
Under review as a conference paper at ICLR 2024

CODEIT: SELF-IMPROVING LANGUAGE MODELS WITH
PRIORITIZED HINDSIGHT REPLAY

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models are increasingly solving tasks that are commonly believed
to require human-level reasoning ability. However, these models still perform
very poorly on benchmarks of general intelligence such as the Abstraction and
Reasoning Corpus (ARC). In this paper, we approach ARC as a programming-by-
examples problem, and introduce a novel and scalable method for language model
self-improvement called Code Iteration (CodeIt). Our method iterates between
1) program sampling and hindsight relabeling, and 2) learning from prioritized
experience replay. By relabeling the goal of an episode (i.e., the target program
output given input) to the realized output produced by the sampled program, our
method effectively deals with the extreme sparsity of rewards in program synthesis.
Applying CodeIt to the ARC dataset, we demonstrate that prioritized hindsight
replay, along with pre-training and data-augmentation, leads to successful inter-
task generalization. CodeIt is the first neuro-symbolic approach that scales to
the full ARC evaluation dataset. Our method solves 15% of ARC evaluation
tasks, achieving state-of-the-art performance and outperforming existing neural
and symbolic baselines.

1 INTRODUCTION

The Abstraction and Reasoning Corpus (ARC) is a general artificial intelligence benchmark targeted
at both humans and AI systems (Chollet, 2019). ARC is a challenging benchmark because it contains
few-shot example tasks that assume access to the four innate core knowledge systems: objects,
actions, number, and space (Spelke & Kinzler, 2007). It was designed to require no knowledge
outside of these priors, and so the massive memorization capability of pre-trained language models is
of limited use for this problem. Humans are able to solve 80% of (a random subset of) ARC tasks in
user studies (Johnson et al., 2021), whereas state-of-the-art neural approaches based on GPT-4 solve
only 12% of evaluation tasks (Gendron et al., 2023).

Each ARC task consists of a number of demonstration examples, each consisting of an input and
output grid, and one or more test inputs for which the corresponding output must be predicted (see
Figure 1). Effective agents use abstractions related to the four core knowledge systems, generalize
from demonstration to test examples, and generalize between tasks. For example, an agent may infer
that adjacent cells (space) of the same color value (number) form an object. An agent may also infer
that multiple objects sometimes attract or repel (action). Using these abstractions to reason about
the value of the test output, an agent may generalize from the demonstration examples to the test
example.

Figure 1: A simplified ARC task. Given two demonstration input-output pairs, the goal is to determine
the output grid for the test example, in three attempts or fewer. The size of the grids and the number
of demonstration and test examples differs across tasks.

1

Under review as a conference paper at ICLR 2024

Existing approaches to ARC can be classified as either neural (Gendron et al., 2023; Mirchandani
et al., 2023), meaning they directly predict output grids using a neural network, or (neuro-) symbolic
(Ainooson et al., 2023; Ferré, 2021; 2023), meaning they first predict a program or other symbolic
representation of the mapping between input and output grids, before using it to generate the output
grids. Through the use of a well-designed domain-specific language (DSL), the symbolic methods
can be endowed with prior knowledge analogous to the core knowledge systems found in humans.
By combining neural networks and symbolic representations like programs, the system can leverage
both prior knowledge and data to solve the ARC tasks.

However, the most effective existing methods, whether neural or symbolic, fail to use experience
to generalize between tasks. We propose using Expert Iteration (ExIt) (Anthony et al., 2017) to
incorporate experience. ExIt methods do this by alternating between two phases: gathering data
with an (often expensive) exploration policy, and improving the policy by training on the newfound
experiences. Instead of performing ExIt in the grid space, we take a neuro-symbolic approach and
train our model to learn to write programs. This brings us closer to the system that emulates general
fluid intelligence described by Chollet (2019): by incorporating new experiences in the form of
abstractions.

Recent ExIt approaches employ self-improving language models (Gulcehre et al., 2023; Aksitov
et al., 2023; Wang et al., 2023c) to replace the expensive expert by sampling from the policy model
and reward-based filtering, saving only trajectories that obtain high reward. This allows them
to scale well and benefit from knowledge already captured in the policy. These methods prove
effective on program synthesis tasks with natural language specifications (Singh et al., 2023) and
code specifications (Haluptzok et al., 2022). However, when solving ARC, agents start ExIt with
poor prior knowledge about the search space, as the task is out-of-distribution. Finding a correct
program is challenging: positive rewards are extremely sparse. As a result, these methods are sample
inefficient in the context of ARC, and programming-by-examples more generally. To enable learning
in sparse-reward settings, hindsight relabeling (Andrychowicz et al., 2017) creates artificial expert
trajectories post-hoc, and methods that combine ExIt and this technique have improved sample
efficiency (Gauthier, 2022; Butt et al., 2022). However, since the relabelled data distribution is
constantly changing, there is risk of catastrophic forgetting (French, 1999).

Figure 2: An overview of Code Iteration. In the sampling stage, programs ρ are sampled from the
policy Qθ conditioned on input-output pairs. The program may not produce target output O∗ given
I , so we use hindsight relabeling: we execute the program, and add the program ρ, inputs I , and
realized outputs O to the buffer. In the learning stage, we train the policy on samples from the buffer.

In this work, we introduce a novel, scalable expert iteration method for sparse reward settings that
does not suffer from catastrophic forgetting. Our method, which we call Code Iteration or CodeIt
for short, iterates between 1) a sampling and hindsight relabeling stage and 2) a learning stage
with prioritized experience replay. We show a visualization in Figure 2. This iterative procedure
thus allows us to automatically generate new data without human intervention. Unlike current
self-improvement approaches that perform sampling and filtering (Singh et al., 2023), CodeIt learns
from all program samples, improving sample efficiency. By prioritizing training on experiences that
solve real tasks, we ameliorate the risk of catastrophic forgetting.

2

Under review as a conference paper at ICLR 2024

CodeIt solves 59 of 400 ARC evaluation tasks, achieving state-of-the-art performance by learning
from experiences in the form of abstractions and generalizing to new tasks. We analyze the programs
discovered by CodeIt and find that these are on average shorter and use different primitives compared
to our custom symbolic baselines. Furthermore, after finding an initial solution, CodeIt continues to
improve it over time; shorter solutions are found in 53% of solved ARC tasks, highlighting the ability
to perform program refinement. We perform careful ablations to better understand the impact on task
performance of key components: ExIt, prioritized hindsight replay, and prior knowledge.

2 METHOD

We approach ARC as a programming-by-examples problem: for a given set of tasks that we call the
search set, we aim to find programs that correctly match inputs with their respective outputs, and
we do so by training a policy to produce programs when shown demonstration examples. This is
achieved by iterating between two stages: 1) writing programs using a policy and applying hindsight
relabeling, and 2) learning from the programs and their input-output examples. We first describe key
design choices below, and then explain the iterative procedure.

2.1 DESIGN CHOICES

Programming language We restrict our programming language to the open source domain specific
language (DSL) of Hodel (2023). Although various open source DSLs for ARC exist, Hodel designed
their DSL using only the ARC training split, whereas some authors incorporate priors from the ARC
evaluation split into their DSLs (Icecuber, 2020).

Hodel’s DSL contains grid manipulation functions (e.g., vmirror or hmirror, which mirror the
grid along the vertical or horizontal axis), fill functions that replace all pixels of a certain color,
and functions that return locations of specific pixel groups. See Appendix B.4 for details on the
DSL and more example primitives, and see Hodel (2023) for discussion on the DSL’s primitives and
capability.

Policy Our choice of policy is a pretrained encoder-decoder Large Language Model (LLM). We
use the 220 million parameter CodeT5+ (Wang et al., 2023b) model and its default tokenizer, which
are pretrained on a diverse set of programming tasks. We input the demonstration examples to
the encoder, and let the decoder generate the corresponding program. If necessary, demonstration
examples are truncated to fit in the encoder context window.

Grid representation In order to condition the language model policy on input-output grids, we
represent them as text. Instead of encoding the grid as a 2-dimensional array, we use an object-centric
text representation. Specifically, each color is encoded as an integer, and for each color in the grid we
list all the grid cells with that color as [x, y] coordinates. Since the majority of cells belong to the
background color, this procedure significantly reduces the number of tokens required to encode the
grid (see Figure 11 in Appendix A.3). An example of the sparse grid representation is shown Figure
7 in Appendix A.3 for a toy ARC task.

2.2 THE CODE ITERATION ALGORITHM

We initialize the policy network by training on ground truth data. We then start CodeIt, iterating
between sampling and hindsight relabeling and learning. We refer to one full pass of sampling and
learning as a meta-iteration. We show the procedure in Fig. 2, and explain each stage in more detail
below. For pseudocode, see Appendix A.1.

Initialization We start from a dataset of ARC training tasks and solution programs written in the
domain-specific language (DSL) of Hodel (2023), which we call the training set. This dataset is
expanded by randomly mutating programs (for details of this procedure, see Appendix A.2), resulting
in an augmented training set.

The initial dataset augmentation step serves multiple purposes. Mixing in mutated programs acts as a
form of data augmentation, and is a common approach in policy improvement for program synthesis

3

Under review as a conference paper at ICLR 2024

(Ellis et al., 2020; Fawzi et al., 2022). Before experiences are sampled from the policy, the model can
already learn the DSL syntax, which can be challenging if the training set is small. It also enables the
model to learn how to interpret the task demonstration examples before we begin iterative learning,
improving the quality of our policy samples in early meta-iterations.

Sampling and hindsight relabeling In the sampling stage, we obtain new programs using the
policy Qθ. Let the search set be the set of tasks for which we want to find a corresponding program.
For each task in the search set, we convert the demonstration examples’ input I and target output O∗

from grid to text representation, encode these using the policy, and then autoregressively decode a
program: ρ ∼ Qθ(ρ|I,O∗). We then run the obtained program on the input grids. If the program
is syntactically incorrect or the runtime is too high, we discard it. Otherwise, we obtain program
outputs O = ρ(I), and can add a new triplet to a replay buffer: the program ρ, the demonstration
inputs I , and the realized outputs O (which may or may not match the target outputs O∗). In each
sampling stage we repeat this procedure nρ times per task, where nρ is a hyperparameter.

Replacing the target output by the realized one is a form of hindsight experience replay (Andrychowicz
et al., 2017), and ensures that we obtain an experience every time we find a syntactically correct
program, thereby preventing stagnation of the buffer. Note that although these programs may not
solve the tasks we are interested in, they are always valid in terms of syntax and semantics (correctly
mapping ρ(I) → O). They can therefore be used to teach the policy about program syntax and
program behaviour, which may lead to positive transfer to the search set. We emphasize that we never
add test examples nor performance on the test examples to our buffer, as one should not have access
to their target output grid during sampling.

Learning During the learning stage, the policy Qθ is trained on experiences sampled from the
buffer and the augmented training set. These experiences consist of input grids I , output grids O and
the corresponding program ρ. The training objective is then a straightforward negative log-likelihood
objective:

L(ρ, I, O) = − logQθ(ρ|I,O). (1)
We keep only a single copy of the policy network, and continue to update it during each learning stage.
In particular, we do not compare with past versions to guarantee an improvement in the policy before
using it in the next sampling stage. Although continual updates could lead to worse performance in
the next iteration, we find this is not a problem in practice.

By default, we perform prioritized sampling from the replay buffer (Schaul et al., 2015). For each
experience, the priority is proportional to the percentage of demonstration (target) outputs equal to
program outputs. Intuitively, this means that programs that solve real ARC tasks’ demonstration
examples are sampled more often.

3 EXPERIMENTS

In this section, we aim to demonstrate the efficacy of CodeIt, and break down how much different
components of the method contribute to the performance. We first tuned hyperparameters on a custom
training and validation split (for a description of these parameters and details, see Appendix B). Using
these hyperparameters, we benchmark our method on the ARC evaluation split and compare against
previous state-of-the-art methods. Finally, we ablate the importance of individual components of
CodeIt.

We define demonstration performance as the percentage of solved demonstration examples on a given
task. We first sort solution programs by demonstration performance, and then by program length,
favoring shorter programs. We evaluate the top three programs on the set of test examples. Following
ARC evaluation procedure, if at least one of these three programs maps all test example inputs to
outputs, the task is solved and test performance is 1. We emphasize that the ExIt procedure only
makes use of demonstration examples, and that we use test performance for final evaluation only.

Custom baselines We use a random baseline that samples programs line-by-line. At the start of
each line, we sample a primitive function from the DSL, then sample arguments given its expected
input types. When a variable of type “grid” is created, we end the program with probability 0.8,
otherwise we add another line to the program.

4

Under review as a conference paper at ICLR 2024

Figure 3: Cumulative performance as function of
number of sampled programs for CodeIt and var-
ious baselines. We run CodeIt for three random
seeds.

policy cumulative
Method perf. perf.

CodeIt 49/400 59/400

A1: No ExIt 13/400 45/400
A2: No relabeling 24/400 42/400
A3: No priority 38/400 58/400
A4: No pretraining 9/400 35/400
A5: One demo 34/400 51/400
A6: No mutation 17/400 20/400

Table 1: ARC evaluation performance of CodeIt
ablations.

We also use a mutation-based baseline. This is a more advanced procedure, designed with the DSL
in mind. At every meta-iteration, it mutates the set of training programs provided by Hodel (2023).
We use two variations: “d1” mutates only the initial training set, and “d∞” can augment newfound
programs as well. We provide the exact algorithm in Appendix A.2.

For all three baselines, we sample nm = nρ · ntasks programs per meta-iteration. Here, nρ is the
desired number of programs per meta-iteration per task, and ntasks the total number of tasks in the
population. To strengthen these baselines, we exhaustively evaluate each found program on all inputs
in the search set, and check the outputs against ARC output grids.

Baselines from literature We include approaches from literature as baselines as well. A direct
comparison is sometimes difficult, as not all baselines apply their method to the full ARC evaluation
set: for example, Kolev et al. (2020) and Alford et al. (2021) focus only on a subset of ARC.
Additionally, some symbolic methods design a DSL based on both ARC training and evaluation sets
and report results on a hidden test set (Icecuber, 2020). We therefore only compare to approaches
that report scores on the full ARC evaluation set.

Ainooson et al. (2023) and Ferré (2023) both run a search procedure for a custom DSL on the full set.
As Ainooson et al. (2023) report the highest performance the full ARC evaluation set, this is our main
symbolic baseline. Although Mirchandani et al. (2023) and Gendron et al. (2023) use a different
evaluation protocol, we include these as our main neural baseline, as they are based on powerful
LLMs (text-davinci and GPT-4).

3.1 SETUP

We initialize our training set with the 400 examples from the ARC training split and the associated
solution programs provided by Hodel (2023). We also sample 19,200 programs as additional training
data via the mutation procedure outlined in Appendix A.2. We use the programs that are syntactically
correct to initialize the augmented training set. We use the 400 ARC evaluation examples as our
search set.

In the sampling stage of each meta-iteration, we use temperature sampling with temperature τ = 0.95,
and sample up to nρ = 24 programs per task. This encourages exploration and, as a result, increases
the diversity of data added to the replay buffer. We reject policy-sampled programs if they are
syntactically incorrect, or if they run for more than 0.25 seconds per program line. All valid programs
are added to the replay buffer.

In each learning stage, we start by sampling a set of experiences from the buffer under the distri-
bution given by the priorities. Each meta-iteration, we sample rt = 10, 000 experiences from the
concatenation of the train set and the augmented train set, and rp = 90, 000 experiences from the
buffer. The resulting set is used for 1 epoch of training. For a full list of hyperparameters, see Table 3
in the Appendix.

5

Under review as a conference paper at ICLR 2024

Method ARC Train Set ARC Eval Set ARC Eval 412

Ferré (2021) 29 / 400 6 / 400 -
Ainooson et al. (2023) MLE 70 / 400 17 / 400 -
Ainooson et al. (2023) brute force 104 / 400 26 / 400 -
Ferré (2023) 96 / 400 23 / 400 -
Mirchandani et al. (2023) text-davinci-003 56 / 400* 27 / 400* -
Gendron et al. (2023) GPT-4 - - 49 / 412*

Mutation d1 baseline - 42 / 400 39 / 412*

Mutation d∞ baseline - 38 / 400 36 / 412*

Random baseline - 6 / 400 7 / 412*

CodeIt - 59 / 400 59 / 412*

Table 2: Main results on ARC eval set. The evaluation metric is pass@3 by default, * indicates
pass@1. To enable comparison to related work of Gendron et al. (2023), we also include pass@1
performance on the ARC Eval set with 412 examples. Our method outperforms all previous baselines.
More details on the ARC splits and evaluation procedures can be found in Appendix A.4.

Figure 4: ARC evaluation task 48f8583b and the solution program found by CodeIt.

3.2 MAIN RESULTS ON ARC EVAL SET

In Figure 3, we show performance as a function of the number of sampled programs, for CodeIt,
our custom baselines, Ainooson et al. (2023) and Ferré (2023). We show cumulative performance
here, which means that any program in the buffer or augmented train set is considered a solution
candidate. For the mutation baselines, we see a rapid performance increase followed by stagnation.
In comparison, CodeIt takes several meta-iterations to start generating solutions outside of the
augmented train set and then performance rapidly increases. CodeIt quickly outperforms the mutation
baseline, indicating that it indeed finds higher-quality samples to train on.

We report final performance of CodeIt after 100 meta-iterations, and the performance of various
baselines, in Table 2. To enable comparison to Gendron et al. (2023), we include results on the “ARC
Eval 412” set, which treats each test example in the ARC evaluation set as a separate task. Our
approach outperforms symbolic approaches (Ainooson et al., 2023; Ferré, 2021; 2023), but also
neural approaches based on large language models (Gendron et al., 2023; Mirchandani et al., 2023),
achieving state-of-the-art performance on the ARC evaluation set.

For context, we show a solution written by CodeIt for an example task in Figure 4. To further
illustrate the differences between the programs found by CodeIt and the mutation baselines, we
analyze solutions found by each method in Appendix C.1, including a qualitative comparison in
Table 4. One finding is that there are 29 tasks for which CodeIt and the mutation baseline both find a
solution, but that there are 23 tasks for which only CodeIt finds a solution, versus 13 for the mutation
baseline. For the tasks that both methods solve, CodeIt finds shorter programs on average and uses
different primitives. In Appendix C.2, we observe CodeIt refines its initial solution for 53% of solved
tasks, producing a shorter solution in a later meta-iteration.

6

Under review as a conference paper at ICLR 2024

3.3 ABLATIONS

In Figure 5 and 6, we report cumulative performance and policy performance over time for CodeIt
and all ablations. In all cases, we initialize the method with the ARC train set, and use the ARC
evaluation set as search set. We show the results of ablations at the end of training in Table 1.

A1: No ExIt This ablation removes policy feedback, to isolate the contribution of Expert Iteration.
In every meta-iteration, instead of populating the buffer with policy samples, we take the programs
generated in that meta-iteration of the mutation d1 baseline. For each program, we randomly select a
task from the search set and perform hindsight relabelling, adding the program, input, output triplet
to the buffer. We sample rp + rt = 100, 000 experiences from the concatenation of the train set, the
augmented train set and the buffer at each meta-iteration for learning. We see that A1 outperforms the
mutation baseline, which means supervised learning from mutation experiences alone does lead to
some inter-task generalization. However, cumulative performance is substantially lower than CodeIt.
This highlights the importance of policy feedback.

A2: No relabeling We test the effect of hindsight relabeling by only adding experiences to the
buffer if the program produces the correct output for all demonstration examples. We train on all
experiences in the buffer without prioritized sampling. Although performance increases in early meta-
iterations, A2 stagnates after around 30 meta-iterations, indicating that data generated by sampling
and filtering alone is not sufficient. Sampling and hindsight relabeling (CodeIt) performs better than
sampling and filtering (A2).

A3: No priority To test the hypothesis that prioritized sampling ameliorates catastrophic forgetting,
we draw experiences uniformly from the buffer in the learning stage. A3 leads to a small reduction
in cumulative performance, but a large reduction in policy performance, indicating that the policy
indeed forgets important experiences. Prioritized sampling results in better retention of knowledge.

A4: No pretraining To identify whether our pre-trained policy contains beneficial prior knowledge,
we randomly reinitialize the policy’s weights at the start of CodeIt. Policy performance shows that
performance improvement is much slower. Moreover, inter-task generalization begins later, as shown
by the cumulative performance, which only starts increasing after around 50 meta-iterations. Despite
the expected slowdown, it is encouraging to see that CodeIt does seem to be able to bootstrap from
random weights.

A5: One demo We investigate CodeIt’s use of the task representation by decreasing the number of
demonstration examples shown to the policy. This results in a significant decrease in both cumulative
and policy performance. This indicates CodeIt forms abstractions over multiple demonstration
examples.

A6: No mutation In this ablation, we omit the mutation-based training data augmentation step.
We observe that taking out mutation-based bootstrapping results in slower training, although perfor-
mance does increase over time and does not stagnate. We therefore conjecture that mutation-based
augmentation is not necessary but still useful.

4 RELATED WORK

4.1 ABSTRACTION AND REASONING CORPUS (ARC)

Various works apply program synthesis approaches to subsets of the ARC dataset. Xu et al. (2022)
propose to represent grids as graphs, and applies logical programs to the graph nodes, solving 63 of
160 tasks. Kolev et al. (2020) apply a Differentiable Neural Computer to ARC, solving 78% of tasks
with grids of size 10× 10 and smaller. Alford et al. (2022) applies DreamCoder (Ellis et al., 2020)
and execution-guided synthesis, solving 22 of 36 considered tasks. Park et al. (2023) collects human
feedback, then performs behavioral cloning for a subset of ARC tasks using a decision transformer
(Chen et al., 2021). However, none of these methods are applied on the full ARC evaluation set,
typically due to poor scaling behavior. Unpublished approaches are described in Appendix D.

7

Under review as a conference paper at ICLR 2024

Figure 5: Cumulative performance as function of
number of sampled programs for CodeIt and ab-
lations, for three random seeds. For cumulative
performance, all programs in the augmented train
set and buffer are candidate solutions

Figure 6: Policy performance as function of num-
ber of sampled programs for CodeIt and ablations,
for three random seeds. For policy performance,
only programs output by the policy in the current
meta-iteration are candidate solutions.

The few works that do scale to the full evaluation set tend to solve each task in isolation. Ferré
(2021) and followup work Ferré (2023) design a custom DSL and perform a fast search for each
task. Ainooson et al. (2023) designs a custom DSL as well and obtains best performance with a
brute-force search, solving 36 of 400 evaluation tasks. Mirchandani et al. (2023) and Gendron et al.
(2023) demonstrate that a pretrained language model with custom tokenizer will output the correct
grid after being shown multiple input-output pairs, solving 27 of 400 and 49 of 412 evaluation tasks
respectively. Wang et al. (2023a) further augment this approach by generating hypotheses in multiple
rounds, although they only show performance on a subset of the ARC training set due to the high
monetary cost of querying the language model. In this work, we design a scalable ExIt approach that
combines a smaller language model with the higher-level abstraction of a DSL. We also ensure that
our approach incorporates experience to benefit from generalization between tasks.

4.2 EXPERT ITERATION

Expert iteration (ExIt) (Anthony et al., 2017) consists of a policy-guided search stage that gathers
new experiences, and a learning stage that improves the policy by imitation learning. Commonly
used experts tend to be powerful and computationally intensive tree search algorithms such as Monte
Carlo Tree Search (Kocsis & Szepesvári, 2006) and greedy search (Daumé et al., 2009). ExIt has
achieved superhuman performance include games (Silver et al., 2016; 2018; Anthony et al., 2017)
and combinatorial problems such as bin-packing (Laterre et al., 2019). Related work that employs
hindsight relabelling in expert iteration are Gauthier & Urban (2022) and Butt et al. (2022).

Applications of ExIt for programming-by-examples (Mankowitz et al., 2023; Ellis et al., 2020)
are most relevant to CodeIt. Mankowitz et al. (2023) consider one task only: writing a fast sorting
algorithm. For this problem, inter-task generalization is therefore not as important. DreamCoder (Ellis
et al., 2020) is most related to our work, since this ExIt method is applied to multiple programming-
by-examples tasks. DreamCoder uses a growing DSL to store abstractions, and a computationally
intensive search procedure. Instead, CodeIt uses the model to store distilled knowledge, and generates
experiences via sampling from the model. Furthermore, DreamCoder filters solutions based on
correctness whereas CodeIt uses hindsight relabeling and prioritized experience replay.

4.3 SELF IMPROVING LARGE LANGUAGE MODELS

Finetuning pre-trained large language models (LLMs) on synthetic data enables knowledge transfer
due to the prior domain knowledge captured in their weights (Butt et al., 2022). Recently, methods
that use LLMs to synthesize training data have shown successes in theorem proving (Polu et al.,
2022), question answering (Zelikman et al., 2022; Aksitov et al., 2023), mathematical reasoning (Ni
et al., 2023), machine translation (Gulcehre et al., 2023), language-to-code generation (Zhou et al.,
2023; Singh et al., 2023) and code-to-code generation (Haluptzok et al., 2022).

8

Under review as a conference paper at ICLR 2024

5 DISCUSSION

Various factors make ARC uniquely challenging for learning-based approaches, for example the
limited amount of training data, and the complexity of individual tasks. Another issue is that tasks
may differ in number of examples and input dimensionality, which requires agents to reason about
concepts at different scales. Here, we provide intuition for why CodeIt works well on this benchmark.

Ablations showed that hindsight relabeling has a large effect on performance. Many expert iteration
approaches rely on the emergence of a curriculum of increasingly difficult tasks, even creating a
curriculum by comparing the current agent to past versions of itself (Silver et al., 2016; Fawzi et al.,
2022) or reward shaping (Laterre et al., 2019; Gulcehre et al., 2023). Hindsight relabeling forms an
implicit curriculum (Andrychowicz et al., 2017): initially we collect easy tasks that can be solved in
few lines of code, while later on, programs become more complex. This is useful for ARC, where
obtaining even one solved task is challenging. As relabeling adds many programs to the buffer,
including some that are further away from the target tasks, we used prioritized sampling to avoid
catastrophic forgetting.

A potential limitation of CodeIt is that for ARC, it relies on hand-designed components: a DSL,
access to an interpreter, and an initial set of ground truth programs. While we do benefit from Hodels
expert-designed DSL, we also showed that a neuro-symbolic approach (ablation A1) outperforms
a symbolic approach (the mutation baseline), indicating that both DSL and learning contribute to
performance. Further, CodeIt outperforms both, indicating that ExIt compounds this effect. We also
use a pretrained LLM and mutation procedure to speed up training, but ablations showed that training
is possible even without these, albeit at a slower pace. Nevertheless, approaches that can start learning
tabula rasa, or form their own DSL (Ellis et al., 2020) remain an important area of research.

For the ARC dataset, it is currently beneficial to incorporate both prior knowledge (via a DSL or
pre-trained LLM) and experience (via expert iteration). Chollet (2019) defines the intelligence of a
system as “a measure of its skill-acquisition efficiency over a scope of tasks, with respect to priors,
experience, and generalization difficulty”. Chollet poses that, if two systems are initialized with the
same prior knowledge and go through the same amount of experience with respect to a set of unseen
tasks, the more intelligent system will combine prior knowledge and its experience more efficiently.

Although many existing approaches incorporate prior knowledge through a programming language or
DSL (Ainooson et al., 2023; Ferré, 2023), a pre-trained large language model (Gendron et al., 2023;
Mirchandani et al., 2023), or both (Wang et al., 2023a), they cannot incorporate new experience, and
therefore do not benefit from inter-task generalization. Alford (2021) proposes an expert iteration
method that does learn from experience, but it does not scale well nor benefit from prior knowledge
in its policy. We pose that CodeIt is the more effective expert iteration method due to its use of
scalable components: pre-trained language models, likelihood-based training, and running programs
in interpreters. There is also an implicit relationship between computational efficiency and experience:
since CodeIt’s policy learns on the ARC domain, it is possible to use a much smaller language model
than for example Gendron et al. (2023), who use GPT-4 as a policy. This is consistent with LLM
literature showing that high quality training data with a curriculum enables smaller LMs to compete
with much larger ones on coding tasks (Gunasekar et al., 2023).

6 CONCLUSION

We introduce a novel and scalable method for self-improving language models, CodeIt, that uses
prioritized hindsight replay. CodeIt achieves state-of-the-art performance on the Abstraction and
Reasoning Corpus (ARC) compared to symbolic and neural baselines, solving 59 of 400 evaluation
tasks. Ablations show that hindsight relabeling leads to improved sample efficiency resulting in
a 40% improvement in performance. We also find that prioritizing important experiences during
training ameliorates catastrophic forgetting. Additionally, we observe that CodeIt is able to refine
solutions over time, identifying a shorter program for 53% of solved tasks in later iterations. The
results demonstrate that our self-improving language model is capable of reasoning in the program
space and generalizing between tasks. For the challenging ARC benchmark, both scalability and
learning from experience prove to be key components for success.

9

Under review as a conference paper at ICLR 2024

REFERENCES

James Ainooson, Deepayan Sanyal, Joel P. Michelson, Yuan Yang, and Maithilee Kunda. An approach
for solving tasks on the abstract reasoning corpus, 2023.

Renat Aksitov, Sobhan Miryoosefi, Zonglin Li, Daliang Li, Sheila Babayan, Kavya Kopparapu,
Zachary Fisher, Ruiqi Guo, Sushant Prakash, Pranesh Srinivasan, Manzil Zaheer, Felix Yu, and
Sanjiv Kumar. Rest meets react: Self-improvement for multi-step reasoning llm agent, 2023.

Simon Alford. A Neurosymbolic Approach to Abstraction and Reasoning. PhD thesis, Massachusetts
Institute of Technology, 2021.

Simon Alford, Anshula Gandhi, Akshay Rangamani, Andrzej Banburski, Tony Wang, Sylee Dandekar,
John Chin, Tomaso A. Poggio, and Peter Chin. Neural-guided, bidirectional program search for
abstraction and reasoning. Complex Networks, 2021.

Simon Alford, Anshula Gandhi, Akshay Rangamani, Andrzej Banburski, Tony Wang, Sylee Dandekar,
John Chin, Tomaso Poggio, and Peter Chin. Neural-guided, bidirectional program search for
abstraction and reasoning. In Complex Networks & Their Applications X: Volume 1, Proceedings
of the Tenth International Conference on Complex Networks and Their Applications COMPLEX
NETWORKS 2021 10, pp. 657–668. Springer, 2022.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in neural information processing systems, 30, 2017.

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and tree
search. May 2017.

ARCathon Leaderboard. https://lab42.global/arcathon/leaderboard/, 2023. Ac-
cessed: 2024-30-01.

Natasha Butt, Auke Wiggers, Taco Cohen, and Max Welling. Program synthesis for integer sequence
generation. 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling, 2021. URL https://arxiv.org/abs/2106.01345.

François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Hal Daumé, John Langford, and Daniel Marcu. Search-based structured prediction. Machine learning,
75:297–325, 2009.

Kevin Ellis, Catherine Wong, Maxwell I. Nye, Mathias Sablé-Meyer, Luc Cary, Lucas Morales,
Luke B. Hewitt, Armando Solar-Lezama, and Joshua B. Tenenbaum. DreamCoder: Grow-
ing generalizable, interpretable knowledge with wake-sleep Bayesian program learning. CoRR,
abs/2006.08381, 2020. URL https://arxiv.org/abs/2006.08381.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Barekatain
Mohammadamin, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix multipli-
cation algorithms with reinforcement learning. Nature, 610, 2022. doi: https://doi.org/10.1038/
s41586-022-05172-4.

Sébastien Ferré. First steps of an approach to the arc challenge based on descriptive grid models and
the minimum description length principle. arXiv preprint arXiv:2112.00848, 2021.

Sébastien Ferré. Tackling the abstraction and reasoning corpus (arc) with object-centric models and
the mdl principle. arXiv preprint arXiv:2311.00545, 2023.

Robert French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3:
128–135, 05 1999. doi: 10.1016/S1364-6613(99)01294-2.

10

https://lab42.global/arcathon/leaderboard/
https://arxiv.org/abs/2106.01345
https://arxiv.org/abs/2006.08381

Under review as a conference paper at ICLR 2024

Thibault Gauthier. Program synthesis for the oeis, 2022. URL https://arxiv.org/abs/
2202.11908.

Thibault Gauthier and Josef Urban. Learning program synthesis for integer sequences from scratch,
2022. URL https://arxiv.org/abs/2202.11908.

Gaël Gendron, Qiming Bao, Michael Witbrock, and Gillian Dobbie. Large language models are not
strong abstract reasoners, 2023.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2023.

Patrick Haluptzok, Matthew Bowers, and Adam Tauman Kalai. Language models can teach them-
selves to program better. arXiv preprint arXiv:2207.14502, 2022.

Michael Hodel. Domain-specific language for the abstraction and reasoning corpus, 2023.

Icecuber. https://www.kaggle.com/competitions/
abstraction-and-reasoning-challenge/discussion/154597, 2020. Ac-
cessed: 2024-30-01.

Aysja Johnson, Wai Keen Vong, Brenden M. Lake, and Todd M. Gureckis. Fast and flexible:
Human program induction in abstract reasoning tasks. CoRR, abs/2103.05823, 2021. URL
https://arxiv.org/abs/2103.05823.

Kaggle Leaderboard. https://www.kaggle.com/competitions/
abstraction-and-reasoning-challenge/code, 2020. Accessed: 2024-30-01.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Victor Kolev, Bogdan Georgiev, and Svetlin Penkov. Neural abstract reasoner. arXiv preprint
arXiv:2011.09860, 2020.

Alexandre Laterre, Yunguan Fu, Mohamed Khalil Jabri, Alain-Sam Cohen, David Kas, Karl Hajjar,
Hui Chen, Torbjørn S Dahl, Amine Kerkeni, and Karim Beguir. Ranked reward: enabling self-play
reinforcement learning for bin packing. 2019.

Daniel J Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Paduraru,
Edouard Leurent, Shariq Iqbal, Jean-Baptiste Lespiau, Alex Ahern, et al. Faster sorting algorithms
discovered using deep reinforcement learning. Nature, 618(7964):257–263, 2023.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas,
Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines.
arXiv preprint arXiv:2307.04721, 2023.

Ansong Ni, Jeevana Priya Inala, Chenglong Wang, Oleksandr Polozov, Christopher Meek, Dragomir
Radev, and Jianfeng Gao. Learning math reasoning from self-sampled correct and partially-correct
solutions, 2023.

Jaehyun Park, Jaegyun Im, Sanha Hwang, Mintaek Lim, Sabina Ualibekova, Sejin Kim, and Sun-
dong Kim. Unraveling the arc puzzle: Mimicking human solutions with object-centric decision
transformer. arXiv preprint arXiv:2306.08204, 2023.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning. CoRR, abs/2202.01344, 2022.
URL https://arxiv.org/abs/2202.01344.

11

https://arxiv.org/abs/2202.11908
https://arxiv.org/abs/2202.11908
https://arxiv.org/abs/2202.11908
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597
https://arxiv.org/abs/2103.05823
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/code
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/code
https://arxiv.org/abs/2202.01344

Under review as a conference paper at ICLR 2024

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140–1144, 2018.

Avi Singh, John D. Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J.
Liu, James Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, Abhishek Kumar, Alex Alemi, Alex
Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet, Gamaleldin Elsayed, Hanie Sedghi, Igor
Mordatch, Isabelle Simpson, Izzeddin Gur, Jasper Snoek, Jeffrey Pennington, Jiri Hron, Kathleen
Kenealy, Kevin Swersky, Kshiteej Mahajan, Laura Culp, Lechao Xiao, Maxwell L. Bileschi,
Noah Constant, Roman Novak, Rosanne Liu, Tris Warkentin, Yundi Qian, Yamini Bansal, Ethan
Dyer, Behnam Neyshabur, Jascha Sohl-Dickstein, and Noah Fiedel. Beyond human data: Scaling
self-training for problem-solving with language models, 2023.

Elizabeth S. Spelke and Katherine D. Kinzler. Core knowledge. Developmental Science, 10
(1):89–96, 2007. doi: https://doi.org/10.1111/j.1467-7687.2007.00569.x. URL https://
onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-7687.2007.00569.x.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah D Goodman.
Hypothesis search: Inductive reasoning with language models. arXiv preprint arXiv:2309.05660,
2023a.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D.Q. Bui, Junnan Li, and Steven C. H. Hoi.
Codet5+: Open code large language models for code understanding and generation. arXiv preprint,
2023b.

Ziqi Wang, Le Hou, Tianjian Lu, Yuexin Wu, Yunxuan Li, Hongkun Yu, and Heng Ji. Enable
language models to implicitly learn self-improvement from data, 2023c.

Yudong Xu, Elias B. Khalil, and Scott Sanner. Graphs, constraints, and search for the abstraction and
reasoning corpus, 2022.

Yudong Xu, Wenhao Li, Pashootan Vaezipoor, Scott Sanner, and Elias B Khalil. Llms and the abstrac-
tion and reasoning corpus: Successes, failures, and the importance of object-based representations.
arXiv preprint arXiv:2305.18354, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models, 2023.

12

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-7687.2007.00569.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-7687.2007.00569.x

Under review as a conference paper at ICLR 2024

A METHOD AND EVALUATION DETAILS

A.1 CODEIT ALGORITHM

The pseudo code for the CodeIt procedure is portrayed in Algorithm 1.

Algorithm 1 CodeIt Algorithm

Require: Training set Dtrain, search set Dtest, policy Q
Ensure: Finetuned policy Q, updated replay buffer R, optimal programs set ρ∗

Daugmented train ← EvolveTrainingTasks(Dtrain) {Evolve training tasks}
Initialize ρ∗ as an empty set {Init set of programs that solve tasks in Dtest}
for meta iter = 1→ 100 do

Sampling and hindsight relabeling stage
for task in Dtest do
{ρ} ← Q(ρ|{I,O}) {Sample programs for test tasks}
for each ρ in {ρ} do

if SyntacticallyValid(ρ) then
Add {ρ, {(I(i), ρ(I(i))), . . . }} to R {Update the replay buffer with hindsight relabeled
tasks}

end if
for (I(i), O(i)) in task do

if ρ(I(i)) = O(i) then
Add {(ρ, task)} to ρ∗ {Update set of programs that solve tasks in Dtest}

end if
end for

end for
end for
Learning stage
Dsample ← SampleFrom(R+Daugmented train +Dtrain) {Sample tasks from the replay buffer}
Train Q on Dsample for 1 epoch {Continual training of the policy}

end for

Initializing CodeIt Before we start the CodeIt procedure, we expand the training dataset using the
first 19,200 mutated tasks from the mutation procedure (see Appendix A.2) used for the mutation d1
baseline.

A.2 PROGRAM AND TASK MUTATION

Mutation procedure To grow a population of mutated programs with task demonstration inputs
corresponding to the original training dataset, we follow the procedure outlined in Algorithm 3. This
involves mutating a single task, which is described in Algorithm 2. The mutation is carried out
with the hyperparameters ϕvar = 0.25, ϕarg = 0.5, ϕfunc = 0.25. With respect to naming notation,
d1 reflects a depth of 1, meaning we only mutate programs from the original training set, and d∞
reflects a depth of infinity, meaning we can mutate previously mutated programs.

The intuitive explanation of the mutation procedure for a single program is as follows. We pick a
random line from a program (L2-3). We then replace either a function call with a function with
similar output type (L4-7), or we replace an input argument in the function call (L8-11), or we replace
the function call but leave its input variables the same (L12-14).

Mutation baseline For our mutation baseline, we sample mutated programs using the mutation
procedure outlined above. For all the mutated programs in the evolved task population, we evaluate
each program on the tasks in our search set.

13

Under review as a conference paper at ICLR 2024

Algorithm 2 MutateProgram

Require: Replacement probabilities ϕvar, ϕarg, ϕfunc, program ρ
Ensure: ρ′

Initialize ρ′ ← ρ {Copy original program}
l← RandomLineFrom(ρ′) {Randomly select a line}
p ∼ U(0, 1)
if p < ϕvar then
f ′ ← SampleFunctionWithOutputType(GetTypeOfVariable(l))
args′ ← SampleArgumentsForFunction(f ′)
Replace variable definition f(args) in l with f ′(args′)

else if p < (ϕvar + ϕarg) then
a← RandomArgumentFrom(l)
a′ ← SampleTermOfType(GetTypeOfArgument(a))
Replace argument a with a′

else
f ′ ← SampleFunctionOfType(GetTypeOfFunction(f))
Replace function f in l with f ′

end if

Algorithm 3 EvolveTrainingTasks

Require: Initial population of training tasks Tinit (each task is a tuple (ρ, E) where E =
{(I(i), O(i)), . . . }), depth

Ensure: Updated task population T ′ (initialized with Tinit)
T ← Tinit
i← 0
while i < num samples do

if depth = 1 then
(ρ, E)← RandomSelectTask(Tinit) {Select from initial tasks}

else
(ρ, E)← RandomSelectTask(T) {Select from current tasks}

end if
ρ′ ← MutateProgram(ρ)
E ′ ← ∅ {Initialize mutated task demonstration examples}
for each (I(k),) ∈ E do

O′(k) ← Execute(ρ′, I(k))
E ′ ← E ′ ∪ {(I(k), O′(k))}

end for
if AreValidGrids(GetAllOutputs(E ′)) then

T ′ ← T ′ ∪ {(ρ′, E ′)} {Add new task to the population}
end if
i← i+ 1

end while

14

Under review as a conference paper at ICLR 2024

A.3 TASK REPRESENTATION

Grid representation We use a compressed grid representation, mainly to reduce the number of
tokens needed to represent each grid. An example of the sparse grid representation is shown in Figure
7 for a toy ARC task.

Figure 7: Sparse grid representation of a simplified ARC task.

This object-centric text representation, similar to the one of Xu et al. (2023), works well for sparse
grids and is human-interpretable. We do not use a custom tokenizer. A visualization of the number of
tokens is shown in Fig. 11, showing that in almost all cases, the sparse grid representation we use
leads to a reduction in the number of needed tokens, especially for larger grid sizes.

Truncation We truncate our task demonstration tokens and program tokens such that these se-
quences fit in our predefined encoder and decoder context windows. For the task demonstration
examples, we first order by grid size and divide the encoder context window into two equally sized
sections. For task demonstration inputs, we first encode input grids to text as above and then we
tokenize using the standard text tokenizer. We truncate these tokens at half the size of the encoder
context window. We do the same for the task demonstration outputs and with the exception of also
adding an end of sequence token. As a result, even though we aim to show the policy up to ten task
demonstration examples, large grids will be cut-off. For programs, we tokenize directly using the
standard text tokenizer and truncate at the decoder context window size.

A.4 ARC EVALUATION

Different works use different evaluation procedures to report performance on the ARC evaluation set.
We describe two common evaluation settings in more detail below. Unless mentioned otherwise, we
always use the first procedure, “ARC Eval Set”.

ARC Eval Set This setup is intended as close as possible to the evaluation procedure described by
Chollet (2019). Baselines Ferré (2021), Ainooson et al. (2023) follow this procedure, and it is our
default setting as well.

The ARC eval set consists of 400 tasks, some of which contain multiple test examples. Common
procedure is to report pass@3 performance, meaning the top 3 solutions are selected according to
demonstration task performance. If there are ties, we favor the shorter program, under the assumption
that shorter programs are more likely to generalize. We then run these programs on all test examples
for the task. In some cases, there are multiple test examples per task. We call the task “solved” if all
output grids are correct.

ARC Eval 412 This setup is designed to match Gendron et al. (2023). Instead of calling a task
with multiple test examples solved if all test outputs are correct, distinct tasks are created - one per
test example. This results in a set of 412 evaluation tasks with one test example each. Furthermore,
Gendron et al. (2023) uses pass@1, rather than pass@3: only one solution per task is evaluated, and
the task is considered solved if the output is correct.

B EXPERIMENT DETAILS

B.1 RESOURCES

Experiments were run for a maximum of 120 hours on a NVIDIA A100 80GB.

15

Under review as a conference paper at ICLR 2024

B.2 HYPERPARAMETER TUNING

Dataset The ARC benchmark does not contain a validation split. Hence, we use part of the ARC
train split for validation during the hyperparameter tuning. In particular, this validation set is the
search set that the sampling stage uses as described in 2.2. With this setup we avoid overfitting the
hyperparameters to the ARC evaluation split.

We choose the split such that D and Dvalid contain roughly equally difficult programs by sampling
based on program length: D contains 80% of 2-line programs, 80% of 3-line programs, and so on.
This results in 311 examples in D and 89 examples in Dvalid.

Experiments on validation set In these experiments, we initialise our replay buffer with the 311 D
examples, and our search set consists of the 89 Dvalid examples. The aim of these experiments is to
find optimal hyper-parameters for search and training. A list of our tuned hyperparameter values and
their description is shown in Tab. 3

B.3 HYPERPARAMATERS CHOSEN ON INTERNAL VALIDATION SET

We optimized these parameters on our custom validation set before applying CodeIt to ARC eval.

CodeIt stage Param Value Description

Sampling nρ 24 no. policy samples ρ per task per meta-iteration1

nm 19, 200 no. mutated samples for augmented train set1
τ 0.95 sampling temperature
rt 10, 000 number of experiences sampled from augmented train set
rp 90, 000 number of experiences sampled from buffer

Learning
nϵ 1 no. train epochs per meta-iteration
lr 5e− 5 learning rate

Table 3: Table of hyperparameters.

B.4 DOMAIN SPECIFIC LANGUAGE

We adopt the domain specific language (DSL) of Michael Hodel, made available on GitHub:
https://github.com/michaelhodel/arc-dsl. This DSL was designed based on the training set: the
(human) designer did not peek at the evaluation set. This is what allows us to run search on ARC eval
here. Using a DSL designed for the eval tasks would be cheating, as we would benefit immensely
from human insights captured in the primitives. On the other hand, it may mean that some ARC eval
programs are not solvable with the current DSL.

The DSL is implemented in https://github.com/michaelhodel/arc-dsl/blob/main/dsl.py. It contains
many basic grid manipulation operations, such as rotations (rot90, rot180, rot270), mir-
roring (dmirror, hmirror, vmirror), resizing (downscale, upscale), or concatenation
(hconcat, vconcat). It also contains functions that perform counting, for example numcolors
counts the number of colors occurring in an object or grid. For some ARC tasks, identifying the
foreground objects and determining how these objects interact is an effective strategy for human
test-takers. Therefore, some functions also apply to “objects”, which are patches of the same color
that stand out from the background. To extract these, the function objects returns the set of
foreground objects, i.e. those that have a different color than the most common color, assumed to
be the background. For a complete list of primitives and their description, we refer the reader to the
aforementioned Github page.

Michael Hodel provides hand-designed solution programs for all training tasks in
https://github.com/michaelhodel/arc-dsl/blob/main/solvers.py. Some programs are highly
complex: for some of the more challenging ARC tasks, we see solutions consisting of up to 58 lines
of code (solve b775ac94). We use these 400 solution programs to kickstart CodeIt training.

1Note that no. samples here refers to policy and mutation samples before filtering for syntactic correctness.

16

https://github.com/michaelhodel/arc-dsl
https://github.com/michaelhodel/arc-dsl/blob/main/dsl.py
https://github.com/michaelhodel/arc-dsl/blob/main/solvers.py

Under review as a conference paper at ICLR 2024

Method Number of tasks solved
CodeIt policy only 23
Mutation d1 only 13
CodeIt policy ∩Mutation d1 29

Table 4: ARC evaluation tasks solved per method. The top group of two rows show how many tasks
were solved by a method, but not by the other. The final row shows tasks solved by both methods.

Figure 8: Histogram of number of lines for tasks
where both CodeIt and Mutation produced solu-
tions. CodeIt (in blue) typically produces shorter
programs than the Mutation baseline (in orange).

Figure 9: Number of task representation tokens
vs number of program tokens. Colors represents
the different tasks. We see no obvious correlation
between task representation length and program
length.

C PROGRAM ANALYSIS

C.1 CODEIT COMPARED WITH MUTATION BASELINES

We compare the programs found using our mutation d1 baseline and the best performing of the three
CodeIt runs. Table 4 displays the number of ARC evaluation tasks uniquely solved by each method
and the tasks which are solved by multiple methods. CodeIt’s policy solves 52 of 400 tasks, 23 of
which were not solved by the mutation baseline. In Figures 8 and 9, we select the shortest program
that solves an evaluation task for CodeIt and our mutation d1 baseline, computing the program length
and task representation size. Note that CodeIt has an encoder context window size of 1024 and so any
tasks which having representations of more than 1024 tokens have been truncated. Overall, CodeIt
finds shorter programs as shown in 8. Further, for the same task, CodeIt more often finds shorter
programs than our mutation d1 baseline, as shown in 9 where each color represents a different task.
Interestingly, CodeIt does solve some tasks with very large task representations, suggesting in some
cases a truncated task representation provides sufficient information to solve the task.

In Table 5, we show a subset of solution programs for ARC eval tasks solved by both CodeIt and our
mutation d1 baseline. We select tasks where the shortest programs differ between the two methods.
CodeIt programs appear more concise and use different primitives. Out of the 29 tasks that are solved
by both methods, there are 24 shortest programs where method output is different. CodeIt only
produces a longer program in 1 out of these 24 cases. The Mutation baseline often includes redundant
lines. In addition, for many programs, CodeIt produces a program that is qualitatively better: the
solution is less complex, and contains fewer lines overall.

C.2 CODEIT OVER TIME

Since we do not have ground truth programs for the ARC evaluation set, we treat the shortest program
found with demonstration performance and test performance equal to 1 for each task over all the
meta-iterations as a proxy for the ground truth program. To examine how CodeIt solutions change
over time, we take the subset of ARC evaluation tasks where the best performing CodeIt run finds

17

Under review as a conference paper at ICLR 2024

CodeIt Policy Mutation d1 Test Example

x1 = vmirror(I) x1 = vmirror(I)
x2 = hconcat(x1, I) x2 = hconcat(x1, I)
O = hconcat(x2, x2) x3 = hmirror(x2)

x4 = vconcat(x2, x3)
x5 = hconcat(x3, x3)
O = hmirror(x5)

x1 = compress(I) x1 = hmirror(I)
x2 = ofcolor(I, THREE) x2 = vmirror(I)
x3 = rot90(x1) x3 = ofcolor(I, THREE)
O = subgrid(x2, x3) x4 = subgrid(x3, x1)

x5 = subgrid(x3, x2)
x6 = palette(x4)
x7 = contained(ONE, x6)
O = branch(x7, x5, x4)

x1 = ofcolor(I, ONE) x1 = mostcolor(I)
x2 = subgrid(x1, I) x2 = objects(I, T, F, T)
O = cmirror(x2) x3 = replace(I, x1, THREE)

x4 = argmax(x2, size)
x5 = argmin(x2, size)
x6 = position(x4, x5)
x7 = first(x6)
x8 = last(x6)
x9 = subgrid(x4, x3)
x10 = hline(x5)
x11 = hmirror(x9)
x12 = vmirror(x9)
x13 = branch(x10, x11, x12)
x14 = branch(x10, x7, ZERO)
x15 = branch(x10, ZERO, x8)
x16 = asobject(x13)
x17 = matcher(first, THREE)
x18 = compose(flip, x17)
x19 = sfilter(x16, x18)
x20 = ulcorner(x4)
x21 = shape(x4)
x22 = astuple(x14, x15)
x23 = multiply(x21, x22)
x24 = add(x20, x23)
x25 = shift(x19, x24)
x26 = rot270(x11)
O = paint(x26, x25)

x1 = objects(I, F, F, T) x1 = objects(I, F, F, T)
x2 = argmax(x1, numcolors) x2 = leastcolor(I)
O = subgrid(x2, I) x3 = rbind(colorcount, x2)

x4 = argmax(x1, x3)
O = subgrid(x4, I)

Table 5: Selection of shortest programs for ARC evaluation tasks solved by CodeIt policy (left) and
the Mutation d1 baseline (right) for which CodeIt program is shorter.

18

Under review as a conference paper at ICLR 2024

Figure 10: Difference in number of tokens between
the shortest solution found per meta-iteration and
shortest solution found by the final meta-iteration
for best performing CodeIt run.

Figure 11: Grid size versus token count for the
ARC training data. The sparse grid representation
is typically shorter than the raw grid representation.

such programs; this leaves us 45 tasks. We observe that once CodeIt finds a solution, CodeIt often
continues to find both longer and shorter solutions in later meta-iterations. We pose that this gives the
potential for program refinement, however, since the priority does not incorporate length, there is not
explicit bias towards shorter solutions and so both longer and shorter solutions will be learned from.
We observe that out of the 45 tasks, the best performing CodeIt run finds shorter solutions over time
in 24 tasks as shown in Figure 10.

In Tables 6, we show a selection of examples where the best performing CodeIt run finds a longer
solution in an earlier meta-iteration and shorter solution in a later meta-iteration.

D ARC COMPETITIONS

Various unpublished work exist including submissions to ARC challenges as well as a Kaggle
competition. These competitions use a private leaderboard, not revealed to participants. This means
participants often use the public ARC evaluation set for training or DSL design purposes. For
example, the winner of Kaggle 2020 comments that searching in a DSL designed using the training
set resulted in low performance, and higher performance was reached after conditioning the DSL
on the evaluation tasks (Icecuber, 2020). This makes direct comparisons to methods evaluated on
the evaluation set difficult. For reference, we include a summary of competition results in Table 7,
however, note that this summary reports performance on the hidden test set, and that competition
results cannot not be directly compared to this work and the literature.

Competition Winner Method Perf.

Kaggle 2020 Icecuber (2020) Search in eval set DSL* 21%
Kaggle 2020 late Multiple (Kaggle Leaderboard, 2020) Ensemble previous entries* 30%
ARCathon 2022 Hodel (2023) Search in CodeIt DSL 6%
ARCathon 2023 Multiple (ARCathon Leaderboard, 2023) Unknown 30%

Table 7: Performance on Hidden Test Set for Various ARC Competition Winners. *Method conditions
on ARC evaluation set.

19

Under review as a conference paper at ICLR 2024

Early Shortest Solution Later Shortest Solution Test Example

x1 = ofcolor(I, EIGHT) x1 = replace(I, EIGHT, ZERO)
x2 = replace(I, EIGHT, ZERO) x2 = compress(x1)
x3 = compress(x2) O = downscale(x2, TWO)
O = downscale(x3, TWO)

x1 = objects(I, T, F, T) x1 = objects(I, T, F, T)
x2 = apply(delta, x1) x2 = apply(delta, x1)
x3 = mfilter(x2, square) x3 = mfilter(x2, square)
x4 = fill(I, FIVE, x3) x4 = fill(I, FIVE, x3)
x5 = objects(x4, F, F, T) x5 = objects(x4, F, F, T)
x6 = mapply(delta, x5) x6 = mapply(delta, x5)
x7 = fill(x4, SEVEN, x6) O = fill(x4, SEVEN, x6)
O = fill(x7, FIVE, x3)
x1 = objects(I, T, F, F) x1 = objects(I, T, F, T)
x2 = colorfilter(x1, ZERO) x2 = sizefilter(x1, ONE)
x3 = sizefilter(x2, ONE) x3 = difference(x1, x2)
x4 = difference(x2, x3) x4 = merge(x3)
x5 = merge(x4) O = fill(I, EIGHT, x4)
O = fill(I, EIGHT, x5)
x1 = vmirror(I) x1 = ofcolor(I, EIGHT)
x2 = fgpartition(I) x2 = box(x1)
x3 = compose(outbox, inbox) O = underfill(I, ONE, x2)
x4 = mapply(x3, x2)
O = underfill(I, ONE, x4)
x1 = lefthalf(I) x1 = lefthalf(I)
x2 = righthalf(I) x2 = righthalf(I)
x3 = ofcolor(x1, ZERO) x3 = cellwise(x1, x2, ONE)
x4 = ofcolor(x2, ZERO) O = replace(x3, SEVEN, ONE)
x5 = intersection(x3, x4)
x6 = shape(x1)
x7 = canvas(ONE, x6)
O = fill(x7, ZERO, x5)
x1 = lefthalf(I) x1 = lefthalf(I)
x2 = righthalf(I) x2 = righthalf(I)
x3 = ofcolor(x1, FOUR) x3 = cellwise(x1, x2, FOUR)
x4 = ofcolor(x2, FOUR) O = replace(x3, FOUR, EIGHT)
x5 = combine(x3, x4)
O = fill(x1, EIGHT, x5)
x1 = lefthalf(I) x1 = vmirror(I)
x2 = righthalf(I) x2 = lefthalf(I)
x3 = ofcolor(x1, ZERO) x3 = righthalf(I)
x4 = ofcolor(x2, ZERO) x4 = cellwise(x2, x3, TWO)
x5 = intersection(x3, x4) O = replace(x4, EIGHT, TWO)
x6 = shape(x1)
x7 = canvas(TWO, x6)
O = fill(x7, ZERO, x5)

Table 6: Selection of shortest solutions for ARC evaluation tasks solved by CodeIt policy where
shorter solutions are found over time.

20

	Introduction
	Method
	Design choices
	The Code Iteration Algorithm

	Experiments
	Setup
	Main results on ARC eval set
	Ablations

	Related work
	Abstraction and Reasoning Corpus (ARC)
	Expert Iteration
	Self Improving Large Language Models

	Discussion
	Conclusion
	Method and evaluation details
	CodeIt Algorithm
	Program and Task Mutation
	Task Representation
	ARC evaluation

	Experiment details
	Resources
	Hyperparameter tuning
	Hyperparamaters chosen on internal validation set
	Domain Specific Language

	Program analysis
	CodeIt compared with mutation baselines
	CodeIt over time

	ARC competitions

