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Abstract

In many real-world systems, such as adaptive robotics, achieving a single, optimised1

solution may be insufficient. Instead, a diverse set of high-performing solutions is2

often required to adapt to varying contexts and requirements. This is the realm of3

Quality-Diversity (QD), which aims to discover a collection of high-performing4

solutions, each with their own unique characteristics. QD methods have recently5

seen success in many domains, including robotics, where they have been used to6

discover damage-adaptive locomotion controllers. However, most existing work7

has focused on single-agent settings, despite many tasks of interest being multi-8

agent. To this end, we introduce Mix-ME, a novel multi-agent variant of the popular9

MAP-Elites algorithm that forms new solutions using a crossover-like operator by10

mixing together agents from different teams. We evaluate the proposed methods11

on a variety of partially observable continuous control tasks. Our evaluation shows12

that these multi-agent variants obtained by Mix-ME not only compete with single-13

agent baselines but also often outperform them in multi-agent settings under partial14

observability.15

1 Introduction16

The conventional paradigm of optimisation has largely focused on finding a single, optimal solution17

that performs exceptionally well on a given problem. However, for many real-world tasks, there18

is need for solutions that exhibit varied behaviour across different contexts or dimensions. In such19

scenarios, the concept of quality-diversity [QD, 14, 8] comes into play.20

QD methods aim to discover a diverse set of high-performing solutions that span different dimensions21

of a problem space. Unlike traditional optimisation methods that converge to a single optimal22

solution, QD methods produce a population of solutions that are both high-quality and diverse. This is23

particularly useful in problems where a single “best” solution is either not sufficient or not meaningful.24

For example, in robotic locomotion, there is need for strategies that adapt to malfunctions. For a robot25

with a damaged limb, the optimal movement pattern would differ significantly from its undamaged26

state. Therefore, discovering a collection of diverse gaits ensures robustness against unforeseen27

damages [9, 6].28

The realm of multi-agent systems (MAS) presents a fertile ground for the application of QD methods.29

In many real-world systems, multiple agents interact in a shared environment to achieve a common30

goal. These systems are often partially observable, meaning that each agent has a limited view31

of the full state of the environment. For instance, in robotic control, there might be latency or32

bandwidth constraints [24, 22] that limit the amount of information that can be shared between33

different parts of the robot. In such cases, each body part needs to act intelligently based on its own34

partial information [28].35

Despite clear benefits, QD has not been extensively applied to multi-agent learning. Most mainstream36

works in the field of multi-agent systems rely on traditional optimisation methods that do not capture37
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the essence of diversity across solutions. Furthermore, those works that do train for diversity38

are usually based on mutual information, making it hard to specify the type of diversity induced.39

Applications of MAP-Elites [19], a popular QD algorithm, to multi-agent problems have been40

limited to either rule-based agents [3] or environments providing dense agent-specific rewards [11],41

presenting a significant gap in the literature.42

This paper addresses this gap by exploring how MAP-Elites can be extended to cooperative multi-43

agent problems, specifically in partially observable continuous control tasks. We propose Mix-ME,44

a novel extension of the MAP-Elites algorithm to the multi-agent setting. Mix-ME maintains a set45

of solutions and progressively refines them by generating new ones through random mutation and a46

crossover mechanism that mixes together agents from different teams.47

We rigorously compare Mix-ME to a naive multi-agent baseline and against single-agent policies48

through empirical evaluation, including a sensitivity analysis on policy network size as well as gener-49

alisation experiments. This comparative analysis provides insight into the strengths and weaknesses50

of each approach, adding to our understanding of how open-ended learning methods can be effectively51

applied in various multi-agent settings [26].52

2 Related Work53

Single-Agent QD Quality-Diversity (QD) methods have been successfully applied to a variety of54

single-agent continuous control tasks. Much of this stems from the work of Cully et al. [9], who55

introduced the MAP-Elites algorithm and demonstrated its effectiveness for damage adaptation in56

robotic locomotion. Since then, MAP-Elites has seen widespread use in the robotics community, with57

QDax, a recent JAX-based library of QD algorithms by Lim et al. [16], enabling massive speedup58

on acceleration hardware. They also show that MAP-Elites can be parallelised by batching multiple59

grid updates in a single step, without sacrificing performance. This has brought training times down60

from days to minutes, making works such as this possible on a reasonable time scale. More recently,61

Chalumeau et al. [4] have shown that MAP-Elites and its derivatives are competitive with deep RL62

diversity algorithms in terms of fitness and skill discovery, despite the former being simpler and less63

sample-efficient. The authors tested their methods on a variety of continuous control tasks, including64

the unidirectional Ant, Walker2d and HalfCheetah tasks, which we also use in our experiments.65

The work of Allard et al. [1] bears some resemblance to ours, as they also decompose the robot’s66

movement into separate limbs movements. Using MAP-Elites, they compute a hierarchical structure67

of grids, where each grid is responsible for a different level of abstraction. This parallels our approach68

of decomposing the robot into multiple controllers. However, they use a centralised algorithm to69

determine the next action and the individual leg controllers do not have policies of their own, but70

execute a sequence of predefined movements.71

Multi-Agent QD Despite the recent success of QD methods in single-agent settings, there is limited72

work on applying them to multi-agent problems. Some work has been done on ad-hoc teamwork73

and zero-shot coordination (ZSC) in the game of Hanabi: Canaan et al. [3] use MAP-Elites with74

self-play to train a collection of agents, however, their agents are rule-based; ADVERSITY by75

Cui et al. [7] is a RL method to produce diverse teams of agents for turn-based games with public76

actions; and TrajeDi by Lupu et al. [17] produces diverse and robust policies for ZSC, based on a77

generalised Jensen-Shannon Divergence. Ridge Rider, proposed by Parker-Holder et al. [23], is a78

novel method for exploring the loss landscape by following the eigenvectors of the Hessian. They79

achieve diverse solutions effective for ZSC in a simple coordination game. Another work, by Li80

et al. [15], achieves diversity between agents by maximising mutual information between agents’81

identities and trajectories, improving on previous Google Research Football [13] and StarCraft II82

[25] benchmarks. Unsupervised environment design (UED) is yet another approach for achieving83

diversity, as shown by Samvelyan et al. [26], who use UED to design a curriculum for training a84

population of diverse agents for robustness in zero-sum games. Finally, a more QD-like algorithm,85

coupled with PPO, is used by Dixit and Tumer [11] to train a team of agents in a cooperative 2D86

exploration game. Their algorithm shows promising results, however, it requires dense agent-specific87

rewards, which are not always available in real-world scenarios.88
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3 Background89

3.1 Quality-Diversity90

Quality-diversity [QD, 14, 8] is a paradigm of evolutionary computation where the aim is to discover91

a diverse set of high-performing solutions that span different dimensions of a problem space. Whereas92

traditional optimisation methods aim to find a single solution x ∈ X that maximises an objective93

function fitness : X 7→ R, QD methods aim to find a collection of solutions X ⊂ X where94

each solution x ∈ X is high-performing in a different way. This diversity is defined in terms of a95

solution’s behaviour descriptor (or feature vector) behaviour_descriptor : X 7→ B, that maps the96

solution to a vector of features that describe its behaviour, attributes or characteristics. The behaviour97

descriptor is a parameterisation of what kind of diversity we are interested in and is hand-crafted98

based on the characteristics of the problem domain.99

Algorithm 1: MAP-Elites Algorithm
Input: Initial number of solutions

Ninitial solutions, number of iterations
Niterations

Output: A grid X of high-performing
solutions

Initialise:
Create D-dimensional grid of solutions X

and fitnesses F
Populate the grid with Ninitial solutions

random solutions.
for i = 1 to Niterations do

x← sample_solution(X)
x′ ← mutate(x)
f ← fitness(x′)
b′ ← behaviour(x′)
if f > F [b′] or X[b′] is empty then

X[b′]← x′

F [b′]← f

MAP-Elites MAP-Elites [19] is one of the100

fundamental QD algorithms and underlies most101

of current research in the field. In its sim-102

plest form, MAP-Elites discretises the behaviour103

space into an initially empty grid X of cells104

with the same dimensionality as the behaviour105

descriptor. Each cell in the grid can hold one106

solution, called an elite. In the case of two solu-107

tions having the same behaviour descriptor, the108

algorithm only keeps the one with the higher109

fitness. Before starting the main loop, the al-110

gorithm populates the grid with Ninitial solutions111

random solutions. Then, each iteration proceeds112

by sampling a random solution x from the grid113

X , randomly mutating it to produce an offspring114

x′, evaluating x′ and computing its behaviour115

descriptor b′. Using b′, the algorithm looks up116

the relevant cell in the grid. If x′ has higher117

fitness than the current elite in cell b′, the elite118

is replaced with x′. This process is repeated for119

Niterations iterations, gradually filling the grid120

with high-performing solutions. The full algo-121

rithm is shown in Algorithm 1.122

A big advantage of MAP-Elites is that it is highly parallelisable. In practice, the algorithm is123

implemented by running multiple instances of the main loop in parallel. This allows for massive124

parallelisation, which is a big driver of the algorithm’s success [16]. This counterbalances the fact125

that QD approaches usually require a large number of iterations to reach good solutions.126

3.2 Cooperative Multi-Agent Learning127

In this work, we consider partially observable cooperative multi-agent problems defined us-128

ing DecPOMDP [21]. Dec-POMDP is a 7-tuple (S, {A(i)}Ni=1,P, r, {Z(i)}Ni=1,O, γ), where129

S is the set of possible states of the environment; A(i) is the set of actions available to130

agent i; P : S ×A(1) × · · · × A(N) × S 7→ [0, 1] is the transition probability function, where131

P(s′|s, a(1), . . . , a(N)) is the probability of transitioning to state s′ after the agents simultaneously132

take actions a(1), . . . , a(N) in state s; r : S × A(1) × · · · × A(N) 7→ R is the expected reward133

r = E
[
R | s, a(1), . . . , a(N)

]
received after the agents take actions a(1), . . . , a(N) in state s; Z(i) is134

the set of observations available to agent i; O : S × Z(1) × · · · × Z(N) 7→ [0, 1] is the observation135

probability function, where O(z(1), . . . , z(N) | s) is the probability of observing z1, . . . , zN after136

transitioning to state s; γ ∈ [0, 1] is the discount factor for trading off immediate and future rewards.137

At each time step t, every agent i receives a partial observation z
(i)
t of the environment state st, and138

then they all independently, but simultaneously, select actions a
(1)
t , . . . , a

(N)
t based on their own139

policies. The environment then transitions to a new state st+1 according to the transition probability140
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Figure 1: Graphical illustration of the difference between naive mutations and the team-mixing
operation proposed in Mix-ME.

function P , and the agents receive a joint reward rt+1 according to the reward function r. The141

goal of the agents is to learn a joint policy π = (π1, . . . , πN ) that maximises the expected return142

J(π) = E [
∑∞

t=0 γ
trt+1 | π]. Since agents do not individually have access to the full environment143

state, they must learn to collaborate in order to achieve the goal.144

4 Methods145

In this section, we present the design of the proposed multi-agent QD approaches. All of the methods146

described below are based on the same core MAP-Elites algorithm, which is described in Algorithm 1.147

However, we assume two main changes to the definitions:148

1. The parameter space X is now a set of N parameter spaces X1, . . . ,XN , one for each agent.149

2. Solutions in the grid are now tuples (x1, . . . , xN ), where xi is the solution for agent i.150

The first change is necessary since agents can have different action and observation spaces, and151

therefore need to be sampled from different parameter spaces. The second change is needed to allow152

the algorithm to keep track of each individual agent policy.153

4.1 Naive Multi-Agent MAP-Elites154

The most straightforward way to train groups of cooperative agents with MAP-Elites is to treat the155

group as a single unit, and use the single-agent variation of MAP-Elites. In this approach, a new156

offspring is created by sampling a random solution (x1, . . . , xN ) from the grid and then mutating157

each of the agents’ policies xi to produce a new policy x′
i. The resulting team of agents (x′

1, . . . , x
′
N )158

is then evaluated and assigned to the grid. The algorithm is illustrated in Figure 1(top). The mutations159

we use are polynomial mutation [10] and isoline variation [Iso-LineBB, 30].160

This approach is simple and easy to implement, but its restrictive sampling strategy can limit its161

potential. The fact that every agent in the offspring is derived from the same parent solution means162

that the algorithm is not able to combine policies from different parents. This might lose out on some163

potential benefits of co-adaptation between agents.164

4.2 Mix-ME165

One relaxation of the baseline approach is to allow the agents in the offspring to be derived from166

different parents. In a multi-agent system, different agents might have specialised roles that require167
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different capabilities or expertise. The motivation for this approach is that during training, we might168

have multiple solutions in the grid containing agents that are proficient in different roles. By allowing169

agents in an offspring to inherit policies from different parents, the algorithm can combine experts170

from different teams and therefore promote the co-adaptation of agents with complementary roles.171

An analogy to this approach is the formation of sports teams, where the coach might select a strong172

goalkeeper from one team, a strong striker from another team, and so on.173

We thus introduce the Agent Mixing MAP-Elites (Mix-ME), a novel multi-agent QD approach174

that performs mix-and-matching of individual agents between distinct groups within the grid.175

In Mix-ME, in addition to using naive mutations on raw parameters, it includes a team-176

crossover operator. This operator creates a new offspring by sampling N random solution tuples177 (
x
(1)
1 , . . . , x

(1)
N

)
, . . . ,

(
x
(N)
1 , . . . , x

(N)
N

)
with replacement from the grid. The offspring is then cre-178

ated by taking the 1st agent from the 1st tuple, the 2nd agent from the 2nd tuple, and so on. The179

resulting team of agents
(
x
(1)
1 , . . . , x

(N)
N

)
is then evaluated and assigned to the grid. This operator is180

illustrated in Figure 1(bottom).181

Since massive parallelism in MAP-Elites is achieved by producing new solutions in batches, in182

each iteration, we split the batch evenly across operators. Thus, with a batch size of Nbatch, Nbatch/3183

new solutions would be formed using polynomial mutation, Nbatch/3 with isoline variation, and Nbatch/3184

using team-crossover. The purpose of the conventional mutation operators is to optimise the weights,185

resulting in local hill-climbing behaviour, while the purpose of the team-crossover operator is to186

promote co-adaptation of agents with complementary roles.187

5 Experimental Setup188

In this section, we explain the motivation, design and setup for our experiments, as well as describing189

the training environments. The main questions we seek to answer are:190

1. How do the proposed algorithms compare against each other and against the single-agent191

baseline in terms of performance, diversity and generalisation capability?192

2. Do specific traits of the environment affect the performance of the proposed algorithms?193

3. How does changing the size of the policy networks impact the performance of the different194

MAP-Elites methods?195

For details on our experimental implementation and hyperparameter settings, please refer to Appen-196

dices A.2 and A.3.197

Environments To evaluate the proposed methods, we extend five existing single-agent continuous198

control environments in the Brax physics engine [12] to support multiple agents. These environments199

are the multi-agent parallels of the single-agent Mujoco environments [29] and were first introduced200

by Peng et al. [24]. Previous implementations, however, have not natively supported JAX [2], and201

their parallelisability has been limited. Our implementation uses pure JAX and is highly parallelisable,202

allowing for massive speedup on acceleration hardware. Moreover, it is compatible with the QDax203

library [16, 5] which we base our QD algorithms on.204

The environments adapt the single-agent MuJoCo tasks to multi-agent use with the concept of factored205

robots. In this paradigm, the robot is partitioned into multiple components, each controlled by an206

individual agent. Figure 2 illustrates the factorisation for each environment. These agents have partial207

observability of the global state and act based on local information. They must then collaboratively208

control the robot to accomplish the task. The environment specifics are described in Table 1, and in209

more detail in Appendix A.1.210

The behaviour descriptor we use for all environments is the average time that each foot of the robot is211

in contact with the ground during an episode, represented by212

b =
1

T

T∑
t=1


I[foot 1 touches ground]
I[foot 2 touches ground]

...
I[foot N touches ground]

 (1)
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(a) Ant (b) HalfCheetah (c) Hopper (d) Humanoid (e) Walker2D

Figure 2: Illustration of the robot factorisations. The colours represent the different agents. Image
sourced from Peng et al. [24].

Table 1: Summary of the environments used in our experiments.
Environment Agents Observation Space Action Space

Single-Agent Multi-Agent Single-Agent Multi-Agent

Ant 4 28 (18 each) 8 (2 each)
HalfCheetah 6 18 (9, 9, 8, 8, 9, 8) 6 (1 each)
Hopper 3 11 (8, 9, 8) 3 (1 each)
Humanoid 2 376 (248, 176) 17 (9, 8)
Walker2D 2 22 (17 each) 6 (3 each)

where T is the length of the episode, and I is the indicator function. This behaviour descriptor is213

simple but effective for capturing various gaits of the robot. For example, a hopping gait would have214

a low value for all feet, while a walking gait would have a higher value. It has also been used in215

previous studies [9] to allow robots to recover from mechanical damage.216

Evaluation Metrics We use the following three metrics when comparing the performances of217

baselines. Firstly, the maximum fitness fmax = maxf∈F f , i.e. the fitness of the best performing218

solution in the grid at the end of training, where fitness refers to the total reward received during an219

episode. Secondly, the coverage C = number of cells containing a solution
total number of cells , representing the proportion of the220

behaviour space that solutions have been found for. The coverage is a measure of the diversity of221

the solution grid. Thirdly, we measure the QD score, QD =
∑

f∈F f , the sum of the fitnesses of all222

solutions in the grid at the end of training. This score summarises both performance and diversity of223

the solution grid and is the main metric we use to compare MAP-Elites methods against each other.224

Generalisation Experiments To assess the generalisation capabilities of our proposed algo-225

rithms [18], we follow the experimental procedure outlined in a previous paper by Chalumeau226

et al. [4]. This procedure employs a few-shot adaptation approach in modified environments, where227

pre-computed policies are evaluated without retraining. We explore two distinct settings: gravity228

update and leg dysfunction. In the gravity update scenario, the gravity constant is modified by229

multiplying it with a coefficient over a specified range. In the leg dysfunction setting, we alter the230

input-to-torque coefficients of a single leg across a range.231

Initially, each baseline is trained for 1,000 iterations in a standard environment. Then, we conduct232

100 evaluations for each solution in the grid using the modified environments, calculating the median233

fitness for each solution. The maximum of these median fitness values is then reported. To ensure234

robustness and reliability, we report the results of the experiments across 10 different seed values.235

6 Results and Discussion236

6.1 Comparison of Multi-Agent MAP-Elites Methods237

Performance and Diversity We first compare the performance of the naive multi-agent MAP-Elites238

baseline, Mix-ME, and the single-agent baseline. Figure 3 illustrates the learning curves for each of239

the environments. We can observe several interesting trends.240
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First, we see that across environments with more than 2 agents (Ant, HalfCheetah, Hopper),241

Mix-ME consistently outperforms the naive multi-agent baseline on every metric. On the other242

hand, in the Walker2d environment, we see the opposite trend, where the naive baseline out-243

performs Mix-ME, only slightly in terms of QD score, but significantly in terms of coverage244

and maximum fitness. This suggests that mixing elites builds better teams by exploiting di-245

versity in the solution grid, but loses its effectiveness when the number of agents is small.246
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247

Another interesting observation is that in terms of248

QD score, both multi-agent methods outperform the249

single-agent baseline in environments with more250

than 2 agents. In fact, if we look at the score as a251

function of the number of agents, we see that the252

performance gap roughly increases with the number253

of agents, as shown in Figure 4. An important caveat,254

however, is that the multi-agent methods have the255

same policy network architecture per agent as the256

single-agent baseline, which means that the total257

number of parameters in the multi-agent methods is258

comparably larger. We explore the effect of policy259

network size in Section 6.2 and show that this fact260

alone does not explain the difference in performance.261

Therefore, the multi-agent methods are indeed able262

to learn a higher-performing solution grid.263

Apart from performance, in Appendix A.4 we also show the resulting solution grids for each264

environment. We do not see any obvious differences between the grids of different methods, except265

for the Ant environment, where the solution grid for the multi-agent methods seems to be more266

uniform than the single-agent baseline. This is consistent with Figure 3, which shows higher QD-267

scores but lower maximum fitness for the multi-agent methods than the single-agent baseline. Partial268

observability might be a factor here, since the agents only have access to local information, and269

therefore might not be able to learn as high-performing policies as the single-agent baseline.270
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Generalisation We also evaluate the generalisation capabilities of the different methods in the leg271

dysfunction and gravity update scenarios. The results are shown in Figure 5 and show similar trends to272

the results in the previous section. We see that Mix-ME generalises better than the naive multi-agent273

baseline in environments with more than 2 agents, but worse in the Walker2d environment.274

We also see that in the leg dysfunction scenario, the performance of the single-agent baseline drops275

significantly faster than the multi-agent methods as the test environment diverges from the training276

environment. In the gravity update scenario, the results are mixed and highly dependent on the277

environment. A key difference between the two scenarios is that leg dysfunction is exactly the failure278

mode that the behaviour descriptor is designed to capture; the descriptor is a parameterisation of279

each leg’s contact time with the ground, and therefore the resulting grid of solutions should contain280

solutions that are diverse in terms of individual leg usage. On the other hand, it is not obvious how281

this kind of diversity would be useful in the gravity update scenario.282

These results have a straightforward interpretation: since multi-agent methods learn higher-performing283

and more diverse solutions in environments with many agents, if the behaviour descriptor is well-284

aligned with the task, naturally the multi-agent methods will be able to learn more robust solutions285

that are less sensitive to changes in the environment, compared to their single-agent counterpart.286
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6.2 Effect of Policy Network Size287

When comparing single-agent and multi-agent baselines, one subtle caveat is that each individual288

agent’s policy network in the multi-agent methods has the same architecture as the single-agent289

baseline has for controlling the entire robot. As a result, the total number of parameters in the290

multi-agent methods is Nagents times larger than the single-agent baseline. To address this issue, we291

conduct an experiment where we vary the size of the policy networks in each method, and observe292

how the performance scales. Note that we performed hyperparameter tuning for each policy network293

size separately to ensure optimal learning.294

Figure 6 shows the results of this experiment. We can see that in none of the environments does295

increasing the policy network size of the single-agent baseline result in comparatively better perfor-296

mance than the multi-agent methods with smaller policy networks. In other words, we don not gain297

much by increasing the policy network size of the single-agent baseline. In fact, in most environments,298

the performance either drops or stays the same with increasing policy network size.299

This, in combination with the results from Section 6.1, means that the good performance of the300

multi-agent methods cannot simply be attributed to the larger number of parameters. Instead, it301

suggests that there must be some benefit to learning a decentralised policy, even though this imposes302

partial observability on each agent.303
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Figure 6: Effect of policy network size on performance of the different methods. The x-axis shows
the number of units in each of the two hidden layers. 95% confidence intervals are shown as error
bars. Note that we have reduced the batch size here to 1024 to allow for larger networks, meaning
absolute performance is not comparable to previous sections.

7 Conclusion and Future Work304

This work sets out to bridge the gap between QD and cooperative multi-agent learning. It was305

motivated by the observation that many real-world continuous control tasks are inherently partially306

observable and multi-agent, and that often, we are interested in inducing diversity in the solutions to307

these tasks, yielding a set of high-quality solutions, that are robust to damage and to changes in the308

environment.309

To this end, we proposed Mix-ME, a new multi-agent variant of the MAP-Elites algorithm, which adds310

a team-crossover operation to form new solutions. We presented a comprehensive set of experiments311

that compare the performance of our proposed method against a naive multi-agent extension and312

against a single-agent baseline. These experiments revealed that Mix-ME shows superior performance313

and generalisation capabilities, and that this performance gap increases with the number of agents. We314

also showed that in many-agent environments, decentralised control policies trained using Mix-ME315

outperform single-agent policies trained using normal MAP-Elites, even under partial observability.316

There are numerous avenues for future work. First, benchmarking Mix-ME on different environments317

would be a good way to further validate the results. This paper only includes continuous control318

environments with a relatively small number of agents, and it would be interesting to see how the319

methods scale to environments with more agents. Environments with discrete action spaces, such as320

grid-worlds, would also be beneficial to explore. Another avenue to explore is multi-agent extensions321

of more sophisticated MAP-Elites variants, such as Policy gradient assisted MAP-Elites [PGA-ME,322

20], which employs first-order optimisation techniques. This could potentially lead to better scaling323

and performance, making MAP-Elites methods more competitive with policy gradient methods in324

terms of maximum fitness. Our proposed methods extend easily to these variants, and therefore could325

be a good starting point for future work.326

This paper has shown that MAP-Elites methods are a promising approach to inducing diversity in327

multi-agent learning. We hope that this work will inspire further research in this direction, and that it328

will help to bridge the gap between QD and cooperative multi-agent learning.329
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A Appendix437

A.1 Environments438

Ant The Ant environment [27] is a 3-dimensional 4-legged robot with 8 rotors. We factorise it439

into 4 agents, each controlling the two joints on one leg. The agents observe the angle and angular440

velocity of the local leg joints and immediately adjacent joints, as well as the global position and441

velocity of the robot central body.442

The goal is to make the Ant walk forward as fast as possible, while minimising energy consumption443

and external contact forces. All agents receive a shared reward at each time step, defined as444

r := rsurvive + rforward − rctrl − rcontact cost (2)

where rsurvive is a constant reward for surviving, rforward is the forward velocity of the robot, rctrl is a445

penalty for large control inputs, and rcontact cost is a penalty for external contact forces.446

HalfCheetah The HalfCheetah environment is a 2-dimensional 2-legged robot with 6 rotors. We447

factorise it into 6 agents, each controlling one joint. The agents observe the angle and angular velocity448

of their assigned joint and immediately adjacent joints, as well as the global position and velocity of449

the tip of the robot.450

The goal is to make the HalfCheetah run forward as fast as possible, while minimising energy451

consumption. All agents receive a shared reward at each time step, defined as452

r := rforward − rctrl (3)

where the individual reward components are the same as in the Ant environment.453

Hopper The Hopper environment is a 2-dimensional 1-legged robot with 3 rotors. We factorise it454

into 3 agents, each controlling one joint. The agents observe the angle and angular velocity of their455

assigned joint and immediately adjacent joints, as well as the global position and velocity of the top456

of the robot.457

The goal is to hop forward as fast as possible, while minimising energy consumption. All agents458

receive a shared reward at each time step, defined as459

r := rsurvive + rforward − rctrl (4)

where the individual reward components are the same as in the Ant environment.460

Humanoid The Humanoid environment is a 3-dimensional 2-legged robot with 20 rotors, designed461

to resemble a human. We factorise it into 2 agents, one controlling the upper body and the other462

controlling the lower body. The agents observe the angle and angular velocity of their assigned joints463

and immediately adjacent joints, as well as the global position and velocity of the humanoid’s torso.464

The goal is to make the Humanoid walk forward as fast as possible, while minimising energy465

consumption. All agents receive a shared reward at each time step, defined as466

r := rsurvive + rforward − rctrl (5)

where the individual reward components are the same as in the Ant environment.467

A.2 Implementation Details468

In each of our experiments, we perform 10 runs with different random seeds and report the mean and469

standard deviation of the results. Each run consists of 1000 iterations of the MAP-Elites algorithm,470

where each iteration produces 4096 offspring. We evaluate offspring in parallel for 300 timesteps on471

a single GPU for each job. We use GPUs of types NVIDIA GTX 1080 Ti, RTX 2080 Ti, Tesla P100,472

V100, and A100.473

A.3 Hyperparameters474

In order to ensure a fair comparison between the different methods, we tuned mutation hyperpa-475

rameters for each combination of environment and policy network size. The hyperparameters were476
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tuned by running a grid search over a range of values for each hyperparameter, and selecting the477

combination that yielded the highest QD score averaged over 3 seeds. These optimal hyperparameters478

were then used for all experiments. We used a fully connected multi-layer perceptron with 2 hidden479

layers of 64 units each, save for the policy network sensitivity analysis where the hidden layer size480

was modified.481

Table 2: Search space for MAP-Elites mutation hyperparameters.
Hyperparameter Search space

σiso {0.0001, 0.001, 0.01, 0.1, 1.0}
σline {0.0001, 0.001, 0.01, 0.1, 1.0}
η {4, 8, 16, 32, 64, 128, 256}

Table 3: Optimal MAP-Elites hyperparameters for each environment and policy network size.
Environment Policy network hidden layer size σiso σline η

Ant

16 0.001 1.0 32
32 0.001 1.0 64
64 0.001 1.0 128
128 0.001 1.0 128
256 0.001 1.0 128

HalfCheetah

16 0.01 0.1 128
32 0.001 0.1 128
64 0.001 0.1 128
128 0.001 0.1 128
256 0.001 0.1 128

Hopper

16 0.001 0.1 8
32 0.001 0.1 16
64 0.001 0.1 16
128 0.001 0.1 64
256 0.001 0.1 128

Humanoid

16 0.001 1.0 32
32 0.001 1.0 64
64 0.001 1.0 128
128 0.001 1.0 128
256 0.001 1.0 128

Walker2d

16 0.001 0.1 4
32 0.001 0.1 4
64 0.01 0.1 8
128 0.001 0.1 8
256 0.01 0.01 8
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A.4 MAP-Elites Behaviour Descriptor Grid482
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Figure 7: Visualisation of the solution grids produced by the different multi-agent MAP-Elites
methods, broken down by environment. The visualisation for the 4-dimensional descriptor in the Ant
environment is projected into 2D as is done in Cully et al. [9].
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