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ABSTRACT

Siamese network architectures trained for self-supervised instance recognition can
learn powerful visual representations that are useful in various tasks. Many such
approaches work by simply maximizing the similarity between representations
of augmented images of the same object. In this paper, we further expand on
the success of these methods by studying an unusual training scheme for learn-
ing motion-informed representations. Our goal is to show that common Siamese
networks can effectively be trained on video sequences to disentangle attributes
related to pose and motion that are useful for video and non-video tasks, yet typ-
ically suppressed in usual training schemes. Unlike parallel efforts that focus
on introducing new image-space operators for data augmentation, we argue that
extending the augmentation strategy by using different frames of a video leads
to more powerful representations. To show the effectiveness of this approach, we
use the Objectron and UCF101 datasets to learn representations and evaluate them
on pose estimation, action recognition, and object re-identification. We show that
self-supervised learning using in-domain video sequences yields better results on
different task than fine-tuning pre-trained networks on still images. Furthermore,
we carefully validate our method against a number of baselines.

1 INTRODUCTION
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Figure 1: Examples of two view generation pro-
cesses used in self-supervised pre-training: (a)
strong data augmentations as proposed in [9] ap-
plied to a single image; (b) simpler augmenta-
tions applied to an object viewed across multi-
ple frames. Our experiments show that the latter
leads to more robust representations for pose- or
motion-sensitive tasks.

The recent leaps in unsupervised visual repre-
sentation learning are owed to multiple orthog-
onal efforts in improving self-supervision ob-
jectives, model architectures, and data transfor-
mation techniques. For the objectives, “pre-
text” tasks were previously used to make mod-
els understand image content through structural
manipulations (e.g. rotations [16] and crop-
based puzzles [31]). The limited complexity
of these tasks resulted in weak feature extrac-
tors that would fail to deliver on practical vision
tasks. Consequently, they have now been super-
seded by various forms of instance recognition
tasks where each image in a dataset is consid-
ered a unique instance. The contrasting of in-
stances across “views” obtained by data aug-
mentation (coined “contrastive learning”) has
been a very successful approach [32, 9, 7]. Be-
sides, advances in our understanding of model collapses when working with self-supervised ob-
jectives has relaxed the need for negative examples during training [19, 11, 7]. Today, various
self-supervised learning methods perform on-par with supervised ones on common vision bench-
marks. However, it is clear that data transformations have a major role in the successes and failures
of models. As observed in [9, 3], strong data augmentation that is not helpful in supervised learning
is quite useful for view generation in self-supervised learning. The augmentation operations that
are used essentially dictate which invariances are built into the model’s representations. Re-using
representations across a wide variety of tasks becomes problematic if the invariances required by the
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pre-training and downstream objectives are mismatched. A number of methods aim to avoid such
issues (e.g. [47]), but these come at an engineering, architectural, or efficiency cost.

In this paper, we take a step back from these major research axes to study alternative approaches
to generate views for instance recognition tasks in self-supervised learning. More specifically, we
explore the idea of leveraging frames taken from video sequences as views to learn meaningful rep-
resentations for a wider range of downstream tasks. We argue that video sequences provide examples
of natural geometrical and morphological transformations that cannot be adequately emulated using
data augmentation operations (see Figure 1 for a comparison). Our research shows that generating
views of an object instance taken from a video considerably improves performance on some down-
stream tasks compared to using artificial views from stills of the same object. We also argue that
this strategy is more appropriate when combined with recent self-supervised learning approaches
that do not rely on negative samples, as the use of these could lead to unwanted biases in the learned
representations. We conduct experiments by pre-training on two different video datasets and evalu-
ate the performance of the resulting models on pose estimation, object/video re-identification, and
action recognition tasks. We show that “natural” views obtained from videos are complementary to
traditional data augmentation and that they improve model performance across these tasks.

To summarize, our main contributions are: (1) we introduce a novel methodology for Siamese
self-supervised training on video frame pairs without the need for architecture or loss function
adaptation; (2) we show that our framework enables learning motion-informed representations that
meaningfully disentangle view, pose, or temporal attributes which are typically suppressed by self-
supervised training approaches; (3) we show the capabilities of our method when training on two
different datasets and evaluate on challenging computer vision tasks such as pose estimation, object
re-identification, and action recognition.

2 RELATED WORK

Representation learning is a long-standing research topic in which techniques are proposed to build
generic feature extractors for high-dimensional data [5]. These extractors should embed the data
in a way that allows high-level attributes (e.g. class labels) to be easily separated or predicted. In
practice, they should also be agnostic to the downstream tasks they will tackle, and they should
be trainable in an unsupervised fashion. The combination of all these goals is however somewhat
paradoxical. In consequence, recent progress has been empirically driven and mostly measured on
a small subset of object classification and detection benchmarks. Feature extractors pre-trained on
ImageNet rarely perform well when applied to less object- (or instance-) centric tasks such as scene
recognition or surface normal estimation [17]. Our goal is to study how view selection could help
widen the number of potential applications for pre-trained feature extractors.

Representation learning via instance recognition. As mentioned in the introduction, many re-
searchers have turned their focus towards instance recognition (or discrimination) tasks for self-
supervised learning. This kind of task dates back several years [14, 45] but found significant success
with the InfoNCE formulation of [32]. Their method uses an autoregressive model to predict em-
beddings of sequentially structured data across a set of positive and negative samples (or instances).
The underlying idea of “contrastive learning” on positive and negative pairs was then substantially
simplified in [9, 24]. Recently, alternative methods which are not so dependent on negative samples
were proposed [6, 19, 7, 11]. Many of these were also demonstrated to scale well on very large
datasets that are less curated than ImageNet [18, 10]. The principles behind the success of all these
methods are still the subject of active research [8, 44, 40]. The consensus seems to be that most
state-of-the-art unsupervised representation learning approaches rely on the pursuit of two objec-
tives: 1) the representations of different views obtained from a common instance must be aligned;
and 2) the set of all representations should be dispersed across the latent space. These two objectives
can be explicitly defined as part of the training loss or implicitly through the inductive bias of the
model architecture. For our own experiments, we opted to use the SimSiam framework [11] which
is a simple formulation that scales well across different training regimes.

On the importance of view generation. Popular representation learning approaches propose dif-
ferent formulations of the instance recognition task, but they all require a view generation process.
This process is typically derived from the one of [9]: strong data augmentation is used to make views
diverse and thus make the recognition task challenging. In turn, the learned representations become
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invariant to the set of operations that are used. As discussed in [39, 47, 34], the adopted invariances
can sometimes be detrimental to downstream task performance, e.g. rotations and flips may prevent
representations from being sensitive to pose variations. According to [39], views that are “good”
for downstream performance should only share information that is relevant to the downstream task,
which is incompatible with the fundamental goals of general-purpose feature extractors. Further-
more, [15, 29, 28, 33, 4] have noted that independent views obtained by processes that consider
the semantic proximity of instances result in much better downstream performance. This motivates
our investigation into the usefulness of video sequences for natural and semantically linked view
generation.

Representation learning using video sequences. Although numerous works have used video data
for representation learning, many of them sought to build feature extractors with 3D CNNs or RNNs
specifically for spatiotemporal data analysis [20, 48, 35, 12]. Here, we are more interested in the use
of the temporal structure of video sequences as a form of weak supervision for generic representation
learning. Early examples of this concept include the work of [42] which used a representation
prediction task as a way to understand and anticipate actions and object detection. The original
autoregressive formulation of the contrastive learning approach of [32] also falls into this category:
it is a good example of how temporal data can be used to learn good representation for non-temporal
tasks. The time-contrastive view sampling strategy of [37] can be easily combined with more recent
contrastive learning approaches, but it would still lead to representations that are more time- (and
thus action-) sensitive than pose- (or geometry-) sensitive. This is because of the dependency on
negative samples that must be extracted from the same video sequence as the positive samples.
More recently, [34] investigated temporal view sampling as a way to measure and compare these
sensitivity biases on object-centric datasets. For our own study, we investigate the impact of temporal
view sampling across a wider range of vision tasks, and using a baseline approach that does not
require negative view sampling. We argue that training on video frame pairs leads to the implicit
construction of an embedding space that is sensitive to additional object attributes, thus leading to
better performance on tasks that also require motion, pose, or geometry awareness.

3 METHODOLOGY

In this section, we describe the experimental protocol for the study of a video-based view generation
process on self-supervised learning approaches. More specifically, we give an overview of the self-
supervised learning framework that we use, the datasets that we pre-train on, the view preparation
process itself, and the benchmarks used for evaluation. Note that additional information about the
network architecture we used for our experiments, a link to our source code, and additional analysis
results are provided as supplementary material.

3.1 SELF-SUPERVISED LEARNING FRAMEWORK

We rely on SimSiam, the self-supervised learning framework of [11], as a baseline for representation
learning. SimSiam distils the idea of view-based instance recognition down to a simple Siamese net-
work architecture where back-propagation is only done on one branch. Many recent self-supervised
learning approaches (e.g. [9, 19, 24]) can be retroactively seen as derivations of SimSiam with mod-
ifications that increase sample efficiency or that replace its “stop-gradient” with another mechanism
to avoid collapses. We choose this particular framework because of its simplicity and because it
avoids the need for negative samples.

SimSiam can be described as follows: given an image x and a set of transformations T , we first
compute two views v1 = t1(x) and v2 = t2(x) where t1, t2 ∼ T . These views are then embedded
using a shared backbone encoder (noted f ) and projected using a shared MLP head (noted g) so that
we obtain feature vectors zi = g(f(vi)) for i ∈ {1, 2}. Next, a prediction MLP head denoted as h
is used on one vector to get a prediction of the other. The training loss is defined as the average of
the negative cosine similarities between the two pairs of predicted and real vectors, that is:

L(z1, z2) =
1

2
D(h(z1), z2) +

1

2
D(h(z2), z1), (1)

where D(a, b) measures the negative cosine similarity between a and b. The last important detail is
that the gradient of the second term passed to D is not computed during training, i.e. z2 is detached
from the computational graph when measuring its similarity to h(z1) (and vice versa for z1).
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3.2 VIEW PREPARATION USING VIDEO SEQUENCES

SimSiam, like many approaches before it, relies on a set of data augmentation operations T to pro-
duce multiple views from a single data point. Among typically used augmentations are affine trans-
formations (e.g. rotations, rescaled crops, distortions, flips) that drastically increase the diversity
of the views but also result in the suppression of geometric features in the learned representations.
We believe that “ideal” views should not force this kind of feature suppression and focus our study
on the impact of avoiding such affine transformations. Instead, we sample nearby frames in video
sequences under the assumption that variations in camera extrinsics create novel views that cannot
be equalled with data augmentation alone. On the other hand, if the camera does not move, changes
in the appearance of animated objects can still result in views that help understand the behavior of
these objects. The combination of both provides an ideal setting for robust representation learning.

With SimSiam, video-based view sampling is fairly straightforward: given an initial frame at time
t that we consider as the base image x1, we select a nearby frame x2 at time t + ∆, where the
time offset ∆ is a constant. Then, x1 and x2 are augmented into views v1 and v2 using a set of
“weak” transformations sampled from T ′, which is composed of pixel-wise operations (e.g. color
jittering, blurring) and distortion-free cropping. Since SimSiam does not require negative views for
its objective, we do not have to fetch distant frames from the same video (or random frames from
other videos) under the assumption that their semantic link is weaker. This is quite advantageous
in reality because it could lead to the suppression of distant temporal relationships between frames
which are useful for some tasks (e.g. action recognition). Using positive views from nearby frames
also means that we do not need to track the exact movement of object instances, as the encoder
should be robust to partial matches between same-position crops. Our experiments in Section 4.2
assess this robustness by evaluating pre-trained models on re-identification tasks.

3.3 STUDIED VIDEO DATASETS

Representation learning is a data-hungry pursuit, especially when training without supervision.
State-of-the-art approaches often rely on the 1M+ images of ImageNet [13], and sometimes even
100 to 1000 times that amount [18, 10]. Interestingly, self-supervised methods can lead to good rep-
resentations with very little raw data as long as diversified views can be generated [3]. This supports
our idea that there may be alternatives to the use of large image datasets. For our experiments, we
focus on contrasting the performance of baselines on new tasks and pre-train using video datasets
that contain roughly 14,000 clips each. We first use an object-centric dataset that can be tailored
into a distribution fairly similar to ImageNet’s (Objectron, [2]), and a second not-so-object-centric
dataset focused on action recognition (UCF101, [38]).

Objectron. This dataset contains 14,819 videos annotated with 3D bounding boxes over unique
objects. These objects are split into nine different categories (bikes, books, bottles, cameras, cereal
boxes, chairs, cups, laptops, and shoes) and filmed using mobile phones in an object-centric fashion.
The dataset is primarily meant for 3D object detection and localization tasks. The annotations are
manually fitted on each object and automatically tracked across videos to ensure every frame has
a 3D bounding box. The videos are 10 seconds long on average and mostly feature wide orbital
movement around a single focal object. Given proper crops of these objects, the distribution of the
frames is fairly similar to the distribution of the corresponding objects in ImageNet. We obtain such
crops by simply using the 2D projections of the object’s 3D bounding box vertices. In practice,
similar results could be obtained by training a category-wise object detector or a salient region
proposal network, but we chose to eliminate that source of noise from our experiments to focus on
the learned representations. Finally, although the object category sizes are imbalanced, we prefer
training on the entire dataset at once instead of training a separate model on each category (as done
in [2]). This way, the downstream performance of our model will not be unduly influenced by the
knowledge of the imbalanced classes or by easily learnable geometric priors.

UCF101. This dataset contains 13,320 videos annotated with 101 action labels. In contrast with
older action recognition datasets, UCF101 proposes a large diversity in terms of video content,
recording settings, and action recognition challenges. The action labels are grouped into 5 types,
namely: human-object interactions, body-motion only, human-human interaction, playing musi-
cal instruments, and sports. Compared to Objectron, it is much less object-centric but much more
human-centric, as all actions are related to human activities. The action clips have an average dura-
tion of 7 seconds, and we use entire frames as views without cropping.
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3.4 EVALUATION BENCHMARKS

Our models are pre-trained without supervision on Objectron or UCF101 and then evaluated for the
quality of their learned representations on several “downstream” tasks. These are described next.

Zero-shot pose estimation. We first evaluate the quality of the representations learned on video data
by using the Objectron annotations for pose estimation. Given a single crop of a unique (and never-
seen-before) object from the test set as a query, we use a pre-trained model to compute an embedding
of this crop, search for its nearest neighbor in the training set, and fit the bounding box associated to
this result back into the query image. The quality of the representations in terms of pose-awareness
is then determined by proxy using the 3D bounding box overlap metrics as proposed in [2]. We
consider this approach to be zero-shot since the instance and category of the query are not known
beforehand. In our case, the pre-trained model is never actually trained with a pose-related objective
(i.e. the encoder remains “frozen” from pre-training to the evaluation phase). This is compatible
with the standard evaluation procedure used in most self-supervised learning benchmarks [9], and it
allows us to compare pre-training strategies without fine-tuning.

Besides, note that the zero-shot formulation of the Objectron benchmark is a 9 degrees-of-freedom
(DoF) monocular pose estimation problem. Other popular pose estimation benchmarks (e.g. [25,
26, 46]) focus on the easier 6 DoF problem where instances are the same in the training and test sets.
Full pose estimation pipelines for the 9-DoF problem (such as the two proposed in [2]) require the
training of a 2D keypoint regression module on top of a backbone. They then rely on object category-
aware scale estimates to properly lift the regressed 2D keypoints into 3D bounding boxes. Our zero-
shot pose estimation approach allows us to to ignore these extra steps and focus on evaluating the
quality of the representations directly. For this, we propose a simple nearest neighbor bounding box
fitting algorithm, described next.

Given a crop of a query object and its nearest match in the training set (i.e. the “reference” object),
we want to transpose the 3D bounding box of the reference frame back to the query frame. To do
so, we use the camera intrinsics matrix and the ground plane estimates provided in Objectron. We
first calculate the 3D rotation matrix between the query and reference plane normals. This matrix
is used to roughly place the reference bounding box in the query camera space. Then, we “snap”
the bounding box to the query ground plane while aligning the 3D reference object center to its
estimated 2D location in the query image. Finally, we repeat the snapping step n = 3 times while
readjusting the bounding box scale to get a better result. For more information on this algorithm, we
refer readers to our implementation which is linked in the supplementary material.

Re-identification and recognition. As a secondary set of benchmark tasks, we evaluate how well
the representations learned using video data can be used for the re-identification of instances and the
recognition of categories in wide datasets. Such capabilities are especially useful for downstream
tasks related to classification and tracking. The pose estimation task does not require that embed-
dings contain category- or instance-wise features in order to achieve good performance. Simply
put, a model that closely embeds all objects with similar shapes, sizes, and orientations would get
good results on our pose estimation benchmark, but not necessarily on instance re-identification or
category recognition tasks. If our pre-trained models simultaneously perform well on all these tasks,
it means that they did not significantly suppress any particular sets of features.

We first assess object re-identification performance using Objectron. We embed all object crops that
are part of our validation and test sets and then use cosine similarity to find the nearest neighbors
of crops from the test set only. For the evaluation, we compute the Average Precision (AP) using
the precision-recall curve for each frame and report the mean; this is referred to as the “Re-ID
mAP“ in our tables. Moreover, we verify that the object category of the picked nearest neighbors
matches the object category of the query object. We report the result using average accuracy across
all categories (noted as “Classif. Acc.”). Finally, we assess action recognition performance on
UCF101 using a nearest neighbor retrieval approach. In this case, we follow the protocol proposed
in prior works [21, 12] where the performance is the top-k accuracy for k = {1, 5, 10, 20} nearest
neighbors. This protocol also avoids having to train a classifier on top of our frozen backbones and
instead directly evaluates the usefulness of the frame embeddings.

3.5 IMPLEMENTATION DETAILS

To keep a fairly balanced ratio between the number of frames of the same object and the number
of videos of unique objects in both of our datasets, we subsample each video to roughly 5 frames
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Figure 2: Left: close-up of a t-SNE plot showing the bifurcation of partially co-located trajectories;
in the red region, all frames correspond to unique objects (chairs) with roughly the same pose. The
frames of separate videos are shown in a different color. Right: two examples of PCA projections
of the embeddings of video frame sequences. The color of each point indicates its position in the
video sequence (on the viridis scale), which shows the smooth nature of the embedding space.

per second. Then, we either set the time offset ∆ to its minimum possible value (200 ms), meaning
that consecutive frames in the subsampled video can directly form a positive view pair, or uniformly
sample frame pairs from the same sequence.

Frame crops are augmented using independent transforms as suggested in [20]. This helps prevent
our encoder from simply learning to estimate pixel-level feature flow instead of high-level motion.
However, we randomly apply synchronized (video-level) horizontal flips to all views to further in-
crease the diversity of our data. The remaining transformations that are used are a combination of
grayscale conversion, color jitter, and gaussian blur, all with parameters similar to the ones proposed
in [9].

For Objectron, we use a 90%-10% random split along video sequences for training and validation,
and test on the proposed withheld set of videos. As we are using the initial release of the public
dataset, we had to preprocess the data to eliminate numerous instances of erroneous annotations and
blurred input frames. This reduced the original dataset size by roughly 15%.

For SimSiam, our default model configuration relies on a ResNet-50 backbone [23], which is fairly
standard across the self-supervised learning literature. The capability of this backbone to scale well
with more parameters and larger datasets is already well studied [9, 24, 11, 19, 7, 10]. Therefore,
we focus our experiments on smaller and faster training regimes that are also better suited to our
compute limitations. We rely on the hyperparameter setup of [11] and train using a 10-epoch “warm-
up” period followed by cosine annealing over 15 more epochs for Objectron and 90 more epochs
for UCF101, which both take roughly the same amount of time (24 hours). Based on preliminary
experiments, this training regime results in models that show good baseline performance across all
our benchmark tasks.

4 EXPERIMENTS AND RESULTS

In this section we report experimental results that demonstrate the capabilities of motion-informed
representations under three different aspects. First, we examine whether our approach leads to
representations that encode useful information for pose estimation. Second, we examine whether
these representations can still solve other computer vision tasks with good performance. Lastly, we
evaluate the impact of using negative samples with our proposed view generation process.

4.1 QUALITATIVE ANALYSIS

We start off with a high-level analysis of our learned representations when using nearby frames as
view pairs. In Figure 2, we show how video frames are projected into an intriguingly structured space
by a model trained using our proposed methodology. On the left, we can observe that sequences of
frames with objects of the same category converge when the object pose becomes more similar. On
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Figure 3: Nearest neighbors of objects found in the validation set where the leftmost crop in each
row shows the query. Top: nearest neighbors including frames from the query video; note that two
of the results are outliers as they originate from a different yet similar video (shown with a different
border color). Bottom: nearest neighbors across frames of other videos (each with a unique border
color); note the diversity in background but the consistency in object poses.

Figure 4: Examples of pose estimation for chairs (left) and shoes (right): our method enables us to
obtain similar bounding boxes for pose estimation for each query frame. Furthermore, the fetched
nearest neighbors also show similar attributes (e.g. shape) compared to the query frames. The
ground truth and obtained 3D bounding boxes are shown as yellow line overlays.

the right, when focusing on a handful of videos in the same projection, we observe that consecutive
frames are co-located and form coherent trajectories. If camera paths diverge, the trajectories bifur-
cate in the embedding space. This indicates that the trained embeddings can meaningfully encode
pose variations.

Next, we visualize the relationship between frames across videos using the learned embedding space.
To do so, we embed the entire validation dataset and find the nearest neighbors for individually
sampled frames that are used as queries. When a query frame comes from the validation set itself,
the nearest neighbors are almost always other frames from the same video (Figure 3, top row).
If we omit results from the query video, we observe that the pose and appearance of all the new
nearest neighbors are similar to the query, regardless of the background (Figure 3, bottom row).
This matching behavior translates very well to the pose estimation task, as bounding boxes of similar
shape and orientation can often be found and fitted to queries despite large appearance variations;
some examples are shown in Figure 4.

4.2 QUANTITATIVE RESULTS

Zero-shot pose estimation. We report in Table 1 the performance of embedding strategies combined
with our bounding box matching and alignment algorithm for zero-shot pose estimation. For a com-
parison with the state-of-the-art, we provide the evaluation results of two recent supervised learning
methods: MobilePose [27], denoted as “Objectron Baseline (1-stage)”, and an EfficientNet-based
keypoint regression approach, denoted as “Objectron Baseline (2-stage)”. Both are detailed in [2].
Furthermore, to provide an idea of the lower bound performance on this task with our alignment
algorithm, we apply it to randomly selected bounding boxes from the training set (“Random fit”),
and to randomly selected bounding boxes from the same object category as the query (“Random
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Table 1: 3D mAP @ 0.5 IoU results for zero-shot pose estimation on Objectron. Our results show
that our unsupervised learning approach competes with supervised learning baselines [2].

Method bike book bottle cam. box chair cup lapt. shoe overall
Random fit 0.06 0.04 0.04 0.07 0.02 0.10 0.09 0.07 0.05 0.06
Random in-category fit 0.15 0.23 0.26 0.26 0.13 0.46 0.43 0.26 0.11 0.25
Objectron Baseline (1-stage) 0.34 0.18 0.54 0.47 0.55 0.71 0.37 0.55 0.42 0.57
Objectron Baseline (2-stage) 0.61 0.52 0.57 0.80 0.62 0.85 0.54 0.67 0.66 0.65
ImageNet embeddings 0.46 0.45 0.55 0.74 0.51 0.77 0.72 0.66 0.49 0.59
Our embeddings 0.65 0.54 0.60 0.82 0.68 0.78 0.72 0.73 0.66 0.69
Our embed. (10% of labels) 0.48 0.46 0.54 0.73 0.48 0.70 0.65 0.66 0.57 0.58
Our embed. (1% of labels) 0.23 0.32 0.47 0.46 0.39 0.61 0.55 0.46 0.30 0.47

in-category fit”). Our results show that our proposed self-supervised training approach outperforms
the baselines and state-of-the-art methods in several categories. Given the large differences in model
sizes and training regimes with the supervised methods, these results indicate that motion-sensitive
representations provide a significant advantage for pose estimation. We remind readers however that
we use “perfect” object detection results derived from bounding box annotations to get our crops,
and the performance in practice would be slightly lower when considering object detection noise.

As a quick validation, we evaluated the impact of using smaller sets of usable embeddings: when
only 10% of the training video sequences are used for nearest neighbor lookup, the overall per-
formance of our approach is comparable to the 1-stage baseline. Furthermore, when we reduce the
number of used sequences to 1%, we still outperform the 1 stage baseline on some object categories.
Besides, note that the 2-stage baseline of [2] is actually composed of 9 models in total, i.e. one for
each object category. These models were trained in a supervised fashion for a total of 864 GPU-
hours on a Tesla V100 [2]. In comparison, our proposed embeddings were obtained after training a
single self-supervised model for only 24 GPU-hours on a RTX 2080 Ti.

Finally, we also report in Table 1 how embeddings obtained using a model pre-trained on ImageNet
perform when combined with our bounding box matching and alignment procedure. In short, the
performance with these embeddings is decent, i.e. it slightly surpasses the 1-stage baseline in terms
of overall score. However, the 1-stage baseline is also outperformed in the cup and book categories
by the random in-category bounding box fitting approach. This means that our proposed bounding
box alignment strategy is quite strong itself. Therefore, the most valuable comparisons we present in
Table 1 are between the ImageNet embeddings and our proposed “motion-informed” embeddings,
where the latter show a strong upper hand.
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Figure 5: PR curve for our baseline model
for object re-identification. Performance is
best on categories that have distinctive fea-
tures across their instances.

Re-identification and recognition on Objectron.
Next, we present the evaluation results for classi-
fication and re-identification tasks on Objectron in
Table 2. We can observe that in the absence of
strong data augmentation (“Same frame pairs”), in
comparison with a standard self-supervised train-
ing methodology (i.e. [9]), we get a marginal im-
provement in pose estimation accuracy (3D mAP),
and a notable decrease in classification and re-
identification performance. On the other hand, using
pairs across different frames (i.e. “Nearby” which
corresponds to sampling with ∆ = 200 ms, and
“Distant” which corresponds to uniform sampling
in the entire video), we get large improvements in
either pose or re-identification performance while
maintaining high classification accuracy. This shows
that using multiple natural views per video sequence
is beneficial to train high-performing models. The combination of these results indicates that
different-frame-pair embeddings can be used effectively across multiple tasks; using nearby frame
pairs leads to more pose-aware embeddings, and using distant frame pairs leads to more semanti-
cally robust ones. Besides, we note that for object re-identification, the performance is lowest in
categories that show less diversity across instances (e.g. cameras); this is illustrated in Figure 5.

Re-identification and recognition on UCF101. We report the action recognition performance on
UCF101 based on the nearest neighbor retrieval protocol in Table 3. For comparison purposes,
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we provide the results of four state-of-the-art self-supervised learning methods [48, 30, 43, 22]
that were specifically designed to learn video representations. Here, we can see that simply using
non-temporal embeddings learned using SimSiam on individual frames (“Single frame”) achieves
good performance. Nonetheless, our proposed motion-informed embeddings (“Nearby frame pairs”)
surpass the classic embeddings when using more than one neighbor. This shows that our embeddings
are not only sensitive to camera pose variations, but also to the motion of objects in a scene.

Impact of using negative pairs. To assess the impact of using negative view pairs in the pre-
training objective, we evaluated two competing approaches on Objectron; these are shown in Table 2.
First, we implemented the time contrastive sampling approach of [37] where negative samples are
distant frames from the same video sequence and where the cosine similarity objective of SimSiam is
replaced by a triplet loss. This results in worse overall performance than our method, which indicates
that sampling frames within a video sequence as negatives results in relevant feature suppression
or that the triplet loss is significantly outperformed by the cosine similarity objective. The second
approach we investigate is the Normalized Temperature Cross-Entropy (“NT-Xent”) loss used in [9].
In this case, negative samples are defined as other view embeddings present in the same minibatch.
The results indicate a good average performance across all metrics, but not ideal performance for
pose estimation or re-identification compared to using motion-informed embeddings. This shows
that some level of feature suppression happens across all tasks when using negative samples.

Table 2: Classification, pose estimation, and re-
identification results for different setups.

Method Classif. Acc. 3D mAP Re-ID mAP
Nearby frame pairs 95.70% 0.69 0.53
Distant frame pairs 94.84% 0.58 0.85
Same frame pairs 91.19% 0.65 0.26
NT-Xent [9] 96.36% 0.64 0.63
TCN [37] 78.20% 0.59 0.19
ImageNet embeddings 96.06% 0.59 0.73
Random embeddings 30.49% 0.17 0.03

Table 3: Action recognition top-k retrieval ac-
curacy on UCF101 for neighbor counts.

Method R@1 R@5 R@10 R@20
VCOP [48] 10.7 25.9 35.4 47.3
VCP [30] 19.9 33.7 42.0 50.5
Pace Pred [43] 25.6 42.7 51.3 61.3
CoCLR-2Stream [22] 55.9 70.8 76.9 82.5
Nearby frame pairs 41.4 57.3 62.1 66.2
Single frame 41.6 57.1 61.7 65.2

5 CONCLUSION

We have introduced a novel methodology for the self-supervised learning of motion-informed rep-
resentations based on the temporal structure of videos. Specifically, we have shown that a com-
mon Siamese network can effectively and efficiently be trained on frame pairs to disentangle view-
dependent object attributes without suppressing other features. We employ a training strategy that
maximizes the similarity between views of the same object, which is standard in the self-supervision
literature, but we do so by using views of the same object taken at different times in a video.

Motion-informed representations can be used to serve as a foundation for enabling a variety of
challenging computer vision tasks where it is important to disentangle camera and object motion. To
showcase the capabilities of our framework, we have trained numerous models on the Objectron and
UCF101 datasets and have evaluated them on pose estimation and action recognition tasks. Overall,
we observe that using cautious data preparation in conjunction with common Siamese networks
allows us to train the networks from scratch more efficiently than previous supervised methods.
Consequently, our approach may need fewer training instances due to better data utilization on
video datasets.

There are a number of interesting avenues for future works. First, we used what would be considered
“large-scale” video datasets for our experiments, but these are still small in comparison to the size
and diversity found in large image datasets such as ImageNet. We believe applying the same method-
ology to much larger video datasets such as YouTube-8M [1] would lead to even more robust and
generic representations. Second, our evaluation focused on tasks relevant to the pre-training video
datasets, but it would be interesting to evaluate the learned representations on popular benchmarks
such as VTAB [49], such as done in [36, 41]. We however expect that our already-trained models
would likely underperform on such benchmarks due to the limited diversity of their pre-training
datasets, hinting once again that pre-training on larger video datasets is needed. Finally, it would
be interesting to confirm whether our training methodology still leads to pose, geometry and motion
sensitive representations when applied on datasets of videos that are not as object- or action-centric
as Objectron and UCF101.
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6 SUPPLEMENTARY MATERIAL

In the following sections, we provide supplemental detail on the network architecture used in our ex-
periments, additional qualitative and quantitative evaluation results for both UCF101 and Objectron,
and a discussion on failure cases in pose estimation.

Due to time constraints, we could not prepare a self-contained and anonymized version of the code
used in our experiments. However, this code is already publicly available, and we intend on adding
a link to the repository here in the final version of the paper.

6.1 NETWORK ARCHITECTURE

We show in Figure 6 the architecture used in our experiments. In (a), we show how we adapt the
SimSiam architecture to train on view pairs from object-centric videos. The projector and predictor
networks of our framework are shown in (b) and (c), respectively. We use 2048-dimension embed-
dings and a bottleneck structure for the predictor. These are in line with the original description in
SimSiam but they differ from popular implementations such as PyTorch Lightning’s.1 Note also that
in our implementation the predictor learning rate is fixed throughout training while the encoder and
projector are trained with the learning rate schedule described in the main paper.
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Figure 6: Our network architecture (a) is inspired by the Siamese framework of [9]. We sam-
ple frames from a video and use these as views to learn good representations by maximizing the
similarity between their corresponding embeddings. The use of video frames makes the learned
representations more motion- and geometry-aware which enables their use in tasks such as pose
estimation and action recognition. The setups for the projector and predictor blocks are shown in
(b) and (c), respectively.

6.2 ADDITIONAL RESULTS

Qualitative Evaluation Results on Objectron. Our preliminary experiments on pose estimation
using the Objectron dataset showed that commonly used pre-trained models are insensitive to pose
variations due to feature suppression. In other words, in contrast with the structured space presented
in Figure 2, models pre-trained on ImageNet will collapse different frame embeddings across a video
into a single location. Our methodology instead results in an embedding structure that evokes the
motion of the camera in the original video sequence. We provide a video that shows this effect along
with this document.2

The embeddings produced by SimSiam with our proposed training approach also seem to be fairly
robust to background clutter and appearance variations while remaining sensitive to object poses.
We illustrate this in Figure 7 for a variety of videos. There, for different frames of a given video
(shown on the top row of each double-row segment), we find the nearest neighboring frame in the
validation set based on embedding similarity. The sequence of corresponding results is shown in the
bottom row of each segment. We can observe that although the nearest correspondences sometimes
vary in appearance and absolute location in image space, the object orientations (shown using the
3D bounding boxes in green) are almost always comparable. We provide high-resolution videos that
show these frame-to-frame matching results along with this document.3

Quantitative Evaluation Results on UCF101. Next, we provide in Table 4 additional results on the
UCF101 action recognition benchmark for different model pre-training strategies. The results for the

1https://github.com/PyTorchLightning/lightning-bolts/ as of version 0.3.1.
2The video is named pca 3d trajectory video.mp4.
3One result video is provided for each Objectron category in the frame matching folder.
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Figure 7: Overview of frame-to-frame nearest neighbor matching results obtained with the Objec-
tron validation set for the bike, book, bottle, camera, cereal box, chair, laptop and shoe categories
of Objectron. Each double-row segment has a corresponding high-resolution video provided with
this document. Top shows the query frames (white bounding box is ground truth, green and red
bounding boxes are the reprojected 3D box from the nearest neighbor). Bottom shows the result
frames and the associated 3D bounding boxes in green. The full resolution version of the images in
this figure are also provided with this document (as part of the frame matching folder).

“Nearby frame pairs” and “Single frame” approaches are already discussed in the main paper. Here,
the “Distant frame pairs” approach is added; interestingly, it shows significantly better performance
in the single-neighbor retrieval regime (R@1), but much worse performance under other regimes.
We also provide the evaluation results when using a model pre-trained on ImageNet in a supervised
fashion (“ImageNet embeddings”): in this case, the results far outperform those of self-supervised
training strategies. This shows that UCF101 pre-training can be easily eclipsed by supervised pre-
training on an image dataset that contains object labels relevant to the UCF101 actions. This provides
an interesting upper bound for single-frame representations. Finally, we provide a lower bound on
this benchmark based on the embeddings of a randomly initialized model (“Random embeddings”).

Note that we use majority voting to compare sequences of image embeddings and avoid the need
to reduce the dimensionality of sequences with a temporal pooling operation. This allows to better
compute the point-to-point similarity of trajectories in embedding space. For each image embedding
of the query sequence, we search for the k-nearest neighbours in the training set and aggregate them.
The relative frequencies of the classes associated with the aggregated k-nearest neighbours are then
computed. If at least one of the top-k most frequent classes matches the class of the query sentence,
we consider it a match.

Impact of Data Augmentation Strength. We also study the impact of varying the strength of the
data augmentation operations across different view generation strategies on the Objectron dataset.
We split our experiments into three main categories: the first category has views generated from a
single frame (“Same”), the second has views from nearby frames (“Nearby”), and the last has views
from frames uniformly sampled from the video (“Distant”). Then, we use four different sets of
data augmentation pipelines across all categories: pixel-only operations such as blur and color jitter
(“PX”), ultra-light cropping (<20% rescale without aspect ratio changes) combined with pixel-only
operations (“ULC+PX”), light cropping (<40% rescale without aspect ratio changes) combined with
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Table 4: UCF-101 nearest neighbor video retrieval performance using different pairing methods,
and using backbones pre-trained on other datasets.

Method R@1 R@5 R@10 R@20
Nearby frame pairs 41.4 57.3 62.1 66.2
Distant frame pairs 42.6 54.9 58.8 61.2
Single frame 41.6 57.1 61.7 65.2
Random embeddings 18.1 32.8 41.1 50.1
ImageNet embeddings 66.8 85.5 90.1 93.2

Table 5: Results for different data augmentation and view selection configurations. “PX” stands for
pixel-only augmentations. “ULC” is ultra light cropping, “LC” is light cropping, and “Full” is the
default pipeline with strong augmentation.

Method Classif.
Acc.

Re-ID
mAP 3D mAP

Same - PX 44.2 0.02 0.29
Same - ULC + PX 83.1 0.24 0.59
Same - LC + PX 91.2 0.26 0.65
Same - Full 96.8 0.59 0.67
Nearby - PX 26.6 0.00 0.19
Nearby - ULC + PX 93.8 0.55 0.65
Nearby - LC + PX 95.7 0.53 0.69
Nearby - Full 94.5 0.71 0.66
Distant - PX 25.9 0.00 0.18
Distant - ULC + PX 93.8 0.22 0.58
Distant - LC + PX 91.4 0.82 0.60
Distant - Full 94.8 0.85 0.58

pixel-only operations (“LC+PX”), and strong augmentations (“Full”). Note that “Full” corresponds
to the original setup proposed in SimCLR and used in the original version of SimSiam. We show
the evaluation results in Table 5.

We can first observe in this table that all the pixel-only augmentation pipelines lead to bad represen-
tations (and thus bad downstream performance) due to the discovery of edge-level shortcuts during
pre-training. This happens even with the “distant” strategy which suggests that the diversity of views
itself is not sufficient to learn good representations. The use of random cropping at a large enough
scale is important and seems to be a predictor of the overall performance. Besides, we can observe
that generating views from frame pairs reduces the need for data augmentation to obtain similar
performance levels.

6.3 FAILURE CASES

Finally, we highlight cases where our pose estimation approach fails. In practice, about 69% of the
3D bounding boxes predicted using our zero-shot pipeline are within the 50% 3D IoU threshold of
the ground-truth annotations of Objectron. The remainder are failure cases that fall into one of the
two major categories described below.

Thickness and ground plane related failures. These failures happen when the predicted object
orientation and size are correct but its thickness is incorrect. Such cases occur frequently with small
books and closed laptops. They are sometimes also caused by bad ground plane estimations in the
dataset that result in bounding box fitting errors. See Figure 8 for a few examples.

Optical illusions. These failures are related to the image content itself. For instance, in Figure 9, lo-
cal features in the book’s cover pattern suggest a 45° orientation. This leads to bad nearest neighbor
matches (shown in the bottom row). In Figure 10, the grid pattern in the chair seems to dominate
the embedding more than the pose information. In this case, the query frame is the first image on
the left, and several nearest neighbors are shown consecutively after it.
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Figure 8: Examples of object thickness estimation failures combined with ground plane estimation
failures. Query frames are shown in the top row, nearest neighbors in the bottom row.

Figure 9: Example of degraded book pose estimation. The orientation of the pattern on the book
seems to confuse the pose estimation. Query frames are shown in the top row, nearest neighbors in
the bottom row.

Figure 10: Example of failing nearest neighbor retrieval for a chair with a dot pattern (left). The
other crops correspond to nearest neighbors across unique videos.
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