advanced security techniques not previously applied to
federated learning with EPM[5, 6], TEFeS-SDR effectively balances explainability and security.

2 Methodology

The proposed algorithm TEFeS-SDR [1] is a hierarchical, federated rule-based model designed to
extract explainable and trustworthy knowledge from dynamic systems at varying levels of granularity.
Each local node processes its data stream using a single-objective evolutionary rule-based algorithm,
generating local knowledge that is sent to a central fusion node, where it is consolidated into a global
model. This model is subsequently shared back with local nodes, enabling mutual refinement.

To ensure privacy, raw data remains on each node, and only knowledge is shared. However, to
mitigate potential risks, the system incorporates encryption mechanisms, including a keyring-based
trust system for secure peer-to-peer exchange to restrict access to authorized recipients and binary
encryption to prevent access to shared knowledge.

The system follows a hierarchical client-server architecture with two main components:

1. Clients (local nodes): Low-power devices, such as Raspberry Pi, running a single-objective
evolutionary fuzzy algorithm based on emerging pattern mining (EPM). This algorithm
represents each individual as a pattern [7] encoded using triangular fuzzy linguistic labels
(LLs) [8], applying genetic operators such as binary tournament selection [9], two-point
crossover [10], and biased mutation specific for EPM algorithms [11]. Additionally, an
elitist replacement scheme is included to retain the best solutions, along with a concept drift
detection mechanism based on population quality.

2. Server (fusion node): Receives and aggregates local knowledge into a global model using
rule fusion techniques such as confidence filtering and token competition filter.

3 Experimental study

The experimental study conducted in our work [1] involves a central fusion node using token
competition or confidence filtering, along with multiple Raspberry Pi devices simulating IoT or
wearable nodes. The setup includes four Raspberry Pi 4 Model B devices as clients and a server
running Ubuntu 23.04 with an Intel Core i7 processor. The main hypothesis is that the global model
remains homogeneous despite concept drifts in the data stream.

3.1 Datasets

The study utilizes artificial data streams generated with MOA [12], consisting of 200 blocks of 5,000
instances, totalling one million instances per client, while the fusion node contains a validation dataset
of 500,000 instances. Concept drifts, occur randomly between the 10th and 50th block of the current
batch. Each stream is generated with a unique seed per device. Four data streams are used: Aggrawal,
Mixed, RandomTree, and SEA, each with two classes and 9, 4, 10, and 3 attributes, respectively.
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3.2 Parameters of the algorithm

The parameters used are 3 fuzzy linguistic labels [13], a population size of 50, crossover and mutation
probabilities of 0.7 and 0.05, and a maximum of 5,000 evaluations. The optimized objectives, using a
weighted sum approach, are WRAccN, Support Difference, and Confidence. To detect concept drift,
confidence (0.6) and TPR (0.1) thresholds are defined.

3.3 Results and analysis

The evaluation of the final global model (Table 1) shows that the token competition fusion method
reduces the number of variables compared to confidence-based filtering while maintaining a stable
number of rules. This increases explainability without increasing complexity and good interpretability.
Additionally, results from the confidence fusion method on datasets with concept drift (Figure 1
indicate that model confidence remains between 0.6 and 0.9, demonstrating strong performance. The
global model remains stable despite concept drifts, confirming the hypothesis and highlighting the
algorithm’s robustness to data changes.

Table 1: Average results of the different fusion methods analysed

Timestamp NumRules NumVars CONF WRAcc GR FPR TPR
Confidence 101.5 81.4995 0.6190 0.6195 0.5068 0.2682 0.8542
TokenCompetition 101.5 8.0788 0.6071 0.6077 0.4915 0.2684 0.8397

a b c d

a b c d
Figure 1: Comparison of the average confidence using confidence fusion method applied to a:
Agrawal, b: Mixed, c: Random Tree, d: SEA datasets. The first row presents the results of the local
models. The second row corresponds to the global model.

4 Conclusions

In an interconnected world generating vast data volumes, our work TEFeS-SDR [1] addresses security,
reliability, and explainability challenges by integrating federated learning with an evolutionary
algorithm based on emerging pattern mining, and a hybrid encryption scheme. This approach enables
local data processing, enhancing privacy and minimizing transmission risks.

TEFeS-SDR also ensures explainability by extracting interpretable rules at local and global levels,
fostering trust through traceable decision-making. Its encrypted and auditable knowledge transactions
ensure transparency and regulatory compliance. Experimental results confirm its robustness against
abrupt data changes, making it a reliable solution for dynamic environments.
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