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Abstract

We present a simple model-agnostic textual
adversarial example detection scheme called
GRADMASK. It uses gradient signals to de-
tect adversarially perturbed tokens in an input
sequence and occludes such tokens by a mask-
ing process. GRADMASK provides several ad-
vantages over existing methods including im-
proved detection performance and a weak inter-
pretation of its decision. Extensive evaluations
on widely adopted natural language processing
benchmark datasets demonstrate the efficiency
and effectiveness of GRADMASK. Code and
models are available at <redacted>.

1 Introduction and Related Work

The advances in deep learning has revolutionized
natural language processing (NLP) with state-of-
the-art performance in practically every task. How-
ever, it has been shown that such systems are sig-
nificantly vulnerable to specifically crafted adver-
sarial attacks (Szegedy et al., 2014) at all stages
of development and deployment (Ebrahimi et al.,
2018; Alzantot et al., 2018; Zhang et al., 2020; Kr-
ishna et al., 2020; Tan et al., 2020, 2021). This is
quite troubling as there is little to no change in the
adversarially chosen test distributions compared to
the training distribution (Robin, 2020).

In response to the adversarial attacks, various
defense schemes have been proposed. These ap-
proaches can be grouped into three categories:
(i) adversarial training (Si et al., 2020; Maharana
and Bansal, 2020; Miyato et al., 2017; Zhu et al.,
2020), (ii) certified robustness (Jia et al., 2019;
Wang et al., 2021), and (iii) synonym substitution
based methods (Wang et al., 2019, 2020; Dong
et al., 2021; Zhou et al., 2021; Jones et al., 2020).

Another branch of defense strategy is the adver-
sarial example detection based schemes. While the
above defense schemes aim to improve the adver-
sarial robustness of NLP systems, adversarial ex-
ample detection methods are designed to reject sus-

picious inputs although they share the same goal of
defeating the adversarial attacks (Aldahdooh et al.,
2021). Detection-based approaches provide several
advantages over adversarial robustness improve-
ment methods. The most obvious advantage is that
they do not require to modify the target model ar-
chitecture or the training procedure, because they
typically work as a separate module. Consequently,
they do not compromise the model performance on
clean datasets. Secondly, they are able to identify
the intention (adversarial or not) of adversarial at-
tacks, so users can take actions (reject or revise)
accordingly. Finally, the detection algorithms may
provide a better strategy for developing defense
methods by informing us which parts of an input
sequence are perturbed (Zhou et al., 2019).

Unlike the other defense schemes, the textual ad-
versarial detection has not been explored much. To
the best of our knowledge, there are two prior stud-
ies trying to detect token-level adversarial attacks.
The very first work is the discriminate perturbations
(DISP) framework proposed by Zhou et al. (2019).
DISP consists of two BERT (Devlin et al., 2019)
based perturbation discriminator and embedding
estimator. To provide supervising signals for the
discriminator, DISP randomly samples adversarial
examples and learns to discriminate clean samples
from the adversarial examples. In contrast, a more
recent adversarial detection work, the frequency-
guided word substitutions or FGWS (Mozes et al.,
2021), does not need an additional training process.
The key assumption of FGWS is that adversarial
attack algorithms tend to exploit words that are
rarely exposed during a target model’s training.
However, their approach is limited to detection
of only word-level attacks and the effectiveness of
FGWS against attacks that do not rely on infrequent
words is unclear. Especially, our experiments with
a constrained high-frequency vocabulary show that
attackers can still find successful attacks by using
frequent tokens (§5).


<redacted>

Our work in this paper, instead, deviates from the
word-frequency assumption by utilizing gradient
signals as guidance. We harness the gradient signal
to detect adversarially perturbed tokens in an in-
put sequence by investigating the sensitivity of the
model prediction (Ancona et al., 2018; Sundarara-
janetal., 2017; Li et al., 2016; Zeiler and Fergus,
2014), which indicates the network’s response to
an adversarial input. The identified tokens are sub-
sequently occluded by a mask token and fed to
the model to measure the change in model’s confi-
dence with respect to the original prediction. Fig. 1
provides an illustration of our gradient-guided de-
tection, GRADMASK.

The gradient-based attribution of neural system’s
prediction has been studied widely in deep learn-
ing (Sundararajan et al., 2017; Simonyan et al.,
2014; Li et al., 2016). Some prior work in NLP
uses the gradient to identify important words (Mur-
doch et al., 2018; Li et al., 2017). To the best of
our knowledge, this is the first work on detecting
textual adversarial attacks by attributing the model
prediction via gradient signal analysis.

GRADMASK has several advantages over the
previous methods. Firstly, it does not require any
additional modules for synonym search or frequent
word count that are essential in the previous meth-
ods (Mozes et al., 2021; Zhou et al., 2019). Sec-
ondly, our detection algorithm works entirely with-
out any prior knowledge about potential attacks,
which is a more practical setup. Thirdly, it works
without any pre-training. Finally, it provides a
weak interpretation of decision by identifying ad-
versarially perturbed tokens. The main contribu-
tions of this work are: (i) we propose GRADMASK,
a novel gradient-guided adversarial example de-
tection method; (if) we demonstrate its advantage
over state-of-the-art adversarial example detection
algorithm through extensive experiments.

2 Method

In this section, we present our proposed method.
We first establish the notations in §2.1.

2.1 Notations

We consider a standard text classification task for a
model fg(-) with parameters 6 € RP. The model
fo(+) is trained to fit a data distribution D over pairs
of an input sequence X = [z1, -+ , x| of T tokens
and its corresponding label y € {1,...,C} with C
being the number of classes. We also assume a loss
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Figure 1: An illustration of the detection process of GRAD-
MASK with a binary classification example. An attacker tries
to find an adversarial example x’ by searching for the best
perturbation (compel) that flips the original model prediction
(expressed as the dotted line). GRADMASK attempts to iden-
tify the candidate perturbations through the gradient signal
and masks one token (m:) at a time to generate a masked
sequence m;. The final decision is made by measuring the
largest difference in model’s confidence for x” and m;.

function £(6,x,y) such as a cross-entropy loss.
The output of the model is a probability distribution
that satisfies: 0 < fg(x); < 1 and 210:1 fo(x); =
1, where i is the class index. We denote the fi-
nal prediction as ¢(x) = arg max; fg(x); and true
label as ¢*(x) = y*.

Given a sequence X, a textual adversarial exam-
ple x’ can be defined as follows: for some semantic
dissimilarity measure 0(x, x’), it has to be small
and ¢(x) # ¢*(x) . These two conditions denote
that an adversarial example has to maintain seman-
tic meaning of the original input x but misguide
the model prediction (Athalye et al., 2018).

2.2 Gradient-guided Token Masking for
Adversarial Example Detection

GRADMASK first finds salient tokens that signifi-
cantly attribute to the model prediction, ¢(x); see
Fig. 1 for an illustration. A simple and widely em-
ployed approach is the gradient-based attribution
analysis (Ancona et al., 2018; Sundararajan et al.,
2017; Li et al., 2016). However, due to the dis-
crete nature of texts, we cannot directly exploit the
gradient-based approach. In order to deviate the is-
sue, we compute a gradient of the word embedding
e; with regard to the loss function £, where e; is
a simple linear projection of a (subword) token x;.
The gradient can be expressed as follows:

g = Ve, L(0,x,c(x)) (1)



Algorithm 1 Gradient-based Masking for Adver-
sarial Example Detection.

Require: Input sequence x, target model fy
1: Initialize M = {} and K = |T X p]|.

2: Compute fg(x);, where i = ¢(x). > pred. for x
3 L= {llgall,- -, llgrll} viaEq. 1.

4: Sort L in descending order.

5. while k¥ < K do

6 llgll < LIk

7 mt:[xla”',mty"'ﬂ?T]

8: M [k‘] = fo (mt)z > prediction for m;
9: end while

10: w = (fo(x); — ming M([k])?

Note that the above loss is computed with respect
to the model’s final prediction ¢(x) and not the
ground truth y*.

Subsequently, we measure the amount of stimu-
lus of the input tokens toward the model prediction
by computing the Ly-norm of g;. The stimulus is
considered as a saliency score of the tokens and it is
determined in descending order of the magnitude of
||g¢||2 following Li et al. (2016). GRADMASK only
considers the top-p portion of the input tokens in x.
Specifically, the number of chosen K salient tokens
is |T" x p|, where the brackets denote the floor op-
eration. The sampled K salient tokens are masked
individually one at a time to generate a masked
input sequence my; = [1,..., My, ..., o] with ¢
being the token position of a salient token, and m;
is the mask token, [MASK].!

The rationale behind the masking approach is
based on two assumptions. The first assumption
is that adversarial examples are the result of so-
phisticated optimization algorithms rather than the
result of random perturbations (Goodfellow et al.,
2015; Galloway et al., 2018). Thus, we conjec-
ture that masking the suspicious tokens which are
carefully crafted can significantly drop the model
confidence. The second assumption is that NLP
systems are generally robust to weak-level of noise.
The partial information loss in clean samples due
to masking can be offset by the overall context of
the input text (supported by our experiments in §5).

Each masked sequence my is then fed into the
target model to get a prediction fg(m;);, where
i = ¢(x). This process gives K such confidence
scores which are stored in M. We then compare

'In case of non-masked language model-based classifiers,
we adopted an unknown token.

Dataset Train/Test # Classes Avg. Len
IMDb 25k/25k 2 215
SST-2 67k/1.8k 2 20
Yelp 560k/38k 2 152
AG 120k/7.6k 4 43

Table 1: A summary of the datasets used in our work.

the minimum confidence value in M to the original
confidence score f(x);, and the confidence change
is squared to assign a stronger penalty to the higher
changes. More formally,

w=(folr —mnMH) @

The final decision is determined by an indicator
function Z(w, 7) defined as follows:

fw<r

T(w,7) = {0 3

1 else

where 7 is a pre-defined threshold. Alg. 1 presents
the overall process of GRADMASK.

3 Experiment Settings

In this section, we present our experiment settings:
the datasets, target models, adversarial example
generation, and evaluation metrics.

3.1 Datasets

We evaluate the methods on four classification
tasks. We use the IMDB (Maas et al., 2011),
AGNEWS (Zhang et al., 2015), YELP (Zhang
et al., 2015), and Stanford Sentiment Treebank
(SST) (Socher et al., 2013) datasets that are widely
adopted for benchmarking adversarial robustness
of NLP systems. The IMDB dataset contains
movie reviews labeled with positive or negative
sentiment labels. The AGNEWS dataset contains
news articles from more than 2,000 news sources
and the samples are categorized into the four largest
classes. The YELP dataset is a binary sentiment
classification dataset which consists of Yelp re-
views. The SST dataset provides movie reviews
with fine-grained sentiment labels. We turn the
labels into binary (SST-2) to follow the setting
of FGWS (Mozes et al., 2021). Table 1 gives an
overview of the datasets.

3.2 Target Models

We evaluate GRADMASK on three different se-
quence modeling architectures, which have been



MODEL DATASET AcCC (%)
IMDB 93.36
ROBERTA SST-2 91.98
YELP 97.91
AG 95.3
IMDB 93.71
ROBERTA-LONG SST-2 38.69
IMDB 90.57
DISTILBERT SST-2 91.21
AG 94.37
IMDB 87.27
LSTM SST-2  83.53

Table 2: A summary of the target models and their clean
testset performance.

widely employed in NLP. We first consider a large-
scaled pre-trained Transformer-based language
model, ROBERTA-BASE (Liu et al., 2019), which
contains 124 million parameters. Subsequently, we
also evaluate on a relatively smaller Transformer-
based model called DISTILBERT-BASE (Sanh
et al., 2020), which has approximately 40% fewer
parameters than ROBERTA-BASE. Finally, we con-
sider the LSTM, which used to be the dominant
architecture before the arrival of Transformers.

Table 2 shows the standard task performance
of the models on the three datasets. To train
the models, we followed the hyperparameter set-
tings provided by Mozes et al. (2021). The
TRANSFORMER based models are optimized by
AdamW (Loshchilov and Hutter, 2019) with a lin-
ear adaptive learning rate scheduler. For LSTM,
the initial word embeddings are initialized with
GloVe (Pennington et al., 2014). The texts in
IMDB and YELP are comparatively longer than
those in AGNEWS and SST-2. For the IMDB clas-
sification task, the maximum sequence lengths for
ROBERTA, DISTILBERT and LSTM are set to
256, 256, and 200, respectively, and ROBERTA-
LONG is trained with a longer sequence (400 to-
kens) than the standard one. The details of model
architectures are provided in the supplementary ma-
terial. All of the experiments are conducted on an
Intel Xeon Gold 5218R CPU-2.10GHz processor
with a single Quadro RTX 6000 GPU.

3.3 Adversarial Example Generation

We generated adversarial examples against the se-
lected target models via four different attack al-
gorithms. They include two baseline attacks and
two widely adopted synonym substitution-based
token-level attacks, as used in the previous work

e Random is a simple word replacement-based

baseline attack algorithm. It randomly selects a
synonym of a token in the original input text. Syn-
onyms are identified via WordNet.

e Prioritized attack is also based on word replace-
ment, but it puts a higher priority on a synonym that
maximizes the target model’s prediction confidence
change.

o Genetic attack (GA) was proposed by Alzantot
et al. (2018). It adopts the crossover and mutation
operations in genetic algorithms to generate adver-
sarial examples. GA searches synonyms based on
the GloVe word embedding space with a language
model (Radford et al., 2019).2

o PWWS or Probability weighted word saliency
(Ren et al., 2019) is a greedy word substitution-
based attack algorithm. The word replacement or-
der is determined by a word saliency score com-
puted through the model’s confidence change. The
word synonym is searched via WordNet.

3.4 Evaluation Metrics

The main interest of this work lies in an eval-
uation of the detection performance of our pro-
posed method GRADMASK. FGWS (Mozes et al.,
2021) was mainly evaluated via F1 score, but we
follow the standards from the out-of-distribution
(OOD) sample detection literature (?Hendrycks
et al., 2019; Ouyang et al., 2021) for better under-
standing of the methods.

The adversarial example detection can be con-
sidered as a binary classification problem of ver-
ifying positive (adversarial) vs. negative (clean)
class. We evaluate a ratio of true positive samples
so-called true positive rate (TPR or recall) against
false positive rate (FPR) defined as:

1
TPR = — Zz(uﬁ, 7) 4)

1 _
FPR=— zijz(w 7). (5)

where the superscripts + and — denote the positive
and the negative classes, respectively. Based on
these two rates, we evaluate the methods with the
following evaluation metrics:

o FPROIS refers to a FPR at 95% TPR. FPR95 quan-
tifies how many clean samples have to be rejected
to detect 95% of the adversarial examples. FPR is
a very important metric for evaluating detection al-

“We adopted the modified implementation provided by

Mozes et al. (2021) for a fair comparison. The implementation
details are provided in the supplementary material.



gorithms (Aldahdooh et al., 2021). A lower FPR95
score is often required for systems that require a
high level of system safety or security.

e AUROC stands for the area under receiver op-
erating characteristic curve. For each operational
setting of 7 from O to 1, TPR and FPR can be
plotted. This curve is called receiver operating
characteristic curve (ROC curve).

e AUPR denotes area under precision-recall (PR)
curves. There exists an imbalance of data distribu-
tion between positive class and negative class. To
deal with the data distribution skew, we evaluate
AUPR scores for each class.

e Acc denotes a detection accuracy. We use Acc
only for experiments with balanced datasets.

4 Results & Analysis

We first evaluate GRADMASK on widely employed
NLP datasets and compare it with baselines (§4.1
and §4.2). Then, we analyze the adversarially
perturbed token detection performance of GRAD-
MASK (§4.3). Subsequently, we investigate GRAD-
MASK’s potential against a non-synonym based
(character-level) attack (§4.4). Finally, We inves-
tigate the relationship between the adversarial ro-
bustness of NLP classification models and the word
frequency in the adversarial examples (§5).

4.1 Adversarial Example Detection

For adversarial example detection, we compare
the performance of GRADMASK with that of
FGWS (Mozes et al., 2021). The hyperparameter
settings of FGWS is tuned as provided by Mozes
et al. (2021).> The overall experimental results
are presented in Table 3. Note that AUPR-C and
AUPR-A represent the AUPR score of clean sam-
ples (negative class) and that of adversarial samples
(positive class), respectively.

As shown in Table 3, GRADMASK tends to show
better AUROC, FPR95, and AUPR-C scores in
most of the evaluation measures. Particularly, it
outperforms FGWS for all Transformer-based sys-
tems (ROBERTA, ROBERTA-LONG, and DISTIL-
BERT) in terms of the FPR95 score, which is an
important metric for systems with high security
requirements. In addition, GRADMASK achieves
notably better AUPR-C scores in most of the exper-
iment scenarios. This tendency is well presented
in Fig. 2, which shows ROC curves of FGWS and

https://github.com/maximilianmozes/fgws
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Figure 2: ROC curves of FGWS and GRADMASK with
the ROBERTA model. The horizontal red line is at the 95%

TPR and the vertical lines at the FPRs of two algorithms,
respectively (best viewed in color).

GRADMASK for ROBERTA model. The ROC
curves of FGWS tend to increase steeply and re-
main stable. However, as TPR increases, FGWS
significantly compromises FPR score. Especially,
at some point, TPR and FPR show a linear trend. In
contrast, GRADMASK tends to reach 95% TPR at
lower FPR scores and shows larger AUROC scores.

On the other hand, GRADMASK shows lower
performance scores in all metrics on SST-2 with the
LSTM model as shown in Table 3. Nevertheless,
the overall detection performance of GRADMASK
tends to improve proportionally to the model size
and the standard performance. Another notable
observation is that GRADMASK achieves these re-
sults within two candidates except for the LSTM
model (K in Table 3). These results may imply
that NLP systems are largely robust to a partial loss
of information resulting from the masking strategy
on clean samples, but there is a significant change
in the adversary response caused by a salient to-
ken masking. We also conducted an additional
experiment to investigate the performance changes
while varying the number of masked tokens in the
samples in Appendix D.2.
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MODEL DATASET # SAMPLES ATTACK FPRY5 (%) AUROC (%) AUPR-C (%) AUPR-A (%) K
TN TP FGWS GM FGWS GM FGWS GM FGWS GM
2000 147 RANDOM 84.98 12.50 86.06 94.93 98.46 99.62 51.55 46.55 2
IMDB 2000 995  PRIORITIZED  68.31 11.1 92.67 95.55 95.06 98.12 89.2 8489 2
2000 1042 GENETIC 78.53 11.4 89.88 95.69 92.89 98.17 86.72 85.04 2
ROBERTA 2000 1016 PWWS 85.17 12.10 85.85 95.27 90.47 98.00 83.00 84.18 2
1821 148 RANDOM 90.54 52.39 7540 81.43 97.17 98.18 37.62 20.37 1
SST2 1821 479  PRIORITIZED  84.69 54.26 83.57 82.09 94.23 94.65 65.35 46.95 1
1821 968 GENETIC 90.82 56.89 74.60 79.19 84.22 90.97 66.55 61.33 1
1821 736 PWWS 65.06 51.29 7772 8273 88.66 9244 66.05 5851 1
2000 190 RANDOM 89.77 12.85 81.05 94.12 97.26 99.57 58.84 37.20 2
IMDB 2000 1037 PRIORITIZED  68.20 11.30 93.08 94.66 95.02 97.79 90.70 81.78 2
2000 888 GENETIC 80.96 10.65 89.05 95.20 93.24 97.93 8538 8326 2
ROBERTA-LONG 2000 1129 PWWS 84.38 10.95 87.10 95.07 90.26 97.96 86.38 83.38 2
1821 176 RANDOM 89.34  60.35 76.42 7572 9694 96.97 35.15 18.24 1
SST-2 1821 527  PRIORITIZED 87.06 60.08 79.80 77.73 92.71 92.78 62.95 43.31 1
1821 960 GENETIC 92.15 69.80 68.18 73.55 8255 84.89 61.46 53.11 1
1821 772 PWWS 90.05 57.50 75.54 78.57 87.83 90.41 66.44 54.38 1
2000 212 RANDOM 86.98 37.30 83.36 87.66 97.46 98.56 59.59 33.33 1
IMDB 2000 1182 PRIORITIZED  62.85 31.70 93.20 89.66 94.79 9450 91.88 76.09 1
2000 1202 GENETIC 75.59 22.80 90.28 90.23  92.50 9527 89.25 74.41 1
DISTILBERT 2000 1335 PWWS 83.06 36.64 86.56 88.74 88.9 92.93 86.95 79.10 1
1821 171 RANDOM 84.42 59.69 83.17 77.78 87.77 97.32 37.23 18.40 1
SST-2 1821 614  PRIORITIZED 84.36 58.70 84.29 78.87 92.97 9234 70.36 46.86 1
1821 1105 GENETIC 90.97 49.81 74.74 78.06 82.27 88.18 69.36 57.32 1
1821 860 PWWS 71.56 54.31 80.30 78.87 88.25 89.93 71.56 54.41 1
2000 198 RANDOM 89.64 37.55 77.82 84.22 9690 98.31 4447 2487 20
IMDB 2000 1451 PRIORITIZED  78.68 30.50 88.34 86.64 89.66 92.41 88.66 73.90 20
2000 1548 GENETIC 89.73  30.50 77.47 86.59 81.04 92.00 78.92 7450 20
LSTM 2000 1735 PWWS 88.85 30.90 80.53 86.99 81.47 91.45 83.85 7843 20
1821 238 RANDOM 86.35 98.13 79.14 58.45 96.36 90.22  36.37 13.35 20
SST-2 1821 669  PRIORITIZED  89.89 95.18 74.97 6845 88.73 84.33 57.21 36.24 20
1821 1186 GENETIC 91.28 96.00 71.37 66.74 80.08 72.67 66.55 51.55 20
1821 1013 PWWS 90.28 95.51 74.68 69.59 83.96 78.51 66.46 48.26 20

Table 3: Adversarial example detection results of FGWS and GRADMASK (GM). AUPR-C and AUPR-A denote AUPR of

clean example and adversarial example classes, respectively.
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o8 To

Precision
Precision

00 02 o8 10 00 o2

04 o6
Recall

(b) IMDb-PWWS

o4 06
Recall

(a) IMDb-Genetic

Figure 3: Precision-Recall curves of FGWS and GRADMASK
on IMDB with the ROBERTA model against the PWWS and
genetic attacks.

Another observation is that our gradient-based
masking strategy occasionally detects adversarial
examples through masking a clean token as pre-
sented in §4.3 and Fig. 4. This result implies that
the hidden representation of adversarial tokens sig-
nificantly affects that of clean tokens. We leave
analysis of this correlation as future work.

Moreover, GRADMASK shows consistently bet-
ter performance in detecting strong attacks such as
genetic attack and PWWS attack which are more
aggressive than the others. We conjecture that
stronger attacks select and engineer the crucial to-
kens more carefully, so masking these tokens would
hugely reduce the effectiveness of these attacks.

Fianlly, we observe that GRADMASK underper-
forms FGWS in terms of AUPR-A. A possible ex-
planation may be related to the nature of the syn-

onym substitution strategy. We hypothesize that
FGWS tends to transform an input sequence aggres-
sively. This view can be supported by their FPR95
scores and precision-recall (PR) curves. Firstly, the
ROC curves of FGWS typically show high FPRs at
high TPRs (Fig. 2). Secondly, from the PR curves
of FGWS shown in Fig. 3, the precision scores
drop significantly as the recall scores increase. We
provide PR curves for 6 other scenarios in the sup-
plementary material.

4.2 A Comparison with Anomaly Detection
Algorithms

We conducted additional experiments via TextAt-
tack library (Morris et al., 2020)* to compare
GRADMASK with baseline anomaly detection al-
gorithms such as maximum softmax probability
(MSP) (Hendrycks and Gimpel, 2017) and one-
class support vector machine with linear kernel
(OCSVM) (Scholkopf et al., 2000) that are widely
adopted as a baseline in various anomaly detec-
tion areas (Lee et al., 2018; Shafaei et al., 2019;
Winkens et al., 2020; Aldahdooh et al., 2021).

We trained ROBERTA-BASE on three datasets
including IMDB, YELP, and AG datasets, respec-
tively. We sampled 1,000 clean examples and their

“We adopted TextAttack framework (Morris et al., 2020)
to attack the victim models. Their implementation difference
is provided in the supplementary material.



DATASET METHOD AUROC FPR95 AUPR-C AUPR-A Acc
MSP 94.81 19.40 95.28 93.17 87.50
AG OCSVM 94.72 16.70 95.63 91.72 89.25
GM 94.93 11.00 96.69 88.37 92.50
MSP 95.34 19.43 95.07 95.16 90.32
IMDB OCSVM 84.83 98.00 71.88 89.41 83.82
GM 95.53 10.62 96.81 92.26 92.20
MSP 97.22 11.47 97.45 97.12 92.16
YELP OCSVM 95.90 15.50 93.92 96.20 91.07
GM 97.81 5.68 98.37 96.22 94.69

Table 4: A comparison of PWWS attack detection results on
RoBERTa model with MSP and OCSVM.

corresponding 1,000 adversarial examples without
a text length limitation via PWWS attack.

From the results in Table 4, we notice that GRAD-
MASK significantly outperforms the baselines by a
large margin except for the AUPR-A scores. These
results are consistent with the results reported in
§4.1. GRADMASK achieves significantly lower
FPRO5 scores than that of MSP and OCSVM for
all three datasets and higher AUPR-C scores. Also,
we report a detection accuracy for this experiment
because the datasets are well-balanced unlike the
previous experiment in §4.1. Specifically, we mea-
sured the best accuracy over a varying threshold
setting. Table 4 shows that GRADMASK achieved
the best detection accuracy for each dataset and its
error rate is around 7% for all tasks.

We further analyze statistics of the features ex-
tracted from MSP and GRADMASK methods to
attribute the superior performance of GRADMASK.
Table 5 presents two statistics of the extracted fea-
tures, mean (AVG) and standard deviation (STD).
The values are averaged over 1,000 samples. As
shown in the table, the overall mean differences be-
tween the w (c.f., Eq. (2)) of adversarial examples
(w-A) and w of clean samples (w-C) are higher
than that of MSP, which implies that GRADMASK
feature w is more distinguishable. Specifically, for
IMDB, MSP shows 0.182 (= 0.990 - 0.808), but
GRADMASK shows 0.478 at K = 3. In addition,
standard deviations of GRADMASK are generally
smaller than that of MSP.

4.3 Adversarial Token Detection

We now analyze how our gradient-based approach
GRADMASK attributes the model prediction on ad-
versarial examples. Fig. 4 shows perturbed token
detection rates of two Transformer-based models,
DI1STILBERT and ROBERTA, on two datasets,
IMDB and AGNEWS. We report detection rates
at top-1, top-3, and top-5, which refers to the total
number of adversarially perturbed tokens identified

w-A/CONF-A
(AVGESTD)

MSP  -/0.808+0.155
1 0.353+0.318/-

w-C/CONF-C
(AVGESTD)

-/0.990+0.034
0.02040.117/-

DATASET K

IMDs 2 0.424+0308/- 0.024+0.129/-
3 0.528+0.309/- 0.050+0.187/-

MSP  -/0.743+0.163 -/0.980+0.068

AG I 0.335+0.299/-  0.030+0.147/-
2 038140294/~  0.037-0.160/-

3 0.468+0.205/- 0.028+0.137/-

MSP  -/0.95140.067 -/0.999+0.005

VeLe I 0.509+0.422/-  0.009+0.091/-
2 0.65040.379/-  0.01540.116/-

3 0.783+0.305/-  0.02140.135/-

Table 5: Statistics (AVG and STD) of extracted features. The
first row of each dataset denotes the maximum softmax proba-
bility (MSP) of the ROBERTA model for adversarial (Conf-A)
and clean (Conf-C) examples, respectively. The subsequent
rows show the mean and standard deviation of w of GRAD-
MASK while varying the number of mask tokens K.

Distil RoBERTa
50

70

60 40

Adyv Pert Detection Rate (%)

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5
(a) IMDb (b) AGNews

Figure 4: Adversarially perturbed token detection rates at
top-1, top-2 and top-5 for GRADMASK.

within the top-V values of w in Eq. (2). In case
of DISTILBERT, it shows 48.17% and 31.82% de-
tection rates for IMDB and AGNEWS within the
top-5 predictions, respectively. On the other hand,
ROBERTA shows 72.04% and 48.85% detection
rates for IMDB and AGNEWS within the top-5 pre-
dictions. Another notable observation is that for the
IMDB classification task, top-1 predictions detect
the adversarial tokens with 49% and 78% probabil-
ity for DISTILBERT and ROBERTA, respectively.
For AGNEWS, their top-1 predictions show 45%
and 67% detection probability, respectively.

4.4 Character-Level Attack Detection

To investigate the potential of GRADMASK against
non-synonym based attacks, we conduct an ad-
ditional experiment with a character-level attack
(Pruthi et al., 2019) from the TextAttack library
(Morris et al., 2020). Even though character-level
attacks are known to be relatively simple to defend
at a preprocessing stage with a spell or a grammar
checker (Pruthi et al., 2019), our motivation for



MODEL AUROC FPRY5 AUPR-C AUPR-A Acc K
ROBERTA 80.02 63.39 79.62 75.74 7583 3
DISTILBERT 80.42 63.76 81.02 75.07 75.36 2

Table 6: Adversarial example detection results (in %)
against a character-level attack.

this experiment is to demonstrate the potential of
GRADMASK against non-synonym based attacks.

We generated 691 and 897 adversarial examples
from AG against ROBERTA-BASE and DISTIL-
BASE without any maximum text length limitation,
respectively. From the results in Table 6, we see
that our method shows promising results with AU-
ROC scores of 79.68% and 80.42% for ROBERTA-
BASE and DISTIL-BASE, respectively. It would be
interesting to see how GRADMASK performs for
other kinds of non-synonym attacks such as syn-
tactically controlled paraphrase networks (SCPNs)
(Iyyer et al., 2018) or universal adversarial attack
(Song et al., 2021) which we leave as future work.

5 Discussion on Word Frequency and
Adversarial Robustness

According to Mozes et al. (2021), the brittleness of
NLP systems against adversarial examples would
be attributed to the distribution of word frequency
in a training set. However, one of the widely ac-
cepted explanations about the existence of adversar-
ial examples insists that adversarial examples are a
result of the standard optimization rather than data
distribution (Ilyas et al., 2019). We investigated
how the word frequency can affect the model’s ro-
bustness via a series of experiments. Consequently,
we find that deep NLP systems can still be fooled
by adversarial examples with words that are fre-
quently exposed during their training stage.

To validate this claim, we trained the victim mod-
els with a word frequency constraint. Specifically,
we built a new vocabulary set V' to be comprised
of only the top-10% frequently used words from
the original vocabulary set V. The vocabulary-
constrained models are designed to block all infre-
quent words that are out of V” in an input sequence
by masking those tokens. We first evaluated the
model performance to observe how the vocabu-
lary constraint affects the model performance. As
shown in Table 7, the standard task performance
of the victim models under the constraint (Acc-V")
only marginally decreases (about 1 - 4%) compared
to the original accuracy (Acc-V). These results

Model Dataset Acc-V  Acc-V' | 2/ € V' AAce
DisTBERT _ MDb 9298 9217 | 7173 104
AG 9437 9078 | 6892 156
ROBERTA IMDb 9533 9515 | 6738 7.6
AG 9522 9487 | 4426 308

Table 7: Word frequency and adversarial robustness. Acc-V
and Acc-V" refer to accuracies of the model with the original
vocabulary V' and constrainted vocabulary V', respectively.
x’ € V' denotes a ratio of perturbed tokens that are part of V.
AAcc denotes an under attack accuracy of the model with V.

show that masking infrequent tokens does not hurt
the model performance significantly. Next, we gen-
erated 1,000 pairs of samples via the PWWS at-
tack algorithm (Ren et al., 2019) against the word
frequency constrained models. Each sample pair
consists of a clean example and its corresponding
adversarial example that successfully fools the tar-
get model.

According to the infrequent word assumption
(Mozes et al., 2021), the models trained on V’
are expected to be robust against adversarial at-
tacks. However, from the results in Table 7, we no-
tice that they showed significant brittleness against
adversarial attacks. For instance, DISTILBERT
models show approximately 10% accuracies for
both datasets when under attack (AAcc). Similarly,
ROBERTA models show under attack accuracies
of 7.6% and 30.8% for AGNEWS and IMDB, re-
spectively. Thus, we claim that the vulnerabilities
of NLP systems cannot only be attributed to the
infrequent words.

6 Conclusion

We have proposed a simple model-agnostic ad-
versarial example detection scheme, GRADMASK,
which utilizes gradient signals as a guidance to
detect adversarially perturbed tokens. This guid-
ance additionally provides a weak interpretation
about its decision. The experimental results show
that GRADMASK is a promising approach as a tex-
tual adversarial attack detection algorithm for NLP
systems. Particularly, it shows significantly low
FPRY5 scores, which is a highly desirable property
for NLP systems with high-security requirements.
In addition, GRADMASK does not require an ad-
ditional module or a strong assumption about po-
tential attacks which are more realistic in practice.
In conclusion, our detection strategy can serve as
a useful tool for identifying adversarial attacks for
protecting the text classification systems.
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Table 8: Parameter settings of target models. AL and
MAXLEN denote the adaptive linear learning rate sched-
uler and maximum sequence length, respectively.

MODEL PARAMETERS
OPTIMIZER ADAMW
BATCH S1ZE (IMDB/SST-2) 16/32
EPOCHS 10
ROBERTA LEARNINGRATE 1075
LEARNINGRATE SCHEDULER AL
MAXLEN (IMDB/SST-2) 256/128
OPTIMIZER ADAMW
BatcH S1zE (IMDB/SST-2) 16/32
EPOCHS 10
ROBERTA-LONG | b ¢ NINGRATE 1075
LEARNINGRATE SCHEDULER AL
MAXLEN (IMDB/SST-2) 400/256
OPTIMIZER ADAMW
BATCH S1ZE (IMDB/SST-2) 16/32
EPOCHS 10
DISTILBERT LEARNINGRATE 1075
LEARNINGRATE SCHEDULER AL
MAXLEN (IMDB/SST-2) 256/128
OPTIMIZER ADAM
BATCH Si1ZE (IMDB/SST-2) 100/100
HIDDEN S1ZE 128
DroprOUT 0.1
LST™M EMBEDDING GLOVE
EPOCHS 20
LEARNINGRATE 1073
MAXLEN (IMDB/SST-2) 200/50

A Model Parameters

Table 8 summarizes the parameter settings of the
target models used for adversarial example detec-
tion experiments. We follow the model settings
of (Mozes et al., 2021) except ROBERTA-LONG
which is trained on a longer maximum sequence
length setting.

B Adversarial Attack Implementation

For adversarial example detection experiments
(§4.1), we adopted the implementation provided
by Mozes et al. (2021). According to Mozes
et al. (2021), they replaced Google language model
(Chelba et al., 2013) in genetic attack with GPT-2
language model (Radford et al., 2019) for compu-
tational efficiency.

Note that for word-frequency analysis (§5), ad-
versarial token detection (§4.3), and all supplemen-
tary experiments described in Appendix D, we em-
ployed the publicly available TextAttack library
(Morris et al., 2020) for PWWS attack (Ren et al.,
2019). The main difference from the original imple-
mentation is PWWS attack in TextAttack does not
include the named entity (NE) adversarial swap, be-
cause it requires NE labels of input sequences that
are not available in practice (Morris et al., 2020).
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Figure 5: PR curves of FGWS and GRADMASK on
IMDB and SST-2 ROBERTA models against four dif-
ferent attacks.

C Precision-Recall Curve of ROBERTA
Model

Fig. 5 presents PR curves of FGWS and GRAD-
MASK ROBERTA models trained on IMDB and
SST-2 against four different attacks. As mentioned
in §4.1, we observe the tendency that the overall
precision scores of the FGWS algorithm drop at
high recall scores. However, our method maintains
high precision scores at high recall scores.

D Supplementary Experiments

This section provides a supplementary analysis of
GRADMASK for a better understanding of the al-
gorithm. We first investigated the statistical fea-
tures of GRADMASK with a logistic regression
(Appendix D.1). We then studied a relationship
between a multi-masking effect and detection per-
formance of GRADMASK in Appendix D.2. Sub-
sequently, we conduct an experiment to evaluate



DATASET K ACC (%)
LR  GM
1 8490 91.85
2 89.95 91.95
AG 39160 92.50
| 8454 91.53
2 89.71 9135
IMDs 39179 92.16
1 8052 93.50
VeLn 2 87.63 938l
3 90.62 94.69

Table 9: The detection accuracy of logistic regression
with statistical features extracted by masked inputs and
GRADMASK with various K settings.

the performance of GRADMASK for a task that is
sensitive to a single critical token (Appendix D.3).

During the experiments, we used a ROBERTA
model for each task and generated adversarial ex-
amples via PWWS attack with TextAttack library
(Morris et al., 2020). For each task,1,000 clean
samples and their corresponding 1,000 adversarial
examples are used as a test set.

D.1 Supervised Model with GRADMASK
Features

GRADMASK is originally designed to extract the
minimum value of M but the optimal feature could
be varied by statistical variations in practice. An
alternative way to sidestep the feature selection
process would be training a model with multiple
features. To this end, we trained a simple linear
model with logistic regression. We computed statis-
tics of M (c.f,, Eq. (2)) including the minimum,
the maximum, the mean, and the standard devia-
tion. The linear model is trained with a training
set of 1,000 clean examples and 1,000 adversarial
examples generated via PWWS attack.

Table 9 provides a detection accuracy of the
logistic regression model and GRADMASK . As
shown in the table, GRADMASK outperforms the
logistic regression model for all K settings.

D.2 GRADMASK with Multi-Masking

GRADMASK searches a candidate token to be
masked that drops the model confidence the most
significantly. For a better understanding of the
masking effect of GRADMASK, we investigate a
detection performance of the multi-masking strat-
egy of GRADMASK. To this end, we modify the
original algorithm by introducing an additional gra-
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Algorithm 2 Gradient-based Multi-Masking for
Adversarial Example Detection.

Require: Input sequence x, target model fg
1: Initialize M = {} and K = |T X p]|.

2: Compute fg(x);, where i = ¢(x). > pred. for x
3: L:={llgill, - ,|lgrl[} viaEq. 1.

4: Sort L in descending order.

5: while £k < K do

6 gl « L[

7o my =[x, My, BT

8: M[k‘] = fg(mt)i > prediction for m,
9 L:={llg1ll,---,llgr|l} via Eq. 1.

10: Sort L in descending order.

11: end while

: w = (fo(x); — ming M[k])?

—
[\

dient search step after masking a suspicious token.
This step is supposed to find the next masking po-
sition of the masked input. To this end, Lo norm of
gradient is computed after every masking process.
This modified version of GRADMASK is described
in Alg. 2.

Table 10 summarizes the experiment results on
three different datasets. For AG dataset, GRAD-
MASK with a single mask tends to show the best
performance for all metrics. Specifically, the over-
all performance is decreased as the number of
masks in input texts increases. On the other hand,
IMDB and YELP show contrasting results. For
IMDB, GRADMASK at K = 3 achieves the best
FPR95 and Acc scores. In addition, GRADMASK
shows the best performance at K = 3 for YELP
dataset. One of the possible explanations for these
results is the difference in the average text length of
datasets. The average length of IMDB and YELP
dataset are 215 and 152, respectively and these are
much longer than that of AG dataset (43). Thus, a
larger number of masked tokens in samples may re-
move adversarial tokens more effectively for those
datasets with longer texts.

D.3 Detection of Adversarial Attack in
Winograd Schema Challenge

One of the potential criticisms of masking-based
textual adversarial example detection approaches
is the information loss caused by their masking
strategies. It is likely that the gradient-based to-
ken saliency evaluation approach may decide to
mask a critical token that is important for a model’s
prediction and drop the confidence of the model
prediction.



DATASET # MASK AUROC (%) FPR95(%) AUPR-C (%) AUPR-A (%) Acc (%)

1 94.98 11.70 96.30 89.48 91.85
AG 2 92.51 16.30 95.12 84.11 89.80
3 89.89 19.40 93.51 79.46 88.00
4 86.86 22.10 91.86 74.35 86.60
1 95.92 13.16 96.81 93.27 91.53
IMDB 2 94.42 14.01 96.04 89.64 91.01
3 94.32 12.70 95.89 90.42 91.70
4 91.07 16.24 94.20 82.60 89.95
1 97.38 8.16 97.73 96.17 93.50
YELP 2 97.97 8.39 98.29 97.35 93.51
3 97.99 6.42 98.41 97.00 94.94
4 97.37 6.64 98.13 95.63 94.93

Table 10: Adversarial example detection results of GRADMASK with the multi-masking strategy.

However, as shown in Table 5, model confidence
changes for clean samples are not significant in
most cases. A possible explanation is that the
models are able to capture sufficient contexts from
neighboring texts. Nevertheless, we further investi-
gate this possible issue on a task that relies on a few
critical tokens. To this end, we investigate the pro-
posed method on the Winograd Schema Challenge
(Levesque et al., 2012). The Winograd Schema
Challenge (WSC) is a benchmark for common-
sense reasoning and natural language understand-
ing. The Winograd schema consists of a pair of
sentences differing in one or two words with a
highly ambiguous pronoun that is difficult to solve
for statistical models.

One of WSC benchmark datasets is WINO-
GRANDE (WGQG) dataset (Sakaguchi et al., 2019).
WG dataset is split into 40k training samples
and 1.2k validation samples. We first trained a
ROBERTA-LARGE model on the training set and
our best model achieves an accuracy of 72% against
the validation set. Again, we sampled 1,000 clean
samples from the validation set and generated 1,000
adversarial examples via PWWS attack.

As shown in Table 11, GRADMASK achieves the
best performances for all evaluation metrics. How-
ever, its scores are significantly lower than those of
other tasks such as IMDB and AG. We conjecture
that the overall performances of GRADMASK can
be improved further as the model’s standard perfor-
mance increases because GRADMASK relies on the
standard task performance of models for extracting
better features.
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DATASET METHOD AUROC (%) FPRY9S5 (%) AUPR-C (%) AUPR-A (%) Acc (%)

MSP 52.45 93.95 52.14 49.93 53.73
WG OCSVM 55.15 92.83 54.25 53.69 54.62
GM 60.78 91.37 59.20 57.04 60.34

Table 11: Adversarial example detection results of ROBERTA-LARGE model for WG dataset.
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