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ABSTRACT

Adversarial multiplayer games are an important object of study in multiagent
learning. In particular, polymatrix zero-sum games are a multiplayer setting where
Nash equilibria are known to be efficiently computable. Towards understanding
the limits of tractability in polymatrix games, we study the computation of Nash
equilibria in such games where each pair of players plays either a zero-sum or
a coordination game. We are particularly interested in the setting where players
can be grouped into a small number of teams of identical interest. While the
three-team version of the problem is known to be PPAD-complete, the complexity
for two teams has remained open. Our main contribution is to prove that the
two-team version remains hard, namely it is CLS-hard. Furthermore, we show
that this lower bound is tight for the setting where one of the teams consists of
multiple independent adversaries. On the way to obtaining our main result, we
prove hardness of finding any stationary point in the simplest type of non-convex-
concave min-max constrained optimization problem, namely for a class of bilinear
polynomial objective functions.

1 INTRODUCTION

Game theory is a fundamental tool to encode strategic agent interactions and has found many
applications in the modern AI landscape such as Generative Adversarial Networks (Goodfellow
et al., 2020), obtaining agents with expert level play in multiplayer games such as Starcraft and
Quake III (Vinyals et al., 2019; Jaderberg et al., 2019) and superhuman performance in poker (Brown
& Sandholm, 2018; 2019). Computing a Nash equilibrium or a saddle point (when considering
general minmax optimization problems) is a computational task of central importance in these
applications. The celebrated minmax theorem of von Neumann & Morgenstern (1947) established
that two-player zero-sum games have efficient algorithms. However, it was shown that three-
player zero-sum games (Daskalakis et al., 2009) or two-player general games (Chen et al., 2009)
are computationally intractable (formally PPAD-hard) and the hardness is also known to hold for
computing approximations.

Consequently, Daskalakis & Papadimitriou (2009) proposed a tractable class of multiplayer zero-sum
games, where the players are placed on the nodes of a graph and play a matrix zero-sum game with
each adjacent player. In this setting, the total utility that a player gets is the sum of the utilities
from each game that they participate in. It is to be highlighted that removing the zero-sum game
assumption between each player makes the problem hard. Indeed, computing Nash equilibria in
general polymatrix games is known to be PPAD-hard (Daskalakis et al., 2009; Chen et al., 2009;
Rubinstein, 2018; Deligkas et al., 2024). Cai & Daskalakis (2011) studied an intermediate setting
where every edge of the polymatrix game can be either a zero-sum game or a coordination game.
They showed PPAD-hardness, even for the special case where the players can be grouped into three
teams, such that players within the same team play coordination games, and players in different teams
play zero-sum games.

Adversarial Two-team Games With a Single Adversary: The general notion of adversarial team
games introduced by von Stengel & Koller (1997) studies two teams that are playing a zero-sum game
with each other, meaning each team member gets the same payoff as the whole team and the sum of
the team payoffs is zero. The primary motivation here is to study strategies for companies against
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adversaries. What makes the “team” aspect special is that the team members cannot coordinate their
actions and must play independent mixed strategies. This captures imperfect coordination within
companies. Indeed, if the teams instead had perfect coordination, then the setting would simply
reduce to a two player zero-sum game. Von Stengel and Koller showed that there exists a team
maxmin equilibrium, that can be extended to a Nash equilibrium for this setting when the team is
playing against a single adversary. Moreover, they showed that this is the best Nash equilibrium for
the team, thereby alleviating equilibrium selection issues. However, it was later shown that finding
a team maxmin equilibrium is in fact FNP-hard and the problem does not become easier if one
allows approximate solutions (Hansen et al., 2008; Borgs et al., 2008). Recently, Anagnostides et al.
(2023) studied the single adversary setting, and were able to show that finding a Nash equilibrium
in this setting is in fact CLS-complete. The CLS-hardness immediately follows from the work of
Babichenko & Rubinstein (2021), but importantly it requires a sufficiently general game structure
and so does not apply to the polymatrix setting. The CLS-membership on the other hand applies to
any adversarial game with a single adversary. The main idea is to obtain a Nash equilibrium from
an approximate stationary point of the max Moreau envelope of the function x 7→ maxy∈Y U(x, y)
(where x is the min variable, y is the max variable and U is the payoff function).

Connections to Complexity of Minmax Optimization: Two-team games are a special case of
general nonconvex-nonconcave constrained minmax problems. Daskalakis et al. (2021) recently
studied this general setting and showed that finding a stationary point is PPAD-complete. Crucially,
their PPAD-hardness only applies when the constraint sets are coupled between the min and the
max player. However, games usually induce minmax problems with uncoupled constraints. The
complexity of the problem for uncoupled constraints remains open, although it is known to be
CLS-hard, since it is at least as hard as finding stationary points of standard non-convex minimization
problems (Fearnley et al., 2022). As we discuss below, our results also have implications for
uncoupled minmax optimization, where we obtain a CLS-hardness result for a particularly simple
family of objective functions. We note that Li et al. (2021) showed a query lower bound of Ω( 1

ε2 ) for
smooth nonconvex-strongly-concave minmax optimization problems, but these results do not apply
to the simple objective functions that we study (and which can only be studied from the perspective
of computational complexity).

Connections to Multiagent Learning: From a learning dynamics perspective, qualitative results
focus on understanding the limit behavior of certain no-regret learning dynamics in polymatrix games.
In particular, some works focus on obtaining asymptotic convergence guarantees for Q-learning
and its variants (Leonardos et al., 2021; Hussain et al., 2023). In a similar vein, some other works
studied the limit behaviors of replicator dynamics for polymatrix games, particularly with zero-sum
and coordination edges (Nagarajan et al., 2018; 2020). In these works, the focus was on trying
to identify network topologies under which the learning dynamics exhibited simple (non-chaotic)
behaviors. Surprisingly, there were works that could obtain non-asymptotic convergence guarantees
using discrete time algorithms in multiagent reinforcement learning as well, with Leonardos et al.
(2022) establishing convergence to Nash policies in Markov potential games. In adversarial settings,
Daskalakis et al. (2020) studied independent policy gradient and proved convergence to Nash policies.
Moreover, some recent works establish convergence to Nash policies in Markov zero-sum team
games (Kalogiannis et al., 2023) and Markov polymatrix zero-sum games (Kalogiannis & Panageas,
2023). This further establishes the need to theoretically study the computational challenges in the
simplest polymatrix settings which allow for both zero-sum and coordination edges, in order to
understand convergence guarantees in more complicated multiagent reinforcement learning scenarios.

This leads us to the following main question that had been open from the work of Cai & Daskalakis
(2011).

What is the complexity of finding Nash equilibria in two-team zero-sum polymatrix games?

1.1 OUR CONTRIBUTIONS

Our main contribution is the following computational hardness result.

Theorem 1.1 (Informal). It is CLS-hard to find an approximate Nash equilibrium of a two-team
zero-sum polymatrix game, even when one of the teams does not have any internal edges.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Our result is incomparable to the CLS-hardness result proved by Anagnostides et al. (2023) (which
essentially immediately follows from the work of Babichenko & Rubinstein (2021)). On the one
hand, our result is stronger because it applies to games with a simpler structure, namely polymatrix
games, whereas their result only applies to the more general class of degree-5 polytensor games.
On the other hand, our (hardness) result is weaker because it requires the presence of multiple
adversaries, instead of just a single adversary. The case of two-team polymatrix games with a single
adversary remains open. If one could prove CLS-hardness for that version of the problem, then this
would constitute a strengthening of both our result and the result of Anagnostides et al. Proving
Theorem 1.1 requires a novel construction that takes advantage of the max-variables to introduce
additional constraints on the min-variables. This step is crucial to obtain the required bilinear form
for the objective and constitutes our main technical contribution.

As our second contribution, we complement the hardness result in Theorem 1.1 by showing that
the problem is in fact CLS-complete in this particular case where the adversaries are independent
(i.e., when there are no internal edges in the second team). Namely, the problem of finding an
approximate Nash equilibrium in a two-team zero-sum polymatrix game with multiple independent
adversaries lies in the class CLS. The polymatrix setting allows us to provide a simple proof of
this fact, in particular avoiding the use of more advanced machinery, such as the Moreau envelope
used in the CLS-membership of Anagnostides et al. (2023). We note that if the adversaries are
not independent, then the problem is only known to lie in PPAD, and it remains an important open
problem to determine whether it also lies in CLS or is in fact PPAD-complete.

Going back to our main result, Theorem 1.1, we note that it also has some interesting consequences
for minmax optimization in general. Namely, we obtain that computing a stationary point, i.e., a
Karush-Kuhn-Tucker (KKT) point of

min
x∈[0,1]n

max
y∈[0,1]m

f(x, y)

is CLS-hard, and thus intractable in the worst case, even when f is a bilinear polynomial1 that is
concave in y. This is somewhat surprising, as these objective functions are the simplest case beyond
the well-known tractable setting of convex-concave.

The meaning of CLS-hardness. The complexity class CLS was introduced by Daskalakis &
Papadimitriou (2011) to capture the complexity of problems that are guaranteed to have a solution
both by a fixed point argument and a local search argument. This class is a subset of two well-
known classes: PPAD and PLS. While PPAD is mainly known for capturing the complexity of
computing Nash equilibria in general games (Daskalakis et al., 2009; Chen et al., 2009), PLS captures
the complexity of various hard local search problems, such as finding a locally maximal cut in a
graph (Schäffer & Yannakakis, 1991). Recently, following the result by Fearnley et al. (2022) that
CLS = PPAD ∩ PLS, it has been shown that the class captures the complexity of computing mixed
Nash equilibria in congestion games (Babichenko & Rubinstein, 2021), and KKT points of quadratic
polynomials (Fearnley et al., 2024). See Figure 1 for an illustration of the relationship between the
classes.

A CLS-hardness result indicates that the problem is very unlikely to admit a polynomial-time
algorithm. To be more precise, our results indicate that we should not expect an algorithm to exist
which can find an ε-approximate Nash equilibrium in these two-team polymatrix games in time
polynomial in log(1/ε). In contrast, if the team had perfect coordination2, then our setting reduces to
a “star-network” zero-sum game which was shown to have a polynomial time algorithm to compute a
Nash equilibrium Daskalakis & Papadimitriou (2009).

Furthermore, our hardness result for the minmax problem with bilinear polynomial objective functions
establishes the fact that we should not expect an algorithm that finds an ε-KKT point in time
polynomial in log(1/ε). The evidence that CLS is a hard class is supported by various cryptographic
lower bounds, which apply to both PPAD and CLS (Bitansky et al., 2015; Choudhuri et al., 2019;
Jawale et al., 2021).

1Previous CLS-hardness results required more general objective functions, namely f had to be a quadratic
(non-bilinear) polynomial (Fearnley et al., 2024).

2With perfect coordination, one can see that the team effectively acts as a single player.
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TFNP

PLS PPAD

CLS

P

Figure 1: Classes of total search problems. Arrows are used to denote containment. For example,
CLS is contained in PLS and in PPAD. The class TFNP contains all total search problems, i.e.,
problems which are guaranteed to have efficiently checkable solutions. P contains all such problems
solvable in polynomial time.

1.2 OTHER RELATED WORK

It is worth mentioning that the computation of team maxmin equilibria for the two-team adversarial
game has been studied where the team members are allowed to coordinate ex ante, which is different
from what a polymatrix coordination game would induce, as we study in this paper. There it was
shown that the game can be reduced to a two-player game with imperfect-recall (Farina et al., 2018;
Celli & Gatti, 2018; Zhang et al., 2022) and that efficient algorithms exist under some assumptions
about the players’ information sets (Zhang et al., 2021). Finally, similar notions have been studied
for extensive-form games too (Zhang & Sandholm, 2022).

2 PRELIMINARIES

2.1 POLYMATRIX GAMES

A polymatrix game (Janovskaja, 1968) is a type of multiplayer game in which the payoff function
can be succinctly represented. More precisely, there is a set of players N and a set of pure strategies
Si for each player i ∈ N . Moreover, players are represented by the vertices of an undirected graph
G = (N , E) with the intent that a matrix game is played between each pair of players {i, j} ∈ E;
the pair of payoff matrices being denoted by Ai,j ∈ RSi×Sj and Aj,i ∈ RSj×Si . Players are
allowed to randomize over their pure strategies and play a mixed strategy in the probability simplex
of their action, which we denote by ∆(Si) for player i. Hence, a mixed strategy profile is some
x = (x1, x2, . . . , x|N |) ∈ X := ×i∈N∆(Si). We also use the standard notation x−i to represent
the mixed strategies of all players other than i. In polymatrix games, the utility Ui : X → R for
player i ∈ N is the sum of her payoffs, so that

Ui(x) =
∑

j:{i,j}∈E

xiA
i,jxj

where xi is understood to be x⊤
i : we drop the transpose when it is clear from the context for ease of

presentation. As a well-defined class of games, polymatrix games always admit a Nash equilibrium
(Nash, 1951). In this work, we are interested in approximate Nash equilibria which we define next.
Definition 1. Let ε ≥ 0 be an approximation guarantee. The mixed strategy profile x̃ is an ε-
approximate Nash equilibrium of the polymatrix game defined above if for any i ∈ N ,

Ui(xi, x̃−i) ≤ Ui(x̃i, x̃−i) + ε ∀xi ∈ ∆(Si)

In this paper, we focus on polymatrix games with a particular structure where players are grouped
into two competing teams with players within teams sharing mutual interests.
Definition 2 (Two-team Polymatrix Zero-Sum Game). A two-team polymatrix zero-sum game is a
polymatrix game {Ai,j}i,j∈N where the players can be split into two teams X ∪ Y = N so that any
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game between the two teams is zero-sum and any game within a team is a coordination game. More
precisely for any i, i′ ∈ X and j, j′ ∈ Y :

Ai,i′ =
(
Ai′,i

)⊤
Aj,j′ =

(
Aj′,j

)⊤
Ai,j = −

(
Aj,i

)⊤
If there is no coordination within team Y , that is Aj,j′ = 0Sj×Sj′ for every j, j′ ∈ Y , we further say
that it is a two-team zero-sum game with independent adversaries.

In the restricted context of two-teams games, another useful equilibrium concept is that of team-
maxmin equilibria (von Stengel & Koller, 1997). While originally defined for a single adversary
only, it is generalizable to multiple independent adversaries in such a way that any team-maxmin
equilibria can be converted to a Nash-equilibrium one efficiently. Unfortunately, similarly to the
single-adversary case, such equilibriums suffer from intractability issues and are FNP-hard to compute
(Basilico et al., 2017; Hansen et al., 2008; Borgs et al., 2008).

2.2 KKT POINTS OF CONSTRAINED OPTIMIZATION PROBLEMS

We now turn our attention to solution concepts for optimization problems and in particular of
Karush-Kuhn-Tucker (KKT) points. We only define the required notions for the special case where
each variable is constrained to be in [0, 1], since this will be sufficient for us. Under those box
constraints the expression of the Lagrangian simplifies greatly and we obtain the following definition
of approximate KKT point for a minimization problem.
Definition 3. Let ε ≥ 0 be an approximation parameter, f : Rn → R a continuously differentiable
function and consider the optimization problem minx∈[0,1]n f(x). The point x̃ ∈ [0, 1]n is an
ε-approximate KKT point of the formulation if the gradient g := ∇f(x̃) satisfies for each i ∈ [n]:

1. If x̃i ∈ (0, 1), then |gi| ≤ ε.

2. If x̃i = 0, then gi ≥ −ε.

3. If x̃i = 1, then gi ≤ ε.

Thus, an exact (ε = 0) KKT point can be thought of as a fixed point of the gradient descent
algorithm. Using this intuition, we can extend this to minmax problems as fixed points of the gradient
descent-ascent algorithm. See Figure 2 for the geometric intuition of minmax KKT points.
Definition 4. Let ε ≥ 0 be an approximation parameter, f : Rn × Rn → R a continuously
differentiable function and consider the optimization problem minx∈[0,1]n maxy∈[0,1]n f(x, y). Let
(x̃, ỹ) ∈ [0, 1]2n and let (g, q) := ∇f(x̃, ỹ), where g is the gradient with respect to x-variables and q
with respect to y-variables. Then, (x̃, ỹ) is an ε-approximate KKT point if for each i ∈ [n]:

1. If xi ∈ (0, 1), then |gi| ≤ ε.

2. If xi = 0, then gi ≥ −ε.

3. If xi = 1, then gi ≤ ε.

4. If yi ∈ (0, 1), then |qi| ≤ ε.

5. If yi = 0, then qi ≤ ε.

6. If yi = 1, then qi ≥ −ε.

2.3 CONNECTION BETWEEN TWO-TEAM GAMES AND MINMAX OPTIMIZATION

Given a two-team polymatrix zero-sum game with matrices {Ai,j}i,j∈N , we can define the following
common utility function

U(x, y) = −
∑

i,i′∈X:i<i′

xiA
i,i′xi′ −

∑
i∈X,j∈Y

xiA
i,jyj

and the corresponding game where players on the X-team all have the same utility function −U , and
players on the Y -team all have the same utility function U . It is easy to check that this new game is
equivalent to the previous one, namely a strategy profile (x, y) is an ε-Nash equilibrium in the latter
game if and only if it is in the former. Now, if we consider the minmax optimization problem

min
x∈X

max
y∈Y

U(x, y)

5
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y

x
1

1

(0, 0)

(x2, y2)

(x1, y1)

Figure 2: The intuition behind exact (ε = 0) KKT points for minmax problems. The formulation
features a min-variable x, a max-variable y and the bounding box constraint (x, y) ∈ [0, 1]2. Some
feasible points together with their respective gradient (qx, qy) are depicted. Green points are valid
KKT points whereas red ones are not. For instance, (x1, y1) is not a KKT point because qy1 > 0 but
y < 1. On the other hand, (x2, y2) is a valid KKT point because qy2 = 0 and qx2 < 0 with x = 1.

it is not hard to show that its KKT points exactly correspond to the set of Nash equilibria of the game
with common utility, and thus also of the original polymatrix game. This connection also extends
to approximate solutions. We develop this relation in greater detail in section Section 3, where we
first prove a hardness result for a minmax problem and then use the equivalence above to extend it to
polymatrix games.

3 CLS-HARDNESS OF TWO-TEAM GAMES WITH INDEPENDENT ADVERSARIES

In this section, we give a proof of our main hardness result which we re-state formally next.
Theorem 3.1 (Precise formulation of Theorem 1.1). It is CLS-hard to find an ε-approximate Nash
equilibrium of a two-team zero-sum polymatrix game with independent adversaries where ε is inverse
exponential in the description of the game.

We show that this is true even when each player can only choose from two pure strategies. This lower
bound result is obtained by reducing from the problem of finding some KKT point of a quadratic
minimization problem. In detail, an instance of MinQuadKKT consists of a quadratic polynomial
Q : Rn → R together with an approximation parameter ε > 0. A solution to such instance is any
ε-approximate KKT point of minx∈[0,1]n Q(x) (see Definition 3). MinQuadKKT is known to be
CLS-complete for ε inverse exponential in the description of the instance (Fearnley et al., 2024). The
reduction from MinQuadKKT to two-team games is performed in two stages which we describe next.

Stage I. As a first step, we show how to reduce MinQuadKKT to the intermediate problem
MinmaxIndKKT. An instance of MinmaxIndKKT consists of an approximation parameter ε > 0
together with a polynomial M : R2n → R satisfying the following three properties:

1. M is multilinear.
2. M has degree at most 2.
3. M(x, y) has no monomial of type yiyj for i, j ∈ [n].

In this section, we conveniently refer to those three conditions as the independence property. A
solution to such an instance is any ε-approximate KKT point of minx∈[0,1]n maxy∈[0,1]n M(x, y)
(see Definition 4). Let us highlight that this step already establishes the CLS-hardness of uncoupled
minmax multilinear formulations for a simple class of objectives.

Stage II. We exploit the independence property of the polynomial generated by the first stage
reduction to reduce it further to a two-team zero-sum polymatrix game with independent adversaries.
This is achieved through generalizing the equivalence between zero-sum games for two players and
some class of minmax formulations.

6
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3.1 STAGE I: FROM QUADRATIC TO MULTILINEAR

Lemma 3.1. MinQuadKKT reduces to MinmaxIndKKT

By “reduces to”, we mean the usual definition of polynomial-time TFNP reduction. We begin by
describing the reduction in detail, then highlight that it yields an objective with the independence
property and finally prove correctness. Let Q : [0, 1]n → R and ε > 0 be the MinQuadKKT instance.
Write the coefficients of Q explicitly as follows:

Q(x) = q +
∑

i∈[n]
qixi +

∑
i̸=j

qijxixj +
∑

i∈[n]
qiix

2
i

Let Z ≥ 1 be an upper bound on the sum of the absolute values of all coefficients of Q and note that
since Q is a quadratic polynomial, it holds that for every x ∈ [0, 1]n and i ∈ [n]:

|Q(x)| ≤ Z and
∣∣∣∣∂Q(x)

∂xi

∣∣∣∣ ≤ 2Z (1)

Fix T := 10Z and η := 2ε2/Z. For each min-variable xi of the MinQuadKKT instance, we introduce
two min-variables xi and x′

i and a max-variable yi in the MinmaxIndKKT instance. We also define
the following multilinear “copy” gadget:

COPY(xi, x
′
i, yi) :=

(
x′
i − xi · (1− 2η)− η

)
· (yi − 1/2)

The role of COPY is to force xi to be close to x′
i at any KKT point, thus effectively duplicating xi

into x′
i. This allows us to remove square terms of the objective function. To make this formal, let

Q′ : [0, 1]2n → R be a copy of Q where every occurrence of the form x2
i is replaced by xix

′
i:

Q′(x, x′) := q +
∑

i∈[n]
qixi +

∑
i ̸=j

qijxixj +
∑

i∈[n]
qiixix

′
i

The full formulation of the MinmaxIndKKT instance is stated below. We note that the objective M
of the formulation indeed satisfies the independence property.3 The proof of Lemma 3.1 now follows
from Claim 3.1.

min
x,x′∈[0,1]n

max
y∈[0,1]n

M(x, x′, y) where M(x, x′, y) := Q′(x, x′) +
∑
i∈[n]

T · COPY(xi, x
′
i, yi)

Claim 3.1. For any ε ∈ (0, 1/13], if (x, x′, y) is an (ε2/Z)-approximate KKT point of the
MinmaxIndKKT instance, then x is an ε-approximate KKT point of the MinQuadKKT instance.

The proof relies crucially on T being a large constant so that the copy gadgets dominate Q′(x, x′)
and the objective M . This forces any KKT point (x, x′, y) to have y ∈ (0, 1)n and ultimately x ≈ x′.
A second step shows that ∂Q(x)/∂xi ≈ ∂M(x, x′, y)/∂xi, which is enough to conclude that x is a
KKT point of the MinQuadKKT instance. Readers can find the full proof in Appendix A.1.

3.2 STAGE II: FROM MINMAX TO TWO-TEAM GAMES

To prove Theorem 1.1, we use stage I (Lemma 3.1) and show how to reduce an instance of
MinmaxIndKKT to a two-team zero-sum game with independent adversaries. Let ε > 0 be the
approximation parameter of the instance and its objective be M : R2n → R. Since M has the
independence property, we can explicitly write its coefficient as:

M(x, y) := α+
∑

i∈[n]
βixi +

∑
i ̸=j

γijxixj +
∑

i∈[n]
ζiyi +

∑
i,j∈[n]

θijxiyj

We construct a polymatrix game with two teams, each consisting of n players. In the first (cooperative)
team, there is one player ai corresponding to each variable xi. The second team consists of n
independent adversaries, where player bi corresponds to variable yi. The intent is that an optimal
strategy profile of the players roughly corresponds to a KKT point (x, y) of M . As stated earlier, we

3Additional dummy max-variables can be added to ensure that the number of min- and max-variables are the
same.
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reduce to a very restricted setting where each player only has two actions. We thus specify the utility
matrices of the game as elements of R2×2 with:

Aai,aj = Aaj ,ai =

[
−γij 0
0 0

]
for all i, j ∈ [n] with i ̸= j (2)

Abj ,ai = −(Aai,bj )⊤ =

[
θij + ζj/n+ βi/n ζj/n

βi/n 0

]
for all i, j ∈ [n] (3)

Any other utility matrix is set to 02×2. Observe that this payoff setting indeed yields a proper
two-team zero-sum polymatrix game with independent adversaries. Let Z ≥ 1 be an upper bound on
the sum of absolute coefficients of M and let δ := ε2/(4Z) be the target approximation ratio for the
polymatrix game. If (p, q) is a δ-approximate Nash equilibrium of the polymatrix game, we define a
candidate KKT point (x, y) ∈ R2n as follows:

xi =


0 if pi < ε/(2Z)

1 if pi > 1− ε/(2Z)

pi else
and yi =


0 if qi < ε/(2Z)

1 if qi > 1− ε/(2Z)

qi else

Here pi ∈ [0, 1] represents the probability that player ai plays its first action, and similarly qi for
player bi. The correctness of the reduction is treated in Claim 3.2 and thus Theorem 1.1 follows.
Claim 3.2. (x, y) is an ε-approximate KKT point of the MinmaxIndKKT instance.

Proof. We only show that x-variables satisfy the KKT conditions as the proof is similar for the
y-variables. It follows from equation 2 and equation 3 that for any p̃i ∈ [0, 1] the utility for player ai
can be written as:

Uai
(p̃i, p−i, q) =

∑
j ̸=i

[
p̃i

1− p̃i

]⊤
Aai,aj

[
pj

1− pj

]
+
∑

j∈[n]

[
p̃i

1− p̃i

]⊤
Aai,bj

[
qj

1− qj

]
= −p̃i ·

(
βi +

∑
j ̸=i

γijpj +
∑

j∈[n]
θijqj

)
−
∑

j∈[n]
ζjqj/n

Since (p, q) is a δ-approximate Nash equilibrium, we can use the above expression twice and
Definition 1 to get that:

(pi − p̃i) ·
(
βi +

∑
j ̸=i

γijpj +
∑

j∈[n]
θijqj

)
≤ δ ∀ p̃i ∈ [0, 1] (4)

Fix some variable xi and let us verify that it satisfies the ε-approximate KKT condition. The partial
derivative of M with respect to xi is:

∂M(x, y)

∂xi
= βi +

∑
j ̸=i

γijxj +
∑
j∈[n]

θijyj

= βi +
∑
j ̸=i

γij · (pj + xj − pj) +
∑
j∈[n]

θij · (qj + yj − qj)

= βi +
∑
j ̸=i

γijpj +
∑
j∈[n]

θijqj ±

(∑
j ̸=i

|γij | · |xj − pj |+
∑
j∈[n]

|θij | · |yj − qj |

)

= βi +
∑
j ̸=i

γijpj +
∑
j∈[n]

θijqj ±
ε

2Z
· Z

Where in the last equality, we used the fact that x (respectively y) is close to p (respectively q).

We now finish the proof by considering two cases for xi. First, consider the case where xi < 1. By
definition of xi, this implies that pi ≤ 1− ε/2Z. Thus, setting p̃i := 1 in equation 4, we get:

(1− pi) ·
(
βi +

∑
j ̸=i

γijpj +
∑

j∈[n]
θijqj

)
≥ −δ

=⇒ βi +
∑

j ̸=i
γijpj +

∑
j∈[n]

θijqj ≥ − δ

1− pi
≥ −2Z · δ

ε
≥ −ε/2
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and thus ∂M(x, y)/∂xi ≥ −ε/2− ε/2 ≥ −ε. Next, consider the case where xi > 0. By definition
of xi, this implies that pi ≥ ε/2Z. Now, setting p̃i := 0 in equation 4, we get:

pi ·
(
βi +

∑
j ̸=i

γijpj +
∑

j∈[n]
θijqj

)
≤ δ

=⇒ βi +
∑

j ̸=i
γijpj +

∑
j∈[n]

θijqj ≤
δ

pi
≤ 2Z · δ

ε
≤ ε/2

and thus ∂M(x, y)/∂xi ≤ ε/2 + ε/2 ≤ ε. This shows that xi always satisfies the ε-KKT conditions.
In particular, when xi ∈ (0, 1), |∂M(x, y)/∂xi| ≤ ε.

4 CLS-MEMBERSHIP FOR INDEPENDENT ADVERSARIES

In this section we prove the following.

Theorem 4.1. The problem of computing a Nash equilibrium in two-team zero-sum polymatrix games
with independent adversaries lies in CLS.

In particular, this implies that the CLS-hardness result proved in the previous section is tight for such
games.

Reformulation as a minimization problem. The main idea to prove the theorem is to start from
the minmax formulation of the problem and to rewrite it as a minimization problem by using duality.
Let a two-team polymatrix zero-sum game with independent adversaries be given. Without loss of
generality, we assume that every player has exactly m strategies. Recall that by the structure of the
game we have Ai,i′ = (Ai′,i)⊤, Ai,j = −(Aj,i)⊤, and Aj,j′ = 0 for all i, i′ ∈ X , j, j′ ∈ Y with
i ̸= i′ and j ̸= j′. We can write

min
x∈X

max
y∈Y

−
∑

i,i′∈X:i<i′

xiA
i,i′xi′ −

∑
i∈X,j∈Y

xiA
i,jyj

=min
x∈X

max
y∈Y

−
∑

i,i′∈X:i<i′

xiA
i,i′xi′ +

∑
i∈X,j∈Y

yjA
j,ixi

=min
x∈X

−
∑

i,i′∈X:i<i′

xiA
i,i′xi′ +max

y∈Y

∑
i∈X,j∈Y

yjA
j,ixi


(5)

Now consider the “max” part of the above objective written as the following LP in y variables:

max
∑
j∈Y

c⊤j yj

m∑
k=1

yjk = 1 ∀j ∈ Y

yjk ≥ 0 ∀j ∈ Y and ∀k ∈ [m]

where cj =
∑

i∈X Aj,ixi for all j ∈ Y . Then the dual of the above program can be written as:

min
∑
j∈Y

γj

γj ≥ cjk ∀j ∈ Y and ∀k ∈ [m]

Thus replacing the max part in equation 5 by the equivalent dual formulation we obtain:

9
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min −
∑

i,i′∈X:i<i′

xiA
i,i′xi′ +

∑
j∈Y

γj

s.t. γj ≥
∑
i∈X

e⊤k A
j,ixi ∀j ∈ Y and ∀k ∈ [m]

γj ≤ M ∀j ∈ Y

γ ∈ R|Y |

x ∈ X

(6)

where ek ∈ Rm is the kth unit vector. We have introduced an additional set of constraints γj ≤ M
to ensure that the feasible region is bounded. M is chosen to be sufficiently large such that M >
maxx∈X ,j∈Y,k∈[m]

∑
i∈X e⊤k A

j,ixi. Note that in order to obtain the formulation equation 6 we have
crucially used the fact that the original game is polymatrix and has independent adversaries.

For what comes next, we will need the following definition of KKT points, which generalizes
Definition 3 to arbitrary linear constraints.
Definition 5. Consider an optimization problem of the form

min f(x)

s.t. Ax ≤ b

x ∈ Rn

where f : Rn → R is continuously differentiable, A ∈ Rm×n, and b ∈ Rm. A point x∗ ∈ Rn is a
KKT point of this problem if there exists µ ∈ Rm such that

1. ∇f(x∗) +A⊤µ = 0

2. Ax∗ ≤ b

3. µ ≥ 0

4. µ⊤(b−Ax) = 0

We can now continue with our proof of Theorem 4.1. The problem of finding an exact KKT point of
equation 6 lies in CLS. Indeed, it is known that finding an approximate KKT point of such a program
lies in CLS (Fearnley et al., 2022, Theorem 5.1), and, given that the objective function is a quadratic
polynomial, an approximate KKT point (with sufficiently small approximation error) can be turned
into an exact one in polynomial time (see, e.g., (Fearnley et al., 2024, Lemma A.1)).

Theorem 4.1 now simply follows from the following claim, the proof of which is in Appendix A.2.
Claim 4.1. Given a KKT point of equation 6, we can compute a Nash equilibrium of the original
game in polynomial time.

5 OPEN PROBLEMS

Our work leaves some interesting open questions for future work:

• What is the complexity of the two-team polymatrix setting when there is a single adversary?
The CLS-membership of course still applies, but no hardness result is known.

• Our CLS-membership result only applies to the setting where the adversaries are independent.
If interactions between adversaries are allowed then the problem is only known to lie in
PPAD, so there is a gap with the CLS-hardness that we show. Is the problem CLS-complete,
PPAD-complete, or neither?

• Our hardness result provides strong evidence that no algorithm with running time O(poly(
log(1/ε))) exists. However, there are gradient-based approaches that yield algorithms
with running time O(poly(1/ε)) (can be adapted from the algorithm of Anagnostides et al.
(2023)). What is the optimal polynomial dependence in 1/ε for such algorithms?

10
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Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
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A MISSING PROOFS

A.1 PROOF OF CLAIM 3.1

Proof. Let δ := ε2/Z be the MinmaxIndKKT approximation guarantee for the remainder of this
argument. As a first step, we show that yi ∈ (0, 1) for each i ∈ [n]. Towards contradiction, let us first
suppose that yi = 0 and observe that:

∂M(x, x′, y)

∂xi
=

∂Q′(x, x′)

∂xi
+ T · (1− 2η) · (1/2− yi)

≥ ∂Q′(x, x′)

∂xi
+ T · (2/5) as yi = 0 and η ≤ 1/10

≥ −2Z + T · (2/5) using equation 1
> δ as T = 10Z and Z ≥ 1

But as (x, x′, y) is a δ-approximate KKT point and xi is a min-variable, it must be that xi = 0 (see
Definition 4). A similar computation shows that if yi = 0, then x′

i = 1 and so:

∂M(x, x′, y)

∂yi
= x′

i − xi · (1− 2η) + η = 1 + η > δ

Because yi is a max-variable and (x, x′, y) a δ-KKT point, it must be that yi = 1: a contradiction to
the assumption that yi = 0. One can rule out the possibility of yi = 1 in a similar way and we may
thus conclude that yi ∈ (0, 1). This fact, together with the KKT conditions, further implies that the
partial derivative of M with respect to yi vanishes for each i ∈ [n], and thus:

|x′
i − xi · (1− 2η)− η| =

∣∣∣∣∂M(x, x′, y)

∂yi

∣∣∣∣ ≤ δ (7)

This shows that x′
i ∈ [η − δ, 1− η + δ] and combining with η > δ it follows that x′

i ∈ (0, 1) and the
KKT conditions imply:

δ ≥
∣∣∣∣∂M(x, x′, y)

∂x′
i

∣∣∣∣ = ∣∣∣∣∂Q′(x, x′)

∂x′
i

+ T · (yi − 1/2)

∣∣∣∣ =⇒ T · (1/2− yi) =
∂Q′(x, x′)

∂x′
i

± δ
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Where we use the notation a = b± δ to mean a ∈ [b− δ, b+ δ]. We can now show that the partial
derivative of M at (x, x′, y) is very close to the one of Q at x for all coordinates xi:
∂M(x, x′, y)

∂xi
=

∂Q′(x, x′)

∂xi
+ (1− 2η) · T · (1/2− yi)

=
∂Q′(x, x′)

∂xi
+ (1− 2η) ·

(
∂Q′(x, x′)

∂x′
i

± δ

)
=

∂Q′(x, x′)

∂xi
+

∂Q′(x, x′)

∂x′
i

±
(
2η

∣∣∣∣∂Q′(x, x′)

∂x′
i

∣∣∣∣+ δ

)
=

∂Q′(x, x′)

∂xi
+

∂Q′(x, x′)

∂x′
i

± (4ηZ + δ)

=
∂Q′(x, x′)

∂xi
+

∂Q′(x, x′)

∂x′
i

± 9ε2 as η = 2ε2/Z and δ ≤ ε2

Observe that equation 7 also implies that xi and x′
i must be close with |xi − x′

i| ≤ δ + η, hence:
∂Q′(x, x′)

∂xi
+

∂Q′(x, x′)

∂x′
i

= qi +
∑
j ̸=i

qijxj + qiixi + qiix
′
i

=
∂Q(x)

∂xi
+ qii(x

′
i − xi)

=
∂Q(x)

∂xi
± 3ε2 as |qii| ≤ Z and δ + η = 3ε2/Z

Combining the two previous observations, we have ∂Q(x)/∂xi = ∂M(x, x′, y)/∂xi ± 12ε2. With
this fact established, we may finally show that x is indeed an ε-KKT point of the MinQuadKKT
formulation. If xi = 0, then note that:

∂Q(x)

∂xi
≥ ∂M(x, x′, y)

∂xi
− 12ε2 ≥ −δ − 12ε2 ≥ −13ε2 ≥ −ε

A similar computation shows that the KKT conditions are also satisfied if xi = 1. On the other hand,
if xi ∈ (0, 1): ∣∣∣∣∂Q(x)

∂xi

∣∣∣∣ ≤ ∣∣∣∣∂M(x, x′, y)

∂xi

∣∣∣∣+ 12ε2 ≤ δ + 12ε2 ≤ ε.

A.2 PROOF OF CLAIM 4.1

Proof. Let (x∗, γ∗) be a KKT point of equation 6. We define notation for the following multipliers:

• For all j ∈ Y and k ∈ [m], µ∗
jk ∈ R≥0 corresponding to the constraint γj ≥∑

i∈X e⊤k A
j,ixi.

• For all i ∈ X , λ∗
i ∈ R corresponding to the constraint

∑
k∈[m] xik = 1.

• For all i ∈ X and k ∈ [m], ν∗ik ∈ R≥0 corresponding to the constraint xik ≥ 0.

Note that we have not included multipliers for the constraints γj ≤ M . This is because none of these
constraints will ever be tight at a KKT point (x∗, γ∗) by construction of M .

Now, since (x∗, γ∗) is a KKT point, we can compute such multipliers that satisfy the following KKT
conditions (which are derived from Definition 5) in polynomial time4:

1. For all i ∈ X
−
∑
i′ ̸=i

Ai,i′x∗
i′ −

∑
j∈Y

Ai,jµ∗
j + λ∗

i · 1m − ν∗i = 0

where 1m denotes a vector of m ones, and where we used the fact that Ai,j = −(Aj,i)⊤.
Additionally, we have that for all k ∈ [m], ν∗ik > 0 =⇒ x∗

ik = 0.
4Indeed, it is easy to check that given (x∗, γ∗) such multipliers can then be found by solving an LP.
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2. For all j ∈ Y

1−
∑
k∈[m]

µ∗
jk = 0.

3. For all j ∈ Y and k ∈ [m], µ∗
jk > 0 =⇒ γ∗

j =
∑

i∈X ekA
j,ix∗

i .

Now, we claim that (x∗, µ∗) forms a Nash equilibrium of the original game. First of all, note that by
property 2 we have

∑
k∈[m] µ

∗
jk = 1 and thus µ∗

j is indeed a valid mixed strategy for player j ∈ Y .
Next, property 3 can be rewritten as

µ∗
jk > 0 =⇒ Uj(x

∗, µ∗
−j , ek) =

∑
i∈X

ekA
j,ix∗

i = γ∗
j ≥ max

k′∈[m]

∑
i∈X

ek′Aj,ix∗
i = max

k′∈[m]
Uj(x

∗, µ∗
−j , ek′)

which means that the strategy of player j, namely µ∗
j , is a best-response. Finally, property 1 can be

reinterpreted as saying that x∗
i is a KKT point of the following optimization problem (in variables xi)

min −
∑
i′ ̸=i

xiA
i,i′x∗

i′ −
∑
j∈Y

xiA
i,jµ∗

j [= Ui(xi, x
∗
−i, µ

∗)]

s.t. xi ∈ Xi

Since this is an LP, any KKT point is also a global solution. Thus, x∗
i is a global minimum of this LP,

which means that player i is also playing a best-response.

B ADDITIONAL RELATED WORK

Linear Convergence for Bilinear/Convex-Concave Minmax Although we study this problem
motivated by two-team polymatrix games with adversaries, the hardness results that we show also
apply to the simplest non-convex concave minmax problem, i.e., bilinear non-convex concave. Our
results strictly rule out the possibility of obtaining linear convergence. In contrast, bilinear zero-sum
games and convex-concave games admit algorithms that converge linearly to the NE, for example see
Wei et al. (2020); Sokota et al. (2022); Liu et al. (2022).

Why two-team adversarial games/polymatrix games are interesting? The study of team games
was initiated by von Stengel & Koller (1997), to model “imperfect” coordination within a company,
when having to take strategic decisions in the presence of adversaries. In the field of AI agents, one
can imagine such interactions are natural in settings where AI agents are trained to play team games,
such as Starcraft (Vinyals et al., 2019) and DoTA (Berner et al., 2019).

Meanwhile, polymatrix games are used to model pairwise interactions between players and these
interactions can be specified as a graph. In some cases, polymatrix games offer tractable alternative
models for multiplayer games, as NE in polymatrix zero-sum games are efficiently computable
(Daskalakis & Papadimitriou, 2009; Cai et al., 2016). More generally, polymatrix games are used
to model problems such as coordination games on graphs (Apt et al., 2017; 2022) and this has
applications in semi-supervised learning methods such as graph transduction (Erdem & Pelillo, 2011)
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