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ABSTRACT

Large Reasoning Models (LRMs) often exhibit a tendency for overanalysis in sim-
ple tasks, where the models excessively utilize System 2-type, deliberate reasoning,
leading to inefficient token generation. Furthermore, these models face challenges
in adapting their reasoning capabilities to rapidly changing environments due to
the static nature of their pre-training data. To address these issues, advancing
Large Language Models (LLMs) for complex reasoning tasks requires innovative
approaches that bridge intuitive and deliberate cognitive processes, akin to human
cognition’s dual-system dynamic. This paper introduces a Multi-Agent System for
Deep ReSearch (MARS) enabling seamless integration of System 1’s fast, intuitive
thinking with System 2’s deliberate reasoning within LLMs. MARS strategically
integrates multiple external tools—such as Google Search, Google Scholar, and
Python Interpreter—to access up-to-date information and execute complex compu-
tations, while creating a specialized division of labor where System 1 efficiently
processes and summarizes high-volume external information, providing distilled
insights that expand System 2’s reasoning context without overwhelming its ca-
pacity. Furthermore, we propose a multi-agent reinforcement learning framework
extending Group Relative Policy Optimization to simultaneously optimize both
systems with multi-turn tool interactions, bin-packing optimization, and sample
balancing strategies that enhance collaborative efficiency. Extensive experiments
demonstrate MARS achieves substantial improvements of 3.86% on the chal-
lenging Humanity’s Last Exam (HLE) benchmark and an average gain of 8.9%
across 7 knowledge-intensive tasks, validating the effectiveness of our dual-system
paradigm for complex reasoning in dynamic information environments.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks with
their System 1’s fast, intuitive thinking, yet they still struggle with complex reasoning tasks (Anthropic,
2024; Hurst et al., 2024; Yang et al., 2024; Mesnard et al., 2024; Team, 2025). Recent advances in
this direction have led to the emergence of Large Reasoning Models (LRMs), which specifically
excel at System 2-type, deliberate reasoning when confronted with challenging problems (Jaech et al.,
2024; Guo et al., 2025; Team, 2024; Anthropic, 2025). However, when faced with simpler questions,
LRMs may tend to overanalyze, producing an unnecessary amount of tokens Chen et al. (2024). In
contrast to LLMs and LRMs, humans can effortlessly switch between these two modes of thinking.

Furthermore, the pursuit of developing LLMs capable of complex reasoning in rapidly changing
environments remains a significant challenge. Since the knowledge these models possess is confined
to the cut-off date of their training data, enabling them to acquire new information through web
browsing—known as retrieval-augmented generation (RAG)—is emerging as a promising trend for
enhancing reasoning capabilities (Chen et al., 2025; Li et al., 2025a; Jin et al., 2025; Li et al., 2025b).
One of the most prominent examples is the proprietary system OpenAI (2025a); Google (2025b); xAI
(2025); MoonshotAI (2025), the agents designed to synthesize large volumes of online information
and accomplish multi-step research tasks effectively.

Inspired by the dual-process theory of human cognition (Evans & Stanovich, 2013; Frankish, 2010),
we propose MARS, a multi-agent system for deep research to overcome previous limitations by
innovatively integrating System 1 and System 2 thinking mode in a seamless manner, complemented
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by external tools like Google Search, Google Scholar, and Python Interpreter. This interactive
approach allows System 2 to focus on deliberate reasoning and planning, autonomously generating
specific queries and computational tasks to engage with external resources. In turn, System 1
processes and summarizes these external tool outputs with its fast, intuitive thinking, distilling
high-volume, potentially noisy information into concise insights for System 2’s reasoning processes.
The advantages of our proposal are manifest in two critical areas: first, through a specialized
division of labor, our method considerably enhances the depth and breadth of available informational
context in System 2. Specifically, System 1 efficiently filters and distills large volumes of retrieved
information (such as multiple entire research papers or web pages) that would otherwise overwhelm
System 2’s reasoning capacity, thereby allowing the model to digest more comprehensive and up-
to-date information without sacrificing reasoning quality. Second, this dual-system synergy creates
an efficient collaborative framework where each component operates within its optimal domain,
resulting in efficient yet robust problem-solving capabilities.

To implement our approach, we develop a data curation pipeline and collect a curated dataset from
public datasets that emphasizes diversity across various difficulty levels and academic disciplines.
This expansive dataset ensures that the model is well-prepared to tackle a broad spectrum of scenarios,
ranging from straightforward tasks to intricate reasoning challenges, creating a solid foundation for
subsequent training. To equip LLMs with these dual-system capabilities, we propose a multi-agent
reinforcement learning framework that extends the Group Relative Policy Optimization (GRPO) (Shao
et al., 2024) algorithm to optimize System 1 and System 2 simultaneously. In MARS, System 1
and System 2 function as collaborative agents implemented within the same underlying LLM but
orchestrated through distinct prompts, enabling seamless interplay between intuitive and deliberate
reasoning modes. Additionally, we propose several strategies to optimize our multi-agent training
process. First, we incorporate multi-turn and multiple tools use during rollouts, allowing the model
to dynamically refine its reasoning through iterative engagement with external tools. Second, we
employ bin-packing algorithms (Coffman Jr et al., 1984) to efficiently organize variable-length
retrieved content into optimally-sized chunks, significantly enhancing System 1’s parallel processing
efficiency. Third, to ensure balanced training dynamics between the two systems, we propose a
two-phase approach that pre-computes each system’s advantage signals and then implements a sample
balancing strategy between systems, preventing one system from dominating the learning process. By
integrating these strategies within our multi-agent RL framework, we enable both systems to adapt
and refine their interactions, ultimately enhancing their collaborative efficiency and overall reasoning
capabilities. Extensive experiments demonstrate that MARS achieves a substantial improvement
of 3.86% on HLE benchmark and an average gain of 8.9% across 7 knowledge-intensive tasks,
highlighting the effectiveness of our dual-system paradigm in complex reasoning scenarios.

In summary, our main contributions can be summarized as follows:

• We propose MARS, a novel dual-system framework that seamlessly integrates System 1’s fast,
intuitive thinking mode with System 2’s deliberate reasoning capabilities, creating an efficient
collaborative paradigm where each component operates within its optimal domain.

• We propose a multi-agent reinforcement learning framework to concurrently optimize System 1 and
System 2, implementing multi-turn and multiple tools use for System 2, bin-packing optimization
for System 1’s efficient content processing, and pre-computation and sampling balance strategies
to enhance collaborative efficiency and reasoning capabilities across diverse tasks.

• We contribute a data curation pipeline and a carefully curated training dataset spanning diverse
difficulty levels and academic disciplines, with special emphasis on the challenging Humanity’s
Last Exam (HLE) benchmark, for which high-quality training data was previously scarce.

• We conduct comprehensive experiments on HLE and 7 knowledge-intensive tasks to evaluate the
effectiveness of our MARS. Furthermore, we provide in-depth analysis of the multi-agent, multi-
turn, multi-tool RL process and investigate how different external tools contribute to reasoning
performance, particularly on the challenging HLE benchmark.

2 METHODOLOGY

In this section, we begin by providing a concise overview of the entire pipeline to help readers
understand the comprehensive integration of System 1 and System 2 in deep research for tackling
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complex questions. Then, we delve into the optimization strategies for end-to-end training of the two
systems within a multi-agent reinforcement learning framework.

2.1 DUAL-SYSTEM COLLABORATIVE FRAMEWORK FOR DEEP RESEARCH

System 1 

External Environment

Question

Tool Calling
(purpose)

Python Output

Bin Packing

System 2Answer

Key Information

Collaborative System
within LLM

PaperWebpage

system 2's
purpose

Figure 1: Overview of Dual-System Collaborative
Framework in our MARS.

We design a collaborative framework that in-
tegrates System 1’s intuitive processing capa-
bilities with System 2’s deliberate reasoning
within a unified LLM. As illustrated in Figure 1,
our framework establishes a synergistic work-
flow between these two systems to tackle com-
plex questions through external tool utilization.
Specifically, System 2 takes the lead in delib-
erate reasoning and strategically invokes exter-
nal tools, while System 1 leverages its intuitive
thinking to distill key information from these
tool outputs. The communication between these
two systems is facilitated through the “purpose” of System 2’s current tool invocation. This “System
2’s purpose” serves as a crucial bridge, allowing System 1 to understand precisely what information
to extract and summarize from potentially overwhelming external resources.

To formalize this collaborative framework, we represent these two systems activated within the
same LLM through different prompts as πsys1 and πsys2 . Given an initial question q as the starting
context c0, we model the deep research process as a multi-turn interaction sequence. While System
2 maintains and reasons with the accumulated context ci (containing the question and information
from previous turns), System 1 operates independently in each turn, focusing solely on processing
the current tool outputs without requiring the full historical context.

In the i-th turn of interaction, the process unfolds as follows: (1) System 2 analyzes the current
context ci and generates reasoning steps si, along with an optional tool request (which includes both
the tool parameters ti and a specific purpose pi):

si, (ti, pi) = πsys2(ci) (1)
where ti and pi can be empty if no tool is needed at this turn. (2) If ti is not empty, it is executed
by the external environment, producing raw outputs {o(1)ti , o

(2)
ti , ..., o

(nti
)

ti }1. (3) If tool outputs are
available, System 1 processes them to extract key information based on System 2’s purpose pi. To
efficiently handle potentially large volumes of text (e.g., multiple web pages or research papers), we
employ bin-packing algorithms (Coffman Jr et al., 1984) to organize the variable-length outputs into
optimally-sized chunks that can be processed in parallel:

õti = πsys1

(
Bin-Packing

(
o
(1)
ti , o

(2)
ti , ..., o

(nti
)

ti

)
, pi

)
(2)

where õti represents the distilled information from all tool outputs. The specific bin-packing im-
plementation details are discussed in Section 2.2.1. (4) The context is updated for the next turn by
incorporating the reasoning, tool request, purpose, and the distilled information:

ci+1 = ci ⊕ {si, ti, pi, õti} (3)
where ⊕ denotes context concatenation. Note that for Python Interpreter outputs, õti is directly the
tool output without System 1 processing, as these results are typically concise and structured. This
process continues iteratively until System 2 determines to answer the original question. The overall
generative process can be expressed as:

P(answer|q) =
N∏
i=1

πsys2(si, ti, pi|ci)︸ ︷︷ ︸
System 2: Reasoning

·πsys1(õti |Bin-Packing(o(1)ti , o
(2)
ti , ..., o

(nti
)

ti ), pi)︸ ︷︷ ︸
System 1: Information Processing

 (4)

where N is the total number of turns and the second term is omitted if no tool is called. This
formulation clearly expresses how System 2 guides the overall reasoning process, while System 1
efficiently processes external information without maintaining the full context history.

1nti denotes the number of all outputs from request ti. In our setting, Google Search returns up to 10 web
pages per query, Google Scholar returns up to 5 papers, with multiple queries supported in a single tool request.
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Figure 2: Demonstration of GRPO with multi-agent reinforcement learning in our MARS.

2.2 DUAL-SYSTEM OPTIMIZATION STRATEGIES

To maximize the effectiveness of our dual-system framework, we implement several key optimization
strategies: (1) bin-packing algorithms to enhance System 1’s parallel processing efficiency for variable-
length retrieved content, and (2) advantage pre-computation and balanced sampling mechanism,
preventing either system from dominating the learning process. Figure 2 illustrates our end-to-end
RL training process, from multi-agent rollout to advantage computation and sample balancing.

2.2.1 EFFICIENT CONTENT PROCESSING WITH BIN-PACKING

During rollouts, System 2 follows standard token generation for deliberate reasoning and tool-
use planning. However, the subsequent tool calls often return multiple outputs of variable length.
Processing these large volumes of variable-length text presents a significant challenge for System
1 due to multiple generations. To address this, we employ an efficient bin-packing strategy based
on the First Fit Decreasing (FFD) algorithm (Coffman Jr et al., 1984). This approach optimizes
the organization of variable-length content into optimally-sized chunks to reduce the number of
generations required by System 1.

Specifically, we begin by counting the number of tokens in each tool output o(j)ti . If the token count
exceeds System 1’s maximum context length, the output is truncated and placed in an isolated bin.
For the remaining outputs, we apply the FFD algorithm: all such outputs are first sorted in decreasing
order of their lengths, then assigned to the first bin that can fit them, or to a new bin if no existing one
suffices. We choose FFD over Best Fit Decreasing (BFD) due to its superior efficiency in practice.
The implementation details can refer to Appendix D.2.

2.2.2 ADVANTAGE PRE-COMPUTATION AND BALANCED SAMPLING MECHANISM

In our MARS, following HLE’s evaluation prompt (Phan et al., 2025), we employ LLMs as an
evaluator to assess the predicted answer of each trajectory. Note that all System 1 and System 2
samples within the same trajectory share this trajectory-level reward to encourage both systems
toward the same goal, rather than pursuing potentially conflicting individual objectives.

For each question q, we perform G rollout trajectories and yield exactly G System 2 samples and a
variable number of System 1 samples, which depends on the number of tool calls per trajectory and
chunks created after Bin-Packing. This unpredictable imbalance can lead to one system dominating
the learning process, potentially undermining the collaborative dynamics essential to our multi-agent
system. To address this, we pre-compute each system’s advantage and then balance System 1’s
samples. Following GRPO (Shao et al., 2024), rewards are normalized within their corresponding
groups to calculate advantage values:

Ak
sys2

=
rksys2

−mean(rsys2)

std(rsys2)
, Ak,j

sys1
=

rk,jsys1 −mean(rsys1)

std(rsys1)
, (5)

where rsys2 = {r1sys2
, . . . , rGsys2

} represents all System 2 rewards for the current question, and

rsys1 = {rk,jsys1 |k ∈ [1, G], j ∈ [1, nk]} represents all System 1 rewards, with G being the group size,
nk being the number of System 1 samples in trajectory k, and rk,jsys1 = rksys2

.

After computing advantages for all samples, we implement a balanced sampling mechanism to align
the number of System 1 samples with System 2. Specifically, if the total number of System 1 samples

4
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M =
∑G

k=1 nk exceeds G, we randomly downsample to exactly G samples; if M < G, we upsample
through random duplication until reaching G samples. This pre-computation-then-sampling approach
offers two key benefits: First, it ensures that advantage information from all samples contributes to
the computation before any sampling occurs, maximizing the utilization of available data. Second,
it preserves the statistical integrity of the advantage distribution, as the normalization is performed
across the complete set of samples rather than being distorted by the sampling process.

2.2.3 MULTI-AGENT TRAINING OBJECTIVE

With the balanced samples from both systems, we optimize System 1 and System 2 jointly using
an extended GRPO framework, as shown in the Figure 2. The training samples for each system
are distinctly different: For System 2, each sample consists of the full reasoning context cN =
{si, ti, pi, õti}Ni=1, where tokens from System 1’s outputs õti are masked during loss computation.
For System 1, each sample is a pair of bin-packed input and its corresponding output (b, õ), where b
is a chunk created by the bin-packing algorithm and õ is System 1’s response. The overall training
objective combines the loss functions for both systems:

Ltotal = Lsys2 + Lsys1 (6)

For each system, we apply the GRPO objective (Shao et al., 2024):

Lsysi = E(x,y)∼Di

[
Lpolicy(x, y,Asysi) + λLKL(x, y)

]
(7)

where Di represents the balanced dataset for System i, x and y denote the input-output pairs, Lpolicy
is the policy loss and LKL is a KL regularization term. The detailed mathematical formulations
are provided in Appendix D.4. This joint optimization approach allows both systems to improve
simultaneously while maintaining their specialized roles in the collaborative framework.

3 EXPERIMENTS

3.1 EVALUATION DATASETS AND METRICS

We evaluate our MARS on several challenging benchmarks that require sophisticated multi-step
reasoning and external knowledge: (1) Humanity’s Last Exam (HLE) (Phan et al., 2025) is an
extremely challenging dataset containing advanced problems. We utilize its text-only subset with
2,154 questions. (2) Single-Hop Question Answering, including NQ (Kwiatkowski et al., 2019),
TriviaQA (Joshi et al., 2017), and PopQA (Mallen et al., 2023). (3) Multi-Hop Question Answering,
including HotpotQA (Yang et al., 2018), 2WikiMultiHopQA (Ho et al., 2020), Musique (Trivedi
et al., 2022), and Bamboogle (Press et al., 2023). For evaluation, we follow different protocols for
different benchmarks. For HLE, we adopt its official evaluation prompt (Phan et al., 2025) with
GPT-4o (Hurst et al., 2024) as the judge. For other QA datasets, following Chen et al. (2025), we
employ Qwen2.5-72B-Instruct (Yang et al., 2024) as the evaluation model.

3.2 BASELINES AND IMPLEMENTATION DETAILS

To evaluate the effectiveness of MARS, we compare our method with the following baselines. (1)
Direct Reasoning: Models that directly answer questions without external knowledge, including
open-source models (Qwen2.5 series (Yang et al., 2024) and QwQ-32B (Team, 2024)) and powerful
proprietary models (DeepSeek-R1-671B (Guo et al., 2025), GPT-4o (Hurst et al., 2024), o1 (OpenAI,
2024), Claude 3.7 Sonnet (Anthropic, 2025), Gemini 2.5 Pro (Google, 2025a), o3(high) (OpenAI,
2025b)), and o4-mini(high) (OpenAI, 2025c). (2) Advanced RAG Reasoning Methods: We consider
the standard RAG that retrieve top-10 documents based on the question, and several iterative RAG
methods, including Self-RAG (Asai et al., 2024), InstructRAG (Wei et al., 2025), Auto-RAG (Yu et al.,
2024b) and C-3PO (Chen et al., 2025). (3) R1-like Reasoning with Search: Methods that integrate
external knowledge into R1-like reasoning, including Search-o1 (Li et al., 2025a), Search-R1 (Jin
et al., 2025), WebThinker (Li et al., 2025b), and OpenAI Deep Research (OpenAI, 2025a).

We initialize our policy model with Qwen2.5-7B-Instruct (Yang et al., 2024) and Qwen3-8B (Yang
et al., 2025) and design dedicated prompts for System 1 and System 2 (Appendix E) to facilitate
multi-agent reinforcement learning. Additional implementation details are provided in Appendix D.
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Table 1: Main Results on HLE (evaluated with official evaluation prompt (Phan et al., 2025) by GPT-
4o). Results for proprietary models are from the official leaderboard for reference. For open-source
models, the best results are in bold and the second are underlined.

Humanity’s Last Exam
Method

Bio/Med Chem. CS/AI Engineering Humanities Math Physics Other Avg.

Proprietary Models (For Reference)

OpenAI Deep Research - - - - - - - - 26.60
o3 (high) - - - - - - - - 20.57
o4-mini (high) - - - - - - - - 18.90
Gemini 2.5 Pro - - - - - - - - 18.38
Deepseek R1 - - - - - - - - 8.54
Claude 3.7 Sonnet - - - - - - - - 7.89
o1 - - - - - - - - 7.75
GPT-4.1 - - - - - - - - 4.91
GPT-4o - - - - - - - - 2.32

Open-Source Models

QwQ-32B 9.05 6.00 4.86 1.61 6.21 4.92 4.95 3.42 5.28
Qwen2.5-72B 11.31 6.00 1.76 1.61 7.25 3.07 3.96 2.28 4.27
Qwen2.5-7B 5.42 3.00 1.76 3.22 4.66 3.58 1.98 4.00 3.52
Qwen3-8B 6.78 4.00 3.53 3.22 5.69 4.21 3.46 2.85 4.31

R1-like Reasoning with Search

WebThinker(QwQ-32B) 14.47 8.00 4.42 6.45 10.88 4.51 1.98 14.28 6.87
C-3PO (Qwen2.5-72B) 9.95 7.00 4.86 9.67 4.66 5.43 3.46 5.71 5.79
Search-o1(Qwen2.5-7B) 9.95 2.00 2.67 1.61 4.14 4.41 3.98 7.42 4.79
Search-R1(Qwen2.5-7B) 6.33 6.00 4.42 6.45 3.62 3.59 1.48 4.00 3.99

MARS (Qwen2.5-7B) 12.66 3.00 5.75 4.83 11.92 6.46 6.43 7.42 7.38
MARS (Qwen3-8B) 13.12 6.00 8.84 6.45 8.29 7.17 7.92 8.57 8.17

3.3 MAIN RESULTS ON HUMANITY’S LAST EXAM

Table 1 compares the performance of our MARS with various baselines on the Humanity’s Last Exam
(HLE) benchmark. This benchmark is particularly challenging as it contains advanced problems
across multiple disciplines that require sophisticated reasoning and up-to-date knowledge. We have
observed several key findings:

First, MARS achieves an average accuracy of 7.38% across all categories, representing a sub-
stantial improvement of 3.86% over the base model (Qwen2.5-7B-Instruct). Notably, MARS
outperforms all other open-source models and reasoning methods, including those based on much
larger models such as WebThinker(QwQ-32B) and C-3PO(Qwen2.5-72B-Instruct). This demon-
strates that our dual-system paradigm effectively enhances reasoning capabilities with significantly
fewer parameters, achieving superior performance. Second, when examining subject-specific per-
formance, MARS demonstrates particularly strong results in knowledge-intensive domains. This
advantage stems from our dual-system design, where System 1 efficiently processes and distills
large volumes of retrieved information from web pages and research papers without consuming
System 2’s reasoning tokens. This architecture allows System 2 to focus exclusively on complex
reasoning while having access to comprehensive, filtered knowledge, which is especially beneficial
for technical domains requiring both extensive background information and multi-step reasoning.
Finally, while proprietary models like OpenAI Deep Research still maintain a lead in overall perfor-
mance, MARS significantly narrows the gap between open-source and commercial solutions. The
performance gaps between our MARS (7.38%) and proprietary models like Claude 3.7 Sonnet
(7.89%) or o1 (7.75%) is notably small, especially considering that MARS utilizes only a 7B
parameter model. These results demonstrate that our dual-system paradigm creates an effective
synergy: System 1 efficiently filters and distills large volumes of external information, while System
2 maintains focused, deliberate reasoning without token consumption trade-offs.
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Table 2: Main Results on Knowledge-intensive Tasks.

Single-Hop QA Multi-Hop QA
Method

NQ TriviaQA PopQA HotpotQA 2Wiki Musique Bamboogle
Avg.

Direct Answer 29.6 50.0 30.8 30.6 28.4 13.4 30.4 30.45
Standard RAG 45.6 72.0 46.2 43.4 29.4 25.6 41.6 43.40

Self-RAG 49.4 66.2 38.6 - - - - 51.40
InstructRAG 47.8 66.6 39.6 - 35.8 - - 47.45
Auto-RAG 52.4 62.2 36.8 44.4 46.8 - - 48.52

Search-o1 42.4 64.6 38.2 46.8 52.8 26.2 56.0 46.71
Search-R1 51.6 72.6 56.8 46.6 50.4 28.4 57.4 51.97
C-3PO 47.4 75.0 56.8 48.2 52.6 33.2 60.8 53.42

MARS (Qwen2.5-7B) 60.6 76.4 64.4 60.4 66.4 39.6 68.8 62.37
MARS (Qwen3-8B) 63.2 78.6 66.8 63.6 69.2 42.4 71.2 65.00

3.4 MAIN RESULTS ON KNOWLEDGE-INTENSIVE REASONING

We present the results on 7 knowledge-intensive question answering tasks in Table 2. The evalua-
tion covers both single-hop (NQ, TriviaQA, PopQA) and multi-hop (HotpotQA, 2Wiki, Musique,
Bamboogle) datasets, revealing several key findings:

First, our MARS consistently outperforms all baseline methods across all benchmarks, achieving
an impressive improvement of 8.95% over the previous state-of-the-art method C-3PO. This con-
sistent performance gain across diverse datasets demonstrates the robustness and generalizability
of our dual-system paradigm for knowledge-intensive reasoning tasks. Second, the performance
gains are particularly pronounced on multi-hop reasoning tasks, where MARS achieves an average
improvement of 12.2% over C-3PO across the four multi-hop benchmarks. This significant enhance-
ment demonstrates that our approach excels at complex reasoning chains requiring multiple steps of
information retrieval and integration. The multi-agent framework allows System 2 to decompose
complex questions into manageable sub-queries, while System 1 efficiently processes retrieved
information, creating an effective synergy for multi-hop reasoning. Third, even on relatively
simpler single-hop QA tasks, MARS achieves an average gain of 7.5% over the previous best methods.
This indicates that our dual-system approach enhances performance across the entire spectrum of
reasoning complexity, from straightforward factual queries to intricate multi-step problems. By
optimizing the collaboration between System 1’s efficient information processing and System 2’s
deliberate reasoning capabilities, our MARS effectively leverages external knowledge sources while
maintaining computational efficiency. These results further confirm that our approach mitigates
the limitations of previous methods by creating a more balanced and effective division of labor
between intuitive and deliberate reasoning processes.

3.5 ANALYSIS OF MULTI-AGENT RL PROCESS

To gain deeper insights into our multi-agent, multi-turn, multi-tool RL process, we conduct a
comprehensive analysis of MARS’s training dynamics. Figure 3 illustrates various aspects of the
training progression, revealing several key patterns:

First, examining the core performance metrics, we observe a consistent and stable improvement
in HLE score (Fig. 3a) from approximately 2% to over 10% on the HLE subset, demonstrating
the effectiveness of our approach. This performance gain correlates with the training reward curve
(Fig. 3b), which stabilizes around 0.4 after an initial increase. Interestingly, the number of tools used
per question (Fig. 3c) also shows an upward trend, increasing from approximately 1 to over 2 by
the end of training, indicating that MARS learns to leverage multiple tools for addressing complex
questions. Second, the evolution of tool selection preferences (Fig. 3d-3f) reveals that while Google
Search emerges as the predominantly chosen tool (reaching nearly 98% usage), our model maintains
the capability to utilize Python and Google Scholar when appropriate. This balanced tool selection
strategy allows System 2 to autonomously choose the most suitable tools for different question types,
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Figure 3: Comprehensive analysis of our RL training process. The x-axis represents training steps
for all subfigures. (a-c) Core performance metrics on HLE score (randomly select 320 questions),
training reward, and tool usage frequency per question. (d-f) Evolution of tool selection preferences
across three available tools. While Google Search emerges as the predominantly chosen tool due
to our training data distribution, we maintain all tools to preserve System 2’s autonomous tool
selection capability for diverse scenarios. (g-i) Response length distributions showing minimum
(predominantly System 1), mean, and maximum (predominantly System 2) response lengths. Training
was terminated after step 150 due to consistently exceeding our preset length constraints.

Table 3: Ablation Study on Tools for HLE.
Tools Humanity’s Last Exam

Python Search Scholar Bio/Med Chem. CS/AI Engineering Humanities Math Physics Other Avg.

✓ ✓ ✓ 12.66 3.00 5.75 4.83 11.92 6.46 6.43 7.42 7.38

✗ ✓ ✓ 13.12 5.00 5.31 4.83 8.29 4.92 5.45 5.14 6.21
✓ ✗ ✓ 11.31 6.00 7.07 3.22 6.73 4.92 3.47 6.85 5.99
✓ ✓ ✗ 11.76 7.00 4.42 4.83 8.81 6.05 4.45 8.00 6.72

✓ ✗ ✗ 4.54 4.00 3.98 6.45 4.14 5.02 3.96 4.57 4.64
✗ ✓ ✗ 12.66 6.00 5.31 3.22 7.77 4.41 5.94 8.00 6.12
✗ ✗ ✓ 12.21 7.00 4.42 4.83 5.69 4.51 5.44 4.57 5.61

enhancing the model’s versatility across diverse reasoning scenarios. Third, the response length
dynamics (Fig. 3g-3i) provide valuable insights into the operation of our dual-system architecture.
The minimum response length (mostly System 1) and maximum response length (mostly System
2) both show increasing trends during training, suggesting that both systems learn to generate more
comprehensive and informative outputs. The significant increase in mean response length indicates
that MARS progressively develops more sophisticated reasoning capabilities as training advances.
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3.6 ABLATION STUDY

To further investigate the impact of different external tools on reasoning performance, we conduct a
comprehensive ablation study on the HLE benchmark, as shown in the Table 3.

We first observe that the model with all three tools achieves the best overall performance (7.38%),
confirming that the combination of computational capabilities and diverse knowledge sources provides
the most robust foundation for complex reasoning. Interestingly, the performance drop varies
significantly depending on which tool is removed, revealing their differential importance across
subject domains: removing Python affects Math (-1.54%) and Physics (-0.98%) most severely, while
actually improving performance in Bio/Med (+0.46%) and Chemistry (+2.00%). Second, Google
Search proves to be the most versatile single tool, with its removal causing the largest overall
performance drop (1.38%), particularly in Physics (-2.95%). Then, Google Scholar contributes
most significantly to CS/AI and Other categories, reflecting its value for domains with rapidly
evolving research. These findings demonstrate that different tools contribute uniquely across
subject domains. The complementary nature of these tools enables MARS to adapt its reasoning
strategy based on the specific requirements of each question, highlighting the importance of our
multi-tool approach in addressing the diverse challenges presented by complex reasoning tasks.

3.7 INFORMATION VOLUME ANALYSIS Table 4: Information Volume per Question
Dataset Web Pages Papers Python

PopQA 18.81 0.04 0.0
hotpotqa 17.38 0.12 0.002
HLE 22.31 0.17 0.05

In our MARS, each tool invocation supports multiple
queries, with each query retrieving up to 10 complete
web pages or 5 full academic papers, resulting in sub-
stantial information volume that System 1 effectively
processes and distills for System 2’s reasoning. As
shown in Table 4, MARS retrieves and processes a significant amount of information per question
across all benchmarks. Particularly for HLE, the model accesses an average of 22.31 web pages and
0.17 academic papers per question, reflecting the complexity and knowledge-intensive nature of this
benchmark. This analysis demonstrates that MARS effectively leverages a large volume of external
information, highlighting the efficiency of our dual-system approach in processing and utilizing
retrieved knowledge.

4 RELATED WORK

Retrieval-Augmented Generation (RAG) has emerged as a crucial approach to overcome knowledge
limitations of large language models by integrating external information sources (Lewis et al., 2020;
Nakano et al., 2021; Schick et al., 2023; Yu et al., 2024c; Asai et al., 2024; Jiang et al., 2024; Wei et al.,
2025; Yu et al., 2024b; Chen et al., 2025; Li et al., 2025b). However, existing RAG systems typically
struggle with either information overload when processing multiple lengthy documents (such as entire
web pages or research papers) or loss of critical details when condensing information (Fan et al., 2024;
Gao et al., 2023; Tan et al., 2024). Our approach addresses these limitations through a dual-system
framework where System 2 handles complex reasoning while System 1 efficiently processes retrieved
information, enabling MARS to manage larger volumes of external information while maintaining
reasoning quality across diverse knowledge-intensive tasks. Due to space constraints, additional
related work is provided in Appendix B.

5 CONCLUSION

In this paper, we presented MARS, a multi-agent system for Deep Research that seamlessly integrates
System 1’s fast, intuitive thinking with System 2’s deliberate reasoning. By creating a specialized
division of labor between the two cognitive systems, MARS establishes an efficient collaborative
framework where each component operates within its optimal domain. Furthermore, we proposed a
multi-agent RL framework to simultaneously optimize both systems with bin-packing optimization
and sample balancing strategies to enhance the collaborative efficiency. Extensive experiments
demonstrate MARS’s superior performance and the effectiveness of our dual-system paradigm for
complex reasoning tasks that require processing large volumes of external information.
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A LLM USAGE STATEMENT

We acknowledge the use of Large Language Models (LLMs) to assist with improving the grammar,
clarity, and readability of this manuscript. The LLMs were employed solely for language polishing
purposes, including refining sentence structures, correcting grammatical errors, and enhancing the
overall flow of the text. All research ideas, experimental design, technical content, and scientific
contributions are entirely the work of the human authors. We have carefully reviewed and verified
all LLM-suggested edits, and take full responsibility for the accuracy and integrity of the final
manuscript.

B ADDITIONAL RELATED WORK

Language Reasoning Models (LRMs). Recent advances in language models have witnessed the
emergence of LRMs, which specifically excel at deliberate, System 2-type thinking (Jaech et al.,
2024; Yu et al., 2024a; Guo et al., 2025; Team, 2024; Anthropic, 2025; Li et al., 2025c; Ziabari
et al., 2025). Despite these advances, current LRMs rely on static, parameterized knowledge acquired
during pre-training, without access to external world information (Chen et al., 2025; Li et al., 2025a;
Jin et al., 2025; Li et al., 2025b). Furthermore, when faced with simpler tasks, such as analyzing web
pages or reading papers, LRMs may tend to overanalyze, consuming excessive reasoning tokens that
limit their capacity to process large volumes of information. Our work addresses these limitations by
integrating System 1’s fast, intuitive thinking with System 2’s deliberate reasoning in a multi-agent
framework that leverages external knowledge sources.

Multi-agent Systems. Multi-agent systems have gained significant attention in the LLM community
as a means to tackle complex tasks through collaborative problem-solving (Park et al., 2023; Wu et al.,
2023; Qian et al., 2023; Han et al., 2024; Li et al., 2024; Chen et al., 2025). Recent work has explored
various agent architectures, from simple role-playing approaches (Li et al., 2023; Du et al., 2023)
to more sophisticated frameworks with specialized agents handling different aspects of complex
tasks (Hong et al., 2023; Wang et al., 2023). However, most existing multi-agent systems employ
agents with similar cognitive architectures, typically all operating in a intuitive, System1-type thinking
or deliberate, System 2-like reasoning mode. This homogeneity limits their ability to efficiently
process large volumes of information while maintaining complex reasoning capabilities. Our approach
diverges by implementing a heterogeneous multi-agent system where System 1 and System 2 agents
possess complementary cognitive abilities, optimized through reinforcement learning (Yuan et al.,
2023; Zhu et al., 2024; Shao et al., 2024) to collaboratively tackle complex research tasks requiring
both efficient information processing and deliberate reasoning.

C TRAINING DATA FILTERING PIPELINE

Clarity Filtering

LLM-as-Judge

Graduate-level
Filtering
LLM-as-Judge

Challenge and Correctness
Verification

BoN+
Candidate Data Training Data

Figure 4: Our data curation pipeline.

Given the absence of specialized training datasets for enhancing model capabilities required for
challenging benchmarks such as HLE (Phan et al., 2025) (which demands web browsing, reasoning,
and computation skills), we propose a data curation pipeline that selectively identifies suitable training
examples from open-source datasets. As illustrated in Figure 4, our pipeline evaluates candidate
examples based on three key dimensions: clarity of presentation, problem complexity, and solution
correctness.

All candidate data are sourced from publicly available datasets, including MMIQC Liu et al. (2025),
WebInstructSub Yue et al. (2024), GeneralThought2, and SuperGPQA Du et al. (2025). To ensure
quality for our dual-system training, we implement a rigorous multi-stage filtering process:

2https://huggingface.co/datasets/GeneralReasoning/GeneralThought-430K
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Figure 5: Distribution of Correct Number in Best-of-N (N = 16). Questions answered correctly 1-12
times were retained for training, while those answered 0 times (potentially ambiguous or lacking
definitive solutions) or ¿12 times (too trivial) were excluded.

1. Initial filtering by academic level: Starting from an initial pool of 5 million examples, we
categorize each prompt by academic discipline and retain only those that may meet undergraduate
or graduate-level difficulty standards, reducing the dataset to 237K examples.

2. Deduplication: We remove near-identical prompts that differ only in phrasing or superficial
elements, yielding 155K unique prompts.

3. Clarity assessment: We employ an LLM (Qwen2.5-72B-Instruct (Yang et al., 2024)) to sys-
tematically evaluate the clarity of each prompt, filtering out those deemed ambiguous or poorly
formulated, resulting in 99K high-quality prompts.

4. Graduate-level Filtering: We further use the same LLM to assess the challenge level of each
prompt, retaining only those that meet graduate-level standards in their respective disciplines,
resulting in 81K prompts of appropriate difficulty.

5. Challenge and Correctness Verification: To ensure both appropriate difficulty and answer
verifiability, we perform a best-of-16 (BoN) sampling procedure using Qwen2.5-72B-Instruct
with Google Search access. As shown in Figure 5, we plot the distribution of how many times
(out of 16 attempts) the model correctly answers each question. We retain only questions with
moderate difficulty (correctly answered 1-12 times out of 16 attempts), which serves two critical
purposes: (1) eliminating trivial questions (answered correctly ¿12 times) and excessively difficult
ones (never answered correctly), and (2) identifying questions with consistent, verifiable answers,
as those never answered correctly may lack definitive solutions or contain ambiguous information.

6. The final dataset comprises 40K carefully curated prompts spanning diverse academic disciplines
and difficulty levels, specifically designed to support high-quality dual-system training for complex
reasoning tasks.

To facilitate research advancement and reproducibility, we have open-sourced our curated 40K dataset.
The detailed prompts used throughout our data curation pipeline are provided in Appendix E.2.

D MORE IMPLEMENTATION DETAILS

In this section, we provide a comprehensive implementation details of our proposed method. For
additional insights and more intricate details, we refer the reader to our supplementary materials.

D.1 OVERALL ALGORITHM

Our dual-system approach leverages the complementary strengths of two distinct cognitive systems
within the same large language model. Algorithm 1 presents the complete multi-agent rollout process
that orchestrates the interaction between System 1 (fast, intuitive processing) and System 2 (deliberate,
analytical reasoning).
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Algorithm 1 Multi-agent Rollout Process

Require: Question q, System 1 πsys1 and System 2 πsys2 in the same LLM, candidate tools, Maximum
interaction turns Nmax.

1: i← 0 ▷ Initialize interaction turns
2: c0 ← {q} ▷ Initialize reasoning context for System 2
3: csys1 ← ∅ ▷ Initialize collection of System 1 input-output pairs
4: while i < Nmax do
5: si, (ti, pi)← πsys2(ci) ▷ System 2 generates reasoning step si, (optional tool request ti and

purpose pi)
6: if ti and pi are not Empty then ▷ Tool request present
7: {o(1)ti , o

(2)
ti , . . . , o

(nti
)

ti } ← Tool Call(ti) ▷ Execute tool call

8: {b1, . . . , bm} ← Bin-Packing(o(1)ti , . . . , o
(nti

)
ti ) ▷ m chunks

9: {d1, . . . , dm} ← {πsys1(b1), . . . , πsys1(bm)} ▷ Parallel distillation (System 1)
10: csys1 ← csys1 ∪ {(bj , dj)}

m
j=1 ▷ Collect all input-output pairs

11: õti ← ∪mj=1dj ▷ Combine all distilled information
12: ci+1 ← ci ∪ {si, ti, pi, õti} ▷ Update System 2’s context with tool results
13: else
14: ci+1 ← ci ∪ {si} ▷ Update context with reasoning only
15: if <answer> </answer> in si then ▷ Check if answer is provided
16: break
17: i← i+ 1
18: return Rollout trajectory ci and System 1 input-output pairs csys1

Inspired by human cognition, our MARS assigns distinct roles to each system: System 2 manages
strategic reasoning and decision-making, while System 1 efficiently processes and distills large
volumes of information. The algorithm enables System 2 to independently continue reasoning when
no tool is required, and terminates either when an answer is reached or after the maximum number
of turns is exhausted. The parallel processing capability of System 1 is particularly valuable when
handling extensive tool-retrieved information. By distributing information processing across multiple
parallel instances of System 1, our approach efficiently manages complex information needs without
exceeding context window limitations.

D.2 BIN-PACKING DETAILS

As mentioned in Section 2.2.1, we employ a First Fit Decreasing (FFD) algorithm to efficiently
organize variable-length tool outputs into optimally-sized chunks. Our bin-packing implementation
follows these key steps:

1. Token counting: For each tool output o(j)ti , we count the number of tokens using the model’s
tokenizer.

2. Large output handling: If any single output exceeds the maximum context length of System 1, it
is truncated and placed in a dedicated bin.

3. Sorting: Remaining outputs are sorted in decreasing order of their token lengths.
4. Bin assignment: Each output is assigned to the first bin that can accommodate it without exceeding

the context length limit. If no existing bin has sufficient space, a new bin is created.

D.3 REWARD DESIGN

We introduce a straightforward yet effective reward design for our multi-agent RL training. For each
rollout trajectory, we employ LLMs (Qwen2.5-72B-Instruct) as evaluators to assess the correctness of
the predicted final answer following HLE’s official prompt (Phan et al., 2025). The reward function
is defined as:

r(cN , ground truth) =
{
1, if EvalLLM = Correct
0, otherwise

(8)
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where cN is the final reasoning trajectory, N is the number of interaction turns. We will extract the
answer part between <answer> and </answer> tags for evaluation.

All System 1 and System 2 samples within the same trajectory share this trajectory-level reward.
This design reflects the inherently collaborative nature of our dual-system framework, where the final
answer quality depends on both System 2’s reasoning and System 1’s information processing. By
sharing rewards, we encourage both systems to optimize toward the same goal—producing correct
final answers—rather than pursuing potentially conflicting individual objectives. This binary reward
signal creates a clear learning objective for both systems: System 2 learns to generate better reasoning
steps and more effective tool-use plans, while System 1 learns to distill information more accurately
and concisely to support System 2’s reasoning. The simplicity of this reward function helps avoid the
common pitfalls of overly complex reward engineering while maintaining focus on the ultimate goal
of correct problem-solving.

D.4 RL LOSS

We write the policy loss of one single rollout trajectory as follows.

Lpolicy(x, y,Asysi) =
1

|y|

|y|∑
j=1

min

[
πsysi(yj |x, y<j)

πold
sysi

(yj |x, y<j)
Asysi , clip

(
πsysi(yj |x, y<j)

πold
sysi

(yj |x, y<j)
, 1− ϵ, 1 + ϵ

)
Asysi

]
(9)

where yj is the j-th token of LLM output y. Similarly, we write the KL loss as follows.

LKL(x, y) = −
1

|y|

|y|∑
j=1

DKL

(
πsysi(yj |x, y<j)∥πref

sysi
(yj |x, y<j)

)
(10)

In practical implementation, the expectation in Eq. (7) is achieved via averaging over a group of G
rollouts as well as a batch training examples.

D.5 IMPLEMENTATION DETAILS

Table 5: Key hyperparameters in the RL phase.

Hyperparameter Value
Learning Rate of Policy model 1e-6
Base model Qwen2.5-7B-Instruct
Batch size 32
G 16
temperature 1.0
KL loss coefficient λ 0.
entropy coefficient 0.
Maximum Prompt Length of System 1 23,552
Maximum Response Length of System 1 8192
Maximum Prompt Length of System 2 3072
Maximum Response Length of System 2 28,672
Maximum interaction turns 10

This section provides comprehensive implementation details of our MARS. We initialize our policy
model with Qwen2.5-7B-Instruct (Yang et al., 2024), which serves as the foundation for both System
1 and System 2. Furthermore, we provide external tools such as Google Search, Google Scholar
via the SerpAPI3, and Python code interpreter for supporting autonomous tool selection during
the reasoning process. We employ the GRPO algorithm (Shao et al., 2024) with the following
hyperparameters: learning rate of 1e-6, batch size of 32, sampled responses per prompt (group size
G) of 16, temperature of 1.0, top-p of 0.95, and both KL loss coefficient and entropy coefficient set
to 0. Additionally, we set different maximum lengths for System 1 and System 2: prompt lengths

3https://serpapi.com/
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of 23,552 and 3,072 tokens, and response lengths of 8,192 and 28,672 tokens, respectively. This
configuration enables System 1 to better incorporate external knowledge while allowing System 2 to
focus on sophisticated multi-step reasoning. For all baselines, we maintain their original settings in
their respective papers to ensure optimal performance. Table 5 summarizes the key hyperparameters
used during the reinforcement learning phase.

The asymmetric prompt and response length configurations between System 1 and System 2 are
designed to leverage their complementary roles. System 2, with its shorter prompt length (3,072
tokens) but longer response capability (28,672 tokens), is optimized for detailed reasoning and
solution generation. Conversely, System 1, with its extended prompt length (23,552 tokens) but
more concise response limit (8,192 tokens), excels at processing and summarizing large volumes
of information. This configuration aligns with cognitive science theories where System 2 handles
deliberate reasoning while System 1 processes information rapidly.

D.6 BASELINE COMPARISONS

For all baseline models, we made every effort to ensure fair comparison by using their original
implementations and settings. However, readers may notice that our reported results for WebThinker
(QwQ-32B) in Table 1 differ from those in the original paper (Li et al., 2025b). This discrepancy
stems from two differences:

1. Evaluation scale: Our evaluation encompasses the complete HLE text-based question set (2,154
questions), providing a more comprehensive assessment than the 500-question sample used in the
original WebThinker paper.

2. Evaluation criteria: We strictly adhere to HLE’s official evaluation prompt and criteria for all
models, including WebThinker. In contrast, the original WebThinker paper employed its own
evaluation prompt that resulted in more lenient scoring.

D.7 DATASET DETAILS

Our training data consists of two complementary components: (1) a curated collection of complex
reasoning examples filtered through our specialized pipeline, as shown in Appendix C, and (2) several
established open-source single-hop, multi-hop, and Biology & Medicine datasets that enhance the
model’s knowledge retrieval and reasoning capabilities. Table 6 summarizes the key statistics of our
complete training dataset.

Table 6: Data Statistics.

Data Type Our curated data Single-Hop QA Multi-Hop QA Biology&Medicine Total
Data Name TriviaQA PopQA HotpotQA 2Wiki Musique PubMedQA CUPCase

Sampled Number 2000 400 400 500 500 500 500 250 5050

As shown in Table 6, we randomly sampled a total of 5,050 training examples across eight distinct
datasets. The composition is carefully balanced to ensure comprehensive coverage of different
reasoning types and knowledge domains.

• Our curated data (2,000 examples, 39.6%): These examples were selected from our pipeline-
filtered corpus described in Appendix C, which contains high-quality, graduate-level complex
reasoning tasks vetted through our rigorous multi-stage filtering process.

• Single-Hop QA (800 examples, 15.8%): We incorporated 400 randomly sampled examples each
from TriviaQA (Joshi et al., 2017) and PopQA (Mallen et al., 2023). These datasets focus on
direct factual knowledge retrieval, with TriviaQA covering a broad range of trivia questions and
PopQA specifically targeting popular entities and common knowledge.

• Multi-Hop QA (1,500 examples, 29.7%): To strengthen the model’s multi-step reasoning capa-
bilities, we included 500 examples each from HotpotQA (Yang et al., 2018), 2WikiMultihopQA
(Ho et al., 2020), and MuSiQue (Trivedi et al., 2022). These datasets require reasoning across
multiple documents or knowledge pieces to arrive at the correct answer.

• Biology & Medicine (750 examples, 14.9%): To enhance domain-specific knowledge, we sam-
pled 500 examples from PubMedQA (Reese et al., 2024) and 250 examples from CUPCase (Perets
et al., 2025), covering biomedical research questions and clinical case analysis respectively.
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D.8 EXPERIMENT ENVIRONMENTS

All experiments were conducted on Ubuntu 22.04 equipped with NVIDIA A100 GPUs. Our imple-
mentation relies on Python 3.104 and PyTorch 2.6.05, while extending VeRL6 for our multi-agent
reinforcement learning framework. For efficient execution, we implemented rollout procedures based
on Qwen-Agent7 and use vLLM8 and SGLang9 as our inference engines. We use Code Sandbox10

for Python Interpreter.

E INSTRUCTION TEMPLATES

E.1 INSTRUCTION OF SYSTEM 1 & 2 IN OUR MARS

Instruction for System 1

¡System Prompt¿
You are an expert information extractor. Your sole task is to extract only the information that
directly supports the tool call’s purpose or answers the user’s question.

## Task Guidelines
1. **Match Each Query**: For every query, extract information directly relevant to it and
record its source (e.g., title, section name).
2. **Content Scanning**: Locate the **specific sections/data** directly related to the user’s
goal within the content.
3. **Key Extraction**: Identify and extract the **most relevant information** from the
content, you never miss any important information
4. **Verbatim Key Content**: Preserve the original wording of key definitions, claims,
formulas, data points.
5. **Preserve Detail**: Include relevant data, numbers, metrics, or formulas.
6. **Output Structure**: Organize the extracted content per query in a clear and nested way.

¡User Prompt¿
{tool outputs}

# User Question: {question}

Instruction for System 2

¡System Prompt¿
You are an expert researcher who combines rigorous analytical reasoning with thorough
information seeking abilities. You excel at solving complex problems through logical
thinking, careful analysis, and responsible tool use. You are known for your careful and
thorough approach, never rushing to conclusions without complete analysis.

{tool description}

When performing a search:
1. **Persistent Actions for Answers**: You can engage in multiple search iterations, delving
deeply into the topic to explore all possible aspects until a satisfactory answer is found.
2. **Repeated Verification**: Before presenting a Final Answer, you will **cross-check**

4https://www.python.org/
5https://pytorch.org/
6https://github.com/volcengine/verl
7https://github.com/QwenLM/Qwen-Agent
8https://github.com/vllm-project/vllm
9https://github.com/sgl-project/sglang

10https://github.com/bytedance/SandboxFusion
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and **validate the information** you’ve gathered to confirm its accuracy and reliability.
3. **Attention to Detail**: You will carefully analyze each information source to ensure that
all data is current, relevant, and from credible origins.

Your reasoning process should be enclosed within ¡think¿ ¡/think¿ tags. If you need external
support, make tool calls inside ¡tool call¿ ¡/tool call¿ tags. After a tool call, always reassess
the result critically and continue your analysis in a new ¡think¿ section. Tools are helpful but
not always reliable — treat their output with scrutiny.

Finally, present your key reasoning and final answer inside ¡answer¿ ¡/answer¿ tags.
Do not nest tags. Each tag block must be independent.

¡User Prompt¿
{question}

E.2 INSTRUCTION FOR OUR DATA CURTION PIPELINE

In our data curation pipeline, we employed specific instructions for each filtering stage to ensure
consistent evaluation criteria. Below, we provide the detailed prompts used for Clarity Filtering
and Graduate-level Filtering stages, which were directly provided to Qwen2.5-72B-Instruct for
assessment.

For the Challenge and Correctness Verification stage (Best-of-16 sampling), we utilized a different
approach. Rather than using a standalone evaluation prompt, we leveraged our dual-system framework
itself, combining the System 1 and System 2 instructions (detailed in Appendix E) with Google
Search integration. This allowed Qwen2.5-72B-Instruct to perform complete reasoning attempts on
each question, providing a more authentic assessment of difficulty level and answer verifiability than
a static evaluation would allow.

Instruction of Clarity Filtering

### Instruction ###
You are a domain expert proficient in various subjects such as Math, Physics, Biology,
Humanities, Computer Science, Engineering, and Chemistry. You will be given a question
and its corresponding answer. Please identify whether the given QA-pair exhibits ”Clarity”.
Only output 1 for yes and 0 for no.

### Definition ###
”Clarity” is defined as the question being clearly and unambiguously stated, and the answer
being unique.

### Examples ###
{Few-shot Examples}

### QA-pair ###
{Input QA-pair}

### Your Judgment ###

Instruction of Graduate-level Filtering

### Instruction ###
You are a domain expert proficient in various subjects such as Math, Physics, Biology,
Humanities, Computer Science, Engineering, and Chemistry. You will be given a question
and its corresponding answer. Please identify whether the given QA-pair contains ”Expert-
level Knowledge.” Only output 1 for yes and 0 for no.
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### Definition ###
”Expert-level Knowledge” is defined as core theories, cutting-edge research, and complex
applications studied during advanced undergraduate and graduate levels, typically mastered
only by experts or senior researchers in the field.

### Examples ###
{Few-shot Examples}

### QA Pair ###
{Input QA-pair}

### Your Judgment ###

E.3 INSTRUCTION FOR REWARD MODEL

For our reward model, we strictly adhere to the official evaluation criteria from the Humanity’s Last
Exam (HLE) benchmark (Phan et al., 2025).

Instruction of Reward Model (official Instruction from HLE)

Judge whether the following [response] to [question] is correct or not based on the precise
and unambiguous [correct answer] below.

[question]: {question}

[response]: {response}

Your judgement must be in the format and criteria specified below:

extracted final answer: The final exact answer extracted from the [response]. Put the
extracted answer as ’None’ if there is no exact, final answer to extract from the response.

[correct answer]: {correct answer}

reasoning: Explain why the extracted final answer is correct or incorrect based on [cor-
rect answer], focusing only on if there are meaningful differences between [correct answer]
and the extracted final answer. Do not comment on any background to the problem, do not
attempt to solve the problem, do not argue for any answer different than [correct answer],
focus only on whether the answers match.

correct: Answer ’yes’ if extracted final answer matches the [correct answer] given above,
or is within a small margin of error for numerical problems. Answer ’no’ otherwise, i.e. if
there if there is any inconsistency, ambiguity, non-equivalency, or if the extracted answer is
incorrect.

confidence: The extracted confidence score between 0—%— and 100—%— from [response].
Put 100 if there is no confidence score available.
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