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Abstract
Speaker verification is a typical zero-shot learn-001
ing task, where inference of unseen classes is002
performed by comparing embeddings of test003
instances to known examples. The models per-004
forming inference must hence naturally gen-005
erate embeddings that cluster same-class in-006
stances compactly, while maintaining separa-007
tion across classes. In order to learn to do so,008
they are typically trained on a large number009
of classes (speakers), often using specialized010
losses. However real-world speaker datasets of-011
ten lack the class diversity needed to effectively012
learn this in a generalizable manner. We intro-013
duce CAARMA, a class augmentation frame-014
work that addresses this problem by generating015
synthetic classes through data mixing in the016
embedding space, expanding the number of017
training classes. To ensure the authenticity of018
the synthetic classes we adopt a novel adversar-019
ial refinement mechanism that minimizes cate-020
gorical distinctions between synthetic and real021
classes. We evaluate CAARMA on multiple022
speaker verification tasks, as well as other rep-023
resentative zero-shot comparison-based speech024
analysis tasks and obtain consistent improve-025
ments: our framework demonstrates a signifi-026
cant improvement of 8% over all baseline mod-027
els. Code for CAARMA will be released.028

1 Introduction029

Speaker verification is fundamentally a zero-shot030

learning (ZSL) task, where verification is accom-031

plished by comparing embeddings from enrollment032

and verification samples without the need for fur-033

ther training (Wan et al., 2018). This process034

aligns with the principles of ZSL, where models035

are expected to operate effectively on unseen data.036

Therefore, while the following discussion is framed037

within the broader context of ZSL, it is specifically038

tailored to address the challenges in speaker verifi-039

cation.040

To address the challenge of limited class diver-041

sity in training datasets a common issue in speaker042

Figure 1: (a) When trained with fewer classes the model
can spread the embeddings of individual classes out
while still learning to classify the training data accu-
rately and with large margins. This will not, however
translate to compact representations for newer unseen
classes. (b) With additional synthetic classes (shaded
grey), the model must now learn to compact classes
more. This will translate to more compact unseen
classes as well.

verification we propose a novel augmentation- 043

based training paradigm. This approach leverages 044

synthetic data augmentation to enhance the robust- 045

ness and generalization capabilities of speaker ver- 046

ification systems, particularly in low-diversity en- 047

vironments. Our method not only stays true to the 048

essence of ZSL by facilitating effective generaliza- 049

tion to new speakers but also introduces a practical 050

solution to overcome the inherent limitations of 051

traditional training datasets. 052

Effective zero-shot learning lies in generating 053

embeddings that cluster same-class (in our case, 054

same-speaker) instances closely while maintaining 055

separation between different classes (Zhu et al., 056

2019). Traditional training approaches for ZSL 057

models rely on two key components: exposure to 058

a large number of diverse classes and the use of 059

specialized loss functions that promote both inter- 060

class separation and intra-class compactness (Min 061

et al., 2020). The underlying principle here is that 062
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by learning from a sufficiently large number of063

classes, and through proper encouragement embod-064

ied in the losses, the model learns not merely to065

separate the classes it has seen, but the more gen-066

eral principle that instances from a class must be067

clustered closely together while begin separated068

from those from other classes (Xian et al., 2018).069

However, when the training datasets lack the070

necessary variety of classes (speakers), this can071

severely limit the model’s ability to develop ro-072

bust and transferable representations (Xie et al.,073

2022). Indeed, it may be argued that in the high-074

dimensional space of the embeddings, any finite075

set of training classes is insufficient to cover the076

space adequately. This limitation leads to models077

that fail to generalize effectively to unseen cate-078

gories, resulting in suboptimal zero-shot inference079

performance (Gupta et al., 2021).080

Popular approaches to address training data081

limitations often rely on data augmentation tech-082

niques. Methods such as AutoAugment (Cubuk083

et al., 2019) and SpecAugment (Park et al., 2019)084

generate new samples by modifying existing ones085

through transformations like geometric distortions,086

time warping, and frequency masking. However,087

while these techniques increase intra-class diversity,088

they do not introduce new classes, limiting their ef-089

fectiveness in zero-shot learning scenarios. Of most090

relevance to our paper are mixup-based data aug-091

mentation techniques, e.g. (Verma et al., 2019; Yun092

et al., 2019), that aim to enhance training by gener-093

ating new samples through interpolation (Han et al.,094

2021) of both the features and their labels. Regard-095

less of the interpolation, yet, these methods too096

do not generate new classes; they merely improve097

the generalization of the model by mapping mixed098

data to mixed class labels. Still other methods use099

generative models such as VAEs, GANs, diffusion100

models etc. to generate authentically novel data101

to enhance the training (Min et al., 2019); how-102

ever these too are generally restricted to generating103

novel instances for known classes, limiting their ef-104

fectiveness in zero-shot scenarios (Pourpanah et al.,105

2022). Thus, while these approaches are gener-106

ally very successful in improving generalization107

in classification problems, they fail at addressing108

the problem ZSL learning faces, that of increasing109

the number of classes themselves, leading to incon-110

sistent generalization to unseen classes (Xie et al.,111

2022).112

In this paper, we introduce Class Augmen-113

tation with AdversaRial Mixup regulariAztion114

(CAARMA), a data augmentation framework to 115

introduce synthetic classes (speakers) to enhance 116

ZSL training for speaker verification. CAARMA 117

utilizes a mixup-like strategy to generate data from 118

fictitious speakers. However, unlike conventional 119

mixup which mixes data in the input space, which 120

would arguably be meaningless in our setting (a 121

straight-forward mix of two speech recordings will 122

merely result in a mixed signal, and not a new 123

speaker), the mixup is performed in the embedding 124

space in a manner that permits assignment of new 125

class identities to the mixed-up data. Critically, we 126

must now ensure that the mixed-up embeddings 127

resemble those from actual speakers. We do so 128

through a discriminator that is used to minimize 129

categorical distinctions between synthetic and au- 130

thentic data through adversarial training. 131

We demonstrate CAARMA’s effectiveness 132

through extensive evaluation on speaker verifica- 133

tion, where it achieves substantial improvements in 134

generalizing to diverse speaker distributions. Ad- 135

ditional experiments on other ZSL speech tasks 136

further validate our approach’s broad applicability. 137

Our main contributions are as follows: 138

• We introduce CAARMA, a novel class aug- 139

mentation framework that addresses the fun- 140

damental limitation of class diversity in zero- 141

shot learning by generating synthetic classes 142

termed as Sythetic Label Mixup (SL-Mixup) 143

through embedding-space mixing, rather than 144

conventional input-space augmentation. 145

• We develop an adversarial training mechanism 146

that ensures the synthetic classes generated 147

through our mixing strategy maintain statis- 148

tical authenticity by minimizing categorical 149

distinctions between real and synthetic em- 150

beddings. 151

• We achieve significant performance improve- 152

ments in zero-shot inference, demonstrated 153

through an 8% improvement over baseline 154

models in speaker verification tasks, with en- 155

hanced generalization to diverse speaker dis- 156

tributions and verified applicability across var- 157

ious zero-shot learning tasks. 158

2 Related-Work 159

Mixup. The development of mixup strategies has 160

evolved substantially since Mixup’s original intro- 161

duction by (Zhang et al., 2018), which generated 162
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virtual samples and mixed labels by linearly com-163

bining two input samples and their corresponding164

labels. This pioneering method proved particularly165

successful in enhancing data diversity and improv-166

ing generalization in visual classification tasks. Ex-167

tensions such as ManifoldMix (Verma et al., 2019)168

applied this concept to hidden layers, while Cut-169

Mix (Yun et al., 2019) introduced a patch-based170

approach by blending rectangular sections of im-171

ages, offering a novel alternative for augmenting172

training data. Subsequent mixup strategies focused173

on tailoring data mixing to specific contexts or im-174

proving the precision of mixing. Static policies175

like SmoothMix (Lee et al., 2020), GridMix (Baek176

et al., 2021), and ResizeMix (Qin et al., 2023) used177

hand-crafted cutting techniques, while dynamic ap-178

proaches such as PuzzleMix (Kim et al., 2020) and179

AlignMix (Venkataramanan et al., 2022) incorpo-180

rated optimal-transport methods to determine mix181

regions with greater flexibility. For Vision Trans-182

formers, strategies such as TransMix (Chen et al.,183

2022) and TokenMix (Liu et al., 2022b) focused184

on leveraging attention mechanisms to refine mix-185

ing operations, particularly for transformer archi-186

tectures (Dosovitskiy et al., 2021). Recent devel-187

opments have adapted mixup techniques to tasks188

beyond classification, such as regression. C-Mixup,189

for instance, applies sample mixing based on label190

distances, using a symmetric Gaussian kernel to se-191

lect samples that improve regression performance192

(Cai et al., 2021). Further enhancing robustness,193

RC-Mixup integrates C-Mixup with multi-round194

robust training, creating a feedback loop where195

C-Mixup helps identify cleaner data, and robust196

training improves the quality of data for mixing197

(Liu et al., 2022a). These specialized approaches198

reveal mixup’s adaptability across various machine199

learning tasks, enhancing model performance and200

data resilience. However, it’s important to note that201

none of these methods involve mixing in the em-202

bedding space, which could allow for the creation203

of entirely new and synthetic class identities,204

Synthetic speech. Recent advancements in syn-205

thetic audio generation have emphasized the cre-206

ation of diverse and high-quality datasets, crucial207

for training and evaluating audio-based AI models.208

A notable innovation is ConversaSynth, a frame-209

work utilizing large language models (LLMs) to210

generate synthetic conversational audio across var-211

ied persona settings (Gao et al., 2022). This method212

begins with generating text-based dialogues, which213

are then rendered into audio using text-to-speech 214

(TTS) systems. The synthetic datasets produced are 215

noted for their realism and topic variety, proving 216

beneficial for tasks such as audio tagging, clas- 217

sification, and multi-speaker speech recognition. 218

These capabilities make ConversaSynth a valuable 219

tool for developing robust, adaptable AI models 220

that can handle diverse audio data and complex 221

conversational contexts. In the domain of speaker 222

verification, SpeechMix introduces a novel method 223

by mixing speech at the waveform level, carefully 224

adjusting ratios to preserve the distinct characteris- 225

tics of speaker identity (Jindal et al., 2020). How- 226

ever, like many other generative and augmentation 227

techniques, SpeechMix primarily focuses on ma- 228

nipulating known speaker voices rather than gen- 229

erating new identities, thereby limiting its utility 230

for enhancing speaker diversity critical for effec- 231

tive zero-shot learning. Synthio employs a unique 232

approach by using text-to-audio (T2A) diffusion 233

models to augment small-scale audio classifica- 234

tion datasets (Joassin and Alvarez-Melis, 2022). 235

It enhances compositional diversity and maintains 236

acoustic consistency by aligning T2A-generated 237

synthetic samples with the original dataset using 238

preference optimization. Additionally, exploring 239

style transfer in synthetic audio, recent work by 240

Ueda et al. employs a VITS-based voice conver- 241

sion model, conditioned on the fundamental fre- 242

quency (F0), to produce expressive variations from 243

neutral speaker voices (Ueda et al., 2024). This 244

method achieves cross-speaker style transfer in a 245

FastPitch-based TTS system, incorporating a style 246

encoder pre-trained on timbre-perturbed data to 247

prevent speaker leakage. This technique enhances 248

the utility of synthetic data in applications requir- 249

ing rich stylistic diversity. These developments 250

underline the increasing sophistication of synthetic 251

audio generation techniques, from multi-speaker 252

conversations in ConversaSynth to Synthio’s op- 253

timized T2A augmentation for classification, and 254

cross-speaker style transfers with VITS-based mod- 255

els. They collectively demonstrate the power of 256

synthetic data to enrich audio model training by 257

adding diversity and realism. However, these meth- 258

ods still face limitations in generating entirely new 259

speaker identities, which is critical for expanding 260

the range of recognizable voices in speaker verifi- 261

cation systems. CAARMA addresses this gap by 262

directly mixing in the embedding space, creating 263

synthetic speakers that enhance zero-shot learning 264

capabilities. CAARMA not only preserves speaker 265
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characteristics but also significantly expands the266

diversity of speaker identities, offering a superior267

solution for training more robust and adaptable268

speaker verification systems.269

3 Class Augmentation with Adversarial270

Mixup Regularization271

3.1 Overview272

As mentioned in Section 1, ZSL models learn273

their ability to compactly cluster same-class em-274

beddings while maintaining separation between275

classes primarily through exposure to a large num-276

ber of classes during training; the more classes277

they are exposed to in training, the better they278

are able to generalize to unseen classes. In the279

speaker verification setting, this translates to train-280

ing the model with recordings from a large num-281

ber of speakers; the more the number of training282

speakers the better the model generalizes. To im-283

prove this generalization CAARMA attempts to284

increase the number of speakers by creating syn-285

thetic speakers while training. Synthetic speakers286

may be created through generative methods such287

as (Cornell et al., 2024); however this approach288

does not scale. Instead, CAARMA creates them289

through a simple mixup strategy, as convex combi-290

nations of real speakers, with a key distinction: the291

mixup is performed in the embedding space, where292

the classes are expected to form compact (and gen-293

erally convex) clusters. In order to ensure that294

these synthetic speakers are indeed representative295

of actual speakers, CAARMA utilizes a semantic296

discriminator, a discriminator which attempts to297

distinguish between synthetic and real speakers: if298

this discriminator is fooled, the synthetic speakers299

are statistically indistinguishable from real ones.300

When training the model, a conventional loss301

such as the Additive Margin Softmax (AM-302

Softmax) (Wang et al., 2018) is used. The synthetic303

classes, which are created dynamically during train-304

ing, are included by dynamically also expanding305

the class labels in the loss. In addition, the model306

also attempts to adversarially fool the discriminator.307

Once the model is trained, the discriminator is no308

longer needed and is discarded.309

3.2 Framework310

Our framework consists of three main components:311

an encoder for embedding generation, a synthetic312

label mixup mechanism for class augmentation,313

and an adversarial training scheme with a seman-314

tic discriminator. Figure 2 illustrates the complete 315

pipeline of our approach. The process begins with 316

a waveform input that is transformed into a Mel- 317

spectrogram. This spectrogram serves as input 318

to the encoder E , which generates embeddings e 319

that capture discriminative speaker characteristics. 320

These embeddings undergo our SL-Mixup strategy, 321

which generates synthetic embeddings esyn by mix- 322

ing embeddings e based on their closest neighbor 323

weights W . Each synthetic embedding receives 324

a corresponding synthetic label IDsyn within the 325

mini-batch. The framework employs two primary 326

loss functions: the encoder loss Lreal for original 327

embeddings and the synthetic loss Lsyn for syn- 328

thetic embeddings. A Self-Supervised Learning 329

(SSL) model serves as the semantic discriminator 330

to distinguish between real (R) and synthetic (S) 331

embeddings. A discriminator loss LD guides the 332

discriminator to maximally distinguish between R 333

and S. On the other hand, a generator loss Lgen 334

guides the encoder to “fool” the discriminator, so 335

that it perceives no distinction between real and 336

synthetic embeddings. 337

3.3 Encoder 338

The encoder E transforms Mel-spectrograms 339

into discriminative embeddings e that capture 340

speaker-specific acoustic features. We employ 341

an MFA-Conformer model (Zhang et al., 2022) 342

as our encoder architecture, which combines 343

feed-forward networks (FFNs), multihead self- 344

attention (MHSA), and convolution modules. The 345

model incorporates positional embeddings to han- 346

dle variable-length input sequences effectively. For 347

training, we utilize the AM-Softmax function as 348

our encoder loss Lreal. 349

Lreal = − log
es·(cos(θy)−m)∑C
j=1 e

s·cos(θj)
350

where s is a scaling factor used to stabilize gradi- 351

ents, C represents the number of classes, cos(θy) 352

denotes the cosine similarity for the true class, and 353

m is an additive margin that enhances class separa- 354

tion by increasing inter-class distances. 355

3.4 Synthetic Label Mixup 356

Our SL-Mixup strategy generates synthetic em- 357

beddings esyn within each mini-batch by mixing 358

embeddings e according to their closest neigh- 359

bor weights W , as detailed in Algorithm 1. This 360

approach ensures synthetic embeddings remain 361
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Figure 2: Illustration of CAARMA framework. (a) The encoder (E) extracts embeddings from Mel-spectrograms,
which are processed by a classification head (H) for speaker identification and through Mix-Up for synthetic
embedding generation. (b) Both real and synthetic embeddings are fed into a pretrained SSL model that acts as a
discriminator, distinguishing between real and synthetic samples.

within the same manifold as real embeddings,362

avoiding arbitrary generation. The strategy creates363

synthetic labels IDsyn and embeddings dynami-364

cally during training, enabling effective represen-365

tation learning and facilitating the potential use of366

unlabeled data. To ensure that synthetic speakers367

are minimally confusable with their component368

speakers, we only combine pairs of speakers with a369

fixed weight of 0.5. This approach maintains a bal-370

anced contribution from each component speaker,371

preventing synthetic embeddings from collapsing372

into a single identity while maintaining inter-class373

separation. The synthetic loss Lsyn is computed374

using the AM-Softmax loss function applied to375

synthetic embeddings esyn. This loss is integrated376

into the main encoder loss Lreal, scaled by 1/λ,377

where λ represents the number of speakers. This378

integration ensures proper alignment of synthetic379

embeddings within the embedding manifold.380

3.5 Adversarial Training381

Our adversarial training process alternates be-382

tween optimizing the encoder and discriminator,383

as described in Algorithm 2. This optimization384

scheme continuously refines the embedding mani-385

fold through the interaction between real and syn-386

thetic embeddings:387

Algorithm 1 SL-Mixup

Input: Feature matrix X , Label vector Y ,
Weight matrix W
Initialize Wsyn ← 0, Ysyn ← 0, Xsyn ← 0
for yi ∈ Y do

distances ← ∥W[:, i] − W[:, j]∥2 ∀j ∈
label_set \ {i}
neighbor(yi)← argmin(distances)

end for
for i ∈ Batch do

l1 ← Y [i], l2 ← neighbor(l1)
Wsyn[:, i]← 0.5× (W [:, l1] +W [:, l2])
Ysyn[i]← new_label(l1, l2)
index[i]← find(Y = l2)
Xsyn[i]← 0.5× (X[i] +X[index[i], :])

end for
Return: Xsyn, Ysyn, Wsyn

• Discriminator Training: The discriminator 388

D learns to differentiate between real embed- 389

dings e and synthetic embeddings esyn using 390

features extracted from multiple model layers. 391

The discriminator loss is defined as: 392

LD = BCE(D(e), 1) + BCE(D(esyn), 0)
(1) 393
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Algorithm 2 Adversarial Training with Synthetic
Embeddings

Input: Feature extractor f(X), Model M , Dis-
criminator D, Dataset D (waveforms X and la-
bels Y ), Adversarial weight λadv
for each epoch e ∈ [1, Nepochs] do

for each batch (X,Y ) ∈ D do
Extract features F = Mel(X)
Compute embeddings e = E(F )
Compute AM-Softmax loss Lreal
Generate synthetic embeddings esyn via
mixup
Compute real predictions D(e) and fake
predictions D(esyn)
Compute discriminator loss:
LD = BCE(D(e), 1) + BCE(D(esyn), 0)
Update D using∇LD
Compute generator loss
LG = BCE(D(esyn), 1) + BCE(D(e), 0)
Adjust λadv based on Lreal/LG
Compute total loss Ltotal = Lreal + λadvLG

Update M using∇Ltotal
end for

end for
Return: Trained M and D

where BCE represents binary cross-entropy394

loss.395

• Generator Loss: The encoder incorporates396

a generator loss LG that guides embedding397

alignment with the manifold structure:398

LG = BCE(D(esyn), 1) + BCE(D(e), 0)
(2)399

3.6 Semantic Discriminator400

To enhance the discriminative power of our frame-401

work, we incorporate a self-supervised model (Hu-402

BERT) (Hsu et al., 2021) as a semantic discrimi-403

nator. This discriminator leverages the pre-trained404

representations to provide richer gradients during405

adversarial training, improving the stability and406

quality of the learned embeddings. The seman-407

tic discriminator processes embeddings through408

an adapter module that projects them into a com-409

patible feature space. The adapter consists of a410

down-projection layer with spectral normalization,411

followed by fully connected layers with GELU412

activation (Hendrycks and Gimpel, 2016). We em-413

ploy skip connections and layer normalization to414

ensure stable training. The discriminator extracts 415

features from multiple HuBERT (Hsu et al., 2021) 416

layers (7, 9, 11, and 12) to capture diverse speaker 417

characteristics. These features are combined using 418

learnable weights and processed through a resid- 419

ual classification block with spectral normalization 420

and LeakyReLU activation (Xu, 2015) to determine 421

whether an embedding is real or synthetic. 422

4 Experiments 423

4.1 Datasets 424

We utilize four datasets in our proposed ap- 425

proach: VoxCeleb1 (Nagrani et al., 2017), Vox- 426

Celeb2 (Chung et al., 2018), and two datasets 427

from the Dynamic-SUPERB (Huang et al., 2024) 428

benchmark such as HowFarAreYou and DailyTalk 429

datasets. The dataset statistics are summarized in 430

Table 1. These datasets were employed across dif- 431

ferent tasks to evaluate the adaptability and gener- 432

alizability of our pipeline: 433

• Speaker Identification: The primary task of 434

our study involves speaker identification using 435

VoxCeleb1 and VoxCeleb2. These large-scale 436

datasets contain speech recordings from thou- 437

sands of speakers. 438

• Speaker Distance Estimation The How- 439

FarAreYou dataset originates from the 440

3DSpeaker dataset, designed to assess the dis- 441

tance of a speaker from the recording device. 442

The task involves predicting distance labels 443

(e.g., 0.4m, 2.0m) based on speech recordings. 444

• Emotion Recognition: We use the DailyTalk 445

dataset to classify the emotional state of a 446

speaker based on speech utterances. This 447

dataset contains speech samples labeled with 448

seven distinct emotion categories. To maintain 449

consistency with other datasets, we resample 450

all recordings to 16 kHz before processing. 451

Table 1 provides an overview of the datasets used 452

in our experiments, including the number of classes 453

and total utterances per dataset. 454

4.2 Experimental Setup 455

4.2.1 Model Architecture 456

We train two baseline architectures for speaker ver- 457

ification: 458

ECAPA-TDNN (Desplanques et al., 2020): 459

Contains three SE-Res2Blocks with 1024 channels 460

(20.8M parameters). 461
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Table 1: Dataset statistics used in our experiments.

ID DATASET CLASSES UTTERANCES
1 VOXCELEB1 1211 1,087135
2 VOXCELEB2 5994 153,516
3 HOWFARAREYOU 3 30,00
4 DAILYTALK 7 16,600

Table 2: EER Results for MFA Conformer baseline, Ad-
versarial Training (AT), Semantic Discriminator (SD),
and Synthetic Loss Lsyn using VoxCeleb1 for the SV
tasks.

ID Lsyn AT SD RESULTS
1 3.33
2 ✓ 3.28
3 ✓ 3.15
4 ✓ ✓ 3.18
5 ✓ ✓ 3.17
6 ✓ ✓ ✓ 3.09

MFA-Conformer (Zhang et al., 2022): Em-462

ploys 6 Conformer blocks with 256-dimensional463

encoders, 4 attention heads, and convolution kernel464

size of 15 (19.7M-20.5M parameters).465

Both architectures generate 192-dimensional em-466

beddings for fair comparison. For emotion and dis-467

tance tasks, we utilize HuBERT-Large (pretrained468

on LibriSpeech) with 1024-dimensional embed-469

dings and 768 hidden units.470

4.2.2 Adversarial Training471

We incorporate adversarial training into our base-472

line experiments. In this approach, each model is473

retrained from scratch within our adversarial frame-474

work. The discriminator is trained concurrently475

with the encoder. The discriminator’s role is to476

effectively distinguish between real and synthetic477

embeddings, enforcing a well-structured represen-478

tation.479

Semantic discriminator. To determine the most480

informative HuBERT hidden layers for speaker rep-481

resentation, we conduct an ablation study. We482

experiment with different layer configurations,483

including {h3, h6, h9, h12}, {h7, h9, h11, h12},484

{h6, h7, h8, h9} and evaluate their impact on485

model performance.486

4.2.3 Implementation Details487

We implement all baseline systems and discrimi-488

nators using the PyTorch framework (Yun et al.,489

2019). Each utterance is randomly segmented490

into fixed 3-second chunks, with 80-dimensional491

Fbanks as input features, computed using a 25492

Table 3: EER Results for two different encoders
ECAPA-TDNN and MFA Conformer showing perfor-
mance in baseline, Adeversarial Training (AT), and Syn-
thetic Loss (Lsyn) on VoxCeleb1-O.

ENCODER BASELINE AT AT+Lsyn

ECAPA TDNN 4.22 3.96 3.87
MFA CONFORMER 3.33 3.18 3.09

Table 4: Ablation study of different hidden layers for
Semantic Discriminator (SD) reporting EER (%) and
minDCF.

ID HIDDEN LAYERS EER (%) MINDCF
1 h3, h6, h9, h12 3.22 0.31
2 h6, h7, h8, h9 3.12 0.30
3 h7, h9, h11, h12 3.09 0.28

ms window length and a 10 ms frame shift, with- 493

out applying voice activity detection. All models 494

are trained using AM-Softmax loss with a mar- 495

gin of 0.2 and a scaling factor of 30. We use the 496

AdamW optimizer with an initial learning rate of 497

0.001 for model training, while the discriminator 498

is optimized separately with AdamW at an ini- 499

tial learning rate of 2e-4. To prevent overfitting, 500

we apply a weight decay of 1e-7 and use a linear 501

warmup for the first 2k steps, though no warmup is 502

applied to the discriminator. Training is conducted 503

on NVIDIA V100 GPUs with a batch size of 50, 504

and all models are trained for 30 epochs. 505

5 Results & Analysis 506

To validate the effectiveness of our approach, we 507

conduct comprehensive experiments across speaker 508

verification, emotion classification, and speaker dis- 509

tance estimation tasks. Our analysis demonstrates 510

significant improvements through adversarial re- 511

finement on model generalization. 512

5.1 Speaker Verification Task 513

We evaluate our models on VoxCeleb1-O, the offi- 514

cial test set of VoxCeleb1. 515

5.1.1 Small Scale 516

Our initial evaluations focused on models trained 517

on VoxCeleb1 to facilitate thorough experimenta- 518

tion with different model configurations. 519

Using the MFA Conformer as the Encoder, we 520

conduct several experiments (Table 2) reporting 521

the Equal Error Rate (EER). The addition of syn- 522

thetic loss alone (Model ID2) yield slight improve- 523

ments over the baseline (Model ID1). More sub- 524
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Table 5: Performance overview of all systems on VoxCeleb1-O

Model # Parameters EER(%) minDCF
ResNet34 23.2M 1.03 0.112
ECAPA-TDNN 20.8M 0.82 0.112

MFA-Conformer 19.8M 0.86 0.066
MFA-Adversarial 19.8M 0.81 0.036

Table 6: Classification accuracies for Hubert Encoder
baseline and with Adversarial Training on two different
tasks.

DATA SET BASELINE AT
EMOTION CLASSIFICATION 83% 85.50%
HOWFARSPK 77.91% 79.97%

stantial gains were achieved through adversarial525

training (Model ID3), with further improvements526

observed when incorporating the semantic discrim-527

inator (Model ID4). The best performance was528

achieved by Model ID6, which combined all three529

components: synthetic loss, semantic discriminator,530

and adversarial training.531

To further validate the generalizability of our ap-532

proach, we implement it with an alternative speaker533

encoder. As shown in Table 3, the combination of534

adversarial training and semantic discriminator im-535

proved performance by 6.56% compared to the536

baseline. Adding synthetic loss further enhanced537

the improvement to 8.29%.538

We conduct an ablation study to identify the539

most informative hidden layers for speaker repre-540

sentation. Table 4 presents the EER and minimum541

Detection Cost Function (minDCF) across various542

layer configurations. Our analysis revealed that543

layers 7, 9, 11, and 12 provide the most effective544

speaker characteristics representation, suggesting545

that later layers capture more valuable speaker-546

specific information.547

5.1.2 Large Scale548

To demonstrate the scalability of our framework,549

we conduct experiments on models trained on both550

VoxCeleb1 and VoxCeleb2, as a large-scale dataset.551

As shown in Table 5, we incorporate the MFA Con-552

former as the encoder within our adversarial train-553

ing framework, leveraging its strong baseline per-554

formance on smaller datasets. The results indicate555

that our adversarial refinement approach scales ef-556

fectively to larger datasets, consistently improving557

both EER and minDCF metrics.558

5.2 Emotion and Speaker Distance Tasks 559

To demonstrate the generalizability of our approach 560

across different speech processing domains, we 561

evaluate its effectiveness on emotion classifica- 562

tion and speaker distance estimation using the Dai- 563

lyTalk and HowFarAreYou test sets, respectively. 564

As shown in Table 6, our method improved classi- 565

fication accuracy across both tasks: emotion classi- 566

fication accuracy increased from 83% to 85.50%, 567

while speaker distance estimation improved from 568

77.91% to 79.97%. These results demonstrate that 569

our approach can be effectively integrated with var- 570

ious models across various domains. 571

6 Conclusion 572

In this work, we introduce CAARMA, a novel 573

class augmentation framework designed to tackle 574

the challenge of limited class diversity in zero- 575

shot inference tasks. Our approach synthesizes 576

strategic data mixing with an adversarial refine- 577

ment mechanism to align real and synthetic classes 578

effectively within the embedding space. We vali- 579

date CAARMA’s effectiveness in speaker verifica- 580

tion, achieving an 8% improvement over baseline 581

models, and extend its application to emotion clas- 582

sification and speaker distance estimation, where 583

it also shows significant gains. These results un- 584

derscore CAARMA’s capability to enhance em- 585

bedding structures in various zero-shot inference 586

scenarios. Our framework offers a scalable solu- 587

tion to the class diversity problem, facilitating inte- 588

gration into existing systems without the need for 589

new real-world data collection. With our code re- 590

leased publicly, we anticipate that CAARMA will 591

aid both research and practical applications in zero- 592

shot learning. Future work will focus on expanding 593

CAARMA’s utility to larger datasets and other do- 594

mains, such as computer vision. 595

Limitations 596

The CAARMA framework, while showcasing no- 597

table enhancements in speaker verification and 598
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zero-shot learning tasks, is subject to several lim-599

itations that merit further exploration. Although600

it performs well in controlled settings, its scala-601

bility to extremely large or diverse datasets, as602

well as its applicability to real-world scenarios with603

high speaker variability, has yet to be fully estab-604

lished. This also adds complexity to the implemen-605

tation and increases computational demands, which606

may restrict accessibility for those with limited re-607

sources.608

Ethics Statement609

The CAARMA framework is developed with a610

commitment to ethical considerations, especially611

concerning privacy and the potential for surveil-612

lance misuse. It is crucial to ensure that this tech-613

nology, while advancing the capabilities of speaker614

verification systems, is employed within the con-615

fines of strict ethical guidelines and privacy regula-616

tions to prevent any invasion of individual privacy.617

As this framework facilitates the generation of syn-618

thetic data, we also focus on preventing biases that619

could arise in synthetic datasets, ensuring fair rep-620

resentation across different groups. In adherence to621

the ACL Ethics Policy, we emphasize transparency622

in the deployment of CAARMA and advocate for623

its use in ethically justifiable manners that respect624

individual rights and data integrity.625
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