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Learning mechanical systems from real-world data
using discrete forced Lagrangian dynamics
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Abstract

We introduce a data-driven method for learning the equations of motion of me-
chanical systems directly from position measurements, without requiring access
to velocity data. This is particularly relevant in system identification tasks where
only positional information is available, such as motion capture, pixel data or
low-resolution tracking. Our approach takes advantage of the discrete Lagrange-
d’ Alembert principle and the forced discrete Euler-Lagrange equations to construct
a physically grounded model of the system’s dynamics. We decompose the dy-
namics into conservative and non-conservative components, which are learned
separately using feed-forward neural networks. In the absence of external forces,
our method reduces to a variational discretization of the action principle naturally
preserving the symplectic structure of the underlying Hamiltonian system. We
validate our approach on a variety of synthetic and real-world datasets, demonstrat-
ing its effectiveness compared to baseline methods. In particular, we apply our
model to (1) measured human motion data and (2) latent embeddings obtained via
an autoencoder trained on image sequences. We demonstrate that we can faith-
fully reconstruct and separate both the conservative and forced dynamics, yielding
interpretable and physically consistent predictions.
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Figure 1: In this paper, we propose a structure-preserving approach for learning non-conservative
system that directly learns from position data only (i.e., does not require velocities or momenta).
1 Introduction

Incorporating physics principles into machine learning has become a popular strategy for system
identification and accurately predicting dynamics. Seminal examples are the Hamiltonian and
Lagrangian neural networks, which are designed to preserve structure when applied to canonical
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systems [} 2]. These architectures have naturally been extended to include dissipation, enabling
accurate modeling of realistic mechanical systems with physically motivated inductive biases [3| 14].
Such models offer advantages over traditional “black-box" modeling strategies that face challenges
such as noise sensitivity, data sparsity, poor generalization, and limited interpretability [J5} 6} 7, |8, 9].
Incorporating physics into the training processes is becoming an increasingly popular way to increase
model generalization while giving physically interpretable predictions.

However, almost all known methods for learning dynamics rely on being able to observe momentum
or velocity data, in addition to position data. In practice, velocity and momentum estimates are
usually approximated from sequential position measurements using finite differences, which leads to
inaccuracies due to noise and truncation errors [[10]. Two examples considered in this paper are: (1)
learning from pixel data or (2) motion tracking data, where instantaneous velocities are unavailable.

Building on ideas of geometric mechanics and variational integrators, [11l], we propose a structure-
preserving approach that directly learns from position data only (i.e., does not require velocities or
momenta) and naturally incorporates dissipation and other non-conservative forces such as control
terms. The method, which we refer to as a Discrete Forced Lagrangian Neural Network (DFLNN),
is based on the discrete Lagrange-d’ Alembert principle, which naturally reduces to a symplectic
(variational) integrator on the configuration manifold in absence of non-conservative forces.

In a number of synthetic problems, the DFLNN is demonstrated to yield significant advantages over a
non-structure-preserving neural ODE baseline model and, notably, a structure-preserving continuous
analogue of the proposed method based on the (continuous) forced Euler-Lagrange equations where
velocities are approximated using finite differences.

Additionally, we emphasize the flexibility of combining the proposed model with an autoencoder
trained on images of damped pendulum dynamics. We show that we can separate the dissipative
forces in the latent space to accurately recover and simulate pixel sequences of a conservative
pendulum, despite the model only learning from the dissipative pixel images. Finally, we apply the
model to real-world 3D human motion skeleton tracking data. The model successfully captures the
underlying physics and shows excellent prediction performance over long times. Human motion data
is extensively employed in simulations, animations, and biomechanical research [[12]]. Examining
these movements has promising applications across various domains, including healthcare [[13}|14]
and sports [[15]. Ensuring that models generalize effectively to unseen scenarios is crucial, particularly
in medical applications.

Table 1: Comparison to other models. Models marked with a =~ denotes approximate preservation of
structure

HNN LNN LSI D-HNN GLNN NODE DFLNN

[1]] (21 [16] [17.018] (30 [19] (Ours)
(a) Learns from position only v v v
(b) Structure-preserving ~ ~ v ~ ~ v
(c) Incorporates dissipation v v v

1.1 Related work

Understanding and modeling mechanical systems from data is vital in fields such as robotics, biome-
chanics, and structural health monitoring. While conventional system identification often assumes
access to fully known physics, recent efforts focus on physics-informed learning, leveraging partial
physical knowledge to improve generalization and interpretability [20} 21} 122} 23] 24} 16} 25| 26|
27,128, 129,130, 131]]. Early approaches like Neural ODEs [[19] and sparse identification of nonlinear
dynamics [32] rely on black-box models or predefined basis functions. These have been paired with
auto-encoders to identify low-dimensional latent ODE models from pixel data [33]], but often neglect
structural constraints such as conservation laws.

To address this, recent work embeds physical priors directly into the learning process. Hamiltonian
and Lagrangian-based learning methods learn energy-based formulations that define the equations of
motion, yielding models with physically consistent inductive biases [[1, 134,135} 36} 137,138, 39| 2} |8,
40, 141,142,143\ 144, [16]. When paired with symplectic or variational integrators, these networks can
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preserve geometric properties such as the symplectic form or modified energy over long trajectories
[26,130,127,125,129]. More recently, extensions to non-conservative systems have emerged, combining
structure-preserving principles with dissipative or driven dynamics [37, 45, 13| |46l 47]]. These
approaches mark a shift toward hybrid models that respect both physical structure and the realities of
real-world data.

1.2 Our contribution.
Our main contributions are now summarized, with a comparison to other models in Table[T].

a) We propose a discrete forced Lagrangian neural network that allows us to learn forced,
dissipative dynamics from position data only, it does not require instantaneous velocity or
momentum observations.

b) In the absence of external forces, our method reduces to a variational discretization of the
action principle naturally preserving the symplectic structure of the underlying Hamiltonian
system.

c) As itis based on the Lagrange-d’ Alembert principle the DFLNN yields physically inter-
pretable predictions, allowing us to separate conservative from non-conservative dynamics.

d) We show the method generalizes well on both synthetic and real-world data, as demonstrated
in the computed predictions rollouts reproducing human motion.

e) We show that by implementing the DFLNN on learned autoencoder embeddings from pixel
data, we can separate dissipative dynamics from the conservative dynamics in latent space.

2 Background

Continuous d’Alembert Principle and Forced Euler-Lagrange Equations In the presence of
non-conservative forces, it is useful to consider the generalized formulation of Hamilton’s principle,
commonly referred to as the Lagrange-d’ Alemberts principle. Let () denote a configuration manifold
with T'Q its tangent bundle. The Lagrange-d’ Alemberts principle seeks a curve ¢ : [to, tx] — R?
that satisfies:

5 ( [ Law.i dt) + [ R, a0.u0) - sat0) e =0, M

to tO

where ¢ denotes variations that vanish at the endpoints ¢(to) = ¢ and ¢(tn) = gn, L : TQ — Ris
the Lagrangian function and F' : T(Q — T'Q* is the Lagrangian force, which is a fiber preserving
map F': (q,q) — (q,F(q,q)), [11} 421]. This principle is equivalent to the forced Euler-Lagrange
equations,

0= E(LF)(0.0) = 5 (a(0.i0) - 5 (5 (@-d0)) + Flai). @

In absence of non-conservative forces, expresses the extremization of the action functional,
realizing Hamilton’s principle, and (2)) are the Euler-Lagrange equations. In previous work [3] Xiao
et al. formulated their learning problem starting from equations (2)), and proposed the Generalised
Lagrangian Neural Networks (GLNNs), see also [2]]. In their framework, L and F' are functions
approximated by neural networks using position and velocity data (g, ) observed at discrete times;
see [3], and Appendix [C]for details on this method and our implementation.

Since we are addressing scenarios where only position data are observed, following [11} 48], we
propose instead to discretize the Lagrange d’ Alembert principle, and derive discrete equations directly
from the discrete principle.

Discrete d’Alembert Principle and Forced Euler-Lagrange Equations A discretization of
leads to the Discrete Lagrange-d’ Alembert principle [11}149]. Consider a partition of [t,ty] in N
subintervals of equal size, h. Consider a choice of numerical approximations of /' and L on each
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subinterval [t,,, t,41], denoted by

tn+h
LA(q’m Qn+1) ~ /f L(q(t)v Q(t)) dt,

- 9q(t)
aQn—o—l

tnth
FX (qns Gns1,h) = / F(q(t),4(t)) - %%J(fl) dt.

‘n

tnth
Fi (ny s, h) ~ / Fla(t),d() dt, 3)
t

‘n

Here, La : @ X @Q — R and Ff 1 Q X Q — T*(Q represent the discrete Lagrangian and the discrete
force, respectively. The discrete Lagrange-d’ Alembert principle (dLDA) seeks a discrete trajectory,
{gn}Y_,, that satisfies the following condition:

N-1 N-1
6> La(gn Gnir) + Y [FA (0 nt1) - 60n + FX (Gns Gns1) - Sgnia] =0, O)
n=0

n=0
for all variations {dq, }2__, vanishing at the endpoints dgy = dgn = 0. Equivalently, {@) can be
expressed in terms of the discrete forced Euler-Lagrange equations:
0=Ea(La, Fa)(n-1,9n,Gn+1) = VoLa(gn-1,qn) + V1iLa(qn, Gn+1)
+FZ(qn—1aqn)+FA_<Q7L7QTL+1)’ n:2a"'7N_17
)

where V1 and V', denote differentiation with respect to the first and second variable.

3 Discrete Forced Lagrangian Neural Networks

The proposed model learns the dynamics of an observed system through neural network approxima-
tions of the Lagrangian and external forces,

Loy~L Lp:TQ — R, Fo~F Fy:TQ— TQ",
where Ly and Fy are parameterized with learnable parameters 6.

The loss function minimized during training combines a physics term and a regularization term:

N-1 R
Wphysics Wre;
L= S NN Longsios(Los o) (dn1, s o EN" Lreg(Lo) (g ars1). (6
NT(N+1) — —~ Ph)’SCS( 05 9)(q 1,49n,94 +1)+ R e reg( 6’)((] » 4 +1) ()

Here, Lpnysics is deduced from the discrete forced Euler-Lagrange equations (), while L., promotes
the regularity of Ly [11, 379], each weighted with the hyperparameters wphysics and wyeg. The dataset
T contains Ny trajectories of N steps each, and R denotes the number of point pairs (g, ¢n+1)
used for regularization. The regularization may be applied over all such pairs in the training dataset.
However, in the experiments, we demonstrate that it is sufficient to regularize only over a moderate
number of pairs of data points.

As (6)) only evaluates Lophysics on local triplets (¢n-1, qn, Gn+1), training is performed independently on
such segments, without leveraging longer-range temporal dependencies present in the full trajectories.
For generalizations of this approach using longer trajectory segments see Appendix [A.

3.1 Learning Physics from the Observed Data (Lphysics)

Usually, the numerical discretization of a forced Lagrangian system would suggest for the exact L
and F to be known, while the discrete trajectories {g, }2_, are the unknowns of the problem. In the
inverse setting considered here, the roles are reversed: the trajectories {q, }.\_ are given, and the
goal is to recover (Ly, Fy) as approximations to the underlying Lagrangian and forces.

A discretization scheme can be applied to obtain the discrete Lagrangian and discrete force (La, FA)
as a function of (Lg, Fp), (3). A concrete example using a mid-point approximation is

n+ n n — Un _ K
LA(anqn+l) = hL0 (q 2q + ) 1 +1h 1 ) = hL@ (QnJr%aanr%) (7)
h Qn+Qn 1 dn+1 —dn h _ -
Fi:(qnﬂqn+17h) ::§F9 < 2 as ) +h :§F9 <Qn+%7qn+%> (8)
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Figure 2: A schematic illustration of the data flow through the proposed model. We use segments of
observed (gn—1, qn, Gn+1) to evaluate the discrete forced Euler-Lagrange equations.

where we have introduced the notation g,, 1 := 5(¢n + dn+1) dny3 = 7 (@1 — gn) for brevity.

We will use this discretization in our numerical experiments.

Assuming that the observed position data satisfy the dLDA principle (4) and, equivalently, the dLDA
equations (3)), a schematic illustration considering the flow of an observed trajectory of data points
through the neural networks Ly and Fy—used to construct the dLDA equations in (5)—is provided
in Figure[2] Summing over all observed trajectories, we define the following physics term for the loss
function:

h — o 2 — T
ﬁphysics(LevFG)(Qn—MQnaQn-i-l) = 5 ViLg (qn—%7qn—%) + E VaLyg (qn_%,qn_%>

— - 2 — -
+ViLe (qn+%»qn+§) — 5 Valo (qn+%7qn+%) ©)

+ Fy (dn_%ﬁn_%) + Fy (Qn+%7§n+%)

2

3.2 The Learned Lagrangian (L)

The Lagrangian function Ly can be learned either as a generic function or with embedded physical
structure. In the most general case Ly can be a feed-forward neural network. Alternatively, structural
priors can be imposed. Assuming the Lagrangian takes a mechanical form, we can let

-~ ! — - ]-
Lo(G: ) = 4 Mo(@k)dk = Up(), kb =n+3 (10)

with My (qr) = €l + AZ(gr)Ag(qx) ensuring My is symmetric and positive definite. Here, Ay :
R? — R¥9 is a lower triangular matrix parameterized by feed-forward neural network, and € > 0 a
small constant ensuring the strict positiveness on Mjy. Uy(-) is the potential energy function, also
modeled as a feed-forward neural network, and may depend on g, and/or ¢y,.

Maximizing the regularity of the Lagrangian Learning Ly by minimizing (9) can lead to trivial
solutions, preventing the discovery of meaningful physical relationships (e.g., the network might learn
Ly as a constant, causing the derivative terms in (9) to vanish without properly fitting the data). This
is a well-known challenge in data-driven Lagrangian-based models, and there are different strategies
proposed to address this problem [44, |16/ I50]. A Lagrangian is regular, or non-degenerate, if and
only if its Hessian with respect to the second argument is invertible, [[11, 379]. We will require the
invertibility to hold point-wise: specifically on a selected number of pairs of points (g, 1 q, 41 ), we
require that

82L(QT+;7§T+;)> (11)

S(Qr-i—%a&r-i—%) = ( 8(}2 L
r+3
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is invertible. Here ¢, 41 and ¢, 41 are as defined in Section and depend on the data (g, gr4+1)-
We then include in the loss function a regularization term L., as a logarithmic barrier that maximizes
the regularity of S by penalizing the absolute value of its determinant [44],

Lrcg @, ar) = 10g (14et(S (7,3 6,31 ) I (12)

3.3 The Learned External Force (Fy)

To learn the dynamics of systems with completely unknown forces, we parameterise Fy = F§ '™ by a
neural network. To prevent F}j ™ from learning conservative dynamics described by the Lagrangian
term, we apply dropout regularization [S1]. This encourages slower learning of the force term and
encourages the Lagrangian term to fit the data when possible.

When prior knowledge suggests a dissipative structure, we instead let Fp be a Rayleigh dissipation
function[52]],
- _\x 1
Fo(Gr, ar) = —Ko(@k) dr,  k=n=*5 (13)
with Ky(gx) = AL (qx)Ae(qr) parameterized by a Cholesky factorization with the lower triangular
matrix Ay to ensure positive-semi-definiteness. For linear dissipation, Fy is independent of Gy.

4 Experiments

To demonstrate that the proposed model can learn and separate the conservative and non-conservative
components of the observed system, we perform the following experiments: we train on data obtained
from non-conservative systems, but after training, we turn off the learned external force term Fy, and
evaluate the rollout predictions for the corresponding conservative system. We will present the results
obtained from the proposed model using a specific configuration of Ly and Fy architectures described
in the previous section. Alternative configurations, based on the assumed priors, are presented in the
appendix.

The model is evaluated in four learning tasks. Tasks 1 through 3 involve a damped double pendulum,
a dissipative charged particle moving within a magnetic field, and pixel frames from a damped
pendulum. Training data for these tasks are generated by solving the corresponding analytical ODEs
with Gaussian noise applied to each sample. In task 4, we assess the model using a real-world dataset
focused on human motion tracking. The primary experiments are now presented, while additional
supporting experiments are given in the appendix.

Table 2: Extrapolation error (expressed as mean-+tstd over the test dataset) evaluated on a test dataset
that possesses the same non-conservative characteristics as the training dataset. All evaluations are
calculated at timestep k = 35. The best results are highlighted in bold text.

NODE GLNN DFLNN
(proposed)
Task 1: Damped Double Pendulum 0.050+£0.034 0.4240.19 0.051£0.022
Task 2: Dissipative Charged Particle 0.041£0.015 4.0-10"£1.7-10%  0.0072+0.0029
Task 3: Pixel Pendulum 0.023+0.025 0.022+0.009 0.0030 + 0.0019
Task 4: Human Motion Capture 2.4-10745.5-107 NaN 11.75+10.89

Prediction workflow Unlike training, the prediction workflow involves forward time-stepping. The
model is trained by minimizing the ODE residuals of the discrete Lagrange-d’ Alembert equations
over observed segments to learn Lg and Fy. During the prediction phase, given two initial positions
{40, ¢1}, the model solves Ea (qo, g1, d2) = O for G2 using the learned Ly and Fy. This process is
repeated recursively by feeding predictions as new inputs to generate longer rollouts.

To evaluate the models, we compare the extrapolation error as the root mean square associated
with the k-th step for a predicted rollout: Extrapolation Error;, := 1~ PORA quz} — (j,il} |2, where

1 indexes each trajectory. The true trajectory is the solution at time step k given the same initial
condition for {qo, ¢1},
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Baseline models A natural method to compare with is the Generalized Lagrangian Neural Network
(GLNN) [3]], which models forced Euler-Lagrange dynamics (2} using a finite difference approxima-
tion to ¢. We also compare with Neural ODE [19]], trained directly on position sequences without
structural priors. The loss function is equal to the one given in (L6). See Appendix [C|for details.

Learning on learned latent variables from an autoencoder We also train a model on high-
dimensional, unstructured pixel data ¢ € R? by training an autoencoder to map the latent space
z € R! (see Figure E), where dynamics are modeled. The encoder ¢y : R? — R! and decoder
g : R! — R are implemented as convolutional networks for image data or feedforward networks
otherwise. The autoencoder is trained per timestep separately via the reconstruction loss

d
Lae(d0,v%0)(qn) = 7”‘]n — g (Do (qn))|I3- (14)

Allowing the autoencoder to recover meaningful latent coordinates [33]], we train the autoencoder
simultaneously as the proposed model, weighted by wag, resulting in the complete loss function:

L= N:(p& Z Z Ephysws L07F0)(¢9(Qn 1) ¢9(Qn) ¢9(qn+1))

15)
+ % Tz::l ﬁreg(Le) <¢0(Q7‘)7 ¢9(QT+1)) + ]\7:;\174—1 Z Z ﬁAE ¢0’ '1/16)((]77,)

During prediction, dynamics are computed fully in latent space; the autoencoder is used only to
encode initial states and decode the rollout predictions.

Implementation The experiments were implemented in Python using the PyTorch framework with
the Adam optimizer. See Appendix [D for selected hyperparameters and additional computational
notes. Code is available at[github]

4.1 Task 1: Damped Double Pendulum

We consider a double pendulum with two identical masses and synthetically generate displacement
angle trajectories {0%,05}7 |, where 0! € R, over T = 20 time step and a step size h = 0.1. We
train on 320 trajectories and evaluate on 10 trajectories. Gaussian noise N (0, 02) with variance
0? = 10~2h is added to each sample to simulate measurement uncertainty.

Task 1 Task 2

(a) Damped (b) Conservative (c) Dissipative (d) Conservative
(training regime) (training regime)

Figure 3: Combined results for Task 1 (left) and Task 2 (right). Solid Green lines are DFLNN
(proposed), yellow lines are the GLNN model, and pink lines are a Neural ODE. The ground truth
is indicated with dashed black. (a, c¢): Rollouts and extrapolation error for the trained model. (b,
d): Turning off the external force component from the learned model to demonstrate the proposed
model’s capabilities to distinguish the conserved dynamics (only applicable for DFLNN and GLNN).

The performance of the proposed model is shown in Figure 3, with metric evaluations in Table 2.
Here, the Lagrangian is assumed to have the form where U = U(q), and the external force
is linear (I3). The results show that the proposed model achieves comparable performance to the
baseline models when applied to a damped system sharing the same characteristics as those present
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in the training period. Moreover, when extrapolating onto a conserved regime, the proposed model
maintains its accuracy, whereas the baseline models struggle to generalize. Notably, this enables us
to make rollouts over a time-span that exceeds the intervals present in the training dataset.

4.2 Task 2: Dissipative Charged Particle in a Magnetic Field

Next, we examine the behavior of a charged particle moving through a magnetic field. Our analysis
considers a setup characterized by linear dissipation expressed in Cartesian coordinates. The training
and test datasets are generated in a similar fashion to that employed in Task[4.1]

For a charged particle traveling in a magnetic field, the potential energy depends on both the position
q and the velocity ¢. Thus, we assume that the Lagrangian has the form with U = U(q, ¢), and
the external force is linear (13). The performance of the proposed model is illustrated in Figure 3}
with metric evaluations in Table [2] The proposed model shows its superiority over baseline models
when rolling out predictions across several time steps, in both non-conservative regimes and when
extrapolating to a conservative setting.

4.3 Task 3: Pixel data for a Damped Simple Pendulum

To assess the ability of the model to learn on latent embedding from an autoencoder, we use
synthetic time series of images simulating a damped simple pendulum. Data are generated using the
Gymnasium library [S3], a successor to OpenAI’s Gym [54], producing 500 x 500 x 3 RGB frames
at each timestep. Damping is introduced by modifying the Pendulum-v1 environment to include a
linear dissipative force. All images are cropped around the pendulum, converted to grayscale, and
down sampled by a factor of 5. Initial displacements are limited to 7 /6 radians. The training dataset
comprises 320 trajectories of 7' = 100 time steps each, where ¢; € R?°*30. The test dataset contains
10 trajectories. The use of an autoencoder is essential in this setting, reducing the state dimension
from 50 x 30 to a latent space of dimension (I = 1); see Sectionlé_ll

yAVARNRYANNENENRNEEN
yAVANRRYRNNENENANENN
ZATENINNNENENNNNNENN
EANANERVAVAYRAVRVEVEY

Time Step

(a) Damped Pixel Pendulum (training regime)

ZAVARIRNRYNAVAVARIAY
I/ VARNRYRNNEVAVERYAY

F i [ [i] F ] & ™ [ &
& | } r 4 L ) 4 y
FERYRRVAVYERYRY Y
[ | ) ] & & ) 4]
) 9 18 27 36 5 54 63 72

4 81
(b) Conservative Pixel Pendulum

Time Step

Figure 4: Results for a simple pendulum represented through pixel images. Green pendulums are
DFLNN (proposed), yellow are the GLNN model, and pink lines are a Neural ODE. The ground truth
is indicated with black. (a): Rollouts and extrapolation error for the trained model. (b): Turning off
the external force component from the learned model to demonstrate the proposed model’s capabilities
to distinguish the conserved dynamics (Only applicable for DFLNN and GLNN).

To reduce the impact of autoencoder reconstruction errors during evaluation, we extract structural
features using the Harris corner detection method [55]]. Detected edges are binarized—assigning
1 to edge pixels and O elsewhere—thus focusing the evaluation on shape consistency rather than
pixelwise accuracy. Similarity between predicted and ground truth edge maps is quantified using the
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Dice coefficient [56], which measures overlap between two binary masks. This allows for robust
extrapolation error evaluation even when raw pixel reconstruction is imperfect.

In Figure [, we display both the extrapolation error and an example rollout. Metric evaluations are
presented in Tabel 2l The findings reveal that the proposed model surpasses the baseline models
in predictive rollouts. Additionally, the model exhibits interpretability by extrapolating beyond the
training regime to a conserved setting by deactivating the identified external force component.

4.4 Task 4: Human Motion Capture

We evaluate our method on real-world data of a human swinging from a bar, using motion capture
recordings from the CMU Graphics Lab Motion Capture Database [57,58]]. The dataset includes two
recordings (subject 43, trials 2 and 3), which we jointly train on. The model is tasked with learning
a shared Lagrangian and external force field that captures the dynamics underlying the swinging
motion. We model the motion of 10 linked joints on the right side of the body—from the tibia
to the radius—including rtibia, rfemur, rhipjoint, root, lowerback, upperback, thorax,
rclavicle, rhumerus, and rradius. Due to the likely low intrinsic dimensionality of the motion,
we apply an autoencoder to reduce the observed dimension | = 6.

To augment the data, every 10™ frame is extracted as a separate trajectory, yielding 10 trajectories
per trial— 20 trajectories in total. Joint angles, recorded at 120 Hz relative to a fixed reference, are
converted to Cartesian coordinates and smoothed using a Savitzky-Golay filter [S9].

ENRYRNENCANYRNES
ERN N AN I
0 i Y

Time Step

o

\

Extrapolation Error

Coordinate Valu

Figure 5: Results and reconstruction (trial 2) of human motion. Green notation is DFLNN (proposed),
yellow is the GLNN model, and pink lines a Neural ODE. The ground truth is indicated in black.
The left panel depicts the full movement represented as a skeletal sketch. The right panel shows the
extrapolation error (top) and the rollout trajectory for the right femur (bottom).

We hypothesize that a person swinging from a bar behaves similarly to a multi-pendulum system
and aim to identify a Lagrangian with mechanical structure with generalized potential U(q, ¢). The
external force is assumed to comprise both frictional dissipation and active energy input from the
subject. Accordingly, we model it as the sum of a nonlinear dissipative term plus a neural network
F}™¢ to model the forces exerted by the human motion Fy = —Kjy(q)g + Ff™.

Figure 5 shows that the model accurately reconstructs the motion, suggesting it has learned general-
izable governing equations. When extrapolating beyond the training window, (after ~ 60 frames)
the proposed model continues to produce plausible trajectories, whereas baseline models diverge
significantly earlier.

5 Conclusions

We have proposed a method for learning mechanical systems from data using the Lagrange-
d’ Alembert principle. The approach requires the use of position data only, can handle both conserva-
tive and dissipative systems, generalizes well when trained and validated on both synthetic as well as
real-world data.
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should state which ones are omitted from the script and why.
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versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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* The answer NA means that the paper does not include experiments.
» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
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Answer: [Yes]
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* The answer NA means that the paper does not include experiments.
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* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This is included in the appendix when providing supporting experiments for
the main results.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The dataset we utilize is publicly accessible and the creator encourages its use
for research purposes. The subjects’ identities have been anonymized by the creators.
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper aims to predict the dynamics of mechanical systems. This has
minimal societal impacts.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We include a paragraph in the Acknowledgements section in accordance with
the CMU database.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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733 * We recognize that the procedures for this may vary significantly between institutions

734 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
735 guidelines for their institution.

736 * For initial submissions, do not include any information that would break anonymity (if
737 applicable), such as the institution conducting the review.

738 16. Declaration of LLM usage

739 Question: Does the paper describe the usage of LLMs if it is an important, original, or
740 non-standard component of the core methods in this research? Note that if the LLM is used
741 only for writing, editing, or formatting purposes and does not impact the core methodology,
742 scientific rigorousness, or originality of the research, declaration is not required.

743 Answer: [NA]

744 Justification:

745 Guidelines:

746 * The answer NA means that the core method development in this research does not
747 involve LLMs as any important, original, or non-standard components.

748 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
749 for what should or should not be described.
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