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Abstract

We introduce a data-driven method for learning the equations of motion of me-1

chanical systems directly from position measurements, without requiring access2

to velocity data. This is particularly relevant in system identification tasks where3

only positional information is available, such as motion capture, pixel data or4

low-resolution tracking. Our approach takes advantage of the discrete Lagrange-5

d’Alembert principle and the forced discrete Euler-Lagrange equations to construct6

a physically grounded model of the system’s dynamics. We decompose the dy-7

namics into conservative and non-conservative components, which are learned8

separately using feed-forward neural networks. In the absence of external forces,9

our method reduces to a variational discretization of the action principle naturally10

preserving the symplectic structure of the underlying Hamiltonian system. We11

validate our approach on a variety of synthetic and real-world datasets, demonstrat-12

ing its effectiveness compared to baseline methods. In particular, we apply our13

model to (1) measured human motion data and (2) latent embeddings obtained via14

an autoencoder trained on image sequences. We demonstrate that we can faith-15

fully reconstruct and separate both the conservative and forced dynamics, yielding16

interpretable and physically consistent predictions.17

Figure 1: In this paper, we propose a structure-preserving approach for learning non-conservative
system that directly learns from position data only (i.e., does not require velocities or momenta).

1 Introduction18

Incorporating physics principles into machine learning has become a popular strategy for system19

identification and accurately predicting dynamics. Seminal examples are the Hamiltonian and20

Lagrangian neural networks, which are designed to preserve structure when applied to canonical21
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systems [1, 2]. These architectures have naturally been extended to include dissipation, enabling22

accurate modeling of realistic mechanical systems with physically motivated inductive biases [3, 4].23

Such models offer advantages over traditional “black-box" modeling strategies that face challenges24

such as noise sensitivity, data sparsity, poor generalization, and limited interpretability [5, 6, 7, 8, 9].25

Incorporating physics into the training processes is becoming an increasingly popular way to increase26

model generalization while giving physically interpretable predictions.27

However, almost all known methods for learning dynamics rely on being able to observe momentum28

or velocity data, in addition to position data. In practice, velocity and momentum estimates are29

usually approximated from sequential position measurements using finite differences, which leads to30

inaccuracies due to noise and truncation errors [10]. Two examples considered in this paper are: (1)31

learning from pixel data or (2) motion tracking data, where instantaneous velocities are unavailable.32

Building on ideas of geometric mechanics and variational integrators, [11], we propose a structure-33

preserving approach that directly learns from position data only (i.e., does not require velocities or34

momenta) and naturally incorporates dissipation and other non-conservative forces such as control35

terms. The method, which we refer to as a Discrete Forced Lagrangian Neural Network (DFLNN),36

is based on the discrete Lagrange-d’Alembert principle, which naturally reduces to a symplectic37

(variational) integrator on the configuration manifold in absence of non-conservative forces.38

In a number of synthetic problems, the DFLNN is demonstrated to yield significant advantages over a39

non-structure-preserving neural ODE baseline model and, notably, a structure-preserving continuous40

analogue of the proposed method based on the (continuous) forced Euler-Lagrange equations where41

velocities are approximated using finite differences.42

Additionally, we emphasize the flexibility of combining the proposed model with an autoencoder43

trained on images of damped pendulum dynamics. We show that we can separate the dissipative44

forces in the latent space to accurately recover and simulate pixel sequences of a conservative45

pendulum, despite the model only learning from the dissipative pixel images. Finally, we apply the46

model to real-world 3D human motion skeleton tracking data. The model successfully captures the47

underlying physics and shows excellent prediction performance over long times. Human motion data48

is extensively employed in simulations, animations, and biomechanical research [12]. Examining49

these movements has promising applications across various domains, including healthcare [13, 14]50

and sports [15]. Ensuring that models generalize effectively to unseen scenarios is crucial, particularly51

in medical applications.52

Table 1: Comparison to other models. Models marked with a → denotes approximate preservation of
structure .

HNN LNN LSI D-HNN GLNN NODE DFLNN
[1] [2] [16] [17, 18] [3] [19] (Ours)

(a) Learns from position only ↭ ↭ ↭
(b) Structure-preserving → → ↭ → → ↭
(c) Incorporates dissipation ↭ ↭ ↭

1.1 Related work53

Understanding and modeling mechanical systems from data is vital in fields such as robotics, biome-54

chanics, and structural health monitoring. While conventional system identification often assumes55

access to fully known physics, recent efforts focus on physics-informed learning, leveraging partial56

physical knowledge to improve generalization and interpretability [20, 21, 22, 23, 24, 16, 25, 26,57

27, 28, 29, 30, 31]. Early approaches like Neural ODEs [19] and sparse identification of nonlinear58

dynamics [32] rely on black-box models or predefined basis functions. These have been paired with59

auto-encoders to identify low-dimensional latent ODE models from pixel data [33], but often neglect60

structural constraints such as conservation laws.61

To address this, recent work embeds physical priors directly into the learning process. Hamiltonian62

and Lagrangian-based learning methods learn energy-based formulations that define the equations of63

motion, yielding models with physically consistent inductive biases [1, 34, 35, 36, 37, 38, 39, 2, 8,64

40, 41, 42, 43, 44, 16]. When paired with symplectic or variational integrators, these networks can65
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preserve geometric properties such as the symplectic form or modified energy over long trajectories66

[26, 30, 27, 25, 29]. More recently, extensions to non-conservative systems have emerged, combining67

structure-preserving principles with dissipative or driven dynamics [37, 45, 3, 46, 47]. These68

approaches mark a shift toward hybrid models that respect both physical structure and the realities of69

real-world data.70

1.2 Our contribution.71

Our main contributions are now summarized, with a comparison to other models in Table 1 .72

a) We propose a discrete forced Lagrangian neural network that allows us to learn forced,73

dissipative dynamics from position data only, it does not require instantaneous velocity or74

momentum observations.75

b) In the absence of external forces, our method reduces to a variational discretization of the76

action principle naturally preserving the symplectic structure of the underlying Hamiltonian77

system.78

c) As it is based on the Lagrange-d’Alembert principle the DFLNN yields physically inter-79

pretable predictions, allowing us to separate conservative from non-conservative dynamics.80

d) We show the method generalizes well on both synthetic and real-world data, as demonstrated81

in the computed predictions rollouts reproducing human motion.82

e) We show that by implementing the DFLNN on learned autoencoder embeddings from pixel83

data, we can separate dissipative dynamics from the conservative dynamics in latent space.84

2 Background85

Continuous d’Alembert Principle and Forced Euler-Lagrange Equations In the presence of86

non-conservative forces, it is useful to consider the generalized formulation of Hamilton’s principle,87

commonly referred to as the Lagrange-d’Alemberts principle. Let Q denote a configuration manifold88

with TQ its tangent bundle. The Lagrange-d’Alemberts principle seeks a curve q : [t0, tN ] ↑ Rd89

that satisfies:90

ω

(∫ tN

t0

L (q(t), q̇(t)) dt

)
+

∫ tN

t0

F (q(t), q̇(t), u(t)) · ωq(t) dt = 0, (1)

where ω denotes variations that vanish at the endpoints q(t0) = q0 and q(tN ) = qN , L : TQ ↑ R is91

the Lagrangian function and F : TQ ↑ TQ→ is the Lagrangian force, which is a fiber preserving92

map F : (q, q̇) ↓↑ (q, F (q, q̇)), [11, 421]. This principle is equivalent to the forced Euler-Lagrange93

equations,94

0 = E(L,F )(q, t) :=
εL

εq
(q(t), q̇(t))↔ d

dt

(
εL

εq̇
(q(t), q̇(t))

)
+ F (q(t), q̇(t)) . (2)

In absence of non-conservative forces, (1) expresses the extremization of the action functional,95

realizing Hamilton’s principle, and (2) are the Euler-Lagrange equations. In previous work [3] Xiao96

et al. formulated their learning problem starting from equations (2), and proposed the Generalised97

Lagrangian Neural Networks (GLNNs), see also [2]. In their framework, L and F are functions98

approximated by neural networks using position and velocity data (q, q̇) observed at discrete times;99

see [3], and Appendix C for details on this method and our implementation.100

Since we are addressing scenarios where only position data are observed, following [11, 48], we101

propose instead to discretize the Lagrange d’Alembert principle, and derive discrete equations directly102

from the discrete principle.103

Discrete d’Alembert Principle and Forced Euler-Lagrange Equations A discretization of (1)104

leads to the Discrete Lagrange-d’Alembert principle [11, 49]. Consider a partition of [t0, tN ] in N105

subintervals of equal size, h. Consider a choice of numerical approximations of F and L on each106

3



subinterval [tn, tn+1], denoted by107

L!(qn, qn+1) →
∫ tn+h

tn

L
(
q(t), q̇(t)

)
dt,

F+
! (qn, qn+1, h) →

∫ tn+h

tn

F
(
q(t), q̇(t)

)
· εq(t)

εqn+1
dt,

F↑
! (qn, qn+1, h) →

∫ tn+h

tn

F
(
q(t), q̇(t)

)
· εq(t)
εqn

dt.

(3)

Here, L! : Q↗Q ↑ R and F±
! : Q↗Q ↑ T →Q represent the discrete Lagrangian and the discrete108

force, respectively. The discrete Lagrange-d’Alembert principle (dLDA) seeks a discrete trajectory,109

{qn}Nn=1, that satisfies the following condition:110

ω
N↑1∑

n=0

L!(qn, qn+1) +
N↑1∑

n=0

[
F↑
! (qn, qn+1) · ωqn + F+

! (qn, qn+1) · ωqn+1

]
= 0, (4)

for all variations {ωqn}Nn=0 vanishing at the endpoints ωq0 = ωqN = 0. Equivalently, (4) can be111

expressed in terms of the discrete forced Euler-Lagrange equations:112

0 = E!(L!, F!)(qn↑1, qn, qn+1) := ↘2L!(qn↑1, qn) +↘1L!(qn, qn+1)

+ F+
! (qn↑1, qn) + F↑

! (qn, qn+1), n = 2, . . . , N ↔ 1,
(5)

where ↘1 and ↘2 denote differentiation with respect to the first and second variable.113

3 Discrete Forced Lagrangian Neural Networks114

The proposed model learns the dynamics of an observed system through neural network approxima-
tions of the Lagrangian and external forces,

Lω → L Lω : TQ ↑ R, Fω → F, Fω : TQ ↑ TQ→,
where Lω and Fω are parameterized with learnable parameters ϑ.115

The loss function minimized during training combines a physics term and a regularization term:116

L =
ϖphysics

NT (N + 1)

∑

T

N↑1∑

n=1

Lphysics(Lω, Fω)(qn↑1, qn, qn+1) +
ϖreg

R

R∑

r=1

Lreg(Lω)(qr, qr+1). (6)

Here, Lphysics is deduced from the discrete forced Euler-Lagrange equations (5), while Lreg promotes117

the regularity of Lω [11, 379], each weighted with the hyperparameters ϖphysics and ϖreg. The dataset118

T contains NT trajectories of N steps each, and R denotes the number of point pairs (qn, qn+1)119

used for regularization. The regularization may be applied over all such pairs in the training dataset.120

However, in the experiments, we demonstrate that it is sufficient to regularize only over a moderate121

number of pairs of data points.122

As (6) only evaluates Lphysics on local triplets (qn↑1, qn, qn+1), training is performed independently on123

such segments, without leveraging longer-range temporal dependencies present in the full trajectories.124

For generalizations of this approach using longer trajectory segments see Appendix A.125

3.1 Learning Physics from the Observed Data (Lphysics)126

Usually, the numerical discretization of a forced Lagrangian system would suggest for the exact L127

and F to be known, while the discrete trajectories {qn}Nn=0 are the unknowns of the problem. In the128

inverse setting considered here, the roles are reversed: the trajectories {qn}Nn=0 are given, and the129

goal is to recover (Lω, Fω) as approximations to the underlying Lagrangian and forces.130

A discretization scheme can be applied to obtain the discrete Lagrangian and discrete force (L!, F!)131

as a function of (Lω, Fω), (3). A concrete example using a mid-point approximation is132

L!(qn, qn+1) := hLω

(
qn + qn+1

2
,
qn+1 ↔ qn

h

)
= hLω

(
q̄n+ 1

2
, ¯̇qn+ 1

2

)
(7)

F±
! (qn, qn+1, h) :=

h

2
Fω

(
qn + qn+1

2
,
qn+1 ↔ qn

h

)
=

h

2
Fω

(
q̄n+ 1

2
, ¯̇qn+ 1

2

)
(8)
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Figure 2: A schematic illustration of the data flow through the proposed model. We use segments of
observed (qn↑1, qn, qn+1) to evaluate the discrete forced Euler-Lagrange equations.

where we have introduced the notation q̄n+ 1
2
:= 1

2 (qn + qn+1), ¯̇qn+ 1
2
:= 1

h (qn+1 ↔ qn) for brevity.133

We will use this discretization in our numerical experiments.134

Assuming that the observed position data satisfy the dLDA principle (4) and, equivalently, the dLDA135

equations (5), a schematic illustration considering the flow of an observed trajectory of data points136

through the neural networks Lω and Fω—used to construct the dLDA equations in (5)—is provided137

in Figure 2. Summing over all observed trajectories, we define the following physics term for the loss138

function:139

Lphysics(Lω, Fω)(qn↑1, qn, qn+1) =
h

2

∥∥∥∥∥↘1Lω

(
q̄n↑ 1

2
, ¯̇qn↑ 1

2

)
+

2

h
↘2Lω

(
q̄n↑ 1

2
, ¯̇qn↑ 1

2

)

+↘1Lω

(
q̄n+ 1

2
, ¯̇qn+ 1

2

)
↔ 2

h
↘2Lω

(
q̄n+ 1

2
, ¯̇qn+ 1

2

)

+ Fω

(
q̄n↑ 1

2
, ¯̇qn↑ 1

2

)
+ Fω

(
q̄n+ 1

2
, ¯̇qn+ 1

2

)∥∥∥∥∥
2

.

(9)

3.2 The Learned Lagrangian (Lω)140

The Lagrangian function Lω can be learned either as a generic function or with embedded physical141

structure. In the most general case Lω can be a feed-forward neural network. Alternatively, structural142

priors can be imposed. Assuming the Lagrangian takes a mechanical form, we can let143

Lω(q̄k, ¯̇qk) = ¯̇qTk Mω(q̄k)¯̇qk ↔ Uω(·), k = n± 1

2
(10)

with Mω(q̄k) = ϱI + !T
ω (q̄k)!ω(q̄k) ensuring Mω is symmetric and positive definite. Here, !ω :144

Rd ↑ Rd↓d is a lower triangular matrix parameterized by feed-forward neural network, and ϱ > 0 a145

small constant ensuring the strict positiveness on Mω. Uω(·) is the potential energy function, also146

modeled as a feed-forward neural network, and may depend on q̄k and/or ¯̇qk.147

Maximizing the regularity of the Lagrangian Learning Lω by minimizing (9) can lead to trivial148

solutions, preventing the discovery of meaningful physical relationships (e.g., the network might learn149

Lω as a constant, causing the derivative terms in (9) to vanish without properly fitting the data). This150

is a well-known challenge in data-driven Lagrangian-based models, and there are different strategies151

proposed to address this problem [44, 16, 50]. A Lagrangian is regular, or non-degenerate, if and152

only if its Hessian with respect to the second argument is invertible, [11, 379]. We will require the153

invertibility to hold point-wise: specifically on a selected number of pairs of points (q̄r+ 1
2
, ¯̇qr+ 1

2
), we154

require that155

S(q̄r+ 1
2
, ¯̇qr+ 1

2
) :=

(
ε2L(q̄r+ 1

2
, ¯̇qr+ 1

2
)

ε ¯̇q 2
r+ 1

2

)
, (11)
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is invertible. Here q̄r+ 1
2

and ¯̇qr+ 1
2

are as defined in Section 3.1 and depend on the data (qr, qr+1).156

We then include in the loss function a regularization term Lreg as a logarithmic barrier that maximizes157

the regularity of S by penalizing the absolute value of its determinant [44],158

Lreg(qr, qr+1) = |log
(
|det(S(q̄r+ 1

2
, ¯̇qr+ 1

2
)|
)
|. (12)

3.3 The Learned External Force (Fω)159

To learn the dynamics of systems with completely unknown forces, we parameterise Fω = F Free
ω by a160

neural network. To prevent F Free
ω from learning conservative dynamics described by the Lagrangian161

term, we apply dropout regularization [51]. This encourages slower learning of the force term and162

encourages the Lagrangian term to fit the data when possible.163

When prior knowledge suggests a dissipative structure, we instead let Fω be a Rayleigh dissipation164

function[52],165

Fω(q̄k, ¯̇qk) = ↔Kω(q̄k) ¯̇qk, k = n± 1

2
(13)

with Kω(q̄k) = AT
ω (q̄k)Aω(q̄k) parameterized by a Cholesky factorization with the lower triangular166

matrix Aω to ensure positive-semi-definiteness. For linear dissipation, Fω is independent of q̄k.167

4 Experiments168

To demonstrate that the proposed model can learn and separate the conservative and non-conservative169

components of the observed system, we perform the following experiments: we train on data obtained170

from non-conservative systems, but after training, we turn off the learned external force term Fω, and171

evaluate the rollout predictions for the corresponding conservative system. We will present the results172

obtained from the proposed model using a specific configuration of Lω and Fω architectures described173

in the previous section. Alternative configurations, based on the assumed priors, are presented in the174

appendix.175

The model is evaluated in four learning tasks. Tasks 1 through 3 involve a damped double pendulum,176

a dissipative charged particle moving within a magnetic field, and pixel frames from a damped177

pendulum. Training data for these tasks are generated by solving the corresponding analytical ODEs178

with Gaussian noise applied to each sample. In task 4, we assess the model using a real-world dataset179

focused on human motion tracking. The primary experiments are now presented, while additional180

supporting experiments are given in the appendix.181

Table 2: Extrapolation error (expressed as mean±std over the test dataset) evaluated on a test dataset
that possesses the same non-conservative characteristics as the training dataset. All evaluations are
calculated at timestep k = 35. The best results are highlighted in bold text.

NODE GLNN DFLNN
(proposed)

Task 1: Damped Double Pendulum 0.050±0.034 0.42±0.19 0.051±0.022
Task 2: Dissipative Charged Particle 0.041±0.015 4.0·107±1.7·108 0.0072±0.0029
Task 3: Pixel Pendulum 0.023±0.025 0.022±0.009 0.0030 ± 0.0019
Task 4: Human Motion Capture 2.4·107±5.5·107 NaN 11.75±10.89

Prediction workflow Unlike training, the prediction workflow involves forward time-stepping. The182

model is trained by minimizing the ODE residuals of the discrete Lagrange-d’Alembert equations (5)183

over observed segments to learn Lω and Fω. During the prediction phase, given two initial positions184

{q0, q1}, the model solves E!(q0, q1, q̂2) = 0 for q̂2 using the learned Lω and Fω. This process is185

repeated recursively by feeding predictions as new inputs to generate longer rollouts.186

To evaluate the models, we compare the extrapolation error as the root mean square associated187

with the k-th step for a predicted rollout: Extrapolation Errork := 1
NT

∑NT
i=0 ≃q

{i}
k ↔ q̂{i}k ≃22, where188

i indexes each trajectory. The true trajectory is the solution at time step k given the same initial189

condition for {q0, q1},190
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Baseline models A natural method to compare with is the Generalized Lagrangian Neural Network191

(GLNN) [3], which models forced Euler-Lagrange dynamics (2) using a finite difference approxima-192

tion to q̇. We also compare with Neural ODE [19], trained directly on position sequences without193

structural priors. The loss function is equal to the one given in (16). See Appendix C for details.194

Learning on learned latent variables from an autoencoder We also train a model on high-195

dimensional, unstructured pixel data q ⇐ Rd by training an autoencoder to map the latent space196

z ⇐ Rl (see Figure 6), where dynamics are modeled. The encoder ςω : Rd ↑ Rl and decoder197

φω : Rl ↑ Rd are implemented as convolutional networks for image data or feedforward networks198

otherwise. The autoencoder is trained per timestep separately via the reconstruction loss199

LAE(ςω,φω)(qn) =
d

l
≃qn ↔ φω(ςω(qn))≃22. (14)

Allowing the autoencoder to recover meaningful latent coordinates [33], we train the autoencoder200

simultaneously as the proposed model, weighted by ϖAE, resulting in the complete loss function:201

L =
ϖphysics

NT (N ↔ 1)

∑

T

N↑1∑

n=1

Lphysics(Lω, Fω)
(
ςω(qn↑1),ςω(qn),ςω(qn+1)

)

+
ϖreg

R

R∑

r=1

Lreg(Lω)
(
ςω(qr),ςω(qr+1)

)
+

ϖAE

NT (N + 1)

∑

T

N∑

n=0

LAE(ςω,φω)(qn).

(15)

During prediction, dynamics are computed fully in latent space; the autoencoder is used only to202

encode initial states and decode the rollout predictions.203

Implementation The experiments were implemented in Python using the PyTorch framework with204

the Adam optimizer. See Appendix D for selected hyperparameters and additional computational205

notes. Code is available at github.206

4.1 Task 1: Damped Double Pendulum207

We consider a double pendulum with two identical masses and synthetically generate displacement208

angle trajectories {ϑt1, ϑt2}Tt=1, where ϑti ⇐ R, over T = 20 time step and a step size h = 0.1. We209

train on 320 trajectories and evaluate on 10 trajectories. Gaussian noise N (0,↼2) with variance210

↼2 = 10↑2h is added to each sample to simulate measurement uncertainty.211

Task 1 Task 2

(a) Damped
(training regime)

(b) Conservative (c) Dissipative
(training regime)

(d) Conservative

Figure 3: Combined results for Task 1 (left) and Task 2 (right). Solid Green lines are DFLNN
(proposed), yellow lines are the GLNN model, and pink lines are a Neural ODE. The ground truth
is indicated with dashed black. (a, c): Rollouts and extrapolation error for the trained model. (b,
d): Turning off the external force component from the learned model to demonstrate the proposed
model’s capabilities to distinguish the conserved dynamics (only applicable for DFLNN and GLNN).

The performance of the proposed model is shown in Figure 3, with metric evaluations in Table 2.212

Here, the Lagrangian is assumed to have the form (10) where U = U(q), and the external force213

is linear (13). The results show that the proposed model achieves comparable performance to the214

baseline models when applied to a damped system sharing the same characteristics as those present215
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in the training period. Moreover, when extrapolating onto a conserved regime, the proposed model216

maintains its accuracy, whereas the baseline models struggle to generalize. Notably, this enables us217

to make rollouts over a time-span that exceeds the intervals present in the training dataset.218

4.2 Task 2: Dissipative Charged Particle in a Magnetic Field219

Next, we examine the behavior of a charged particle moving through a magnetic field. Our analysis220

considers a setup characterized by linear dissipation expressed in Cartesian coordinates. The training221

and test datasets are generated in a similar fashion to that employed in Task 4.1.222

For a charged particle traveling in a magnetic field, the potential energy depends on both the position223

q and the velocity q̇. Thus, we assume that the Lagrangian has the form (10) with U = U(q, q̇), and224

the external force is linear (13). The performance of the proposed model is illustrated in Figure 3,225

with metric evaluations in Table 2. The proposed model shows its superiority over baseline models226

when rolling out predictions across several time steps, in both non-conservative regimes and when227

extrapolating to a conservative setting.228

4.3 Task 3: Pixel data for a Damped Simple Pendulum229

To assess the ability of the model to learn on latent embedding from an autoencoder, we use230

synthetic time series of images simulating a damped simple pendulum. Data are generated using the231

Gymnasium library [53], a successor to OpenAI’s Gym [54], producing 500↗ 500↗ 3 RGB frames232

at each timestep. Damping is introduced by modifying the Pendulum-v1 environment to include a233

linear dissipative force. All images are cropped around the pendulum, converted to grayscale, and234

down sampled by a factor of 5. Initial displacements are limited to ↽/6 radians. The training dataset235

comprises 320 trajectories of T = 100 time steps each, where qt ⇐ R50↓30. The test dataset contains236

10 trajectories. The use of an autoencoder is essential in this setting, reducing the state dimension237

from 50↗ 30 to a latent space of dimension (l = 1); see Section 4.238

(a) Damped Pixel Pendulum (training regime)

(b) Conservative Pixel Pendulum

Figure 4: Results for a simple pendulum represented through pixel images. Green pendulums are
DFLNN (proposed), yellow are the GLNN model, and pink lines are a Neural ODE. The ground truth
is indicated with black. (a): Rollouts and extrapolation error for the trained model. (b): Turning off
the external force component from the learned model to demonstrate the proposed model’s capabilities
to distinguish the conserved dynamics (Only applicable for DFLNN and GLNN).

To reduce the impact of autoencoder reconstruction errors during evaluation, we extract structural239

features using the Harris corner detection method [55]. Detected edges are binarized—assigning240

1 to edge pixels and 0 elsewhere—thus focusing the evaluation on shape consistency rather than241

pixelwise accuracy. Similarity between predicted and ground truth edge maps is quantified using the242
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Dice coefficient [56], which measures overlap between two binary masks. This allows for robust243

extrapolation error evaluation even when raw pixel reconstruction is imperfect.244

In Figure 4, we display both the extrapolation error and an example rollout. Metric evaluations are245

presented in Tabel 2. The findings reveal that the proposed model surpasses the baseline models246

in predictive rollouts. Additionally, the model exhibits interpretability by extrapolating beyond the247

training regime to a conserved setting by deactivating the identified external force component.248

4.4 Task 4: Human Motion Capture249

We evaluate our method on real-world data of a human swinging from a bar, using motion capture250

recordings from the CMU Graphics Lab Motion Capture Database [57, 58]. The dataset includes two251

recordings (subject 43, trials 2 and 3), which we jointly train on. The model is tasked with learning252

a shared Lagrangian and external force field that captures the dynamics underlying the swinging253

motion. We model the motion of 10 linked joints on the right side of the body—from the tibia254

to the radius—including rtibia, rfemur, rhipjoint, root, lowerback, upperback, thorax,255

rclavicle, rhumerus, and rradius. Due to the likely low intrinsic dimensionality of the motion,256

we apply an autoencoder to reduce the observed dimension l = 6.257

To augment the data, every 10th frame is extracted as a separate trajectory, yielding 10 trajectories258

per trial— 20 trajectories in total. Joint angles, recorded at 120 Hz relative to a fixed reference, are259

converted to Cartesian coordinates and smoothed using a Savitzky-Golay filter [59].260

Figure 5: Results and reconstruction (trial 2) of human motion. Green notation is DFLNN (proposed),
yellow is the GLNN model, and pink lines a Neural ODE. The ground truth is indicated in black.
The left panel depicts the full movement represented as a skeletal sketch. The right panel shows the
extrapolation error (top) and the rollout trajectory for the right femur (bottom).

We hypothesize that a person swinging from a bar behaves similarly to a multi-pendulum system261

and aim to identify a Lagrangian with mechanical structure with generalized potential U(q, q̇). The262

external force is assumed to comprise both frictional dissipation and active energy input from the263

subject. Accordingly, we model it as the sum of a nonlinear dissipative term plus a neural network264

F Free
ω to model the forces exerted by the human motion Fω = ↔Kω(q)q̇ + F Free

ω .265

Figure 5 shows that the model accurately reconstructs the motion, suggesting it has learned general-266

izable governing equations. When extrapolating beyond the training window, (after ⇒ 60 frames)267

the proposed model continues to produce plausible trajectories, whereas baseline models diverge268

significantly earlier.269

5 Conclusions270

We have proposed a method for learning mechanical systems from data using the Lagrange-271

d’Alembert principle. The approach requires the use of position data only, can handle both conserva-272

tive and dissipative systems, generalizes well when trained and validated on both synthetic as well as273

real-world data.274
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.679

• For scraped data from a particular source (e.g., website), the copyright and terms of680

service of that source should be provided.681
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• If assets are released, the license, copyright information, and terms of use in the682

package should be provided. For popular datasets, paperswithcode.com/datasets683

has curated licenses for some datasets. Their licensing guide can help determine the684

license of a dataset.685

• For existing datasets that are re-packaged, both the original license and the license of686

the derived asset (if it has changed) should be provided.687

• If this information is not available online, the authors are encouraged to reach out to688

the asset’s creators.689

13. New assets690

Question: Are new assets introduced in the paper well documented and is the documentation691

provided alongside the assets?692

Answer: [NA]693

Justification:694

Guidelines:695

• The answer NA means that the paper does not release new assets.696

• Researchers should communicate the details of the dataset/code/model as part of their697

submissions via structured templates. This includes details about training, license,698

limitations, etc.699

• The paper should discuss whether and how consent was obtained from people whose700

asset is used.701

• At submission time, remember to anonymize your assets (if applicable). You can either702

create an anonymized URL or include an anonymized zip file.703

14. Crowdsourcing and research with human subjects704

Question: For crowdsourcing experiments and research with human subjects, does the paper705

include the full text of instructions given to participants and screenshots, if applicable, as706

well as details about compensation (if any)?707

Answer: [NA]708

Justification:709

Guidelines:710

• The answer NA means that the paper does not involve crowdsourcing nor research with711

human subjects.712

• Including this information in the supplemental material is fine, but if the main contribu-713

tion of the paper involves human subjects, then as much detail as possible should be714

included in the main paper.715

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,716

or other labor should be paid at least the minimum wage in the country of the data717

collector.718

15. Institutional review board (IRB) approvals or equivalent for research with human719

subjects720

Question: Does the paper describe potential risks incurred by study participants, whether721

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)722

approvals (or an equivalent approval/review based on the requirements of your country or723

institution) were obtained?724

Answer: [NA]725

Justification:726

Guidelines:727

• The answer NA means that the paper does not involve crowdsourcing nor research with728

human subjects.729

• Depending on the country in which research is conducted, IRB approval (or equivalent)730

may be required for any human subjects research. If you obtained IRB approval, you731

should clearly state this in the paper.732
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• We recognize that the procedures for this may vary significantly between institutions733

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the734

guidelines for their institution.735

• For initial submissions, do not include any information that would break anonymity (if736

applicable), such as the institution conducting the review.737

16. Declaration of LLM usage738

Question: Does the paper describe the usage of LLMs if it is an important, original, or739

non-standard component of the core methods in this research? Note that if the LLM is used740

only for writing, editing, or formatting purposes and does not impact the core methodology,741

scientific rigorousness, or originality of the research, declaration is not required.742

Answer: [NA]743

Justification:744

Guidelines:745

• The answer NA means that the core method development in this research does not746

involve LLMs as any important, original, or non-standard components.747

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)748

for what should or should not be described.749
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