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Abstract

We present a simple model-agnostic textual001
adversarial example detection scheme called002
GRADMASK. It uses gradient signals to de-003
tect adversarially perturbed tokens in an input004
sequence and occludes such tokens by a mask-005
ing process. GRADMASK provides several ad-006
vantages over existing methods including im-007
proved detection performance and a weak inter-008
pretation of its decision. Extensive evaluations009
on widely adopted natural language processing010
benchmark datasets demonstrate the efficiency011
and effectiveness of GRADMASK. Code and012
models are available at <redacted>.013

1 Introduction and Related Work014

The advances in deep learning has revolutionized015

natural language processing (NLP) with state-of-016

the-art performance in practically every task. How-017

ever, it has been shown that such systems are sig-018

nificantly vulnerable to specifically crafted adver-019

sarial attacks (Szegedy et al., 2014) at all stages020

of development and deployment (Ebrahimi et al.,021

2018; Alzantot et al., 2018; Zhang et al., 2020; Kr-022

ishna et al., 2020; Tan et al., 2020, 2021). This is023

quite troubling as there is little to no change in the024

adversarially chosen test distributions compared to025

the training distribution (Robin, 2020).026

In response to the adversarial attacks, various027

defense schemes have been proposed. These ap-028

proaches can be grouped into three categories:029

(i) adversarial training (Si et al., 2020; Maharana030

and Bansal, 2020; Miyato et al., 2017; Zhu et al.,031

2020), (ii) certified robustness (Jia et al., 2019;032

Wang et al., 2021), and (iii) synonym substitution033

based methods (Wang et al., 2019, 2020; Dong034

et al., 2021; Zhou et al., 2021; Jones et al., 2020).035

Another branch of defense strategy is the adver-036

sarial example detection based schemes. While the037

above defense schemes aim to improve the adver-038

sarial robustness of NLP systems, adversarial ex-039

ample detection methods are designed to reject sus-040

picious inputs although they share the same goal of 041

defeating the adversarial attacks (Aldahdooh et al., 042

2021). Detection-based approaches provide several 043

advantages over adversarial robustness improve- 044

ment methods. The most obvious advantage is that 045

they do not require to modify the target model ar- 046

chitecture or the training procedure, because they 047

typically work as a separate module. Consequently, 048

they do not compromise the model performance on 049

clean datasets. Secondly, they are able to identify 050

the intention (adversarial or not) of adversarial at- 051

tacks, so users can take actions (reject or revise) 052

accordingly. Finally, the detection algorithms may 053

provide a better strategy for developing defense 054

methods by informing us which parts of an input 055

sequence are perturbed (Zhou et al., 2019). 056

Unlike the other defense schemes, the textual ad- 057

versarial detection has not been explored much. To 058

the best of our knowledge, there are two prior stud- 059

ies trying to detect token-level adversarial attacks. 060

The very first work is the discriminate perturbations 061

(DISP) framework proposed by Zhou et al. (2019). 062

DISP consists of two BERT (Devlin et al., 2019) 063

based perturbation discriminator and embedding 064

estimator. To provide supervising signals for the 065

discriminator, DISP randomly samples adversarial 066

examples and learns to discriminate clean samples 067

from the adversarial examples. In contrast, a more 068

recent adversarial detection work, the frequency- 069

guided word substitutions or FGWS (Mozes et al., 070

2021), does not need an additional training process. 071

The key assumption of FGWS is that adversarial 072

attack algorithms tend to exploit words that are 073

rarely exposed during a target model’s training. 074

However, their approach is limited to detection 075

of only word-level attacks and the effectiveness of 076

FGWS against attacks that do not rely on infrequent 077

words is unclear. Especially, our experiments with 078

a constrained high-frequency vocabulary show that 079

attackers can still find successful attacks by using 080

frequent tokens (§5). 081
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Our work in this paper, instead, deviates from the082

word-frequency assumption by utilizing gradient083

signals as guidance. We harness the gradient signal084

to detect adversarially perturbed tokens in an in-085

put sequence by investigating the sensitivity of the086

model prediction (Ancona et al., 2018; Sundarara-087

jan et al., 2017; Li et al., 2016; Zeiler and Fergus,088

2014), which indicates the network’s response to089

an adversarial input. The identified tokens are sub-090

sequently occluded by a mask token and fed to091

the model to measure the change in model’s confi-092

dence with respect to the original prediction. Fig. 1093

provides an illustration of our gradient-guided de-094

tection, GRADMASK.095

The gradient-based attribution of neural system’s096

prediction has been studied widely in deep learn-097

ing (Sundararajan et al., 2017; Simonyan et al.,098

2014; Li et al., 2016). Some prior work in NLP099

uses the gradient to identify important words (Mur-100

doch et al., 2018; Li et al., 2017). To the best of101

our knowledge, this is the first work on detecting102

textual adversarial attacks by attributing the model103

prediction via gradient signal analysis.104

GRADMASK has several advantages over the105

previous methods. Firstly, it does not require any106

additional modules for synonym search or frequent107

word count that are essential in the previous meth-108

ods (Mozes et al., 2021; Zhou et al., 2019). Sec-109

ondly, our detection algorithm works entirely with-110

out any prior knowledge about potential attacks,111

which is a more practical setup. Thirdly, it works112

without any pre-training. Finally, it provides a113

weak interpretation of decision by identifying ad-114

versarially perturbed tokens. The main contribu-115

tions of this work are: (i) we propose GRADMASK,116

a novel gradient-guided adversarial example de-117

tection method; (ii) we demonstrate its advantage118

over state-of-the-art adversarial example detection119

algorithm through extensive experiments.120

2 Method121

In this section, we present our proposed method.122

We first establish the notations in §2.1.123

2.1 Notations124

We consider a standard text classification task for a125

model fθ(·) with parameters θ ∈ Rp. The model126

fθ(·) is trained to fit a data distributionD over pairs127

of an input sequence x = [x1, · · · , xT ] of T tokens128

and its corresponding label y ∈ {1, . . . , C} with C129

being the number of classes. We also assume a loss130

 
 

 

 

 

 

... during the 2004 Republican convention in New York 

were not that [MASK] to make a documentary... 

... during the 2004 Republican convention in New York 

were not that compel to make a documentary ... 

... during the 2004 Republican convention in New York 

were not that compelling to make a ...

Attack

Mask

... during the 2004 Republican convention in New York 

were not that compel to make a [MASK] ... 

Figure 1: An illustration of the detection process of GRAD-
MASK with a binary classification example. An attacker tries
to find an adversarial example x′ by searching for the best
perturbation (compel) that flips the original model prediction
(expressed as the dotted line). GRADMASK attempts to iden-
tify the candidate perturbations through the gradient signal
and masks one token (mt) at a time to generate a masked
sequence mt. The final decision is made by measuring the
largest difference in model’s confidence for x′ and mt.

function L(θ,x, y) such as a cross-entropy loss. 131

The output of the model is a probability distribution 132

that satisfies: 0 ≤ fθ(x)i ≤ 1 and
∑C

i=1 fθ(x)i = 133

1, where i is the class index. We denote the fi- 134

nal prediction as c(x) = argmaxi fθ(x)i and true 135

label as c∗(x) = y∗. 136

Given a sequence x, a textual adversarial exam- 137

ple x′ can be defined as follows: for some semantic 138

dissimilarity measure δ(x,x′), it has to be small 139

and c(x′) ̸= c∗(x) . These two conditions denote 140

that an adversarial example has to maintain seman- 141

tic meaning of the original input x but misguide 142

the model prediction (Athalye et al., 2018). 143

2.2 Gradient-guided Token Masking for 144

Adversarial Example Detection 145

GRADMASK first finds salient tokens that signifi- 146

cantly attribute to the model prediction, c(x); see 147

Fig. 1 for an illustration. A simple and widely em- 148

ployed approach is the gradient-based attribution 149

analysis (Ancona et al., 2018; Sundararajan et al., 150

2017; Li et al., 2016). However, due to the dis- 151

crete nature of texts, we cannot directly exploit the 152

gradient-based approach. In order to deviate the is- 153

sue, we compute a gradient of the word embedding 154

et with regard to the loss function L, where et is 155

a simple linear projection of a (subword) token xt. 156

The gradient can be expressed as follows: 157

gt = ∇etL(θ,x, c(x)) (1) 158
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Algorithm 1 Gradient-based Masking for Adver-
sarial Example Detection.

Require: Input sequence x, target model fθ
1: InitializeM = {} and K = ⌊T × p⌋.
2: Compute fθ(x)i, where i = c(x). ▷ pred. for x

3: L := {||g1||, · · · , ||gT ||} via Eq. 1.
4: Sort L in descending order.
5: while k ≤ K do
6: ||g||t ← L[k]
7: mt = [x1, · · · ,mt, · · · , xT ]
8: M[k] = fθ(mt)i ▷ prediction for mt

9: end while
10: w = (fθ(x)i −minkM[k])2

Note that the above loss is computed with respect159

to the model’s final prediction c(x) and not the160

ground truth y∗.161

Subsequently, we measure the amount of stimu-162

lus of the input tokens toward the model prediction163

by computing the L2-norm of gt. The stimulus is164

considered as a saliency score of the tokens and it is165

determined in descending order of the magnitude of166

||gt||2 following Li et al. (2016). GRADMASK only167

considers the top-p portion of the input tokens in x.168

Specifically, the number of chosen K salient tokens169

is ⌊T × p⌋, where the brackets denote the floor op-170

eration. The sampled K salient tokens are masked171

individually one at a time to generate a masked172

input sequence mt = [x1, . . . ,mt, . . . , xT ] with t173

being the token position of a salient token, and mt174

is the mask token, [MASK].1175

The rationale behind the masking approach is176

based on two assumptions. The first assumption177

is that adversarial examples are the result of so-178

phisticated optimization algorithms rather than the179

result of random perturbations (Goodfellow et al.,180

2015; Galloway et al., 2018). Thus, we conjec-181

ture that masking the suspicious tokens which are182

carefully crafted can significantly drop the model183

confidence. The second assumption is that NLP184

systems are generally robust to weak-level of noise.185

The partial information loss in clean samples due186

to masking can be offset by the overall context of187

the input text (supported by our experiments in §5).188

Each masked sequence mt is then fed into the189

target model to get a prediction fθ(mt)i, where190

i = c(x). This process gives K such confidence191

scores which are stored inM. We then compare192

1In case of non-masked language model-based classifiers,
we adopted an unknown token.

Dataset Train / Test # Classes Avg. Len

IMDb 25k/25k 2 215
SST-2 67k/1.8k 2 20
Yelp 560k/38k 2 152
AG 120k/7.6k 4 43

Table 1: A summary of the datasets used in our work.

the minimum confidence value inM to the original 193

confidence score f(x)i, and the confidence change 194

is squared to assign a stronger penalty to the higher 195

changes. More formally, 196

w =
(
fθ(x)i −min

k
M[k]

)2
(2) 197

The final decision is determined by an indicator 198

function I(w, τ) defined as follows: 199

I(w, τ) =

{
0 if w ≤ τ

1 else
(3) 200

where τ is a pre-defined threshold. Alg. 1 presents 201

the overall process of GRADMASK. 202

3 Experiment Settings 203

In this section, we present our experiment settings: 204

the datasets, target models, adversarial example 205

generation, and evaluation metrics. 206

3.1 Datasets 207

We evaluate the methods on four classification 208

tasks. We use the IMDB (Maas et al., 2011), 209

AGNEWS (Zhang et al., 2015), YELP (Zhang 210

et al., 2015), and Stanford Sentiment Treebank 211

(SST) (Socher et al., 2013) datasets that are widely 212

adopted for benchmarking adversarial robustness 213

of NLP systems. The IMDB dataset contains 214

movie reviews labeled with positive or negative 215

sentiment labels. The AGNEWS dataset contains 216

news articles from more than 2,000 news sources 217

and the samples are categorized into the four largest 218

classes. The YELP dataset is a binary sentiment 219

classification dataset which consists of Yelp re- 220

views. The SST dataset provides movie reviews 221

with fine-grained sentiment labels. We turn the 222

labels into binary (SST-2) to follow the setting 223

of FGWS (Mozes et al., 2021). Table 1 gives an 224

overview of the datasets. 225

3.2 Target Models 226

We evaluate GRADMASK on three different se- 227

quence modeling architectures, which have been 228
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MODEL DATASET ACC (%)

ROBERTA
IMDB 93.36
SST-2 91.98
YELP 97.91
AG 95.3

ROBERTA-LONG
IMDB 93.71
SST-2 88.69

DISTILBERT
IMDB 90.57
SST-2 91.21

AG 94.37

LSTM IMDB 87.27
SST-2 83.53

Table 2: A summary of the target models and their clean
testset performance.

widely employed in NLP. We first consider a large-229

scaled pre-trained Transformer-based language230

model, ROBERTA-BASE (Liu et al., 2019), which231

contains 124 million parameters. Subsequently, we232

also evaluate on a relatively smaller Transformer-233

based model called DISTILBERT-BASE (Sanh234

et al., 2020), which has approximately 40% fewer235

parameters than ROBERTA-BASE. Finally, we con-236

sider the LSTM, which used to be the dominant237

architecture before the arrival of Transformers.238

Table 2 shows the standard task performance239

of the models on the three datasets. To train240

the models, we followed the hyperparameter set-241

tings provided by Mozes et al. (2021). The242

TRANSFORMER based models are optimized by243

AdamW (Loshchilov and Hutter, 2019) with a lin-244

ear adaptive learning rate scheduler. For LSTM,245

the initial word embeddings are initialized with246

GloVe (Pennington et al., 2014). The texts in247

IMDB and YELP are comparatively longer than248

those in AGNEWS and SST-2. For the IMDB clas-249

sification task, the maximum sequence lengths for250

ROBERTA, DISTILBERT and LSTM are set to251

256, 256, and 200, respectively, and ROBERTA-252

LONG is trained with a longer sequence (400 to-253

kens) than the standard one. The details of model254

architectures are provided in the supplementary ma-255

terial. All of the experiments are conducted on an256

Intel Xeon Gold 5218R CPU-2.10GHz processor257

with a single Quadro RTX 6000 GPU.258

3.3 Adversarial Example Generation259

We generated adversarial examples against the se-260

lected target models via four different attack al-261

gorithms. They include two baseline attacks and262

two widely adopted synonym substitution-based263

token-level attacks, as used in the previous work264

• Random is a simple word replacement-based265

baseline attack algorithm. It randomly selects a 266

synonym of a token in the original input text. Syn- 267

onyms are identified via WordNet. 268

• Prioritized attack is also based on word replace- 269

ment, but it puts a higher priority on a synonym that 270

maximizes the target model’s prediction confidence 271

change. 272

• Genetic attack (GA) was proposed by Alzantot 273

et al. (2018). It adopts the crossover and mutation 274

operations in genetic algorithms to generate adver- 275

sarial examples. GA searches synonyms based on 276

the GloVe word embedding space with a language 277

model (Radford et al., 2019).2 278

• PWWS or Probability weighted word saliency 279

(Ren et al., 2019) is a greedy word substitution- 280

based attack algorithm. The word replacement or- 281

der is determined by a word saliency score com- 282

puted through the model’s confidence change. The 283

word synonym is searched via WordNet. 284

3.4 Evaluation Metrics 285

The main interest of this work lies in an eval- 286

uation of the detection performance of our pro- 287

posed method GRADMASK. FGWS (Mozes et al., 288

2021) was mainly evaluated via F1 score, but we 289

follow the standards from the out-of-distribution 290

(OOD) sample detection literature (?Hendrycks 291

et al., 2019; Ouyang et al., 2021) for better under- 292

standing of the methods. 293

The adversarial example detection can be con- 294

sidered as a binary classification problem of ver- 295

ifying positive (adversarial) vs. negative (clean) 296

class. We evaluate a ratio of true positive samples 297

so-called true positive rate (TPR or recall) against 298

false positive rate (FPR) defined as: 299

TPR =
1

n+

∑
i

I(w+, τ) (4) 300

FPR =
1

n−

∑
i

I(w−, τ), (5) 301

where the superscripts + and − denote the positive 302

and the negative classes, respectively. Based on 303

these two rates, we evaluate the methods with the 304

following evaluation metrics: 305

• FPR95 refers to a FPR at 95% TPR. FPR95 quan- 306

tifies how many clean samples have to be rejected 307

to detect 95% of the adversarial examples. FPR is 308

a very important metric for evaluating detection al- 309

2We adopted the modified implementation provided by
Mozes et al. (2021) for a fair comparison. The implementation
details are provided in the supplementary material.
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gorithms (Aldahdooh et al., 2021). A lower FPR95310

score is often required for systems that require a311

high level of system safety or security.312

• AUROC stands for the area under receiver op-313

erating characteristic curve. For each operational314

setting of τ from 0 to 1, TPR and FPR can be315

plotted. This curve is called receiver operating316

characteristic curve (ROC curve).317

• AUPR denotes area under precision-recall (PR)318

curves. There exists an imbalance of data distribu-319

tion between positive class and negative class. To320

deal with the data distribution skew, we evaluate321

AUPR scores for each class.322

• Acc denotes a detection accuracy. We use Acc323

only for experiments with balanced datasets.324

4 Results & Analysis325

We first evaluate GRADMASK on widely employed326

NLP datasets and compare it with baselines (§4.1327

and §4.2). Then, we analyze the adversarially328

perturbed token detection performance of GRAD-329

MASK (§4.3). Subsequently, we investigate GRAD-330

MASK’s potential against a non-synonym based331

(character-level) attack (§4.4). Finally, We inves-332

tigate the relationship between the adversarial ro-333

bustness of NLP classification models and the word334

frequency in the adversarial examples (§5).335

4.1 Adversarial Example Detection336

For adversarial example detection, we compare337

the performance of GRADMASK with that of338

FGWS (Mozes et al., 2021). The hyperparameter339

settings of FGWS is tuned as provided by Mozes340

et al. (2021).3 The overall experimental results341

are presented in Table 3. Note that AUPR-C and342

AUPR-A represent the AUPR score of clean sam-343

ples (negative class) and that of adversarial samples344

(positive class), respectively.345

As shown in Table 3, GRADMASK tends to show346

better AUROC, FPR95, and AUPR-C scores in347

most of the evaluation measures. Particularly, it348

outperforms FGWS for all Transformer-based sys-349

tems (ROBERTA, ROBERTA-LONG, and DISTIL-350

BERT) in terms of the FPR95 score, which is an351

important metric for systems with high security352

requirements. In addition, GRADMASK achieves353

notably better AUPR-C scores in most of the exper-354

iment scenarios. This tendency is well presented355

in Fig. 2, which shows ROC curves of FGWS and356

3https://github.com/maximilianmozes/fgws
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Figure 2: ROC curves of FGWS and GRADMASK with
the ROBERTA model. The horizontal red line is at the 95%
TPR and the vertical lines at the FPRs of two algorithms,
respectively (best viewed in color).

GRADMASK for ROBERTA model. The ROC 357

curves of FGWS tend to increase steeply and re- 358

main stable. However, as TPR increases, FGWS 359

significantly compromises FPR score. Especially, 360

at some point, TPR and FPR show a linear trend. In 361

contrast, GRADMASK tends to reach 95% TPR at 362

lower FPR scores and shows larger AUROC scores. 363

On the other hand, GRADMASK shows lower 364

performance scores in all metrics on SST-2 with the 365

LSTM model as shown in Table 3. Nevertheless, 366

the overall detection performance of GRADMASK 367

tends to improve proportionally to the model size 368

and the standard performance. Another notable 369

observation is that GRADMASK achieves these re- 370

sults within two candidates except for the LSTM 371

model (K in Table 3). These results may imply 372

that NLP systems are largely robust to a partial loss 373

of information resulting from the masking strategy 374

on clean samples, but there is a significant change 375

in the adversary response caused by a salient to- 376

ken masking. We also conducted an additional 377

experiment to investigate the performance changes 378

while varying the number of masked tokens in the 379

samples in Appendix D.2. 380
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MODEL DATASET # SAMPLES ATTACK FPR95 (%) AUROC (%) AUPR-C (%) AUPR-A (%) K
TN TP FGWS GM FGWS GM FGWS GM FGWS GM

ROBERTA

IMDB

2000 147 RANDOM 84.98 12.50 86.06 94.93 98.46 99.62 51.55 46.55 2
2000 995 PRIORITIZED 68.31 11.1 92.67 95.55 95.06 98.12 89.2 84.89 2
2000 1042 GENETIC 78.53 11.4 89.88 95.69 92.89 98.17 86.72 85.04 2
2000 1016 PWWS 85.17 12.10 85.85 95.27 90.47 98.00 83.00 84.18 2

SST-2

1821 148 RANDOM 90.54 52.39 75.40 81.43 97.17 98.18 37.62 20.37 1
1821 479 PRIORITIZED 84.69 54.26 83.57 82.09 94.23 94.65 65.35 46.95 1
1821 968 GENETIC 90.82 56.89 74.60 79.19 84.22 90.97 66.55 61.33 1
1821 736 PWWS 65.06 51.29 77.72 82.73 88.66 92.44 66.05 58.51 1

ROBERTA-LONG

IMDB

2000 190 RANDOM 89.77 12.85 81.05 94.12 97.26 99.57 58.84 37.20 2
2000 1037 PRIORITIZED 68.20 11.30 93.08 94.66 95.02 97.79 90.70 81.78 2
2000 888 GENETIC 80.96 10.65 89.05 95.20 93.24 97.93 85.38 83.26 2
2000 1129 PWWS 84.38 10.95 87.10 95.07 90.26 97.96 86.38 83.38 2

SST-2

1821 176 RANDOM 89.34 60.35 76.42 75.72 96.94 96.97 35.15 18.24 1
1821 527 PRIORITIZED 87.06 60.08 79.80 77.73 92.71 92.78 62.95 43.31 1
1821 960 GENETIC 92.15 69.80 68.18 73.55 82.55 84.89 61.46 53.11 1
1821 772 PWWS 90.05 57.50 75.54 78.57 87.83 90.41 66.44 54.38 1

DISTILBERT

IMDB

2000 212 RANDOM 86.98 37.30 83.36 87.66 97.46 98.56 59.59 33.33 1
2000 1182 PRIORITIZED 62.85 31.70 93.20 89.66 94.79 94.50 91.88 76.09 1
2000 1202 GENETIC 75.59 22.80 90.28 90.23 92.50 95.27 89.25 74.41 1
2000 1335 PWWS 83.06 36.64 86.56 88.74 88.9 92.93 86.95 79.10 1

SST-2

1821 171 RANDOM 84.42 59.69 83.17 77.78 87.77 97.32 37.23 18.40 1
1821 614 PRIORITIZED 84.36 58.70 84.29 78.87 92.97 92.34 70.36 46.86 1
1821 1105 GENETIC 90.97 49.81 74.74 78.06 82.27 88.18 69.36 57.32 1
1821 860 PWWS 71.56 54.31 80.30 78.87 88.25 89.93 71.56 54.41 1

LSTM

IMDB

2000 198 RANDOM 89.64 37.55 77.82 84.22 96.90 98.31 44.47 24.87 20
2000 1451 PRIORITIZED 78.68 30.50 88.34 86.64 89.66 92.41 88.66 73.90 20
2000 1548 GENETIC 89.73 30.50 77.47 86.59 81.04 92.00 78.92 74.50 20
2000 1735 PWWS 88.85 30.90 80.53 86.99 81.47 91.45 83.85 78.43 20

SST-2

1821 238 RANDOM 86.35 98.13 79.14 58.45 96.36 90.22 36.37 13.35 20
1821 669 PRIORITIZED 89.89 95.18 74.97 68.45 88.73 84.33 57.21 36.24 20
1821 1186 GENETIC 91.28 96.00 71.37 66.74 80.08 72.67 66.55 51.55 20
1821 1013 PWWS 90.28 95.51 74.68 69.59 83.96 78.51 66.46 48.26 20

Table 3: Adversarial example detection results of FGWS and GRADMASK (GM). AUPR-C and AUPR-A denote AUPR of
clean example and adversarial example classes, respectively.
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Figure 3: Precision-Recall curves of FGWS and GRADMASK
on IMDB with the ROBERTA model against the PWWS and
genetic attacks.

Another observation is that our gradient-based381

masking strategy occasionally detects adversarial382

examples through masking a clean token as pre-383

sented in §4.3 and Fig. 4. This result implies that384

the hidden representation of adversarial tokens sig-385

nificantly affects that of clean tokens. We leave386

analysis of this correlation as future work.387

Moreover, GRADMASK shows consistently bet-388

ter performance in detecting strong attacks such as389

genetic attack and PWWS attack which are more390

aggressive than the others. We conjecture that391

stronger attacks select and engineer the crucial to-392

kens more carefully, so masking these tokens would393

hugely reduce the effectiveness of these attacks.394

Fianlly, we observe that GRADMASK underper-395

forms FGWS in terms of AUPR-A. A possible ex-396

planation may be related to the nature of the syn-397

onym substitution strategy. We hypothesize that 398

FGWS tends to transform an input sequence aggres- 399

sively. This view can be supported by their FPR95 400

scores and precision-recall (PR) curves. Firstly, the 401

ROC curves of FGWS typically show high FPRs at 402

high TPRs (Fig. 2). Secondly, from the PR curves 403

of FGWS shown in Fig. 3, the precision scores 404

drop significantly as the recall scores increase. We 405

provide PR curves for 6 other scenarios in the sup- 406

plementary material. 407

4.2 A Comparison with Anomaly Detection 408

Algorithms 409

We conducted additional experiments via TextAt- 410

tack library (Morris et al., 2020)4 to compare 411

GRADMASK with baseline anomaly detection al- 412

gorithms such as maximum softmax probability 413

(MSP) (Hendrycks and Gimpel, 2017) and one- 414

class support vector machine with linear kernel 415

(OCSVM) (Schölkopf et al., 2000) that are widely 416

adopted as a baseline in various anomaly detec- 417

tion areas (Lee et al., 2018; Shafaei et al., 2019; 418

Winkens et al., 2020; Aldahdooh et al., 2021). 419

We trained ROBERTA-BASE on three datasets 420

including IMDB, YELP, and AG datasets, respec- 421

tively. We sampled 1,000 clean examples and their 422

4We adopted TextAttack framework (Morris et al., 2020)
to attack the victim models. Their implementation difference
is provided in the supplementary material.
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DATASET METHOD AUROC FPR95 AUPR-C AUPR-A ACC

AG
MSP 94.81 19.40 95.28 93.17 87.50

OCSVM 94.72 16.70 95.63 91.72 89.25
GM 94.93 11.00 96.69 88.37 92.50

IMDB
MSP 95.34 19.43 95.07 95.16 90.32

OCSVM 84.83 98.00 71.88 89.41 83.82
GM 95.53 10.62 96.81 92.26 92.20

YELP
MSP 97.22 11.47 97.45 97.12 92.16

OCSVM 95.90 15.50 93.92 96.20 91.07
GM 97.81 5.68 98.37 96.22 94.69

Table 4: A comparison of PWWS attack detection results on
RoBERTa model with MSP and OCSVM.

corresponding 1,000 adversarial examples without423

a text length limitation via PWWS attack.424

From the results in Table 4, we notice that GRAD-425

MASK significantly outperforms the baselines by a426

large margin except for the AUPR-A scores. These427

results are consistent with the results reported in428

§4.1. GRADMASK achieves significantly lower429

FPR95 scores than that of MSP and OCSVM for430

all three datasets and higher AUPR-C scores. Also,431

we report a detection accuracy for this experiment432

because the datasets are well-balanced unlike the433

previous experiment in §4.1. Specifically, we mea-434

sured the best accuracy over a varying threshold435

setting. Table 4 shows that GRADMASK achieved436

the best detection accuracy for each dataset and its437

error rate is around 7% for all tasks.438

We further analyze statistics of the features ex-439

tracted from MSP and GRADMASK methods to440

attribute the superior performance of GRADMASK.441

Table 5 presents two statistics of the extracted fea-442

tures, mean (AVG) and standard deviation (STD).443

The values are averaged over 1,000 samples. As444

shown in the table, the overall mean differences be-445

tween the w (c.f., Eq. (2)) of adversarial examples446

(w-A) and w of clean samples (w-C) are higher447

than that of MSP, which implies that GRADMASK448

feature w is more distinguishable. Specifically, for449

IMDB, MSP shows 0.182 (= 0.990 - 0.808), but450

GRADMASK shows 0.478 at K = 3. In addition,451

standard deviations of GRADMASK are generally452

smaller than that of MSP.453

4.3 Adversarial Token Detection454

We now analyze how our gradient-based approach455

GRADMASK attributes the model prediction on ad-456

versarial examples. Fig. 4 shows perturbed token457

detection rates of two Transformer-based models,458

DISTILBERT and ROBERTA, on two datasets,459

IMDB and AGNEWS. We report detection rates460

at top-1, top-3, and top-5, which refers to the total461

number of adversarially perturbed tokens identified462

DATASET K w-A/CONF-A w-C/CONF-C
(AVG±STD) (AVG±STD)

IMDB

MSP -/0.808±0.155 -/0.990±0.034
1 0.353±0.318/- 0.020±0.117/-
2 0.424±0.308/- 0.024±0.129/-
3 0.528±0.309/- 0.050±0.187/-

AG

MSP -/0.743±0.163 -/0.980±0.068
1 0.335±0.299/- 0.030±0.147/-
2 0.381±0.294/- 0.037±0.160/-
3 0.468±0.295/- 0.028±0.137/-

YELP

MSP -/0.951±0.067 -/0.999±0.005
1 0.509±0.422/- 0.009±0.091/-
2 0.650±0.379/- 0.015±0.116/-
3 0.783±0.305/- 0.021±0.135/-

Table 5: Statistics (AVG and STD) of extracted features. The
first row of each dataset denotes the maximum softmax proba-
bility (MSP) of the ROBERTA model for adversarial (Conf-A)
and clean (Conf-C) examples, respectively. The subsequent
rows show the mean and standard deviation of w of GRAD-
MASK while varying the number of mask tokens K.

(a) IMDb (b) AGNews
Top-1 Top-3 Top-5 Top-1 Top-3 Top-5
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Figure 4: Adversarially perturbed token detection rates at
top-1, top-2 and top-5 for GRADMASK.

within the top-N values of w in Eq. (2). In case 463

of DISTILBERT, it shows 48.17% and 31.82% de- 464

tection rates for IMDB and AGNEWS within the 465

top-5 predictions, respectively. On the other hand, 466

ROBERTA shows 72.04% and 48.85% detection 467

rates for IMDB and AGNEWS within the top-5 pre- 468

dictions. Another notable observation is that for the 469

IMDB classification task, top-1 predictions detect 470

the adversarial tokens with 49% and 78% probabil- 471

ity for DISTILBERT and ROBERTA, respectively. 472

For AGNEWS, their top-1 predictions show 45% 473

and 67% detection probability, respectively. 474

4.4 Character-Level Attack Detection 475

To investigate the potential of GRADMASK against 476

non-synonym based attacks, we conduct an ad- 477

ditional experiment with a character-level attack 478

(Pruthi et al., 2019) from the TextAttack library 479

(Morris et al., 2020). Even though character-level 480

attacks are known to be relatively simple to defend 481

at a preprocessing stage with a spell or a grammar 482

checker (Pruthi et al., 2019), our motivation for 483
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MODEL AUROC FPR95 AUPR-C AUPR-A ACC K

ROBERTA 80.02 63.39 79.62 75.74 75.83 3

DISTILBERT 80.42 63.76 81.02 75.07 75.36 2

Table 6: Adversarial example detection results (in %)
against a character-level attack.

this experiment is to demonstrate the potential of484

GRADMASK against non-synonym based attacks.485

We generated 691 and 897 adversarial examples486

from AG against ROBERTA-BASE and DISTIL-487

BASE without any maximum text length limitation,488

respectively. From the results in Table 6, we see489

that our method shows promising results with AU-490

ROC scores of 79.68% and 80.42% for ROBERTA-491

BASE and DISTIL-BASE, respectively. It would be492

interesting to see how GRADMASK performs for493

other kinds of non-synonym attacks such as syn-494

tactically controlled paraphrase networks (SCPNs)495

(Iyyer et al., 2018) or universal adversarial attack496

(Song et al., 2021) which we leave as future work.497

5 Discussion on Word Frequency and498

Adversarial Robustness499

According to Mozes et al. (2021), the brittleness of500

NLP systems against adversarial examples would501

be attributed to the distribution of word frequency502

in a training set. However, one of the widely ac-503

cepted explanations about the existence of adversar-504

ial examples insists that adversarial examples are a505

result of the standard optimization rather than data506

distribution (Ilyas et al., 2019). We investigated507

how the word frequency can affect the model’s ro-508

bustness via a series of experiments. Consequently,509

we find that deep NLP systems can still be fooled510

by adversarial examples with words that are fre-511

quently exposed during their training stage.512

To validate this claim, we trained the victim mod-513

els with a word frequency constraint. Specifically,514

we built a new vocabulary set V ′ to be comprised515

of only the top-10% frequently used words from516

the original vocabulary set V . The vocabulary-517

constrained models are designed to block all infre-518

quent words that are out of V ′ in an input sequence519

by masking those tokens. We first evaluated the520

model performance to observe how the vocabu-521

lary constraint affects the model performance. As522

shown in Table 7, the standard task performance523

of the victim models under the constraint (Acc-V ′)524

only marginally decreases (about 1 - 4%) compared525

to the original accuracy (Acc-V ). These results526

Model Dataset Acc-V Acc-V ′ x′ ∈ V ′ AAcc

DISTILBERT
IMDb 92.98 92.17 71.73 10.4

AG 94.37 90.78 68.92 15.6

ROBERTA
IMDb 95.33 95.15 67.38 7.6

AG 95.22 94.87 44.26 30.8

Table 7: Word frequency and adversarial robustness. Acc-V
and Acc-V ′ refer to accuracies of the model with the original
vocabulary V and constrainted vocabulary V ′, respectively.
x′ ∈ V ′ denotes a ratio of perturbed tokens that are part of V ′.
AAcc denotes an under attack accuracy of the model with V ′.

show that masking infrequent tokens does not hurt 527

the model performance significantly. Next, we gen- 528

erated 1,000 pairs of samples via the PWWS at- 529

tack algorithm (Ren et al., 2019) against the word 530

frequency constrained models. Each sample pair 531

consists of a clean example and its corresponding 532

adversarial example that successfully fools the tar- 533

get model. 534

According to the infrequent word assumption 535

(Mozes et al., 2021), the models trained on V ′ 536

are expected to be robust against adversarial at- 537

tacks. However, from the results in Table 7, we no- 538

tice that they showed significant brittleness against 539

adversarial attacks. For instance, DISTILBERT 540

models show approximately 10% accuracies for 541

both datasets when under attack (AAcc). Similarly, 542

ROBERTA models show under attack accuracies 543

of 7.6% and 30.8% for AGNEWS and IMDB, re- 544

spectively. Thus, we claim that the vulnerabilities 545

of NLP systems cannot only be attributed to the 546

infrequent words. 547

6 Conclusion 548

We have proposed a simple model-agnostic ad- 549

versarial example detection scheme, GRADMASK, 550

which utilizes gradient signals as a guidance to 551

detect adversarially perturbed tokens. This guid- 552

ance additionally provides a weak interpretation 553

about its decision. The experimental results show 554

that GRADMASK is a promising approach as a tex- 555

tual adversarial attack detection algorithm for NLP 556

systems. Particularly, it shows significantly low 557

FPR95 scores, which is a highly desirable property 558

for NLP systems with high-security requirements. 559

In addition, GRADMASK does not require an ad- 560

ditional module or a strong assumption about po- 561

tential attacks which are more realistic in practice. 562

In conclusion, our detection strategy can serve as 563

a useful tool for identifying adversarial attacks for 564

protecting the text classification systems. 565
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Table 8: Parameter settings of target models. AL and
MAXLEN denote the adaptive linear learning rate sched-
uler and maximum sequence length, respectively.

MODEL PARAMETERS

ROBERTA

OPTIMIZER ADAMW
BATCH SIZE (IMDB/SST-2) 16/32
EPOCHS 10
LEARNINGRATE 10−5
LEARNINGRATE SCHEDULER AL
MAXLEN (IMDB/SST-2) 256/128

ROBERTA-LONG

OPTIMIZER ADAMW
BATCH SIZE (IMDB/SST-2) 16/32
EPOCHS 10
LEARNINGRATE 10−5
LEARNINGRATE SCHEDULER AL
MAXLEN (IMDB/SST-2) 400/256

DISTILBERT

OPTIMIZER ADAMW
BATCH SIZE (IMDB/SST-2) 16/32
EPOCHS 10
LEARNINGRATE 10−5
LEARNINGRATE SCHEDULER AL
MAXLEN (IMDB/SST-2) 256/128

LSTM

OPTIMIZER ADAM
BATCH SIZE (IMDB/SST-2) 100/100
HIDDEN SIZE 128
DROPOUT 0.1
EMBEDDING GLOVE
EPOCHS 20
LEARNINGRATE 10−3
MAXLEN (IMDB/SST-2) 200/50

A Model Parameters896

Table 8 summarizes the parameter settings of the897

target models used for adversarial example detec-898

tion experiments. We follow the model settings899

of (Mozes et al., 2021) except ROBERTA-LONG900

which is trained on a longer maximum sequence901

length setting.902

B Adversarial Attack Implementation903

For adversarial example detection experiments904

(§4.1), we adopted the implementation provided905

by Mozes et al. (2021). According to Mozes906

et al. (2021), they replaced Google language model907

(Chelba et al., 2013) in genetic attack with GPT-2908

language model (Radford et al., 2019) for compu-909

tational efficiency.910

Note that for word-frequency analysis (§5), ad-911

versarial token detection (§4.3), and all supplemen-912

tary experiments described in Appendix D, we em-913

ployed the publicly available TextAttack library914

(Morris et al., 2020) for PWWS attack (Ren et al.,915

2019). The main difference from the original imple-916

mentation is PWWS attack in TextAttack does not917

include the named entity (NE) adversarial swap, be-918

cause it requires NE labels of input sequences that919

are not available in practice (Morris et al., 2020).920
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Figure 5: PR curves of FGWS and GRADMASK on
IMDB and SST-2 ROBERTA models against four dif-
ferent attacks.

C Precision-Recall Curve of ROBERTA 921

Model 922

Fig. 5 presents PR curves of FGWS and GRAD- 923

MASK ROBERTA models trained on IMDB and 924

SST-2 against four different attacks. As mentioned 925

in §4.1, we observe the tendency that the overall 926

precision scores of the FGWS algorithm drop at 927

high recall scores. However, our method maintains 928

high precision scores at high recall scores. 929

D Supplementary Experiments 930

This section provides a supplementary analysis of 931

GRADMASK for a better understanding of the al- 932

gorithm. We first investigated the statistical fea- 933

tures of GRADMASK with a logistic regression 934

(Appendix D.1). We then studied a relationship 935

between a multi-masking effect and detection per- 936

formance of GRADMASK in Appendix D.2. Sub- 937

sequently, we conduct an experiment to evaluate 938
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DATASET K ACC (%)
LR GM

AG

1 84.90 91.85
2 89.95 91.95
3 91.60 92.50

IMDB

1 84.54 91.53
2 89.71 91.35
3 91.79 92.16

YELP

1 80.52 93.50
2 87.63 93.81
3 90.62 94.69

Table 9: The detection accuracy of logistic regression
with statistical features extracted by masked inputs and
GRADMASK with various K settings.

the performance of GRADMASK for a task that is939

sensitive to a single critical token (Appendix D.3).940

During the experiments, we used a ROBERTA941

model for each task and generated adversarial ex-942

amples via PWWS attack with TextAttack library943

(Morris et al., 2020). For each task,1,000 clean944

samples and their corresponding 1,000 adversarial945

examples are used as a test set.946

D.1 Supervised Model with GRADMASK947

Features948

GRADMASK is originally designed to extract the949

minimum value ofM but the optimal feature could950

be varied by statistical variations in practice. An951

alternative way to sidestep the feature selection952

process would be training a model with multiple953

features. To this end, we trained a simple linear954

model with logistic regression. We computed statis-955

tics of M (c.f., Eq. (2)) including the minimum,956

the maximum, the mean, and the standard devia-957

tion. The linear model is trained with a training958

set of 1,000 clean examples and 1,000 adversarial959

examples generated via PWWS attack.960

Table 9 provides a detection accuracy of the961

logistic regression model and GRADMASK . As962

shown in the table, GRADMASK outperforms the963

logistic regression model for all K settings.964

D.2 GRADMASK with Multi-Masking965

GRADMASK searches a candidate token to be966

masked that drops the model confidence the most967

significantly. For a better understanding of the968

masking effect of GRADMASK, we investigate a969

detection performance of the multi-masking strat-970

egy of GRADMASK. To this end, we modify the971

original algorithm by introducing an additional gra-972

Algorithm 2 Gradient-based Multi-Masking for
Adversarial Example Detection.

Require: Input sequence x, target model fθ
1: InitializeM = {} and K = ⌊T × p⌋.
2: Compute fθ(x)i, where i = c(x). ▷ pred. for x

3: L := {||g1||, · · · , ||gT ||} via Eq. 1.
4: Sort L in descending order.
5: while k ≤ K do
6: ||g||t ← L[1]
7: mt = [x1, · · · ,mt, · · · , xT ]
8: M[k] = fθ(mt)i ▷ prediction for mt

9: L := {||g1||, · · · , ||gT ||} via Eq. 1.
10: Sort L in descending order.
11: end while
12: w = (fθ(x)i −minkM[k])2

dient search step after masking a suspicious token. 973

This step is supposed to find the next masking po- 974

sition of the masked input. To this end, L2 norm of 975

gradient is computed after every masking process. 976

This modified version of GRADMASK is described 977

in Alg. 2. 978

Table 10 summarizes the experiment results on 979

three different datasets. For AG dataset, GRAD- 980

MASK with a single mask tends to show the best 981

performance for all metrics. Specifically, the over- 982

all performance is decreased as the number of 983

masks in input texts increases. On the other hand, 984

IMDB and YELP show contrasting results. For 985

IMDB, GRADMASK at K = 3 achieves the best 986

FPR95 and Acc scores. In addition, GRADMASK 987

shows the best performance at K = 3 for YELP 988

dataset. One of the possible explanations for these 989

results is the difference in the average text length of 990

datasets. The average length of IMDB and YELP 991

dataset are 215 and 152, respectively and these are 992

much longer than that of AG dataset (43). Thus, a 993

larger number of masked tokens in samples may re- 994

move adversarial tokens more effectively for those 995

datasets with longer texts. 996

D.3 Detection of Adversarial Attack in 997

Winograd Schema Challenge 998

One of the potential criticisms of masking-based 999

textual adversarial example detection approaches 1000

is the information loss caused by their masking 1001

strategies. It is likely that the gradient-based to- 1002

ken saliency evaluation approach may decide to 1003

mask a critical token that is important for a model’s 1004

prediction and drop the confidence of the model 1005

prediction. 1006

14



DATASET # MASK AUROC (%) FPR95 (%) AUPR-C (%) AUPR-A (%) ACC (%)

AG

1 94.98 11.70 96.30 89.48 91.85
2 92.51 16.30 95.12 84.11 89.80
3 89.89 19.40 93.51 79.46 88.00
4 86.86 22.10 91.86 74.35 86.60

IMDB

1 95.92 13.16 96.81 93.27 91.53
2 94.42 14.01 96.04 89.64 91.01
3 94.32 12.70 95.89 90.42 91.70
4 91.07 16.24 94.20 82.60 89.95

YELP

1 97.38 8.16 97.73 96.17 93.50
2 97.97 8.39 98.29 97.35 93.51
3 97.99 6.42 98.41 97.00 94.94
4 97.37 6.64 98.13 95.63 94.93

Table 10: Adversarial example detection results of GRADMASK with the multi-masking strategy.

However, as shown in Table 5, model confidence1007

changes for clean samples are not significant in1008

most cases. A possible explanation is that the1009

models are able to capture sufficient contexts from1010

neighboring texts. Nevertheless, we further investi-1011

gate this possible issue on a task that relies on a few1012

critical tokens. To this end, we investigate the pro-1013

posed method on the Winograd Schema Challenge1014

(Levesque et al., 2012). The Winograd Schema1015

Challenge (WSC) is a benchmark for common-1016

sense reasoning and natural language understand-1017

ing. The Winograd schema consists of a pair of1018

sentences differing in one or two words with a1019

highly ambiguous pronoun that is difficult to solve1020

for statistical models.1021

One of WSC benchmark datasets is WINO-1022

GRANDE (WG) dataset (Sakaguchi et al., 2019).1023

WG dataset is split into 40k training samples1024

and 1.2k validation samples. We first trained a1025

ROBERTA-LARGE model on the training set and1026

our best model achieves an accuracy of 72% against1027

the validation set. Again, we sampled 1,000 clean1028

samples from the validation set and generated 1,0001029

adversarial examples via PWWS attack.1030

As shown in Table 11, GRADMASK achieves the1031

best performances for all evaluation metrics. How-1032

ever, its scores are significantly lower than those of1033

other tasks such as IMDB and AG. We conjecture1034

that the overall performances of GRADMASK can1035

be improved further as the model’s standard perfor-1036

mance increases because GRADMASK relies on the1037

standard task performance of models for extracting1038

better features.1039
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DATASET METHOD AUROC (%) FPR95 (%) AUPR-C (%) AUPR-A (%) ACC (%)

WG
MSP 52.45 93.95 52.14 49.93 53.73

OCSVM 55.15 92.83 54.25 53.69 54.62
GM 60.78 91.37 59.20 57.04 60.34

Table 11: Adversarial example detection results of ROBERTA-LARGE model for WG dataset.
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