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ABSTRACT

Adversarial attacks in Natural Language Processing apply perturbations in the
character or token levels. Token-level attacks, gaining prominence for their use of
gradient-based methods, are susceptible to altering sentence semantics, leading
to invalid adversarial examples. While character-level attacks easily maintain
semantics, they have received less attention as they cannot easily adopt popular
gradient-based methods, and are thought to be easy to defend. Challenging these
beliefs, we introduce Charmer, an efficient query-based adversarial attack capa-
ble of achieving high attack success rate (ASR) while generating highly similar
adversarial examples. Our method successfully targets both small (BERT) and
large (Llama 2) models. Specifically, on BERT with SST-2, Charmer improves
the ASR in 4.84% points and the USE similarity in 8% points with respect to the
previous art.

1 INTRODUCTION

Language Models (LMs) have rapidly become the go-to tools for Natural Language Processing (NLP)
tasks like language translation (Sutskever et al., 2014), code development (Chen et al., 2021) and
even general counseling via chat interfaces (OpenAI, 2023). However, several failures concerning
robustness to natural and adversarial noise have been discovered (Belinkov and Bisk, 2018; Alzantot
et al., 2018). Adversarial attacks have been widely adopted in the computer vision community to
discover the worst-case performance of Machine Learning models (Szegedy et al., 2014; Goodfellow
et al., 2015) or be used to defend against such failure cases (Madry et al., 2018; Zhang et al., 2019).

The application of adversarial attacks in LMs is not straight-forward due to algorithmic (Guo et al.,
2021) and imperceptibility constraints (Morris et al., 2020a). Unlike the computer vision tasks,
where inputs consist of tensors of real numbers, in NLP tasks, we work with sequences of discrete
non-numerical inputs. This results in adversarial attacks being an NP-hard problem even for convex
classifiers (Lei et al., 2019). This fact also hardens the use of popular gradient-based methods for
obtaining adversarial examples (Guo et al., 2021). To tackle this problem, attackers adopt gradient
based strategies in the embedding space, restricting the attack to the token vocabulary (Ebrahimi et al.,
2018; Liu et al., 2022; Hou et al., 2023) or the black-box setting, where only input-output access to
the model is assumed (Alzantot et al., 2018; Gao et al., 2018; Jin et al., 2020; Li et al., 2020; Garg
and Ramakrishnan, 2020; Wallace et al., 2020).

Another difficult analogy to make with the computer vision world is imperceptibility. Adversarial
examples should be by definition imperceptible, in the sense that the attack should not modify the
human prediction or allow to think that an attack has been done (Szegedy et al., 2014). Given an input
x ∈ Rd, in the numerical-input setting, imperceptibility is controlled by looking for an adversarial
example x̂ ∈ Rd in an ℓp ball centered at x with perturbation radius ϵ, i.e., ||x− x̂||p ≤ ϵ, where ϵ
can be set arbitrarily small.

In NLP, Morris et al. (2020a) suggest different strategies for controlling imperceptibility according to
the attack level:
Character: Constrain the attack to have a low Levenshtein (edit) distance. However, character-level
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Attack level
Token Char

Charmer
Previous (This work)

ASR(%) 95.16 0.96∗ 100.00∗

High efficiency ✓ ✓ ✓

Semantics preserving ✗∗∗ ✓ ✓
∗Defended with (Jones et al., 2020).
∗∗According to (Hou et al., 2023; Dyrmishi et al., 2023).

(a) Attack desiderata & state-of-the-art.
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(b) Schematic of the proposed method, Charmer

Figure 1: Desiderata and example of our attack in the sentiment classification task with the positions
subset size n = 3. At each iteration, our attack computes the most important positions in the sentence
via Algorithm 1. Then, we generate all possible sentences replacing a character in the top positions,
to get the one with the highest loss. If this sentence is misclassified, the process is finished.

attacks have lost relevance due to the strength of robust word recognition defenses (Pruthi et al., 2019;
Jones et al., 2020).
Token: Constrain the embedding similarity1 of replaced words and of the overall sentence to be
high. Nevertheless, Dyrmishi et al. (2023) conclude that state-of-the-art attacks do not produce
imperceptible attacks in practice. To be specific, Hou et al. (2023) report 56.5% of their attacks
change the semantics of the sentence.

The overall attack desiderata is summarized in Fig. 1a. Existing defenses against character-level
attacks rely on robust word recognition modules, which assume the attacker adopts unrealistic
constraints, not allowing simple modifications such as insertion or deletion of blank spaces, which
are adopted in practice (Li et al., 2019). In this work, we revisit character-level adversarial attacks
as a practical solution to imperceptibility. Our attack, Charmer, is based on a greedy approach
combined with a position subset selection to further speed-up the attack, while minimally affecting
performance. Our attack is able to achieve > 95% ASR in every studied TextAttack benchmark
and LLMs Llama-2 and Vicuna, obtaining up to a 23%-point ASR improvement with respect to
the runner-up method. We show that existing adversarial training based defenses (Hou et al., 2023)
degrade character-level robustness, i.e., increasing the ASR in 3.32% points when compared to
standard training. Our findings indicate typo-corrector defenses (Pruthi et al., 2019; Jones et al., 2020)
are only successful when a set of strict attack constraints is assumed, if just one of these constraints is
relaxed, ASR can increase from 0.96% to 98.09%. Overall, we believe character-level robustness a
more consistent measure than token-level robustness.

2 METHOD

Let us now introduce our method (Charmer). In Appendices F.2 and F.3 we present our attack for
both standard classifiers and LLM-based classifiers. To circumvent the exponential dependence of
the number of nearby sentences on k as indicated by Corollary S6, we propose to greedily select the
single-character perturbation with the highest loss Algorithm 2. Furthermore, we reduce the search
space for single-character perturbations by considering a subset of locations where characters can be
replaced, see Algorithm 1. In Definitions 2.1 and 2.2 we define the key operators employed in our
attack.

Definition 2.1 (Expansion and contraction operators). Let S(Γ) be the space of sentences with
alphabet Γ and the special character ξ /∈ Γ, the pair of expansion-contraction functions ϕ : S(Γ)→
S(Γ ∪ {ξ}) and ψ : S(Γ ∪ {ξ})→ S(Γ) is defined as:

1Similarity is commonly measured via the cosine similarity of the USE embeddings (Cer et al., 2018).
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Figure 2: Selection of the number of candidate posi-
tions: Attack Success Rate (ASR) at k = 1 (● left axis)
and runtime (● right axis) for our candidate position
selection strategy (Algorithm 1, bold lines) and a random
selection (Random, dotted lines). Our strategy improves
the random baseline at a small cost (≈ 0.25s).

Algorithm 1 Top-n position selection.

1: Inputs: model f , sentence S, test char.
t, special char. ξ, number of positions
n, loss L and label y.

2: l = 0 ▷ Initialize losses with zeros
3: for i = 1, . . . , 2|S|+ 1 do
4: P = ϕ(S) ▷ Expand sentence
5: if Pi = t then Pi ← ξ
6: else Pi ← t

7: li = L(f(ψ(P )), y) ▷ Eval. loss
8: return Top-n(l) ▷ Id. of Top n values

Algorithm 2 Charmer Adversarial Attack

1: Inputs: model f , sentence S, alphabet of characters Σ, max Levenshtein distance k, candidate
positions n, loss function L and label y.

2: S′ = S ▷ Initialize attack
3: for i = 1, . . . , k do
4: Z = get_top_locations(f, S′, y, n) ▷ Algorithm 1

5: S ′ = {ψ(ϕ(S′)
j← c), ∀j ∈ Z,∀c ∈ Σ ∪ {ξ}} ▷ All sentences with modifications in Z

6: l = L(f(S ′), y) ▷ Batch of n · (|Σ|+ 1) sentences
7: j∗ = argmaxj∈[|S′|] lj
8: S′ = S ′j∗ ▷ Sentence with highest loss in the batch
9: if argmaxŷ∈[o] f(S

′) ̸= y then return S′ ▷ Successful

10: return S′ ▷ Unsuccessful

ϕ(S) :=

{
ξ if |S| = 0

ξ, S1 ⊕ ϕ(S2:) otherwise . ψ(S) :=

{ ∅ if |S| = 0
ψ(S2:) if S1 = ξ

S1 ⊕ ψ(S2:) otherwise .

Clearly, ϕ(S) inserts ξ into S in all possible positions between characters and at the beginning and
end of the sentence. Similarly, ψ(S) aims to remove all ξ occurred in S.

Definition 2.2 (Replacement operator). Let S ∈ S(Γ ∪ {ξ}), the integer i ∈ [|S|] and the character
c, the replacement operator is defined as: S i← c := S:i−1 ⊕ c⊕ Si+1:.

3 EXPERIMENTS

Our experiments are conducted in the publicly available2 TextAttack models (Morris et al., 2020b)
and open-source large language models including Llama 2-Chat 7B (Touvron et al., 2023) and Vicuna
7B (Chiang et al., 2023). We evaluate our attack in the text (or text pair) classification datasets
SST-2 (Socher et al., 2013), RTE (Dagan et al., 2006; Wang et al., 2019), QNLI (Rajpurkar et al.,
2016), MNLI-m (Williams et al., 2018) and AG-News (Gulli, 2005; Zhang et al., 2015). We provide
additional experiments in the supplementary material, see Appendix E.

2https://huggingface.co/textattack
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Table 1: Attack evaluation in the TextAttack BERT and RoBERTa models: Token-level and
character-level attacks are highlighted with ● and ● respectively. For each metric, the best method
is highlighted in bold and the runner-up is underlined. Charmer consistently achieves the highest
Attack Success Rate (ASR), while achieving the the smallest Levenshtein distance (dlev) in every case.
Additionally, the similarity between the original and attacked sentences is the runner-up in all cases.

BERT RoBERTa
Method ASR (%) ↑ dlev(S, S

′) ↓ Sim(S, S′) ↑ Time (s) ↓ ASR (%) ↑ dlev(S, S
′) ↓ Sim(S, S′) ↑ Time (s) ↓

A
G

-N
ew

s

GBDA ● 42.09 17.76±(9.33) 0.93±(0.05) 13.86±(3.14) - - - -
BAE-R ● 17.09 15.07±(10.59) 0.97±(0.02) 1.61±(1.36) 18.27 15.29±(10.34) 0.97±(0.02) 2.14±(1.81)

BERT-attack ● 29.90 20.66±(16.91) 0.93±(0.05) 5.58±(12.92) 27.55 16.96±(12.95) 0.94±(0.04) 1.44±(1.76)

DeepWordBug ● 60.51 11.75±(8.00) 0.78±(0.18) 0.81±(0.52) 56.81 11.81±(7.69) 0.79±(0.16) 0.69±(0.35)

TextBugger ● 50.85 19.79±(17.93) 0.90±(0.06) 1.53±(1.13) 51.21 21.42±(19.28) 0.90±(0.06) 2.30±(1.61)

TextFooler ● 78.98 53.18±(39.30) 0.84±(0.11) 3.75±(2.76) 84.48 52.45±(36.97) 0.84±(0.11) 3.84±(2.77)

TextGrad ● 85.85 55.38±(30.33) 0.77±(0.11) 7.98±(9.24) 78.75 31.94±(15.57) 0.86±(0.07) 9.86±(9.74)

CWBA ● 86.72 15.71±(7.17) 0.65±(0.19) 174.15±(130.91) 81.39 13.73±(11.24) 0.86±(0.11) 55.33±(43.19)

(Pruthi et al., 2019) ● 90.02 6.25±(4.69) 0.86±(0.14) 49.47±(48.26) 88.91 6.55±(5.13) 0.86±(0.14) 29.75±(24.53)

Charmer-Fast (Ours) ● 95.86 4.85±(3.96) 0.92±(0.08) 3.12±(3.88) 91.87 4.87±(4.07) 0.91±(0.09) 3.15±(3.83)

Charmer (Ours) ● 98.51 3.68±(3.08) 0.95±(0.06) 8.74±(11.10) 96.88 3.73±(3.07) 0.95±(0.05) 9.45±(11.20)

SS
T-

2

GBDA ● 83.37 12.20±(6.94) 0.85±(0.11) 9.32±(1.78) - - - -
BAE-R ● 66.38 10.10±(7.00) 0.83±(0.18) 1.24±(0.86) 63.16 10.22±(6.33) 0.85±(0.16) 0.73±(0.62)

BERT-attack ● 69.57 12.19±(9.55) 0.87±(0.09) 239.80±(1763.30) 64.21 11.26±(7.18) 0.86±(0.10) 18.12±(32.34)

DeepWordBug ● 81.39 3.74±(2.95) 0.80±(0.17) 0.22±(0.12) 84.27 4.61±(3.47) 0.75±(0.20) 0.28±(0.16)

TextBugger ● 68.49 5.97±(5.87) 0.91±(0.06) 1.75±(0.91) 61.10 6.85±(6.54) 0.90±(0.05) 1.82±(0.97)

TextFooler ● 95.16 17.17±(12.51) 0.82±(0.15) 0.90±(0.57) 95.00 17.76±(12.45) 0.82±(0.15) 1.16±(0.76)

TextGrad ● 94.04 21.61±(11.30) 0.75±(0.13) 19.94±(22.32) 95.49 17.07±(9.57) 0.81±(0.10) 3.75±(2.83)

CWBA ● 72.92 8.55±(3.78) 0.53±(0.26) 33.81±(33.86) 49.84 8.88±(3.94) 0.65±(0.17) 56.35±(46.42)

(Pruthi et al., 2019) ● 90.94 2.22±(1.35) 0.85±(0.14) 4.86±(4.02) 92.93 2.52±(1.57) 0.84±(0.14) 5.29±(4.68)

Charmer-Fast (Ours) ● 100.00 1.74±(1.02) 0.89±(0.13) 0.34±(0.31) 99.39 2.29±(1.53) 0.84±(0.15) 0.47±(0.49)

Charmer (Ours) ● 100.00 1.47±(0.74) 0.90±(0.11) 1.27±(0.84) 99.51 1.76±(1.12) 0.89±(0.12) 1.52±(1.25)

Table 2: Attack evaluation in Llama 2-Chat 7B. Charmer -Fast outperforms baselines in terms
of attack success rate, Levenshtein distance, and achieves comparable similarity and speed.

SST-2 QNLI RTE
Method ASR (%) dlev(S, S

′) Sim(S, S′) Time ASR (%) dlev(S, S
′) Sim(S, S′) Time ASR (%) dlev(S, S

′) Sim(S, S′) Time

BAE-R ● 60.13 10.55 0.82 2.31 47.16 10.36 0.95 2.46 66.02 6.96 0.88 1.39
BERT-attack ● 57.86 12.05 0.86 1.61 60.30 14.07 0.91 2.72 90.78 8.77 0.82 1.41

DeepWordBug ● 50.82 5.24 0.73 1.01 49.93 3.86 0.88 1.24 50.97 2.67 0.76 0.61
TextBugger ● 41.89 8.99 0.89 1.63 58.92 10.59 0.91 2.44 79.61 7.76 0.80 1.19
TextFooler ● 85.79 20.91 0.79 3.54 64.04 18.03 0.91 4.05 86.41 8.92 0.84 1.73

Charmer-Fast ● 95.47 2.55 0.83 1.47 93.51 2.40 0.93 5.66 97.10 1.68 0.82 2.06

3.1 SELECTING THE NUMBER OF POSITIONS

To select the appropriate number of candidate positions n for Algorithm 1, we evaluate the ASR and
runtime of the attack with n ∈ {1, 5, 10, 20, 30, 40, 50, 60, 70}. We conduct the experiment with the
fine-tuned BERT on SST-2 from TextAttack at k = 1. For the SST-2 test sentences, the maximum
number of positions across the dataset is 489 and the average is 213.72. We would like a value of
n much smaller than these values. As a comparison, we report the ASR computed by exploring all
possible positions (ASR Upper Bound). Additionally, to test the effect of our heuristic, we evaluate
the performance when randomly selecting n positions (Random).

In Sec. 1, we can observe that the ASR consistently grows when increasing the number of candidate
positions. However, the increase is less noticeable for n > 20, therefore, the increase in runtime
does not pay off the increase in ASR. This leads us to choose n = 20 for the rest of our experiments.
When compared with the random position selection, our method greatly improves the ASR for all the
studied n, while introducing a minor time increase of 0.25 seconds on average.

3.2 COMPARISON AGAINST STATE-OF-THE-ART ATTACKS

In Tables 1 and 2, we can observe Charmer consistently achieves the highest ASR with> 93% in ev-
ery benchmark. At the same time, our method obtains the lowest Levenshtein distance (dlev). Regard-
ing the similarity (Sim), our Charmer attains the runner up similarity in all cases, proving its ability
to generate highly similar adversarial examples. With respect to time, Charmer is not as fast as the
simple DeepWordBug, however, the runtime is comparable to previous state-of-the-art token-level
TextGrad. If speed is preferred to adversarial example quality, we can set n = 1 (Charmer-Fast),
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which attains a runtime closer to DeepWordBug at the cost of a higher dlev and lower ASR. This
phenomenon is aligned with the results of Sec. 3.1, as the ASR at k = 1 is lower when n is lower.

Table 3: Adversarial Training defenses: Charmer
is an effective defense against character-level attacks,
minimally affects clean accuracy and does not improve
token-level robustness. On the contrary, TextGrad hinders
character-level robustness and clean accuracy to improve
token-level robustness.

Method Acc. (%) ↑ ASR-Char (%) ↓ ASR-Token (%) ↓
Standard 92.43 64.02 95.16
Charmer ● 87.20±(1.34) 20.34±(1.17) 95.17±(1.15)

TextGrad ● 80.94±(0.60) 67.34±(4.87) 71.36±(3.63)

3.3 ADVERSARIAL TRAINING

In this section, we analyze the perfor-
mance of models trained with adver-
sarial training defenses (Madry et al.,
2018). Following the insights of Hou
et al. (2023), we use the TRADES objec-
tive (Zhang et al., 2019). We compare
the use of a token-level attack, TextGrad,
v.s. a character-level attack, Charmer,
for solving the inner maximization prob-
lem. We use TextGrad with the recommended hyperparameters for training and Charmer with the
standard hyperparameters and k = 1. Every 100 training steps, we measure the clean, TextFooler
and Charmer (k = 1) adversarial accuracies. We train on 5 random initializations of BERT-base
(Devlin et al., 2019) for 1 epoch in SST-2.

In Table S7 we can firstly observe that both the TextGrad and Charmer defenses improve
the token-level and character-level robustness respectively when compared with the standard
training baseline. This was expected as this is the objective each method is targetting. In-
terestingly, Charmer does not improve the token-level robustness and TextGrad hinders the
character-level robustness. This observation is confirmed when looking at the training evolution
in Fig. S4. It remains open to know if we should aim at character or token level robustness,
nevertheless our results indicate character-level robustness is less conflicted with clean accuracy.

Table 4: Robust word recognition defenses: Charmer
is able to break the studied defenses with 100% ASR.
Robust word recognition defenses are effective only when
considering PCJ constraints.

Defense Acc. (%) PJC? ASR (%) dlev(S, S
′) Sim(S, S′)

None 92.43
✗ 100.00 1.47±(0.74) 0.90±(0.11)

✓ 96.65 1.86±(1.14) 0.87±(0.14)

(Pruthi et al., 2019) 88.53
✗ 100.00 1.28±(0.51) 0.90±(0.11)

✓ 70.34 2.08±(1.49) 0.85±(0.14)

(Jones et al., 2020) 83.94
✗ 100.00 1.43±(0.71) 0.88±(0.11)

✓ 0.96 1.14±(0.38) 0.92±(0.06)

3.4 BYPASSING TYPO CORRECTORS

We analyze the performance of our attack
with and without the PJC constraints,
see Appendix E. We train the strongest
typo-corrector (Pruthi et al., 2019) and
use it in front of the BERT-base model
from TextAttack. For the robust encod-
ing defense we train a BERT-base model
over the agglomerative clusters (Jones
et al., 2020).

In Table 4, we can observe that Charmer attains 100% ASR when not considering the PJC con-
straints. It is only when considering PJC that robust word recognition defenses are effective. In
Table S15 we analyze the effect of relaxing each of the PJC constraints while keeping the rest. We
observe that by relaxing any of the LowEng, End or Start constraints, performance grows con-
siderably for both defenses, e.g., from 0.96% to 98.09% ASR when relaxing LowEng in the robust
encoding case. This result indicates that robust word recognition defenses provide a false sempsation
of robustness. Together with the observations in Appendix E.1, we believe adversarial training based
methods suppose a more promising avenue towards achieving character-level robustness.

4 CONCLUSION

We have proposed an efficient character-level attack based on a novel strategy to select the best
positions to perturb at each iteration. Our attack (Charmer) is able to obtain close to 100% ASR
both in BERT-like models and LLMs like Llama-2. Charmer defeats both token-based adversarial
training defenses (Hou et al., 2023) and robust word recognition defenses (Pruthi et al., 2019; Jones
et al., 2020). When integrated within adversarial training, our attack is able to improve the robustness
against character-level attacks. We believe defending agains character-level attacks is an interesting
open problem, with adversarial training posing as a promising avenue for defenses.
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CONTENTS OF THE APPENDIX

In Appendix A we discuss the societal impact of our work. In Appendix D we provide additional
background in NLP and the employed datasets. In Appendix E we provide additional experimental
validation of Charmer. In Appendix G, we provide the proof of Corollary S6.

Notation: Sentences are sequences of characters in the set Γ. Sentences are denoted with uppercase
letters S. For sets of sentences we use caligraphic uppercase letters S . We denote the concatenation
operator of two sentences as ⊕. The empty character ∅ is defined so that sentences remain invariant
to concatenations with it, i.e., S ⊕ ∅ = S. We use the shorthand [n] for {1, 2, . . . , n} for any positive
integer n. We use bold lowercase letters for vectors x ∈ Rd, with the ith position being xi ∈ R.

A BROADER IMPACT

In this work, we revisit character-level adversarial attacks and improve upon the prior art performance.
We believe that showing that character-level attacks cannot easily be defended, is important to warn
about the need of defenses. Otherwise, malicious individuals or organizations could take advantage
of this unawareness. However, we note that our algorithm could empower individuals to achieve
malicious purposes. We will release our code to allow defenders to assess their performance against
our attack.

B RELATED WORK

We provide an overview of adversarial attacks in NLP. Adversarial attacks have been devised for
producing missclassifications (Alzantot et al., 2018), generating unfaithful machine translations
(Cheng et al., 2020; Sadrizadeh et al., 2023a;b; Wallace et al., 2020), providing malicious outputs
(jailbreaking) (Zou et al., 2023; Zhu et al., 2023; Carlini et al., 2023) or even extracting training
data (Nasr et al., 2023). We distinguish these methods in two main branches: token-level and
character-level attacks.

Token based: Early token-based attacks rely in black-box token replacement/insertion strategies
based on heuristics for estimating the importance of each position, and the candidate tokens for the
operation (Ren et al., 2019; Jin et al., 2020; Li et al., 2020; Garg and Ramakrishnan, 2020; Lee et al.,
2022). Ebrahimi et al. (2018) and Li et al. (2019) consider the token gradient information to select
which token to replace. Guo et al. (2021) propose GBDA, the first, but inefficient, full gradient
based text adversarial attack. TextGrad Hou et al. (2023) is a more efficient variante proposed to be
integrated within Adversarial Training.

Character based: Belinkov and Bisk (2018) showcase that character-level Machine Translation
models are sensible to natural character level perturbations (typos) and adversarially chosen ones.
(Pruthi et al., 2019) propose to iteratively change the best possible character until success. However,
this strategy can be inefficient for lengthy sentences. Addressing this issue, other methods propose pre-
filtering the most important words/tokens in the sentence, to then introduce a random typo (Gao et al.,
2018), or the best typo among a random sample (Li et al., 2019). In (Liu et al., 2022), a token-based
attack with character-level Levenshtein distance constraints is considered. However, considering
token-level information for assesing character-level importance can be suboptimal. Ebrahimi et al.
(2018) propose involving embedding gradient information for evaluating the importance of characters,
making the strategy only valid for character-level models. (Yang et al., 2020) evaluate the relevance
of each character by masking and evaluating the loss in each position, to then modify the top positions.
This strategy does not consider character insertions, and does not take into acount the effect of
indivudual changes in the importance of positions. Similarly to (Yang et al., 2020), our method
measures the importance of every position plus insertions. After a perturbation is done, importances
are updated to consider the interaction between perturbations.

C PROBLEM SETTING

In this section, we summarize the setting, Levenshtein distance and the operators used in our attack.

11



Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

C.1 THE SENTENCE SPACE

Let Γ be the alphabet set. A sentence S with l characters (i.e., the length |S| = l) in Γ is defined
with S = c1c2 · · · cl ∈ Γl. For notational simplicity, we denote Si = ci as the character in the ith
position and Si: = cici+1 · · · cl (S:i = c1c2 · · · ci) as the sequence obtained by taking the characters
after (before) the ith position included. We denote S(Γ) as the set of (all possible) sequences with
characters in Γ with length less than L. Let dlev : S(Γ)× S(Γ)→ R+ be the Levenshtein distance
(Levenshtein et al., 1966), also known as the edit distance. To be specific, for any two sentences
S, S′ ∈ S(Γ), the Levenshtein distance is defined as:

dlev(S, S
′) :=



|S| if |S′| = 0
|S′| if |S| = 0

dlev(S2:, S
′
2:) if S1 = S′

1

1 + min

{
dlev(S2:, S

′
2:)

dlev(S2:, S
′)

dlev(S, S
′
2:)

}
otherwise .

Example S1 (dlev form S = Hello to several modifications.).

dlev(Hello,Helo) = 1 dlev(Hello,Hallo) = 1
dlev(Hello,Helloo) = 1 dlev(Hello,Haloo) = 2 .

Note that dlev represents the cost in number of character insertions, deletions and replacements needed
for S to become equal to S′ or vice-versa.

C.2 ADVERSARIAL ROBUSTNESS

In this work, we tackle robustness restricted by the Levenshtein distance. This enables the search of
highly similar, hard to detect and semantics-preserving adversarial examples (Morris et al., 2020a).

Definition S2 (k-robustness at S). Denote the set of sentences at distance up to k as

Sk(S,Γ) = {S′ ∈ S(Γ) : dlev(S, S
′) ≤ k} .

A learning model (e.g., neural networks) f : S(Γ)→ Y , where Y is the label space, is called k-robust
at S if f(S) = f(S′), ∀S′ ∈ Sk(S,Γ). If f(S) ̸= f(S′) for some S′ ∈ Sk(S,Γ), we say S′ is an
adversarial example.

Without loss of generality, we focus on the classification task. In the adversarial robustness community,
adversarial examples are usually sought by solving some optimization problem (Carlini and Wagner,
2017). Given a data sample (S, y) ∈ S(Γ)× [o] and a classification model f : S(Γ)→ Ro, with o
classes, we solve:

max
S′∈Sk(S,Γ)

L (f(S′), y) , (1)

where L is some loss function, e.g., the cross entropy loss. In the following, we elaborate on how
Eq. (1) is solved.

C.3 CHARACTERIZING THE PERTURBATIONS

To explore adversarial examples in Sk(S,Γ), we make use of the contraction, expansion (Defini-
tion 2.1) and replacement operators (Definition 2.2) to characterize this set.

Thanks to Definitions 2.1 and 2.2, it is easy to check the following proposition.

Proposition S3 (Characterization of dlev-1 operations). Let S ∈ S(Γ) be a non-empty sentence, and
S′ be another sentence satisfying dlev(S, S

′) = 1. Then we can find i ∈ [2|S|+ 1] and a character
c ∈ Γ ∪ {ξ} such that

S′ = ψ
(
ϕ (S)

i← c
)
.

Remark S4 (Non-uniqueness). The parametrization of the transformation from S to S′ might not be
unique. For example, for S = Hello and S′ = Helo, both pairs (i = 6, c = ξ) and (i = 8, c = ξ) are
valid parametrizations.
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Remark S5 (Intuition). Replacing a character in Γ for ξ, and applying ψ results in a deletion. Similarly,
replacing a ξ by a character in Γ and applying ξ results in an insertion.
Corollary S6 (Generating Sk). Let S be a non-empty sentence in the volcabulary, with |Γ| > 1, for
any k ≥ 1, the set Sk(S,Γ) (see Definition S2) can be obtained by the following recursion:

Sk(S,Γ) =



{
ψ
(
ϕ (S)

i← c
) ∀i ∈ [2|S|+ 1]
∀c ∈ Γ ∪ {ξ}

}
, if k = 1,ψ (

ϕ
(
Ŝ
)

i← c
) ∀i ∈ [2|Ŝ|+ 1]

∀c ∈ Γ ∪ {ξ}
∀Ŝ ∈ Sk−1(S,Γ)

 , if k > 1 .

The size of these sets is bounded as:

|Γ|k+1 − 1

|Γ| − 1
≤ |Sk(S,Γ)| ≤ (|Γ|+ 1)k ·

k∏
j=1

(2(|S|+ k)− 1) .

Remark S7. In the case |Γ| = 1, for any S ∈ S(Γ) : |S| ≥ k, we trivially have that |Sk(S,Γ)| =
2k + 1.

Proof. Refer to Appendix G.

Note that exactly computing |Sk(S,Γ)| is non-trivial and complex dynamic programming algorithms
have been proposed for this task (Mihov and Schulz, 2004; Mitankin, 2005; Touzet, 2016). The
exponential dependence of |Sk(S,Γ)| on k makes it unfeasible to evaluate every sentence in the set,
therefore, smarter strategies are needed.

D ADDITIONAL BACKGROUND

We introduce additional information of the employed datasets in Appendix D.1 and about Neural
Networks (NNs) for NLP in Appendix D.2.

D.1 DATASETS

In Table S6 we provide the size, classes, alphabet and examples for all the studied datasets. All of our
datasets are publicly available in https://huggingface.co/datasets.

D.2 NN ARCHITECTURES FOR NLP

Unlike Computer Vision applications, where images can be directly fed into the NN, some pre-
processing is needed in order to feed text into our models. A common practice is grouping characters
into tokens (Webster and Kit, 1992; Palmer, 2000; Sennrich et al., 2015; Kudo and Richardson, 2018;
Song et al., 2021) and assigning a vector representation (embedding) to each token in the text (Bengio
et al., 2000; Mikolov et al., 2013; Pennington et al., 2014; Bojanowski et al., 2017). After a sequence
of vector representations is obtained, an appropriate NN architecture can be used, e.g., RNNs or
Transformers in an encoder and/or decoder fashion Sutskever et al. (2014); Peters et al. (2018); Devlin
et al. (2019); Brown et al. (2020). Overall, the architecture will be:

f(S) = f̂ (G (S)T ) ,

where E = G (S)T is the embedding representation of the sequence, G : S(Γ) → S(Vtok) is the
tokenizer with Vtok as the token vocabulary and T ∈ R|Vtok|×d is the matrix containing the embeddings
of each token row-wise.
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Table S5: Attack transferability: Adversarial examples are generated in the Source Model to be
evaluated in the Target Model. For both Charmer and TextFooler, the ASR is consideraby lower
when the target model is different from the source model. We observe no clear difference in transfer
attack performance between TextFooler and Charmer. MNLI-m and AG-News are the easiest and
hardest datasets for generating transfer attacks respectively.

Attack AG-News MNLI-m QNLI RTE SST-2

Te
xt

Fo
ol

er

BERT ALBERT RoBERTa

B
E

R
T

A
L

B
E

R
T

R
oB

E
R

Ta
Ta

rg
et

M
od

el

78.98 9.77 8.13

6.05 76.22 6.44

8.07 8.92 84.48

BERT ALBERT RoBERTa

B
E

R
T

A
L

B
E

R
T

R
oB

E
R

Ta

92.26 34.89 29.12

30.24 94.98 27.08

41.90 38.35 90.23

BERT ALBERT RoBERTa

B
E

R
T

A
L

B
E

R
T

R
oB

E
R

Ta

80.64 14.49 16.36

13.72 80.72 15.05

17.48 17.21 76.01

BERT ALBERT RoBERTa

B
E

R
T

A
L

B
E

R
T

R
oB

E
R

Ta

79.60 29.52 29.17

23.38 68.25 23.96

29.85 30.33 74.19

BERT ALBERT RoBERTa

B
E

R
T

A
L

B
E

R
T

R
oB

E
R

Ta

95.16 36.51 28.29
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Table S6: Description of the employed datasets: When a character is not printable in LATEX, we
default to its Unicode encoding.

AG-News
Test Size 1,000
Classes 4 (World, Sports, Business, Sci/Tech)
Alphabet
|Γ| = 82

Γ ={’ ’, ’!’, ’"’, ’#’, ’$’, ’&’, ”’, ’(’, ’)’, ’*’, ’,’, ’-’, ’.’, ’/’, ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’,
’9’, ’:’, ’;’, ’=’, ’?’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’, ’P’, ’Q’,
’R’, ’S’, ’T’, ’U’, ’V’, ’W’, ’X’, ’Y’, ’Z’, ’\’, ’_’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’i’, ’j’, ’k’, ’l’,
’m’, ’n’, ’o’, ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’, ’x’, ’y’, ’z’}

Example S =’Fears for T N pension after talks Unions representing workers at Turner Newall
say they are ’disappointed’ after talks with stricken parent firm Federal Mogul.’, y = 3
(Business)

MNLI-m
Test Size 1,000
Classes 3 (Entailment, Neutral, Contradiction)
Alphabet
|Γ| = 81

Γ ={’ ’, ’!’, ’"’, ’$’, ’%’, ’&’, ”’, ’(’, ’)’, ’,’, ’-’, ’.’, ’/’, ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’,
’:’, ’;’, ’?’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’, ’P’, ’Q’, ’R’, ’S’,
’T’, ’U’, ’V’, ’W’, ’X’, ’Y’, ’Z’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’, ’p’,
’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’, ’x’, ’y’, ’z’, ’£’, ’é’, ’ô’}

Example Spremise =’The new rights are nice enough’, Shypothesis =’Everyone really likes the
newest benefits’, y = 2 (Neutral)

QNLI
Test Size 1,000
Classes 2 (Entailment, Not entailment)
Alphabet
|Γ| = 233

Γ ={[’21513’, ’21068’, ’25104’, ’8722’, ’8211’, ’8212’, ’8216’, ’8217’, ’8220’, ’8221’, ’24605’,
’27166’, ’ ’, ’!’, ’"’, ’#’, ’$’, ’%’, ’&’, ”’, ’(’, ’)’, ’8230’, ’+’, ’,’, ’-’, ’.’, ’/’, ’0’, ’1’, ’2’, ’3’, ’4’,
’5’, ’6’, ’7’, ’8’, ’9’, ’:’, ’;’, ’8243’, ’=’, ’>’, ’?’, ’<’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’, ’J’,
’K’, ’L’, ’M’, ’N’, ’O’, ’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’, ’X’, ’Y’, ’Z’, ’[’, ’8260’, ’]’, ’601’,
’_’, ’‘’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’, ’p’, ’q’, ’r’, ’s’, ’t’, ’u’,
’v’, ’w’, ’x’, ’y’, ’z’, ’’, ’|’, ’’, ’ ’, ’20094’, ’642’, ’8838’, ’21129’, ’650’, ’38498’, ’7841’, ’£’,
’7845’, ’7847’, ’8364’, ’20140’, ’8366’, ’°’, ’7857’, ’±’, ’·’, ’½’, ’38081’, ’Å’, ’Ç’, ’712’, ’É’,
’7879’, ’Î’, ’720’, ’40657’, ’7889’, ’Ö’, ’×’, ’Ü’, ’ß’, ’à’, ’á’, ’ä’, ’1063’, ’æ’, ’ç’, ’è’, ’é’, ’ê’, ’í’,
’ï’, ’ð’, ’ñ’, ’ó’, ’38515’, ’õ’, ’ö’, ’ø’, ’ù’, ’8801’, ’û’, ’ü’, ’65279’, ’7940’, ’263’, ’268’, ’269’,
’272’, ’1072’, ’275’, ’27735’, ’281’, ’283’, ’30494’, ’30495’, ’8478’, ’1075’, ’287’, ’22823’,
’26408’, ’299’, ’26413’, ’815’, ’305’, ’1079’, ’1080’, ’321’, ’322’, ’20803’, ’324’, ’333’, ’1085’,
’27491’, ’1089’, ’34157’, ’7547’, ’1093’, ’379’, ’626’, ’928’, ’592’, ’37941’, ’39340’, ’941’,
’942’, ’943’, ’594’, ’945’, ’946’, ’947’, ’948’, ’949’, ’432’, ’951’, ’952’, ’953’, ’954’, ’955’,
’956’, ’596’, ’950’, ’959’, ’957’, ’961’, ’962’, ’964’, ’966’, ’23494’, ’8134’, ’969’, ’973’, ’603’,
’8172’, ’8242’]}

Example Spremise =’What came into force after the new constitution was herald?’,
Shypothesis =’As of that day, the new constitution heralding the Second Republic came
into force.’, y = 1 (Entailment)

RTE
Test Size 277
Classes 2 (Entailment, Not entailment)
Alphabet
|Γ| = 72

Γ ={’ ’, ’"’, ’$’, ’%’, ’&’, ”’, ’(’, ’)’, ’,’, ’-’, ’.’, ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’A’,
’B’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’, ’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’,
’W’, ’Y’, ’Z’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’, ’p’, ’q’, ’r’, ’s’, ’t’,
’u’, ’v’, ’w’, ’x’, ’y’, ’z’}

Example Spremise =’Dana Reeve, the widow of the actor Christopher Reeve, has died of lung can-
cer at age 44, according to the Christopher Reeve Foundation.’, Shypothesis =’Christopher
Reeve had an accident.’, y = 2 (Not entailment)

SST-2
Test Size 872
Classes 2 (Negative, Positive)
Alphabet
|Γ| = 55

Γ ={’æ’, ’à’, ’é’, ’ ’, ’!’, ’$’, ’%’, ”’, ’(’, ’)’, ’,’, ’-’, ’.’, ’/’, ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’,
’9’, ’:’, ’;’, ’?’, ’‘’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’, ’p’, ’q’, ’r’, ’s’,
’t’, ’u’, ’v’, ’w’, ’x’, ’y’, ’z’, ’ö’}

Example S =’it ’s a charming and often affecting journey .’, y = 2 (Positive)
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E ADDITIONAL EXPERIMENTAL VALIDATION AND DETAILS

In the text pair classification tasks (MNLI-m, RTE, and QNLI), we perturb only the hypothesis
sentence. If the length of the test dataset is more than 1, 000, we restrict to the first 1, 000 samples. If
a test dataset is not available for a benchmark, we evaluate in the validation dataset, this is a standard
practice (Morris et al., 2020b). For comparison with other attacks, we use the default hyperparameters
of those methods. For Charmer we use n = 20 positions (see Algorithm 1) and k = 10 except
for AG-news where we use k = 20 because of the much longer sentences present in the dataset.
Charmer-Fast simply takes n = 1 to speed-up the attack. For the alphabet Σ, in order to not
introduce out-of-distribution characters, we take the characters present in each evaluation dataset. All
of our experiments were conducted in a machine with a single NVIDIA A100 SXM4 GPU. For better
illustration between token-level and character-level attacks, we mark them with ● and ● respectively.

We compare against the following state-of-the-art attacks (i) token level: BAE-R (Garg and Ramakr-
ishnan, 2020), TextFooler (Jin et al., 2020), BERT-attack (Li et al., 2020), GBDA (Guo et al., 2021)
and TextGrad (Hou et al., 2023), (ii) character level: DeepWordBug Gao et al. (2018), TextBugger
(Li et al., 2019) and CWBA Liu et al. (2022). For each attack method, we evaluate the attach success
rate (ASR), the average Levenshtein distance measured at character level (dlev(S, S

′)) and the cosine
similarity (Sim(S, S′)) measured as in Guo et al. (2021), i.e., computing the cosine similarity of the
USE encodings (Cer et al., 2018). We evaluate the performance of the attacks in the finetuned BERT
(Devlin et al., 2019) and RoBERTa (Liu et al., 2019) from TextAttack. Additional experiments with
ALBERT (Lan et al., 2020) can be found in Appendix E.

We additionally test the performance of the proposed method in Llama 2-Chat 7B (Touvron et al.,
2023). Additional results on Vicuna 7B (Chiang et al., 2023) are deferred to Appendix E.6. Note that
in the case of LLMs, the inference process is extremely costly. As a result, we only use the fast version
of Charmer, i.e., n = 1. Moreover, we perform an additional position selection framework to
further accelerate. Specifically, we first tokenize the input sentence and mask each token to determine
the most important one based on the loss. Next, we perform Algorithm 1 for the position in these
important tokens. An ablation study of such token selection procedure can be found in Appendix E.6.

We analyze the performance of our attack when attaking models defended by a typo-corrector (Pruthi
et al., 2019), or a robust encoding module (Jones et al., 2020). We notice the success of these defenses
can be attributed by the properties of the considered attacks. In Pruthi et al. (2019); Jones et al. (2020),
the studied attacks are constrained to4:

• NoRepeat: Not perturb the same word twice.
• First: Not perturb the first character of a word.
• Last: Not perturb the last character of a word.
• Length: Not perturb words with less than 4 chars.
• LowEng: Only insert or replace for lowercase characters in the English alphabet.

A word is anything between blank spaces. We denote these as the Pruthi-Jones Constraints (PJC).
While these constraints aim at preserving the meaning of every individual word (Rawlinson, 1976;
Davis, 2003), in sentence classification, we might sacrifice the meaning of a word during the attack,
if the global meaning of the sentence is preserved.

E.1 ADVERSARIAL TRAINING

In this section, we analyze the performance of models trained with adversarial training defenses
(Madry et al., 2018). Following the insights of Hou et al. (2023), we use the TRADES objective
(Zhang et al., 2019). We compare the use of a token-level attack, TextGrad, v.s. a character-
level attack, Charmer, for solving the inner maximization problem. We use TextGrad with the
recommended hyperparameters for training and Charmer with the standard hyperparameters and
k = 1. Every 100 training steps, we measure the clean, TextFooler and Charmer (k = 1) adversarial
accuracies. We train on 5 random initializations of BERT-base (Devlin et al., 2019) for 1 epoch in
SST-2.

4Pruthi et al. (2019), further constrain the attack by only considering replacements of nearby characters in
the English keyboard.
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Table S7: Adversarial Training defenses: Charmer is an effective defense against character-level
attacks, minimally affects clean accuracy and does not improve token-level robustness. On the
contrary, TextGrad hinders character-level robustness and clean accuracy to improve token-level
robustness.

Method Acc. (%) ↑ ASR-Char (%) ↓ ASR-Token (%) ↓
Standard 92.43 64.02 95.16
Charmer ● 87.20±(1.34) 20.34±(1.17) 95.17±(1.15)

TextGrad ● 80.94±(0.60) 67.34±(4.87) 71.36±(3.63)
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Figure S3: Adversarial Training Evolution: When employing Charmer as a defense, clean and
character-level accuracies grow consistently through training steps, while token-level (TextFooler)
accuracy is unimproved. The TextGrad defense consistently improves the token-level accuracy at the
cost of hindering clean and character-level accuracy, which grow in the first ≈ 400 steps to then start
decreasing.

In Table S7 we can firstly observe that both the TextGrad and Charmer defenses improve the
token-level and character-level robustness respectively when compared with the standard training
baseline. This was expected as this is the objective each method is targetting. Interestingly, Charmer
does not improve the token-level robustness and TextGrad hinders the character-level robustness.
This observation is confirmed when looking at the training evolution in Fig. S4. It remains open
to know if we should aim at character or token level robustness, nevertheless our results indicate
character-level robustness is less conflicted with clean accuracy.

E.2 QUALITATIVE ANALYSIS OF CHARMER

In this section we analyze the characteristics of the perturbations introduced by Charmer.

Firstly, we display the most common operations for each dataset when attacking the corresponding
TextAttack BERT model. In Fig. S5 we can observe that across datasets, the most common operations
correspond to insertions of punctuation marks such as paranthesis, dots, commas, question marks,
percentages or dollar symbols.

Secondly, we analyze the distribution of the location of perturbations across the sentences. From
Fig. S6 on the one hand, we can conclude that there is no clear region where attacks are more
common for the MNLI-m, RTE and SST-2 datasets. On the other hand, for AG-News and QNLI,
perturbations appear to be more common closer to the beginning of the sentence. This inclination
towards perturbations in AG-News, could be explained by the fact that most sentences in AG-News
start with the news header, therefore, the model might be biased towards classifying based on the
header.

17



Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Clean Charmer (k = 1) TextFooler

0 1000 2000 3000

Training step

0.00

0.25

0.50

0.75

1.00

A
cc

.%

TextGrad

0 1000 2000 3000

Training step

0.00

0.25

0.50

0.75

1.00

A
cc

.%

Charmer

Figure S4: Adversarial Training Evolution: When employing Charmer as a defense, clean and
character-level accuracies grow consistently through training steps, while token-level (TextFooler)
accuracy is unimproved. The TextGrad defense consistently improves the token-level accuracy at the
cost of hindering clean and character-level accuracy, which grow in the first ≈ 400 steps to then start
decreasing.
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Figure S5: Top 20 most common replacements with Charmer: The pair of characters (c1, c2)
indicates that c1 is replaced by c2 in the sentence. If c1 = ξ, the replacement represents an insertion
and if c2 = ξ the operation represents a deletion. The special character is denoted as ξ as the green
character ξ did not appear in any of the most common operations. The most common operations are
insertions of punctuation and special characters.

For completeness, we provide in Tables S8 to S12 the BERT adversarial examples provided by every
attack in Table 1 in the first 3 correctly classified sentences for each dataset.

E.3 TEXTATTACK BASELINE

In this section we complement the analysis in Sec. 3.2 by reporting results for the TextAttack ALBERT
models (Lan et al., 2020). Due to space reasons, we complement Table 1 with MNLI-m and RTE in
Table S13

In Table S14, we can observe Charmer consistently attains the highest ASR among all the studied
methods, while obtaining the lowest Levenshtein distance in 4/5 cases and highest similarity in 3/5
cases.
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AG-News MNLI-m QNLI RTE SST-2
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Figure S6: Distribution of the relative location of perturbations in the sentence with Charmer:
0 and 1 represent an insertion before the first character and after the last character in the sentence
respectively. We do not observe any tendency in the QNLI, RTE and SST-2 datasets. For AG-News
and QNLI, the perturbations in locations closer to 0 appear to be more common.

Table S8: Attack examples in the first 3 sentences of AG-News.

Method Sentence Prediction

Original Fears for T N pension after talks Unions representing workers at Turner Newall say they are ’disappointed’ after talks
with stricken parent firm Federal Mogul.

2

TextBugger ● Fears for T percent pension after conversationAssociations representing workers at Turner Newall say they are
’dsappointed’ after talks with stricken parent firm Federal Mogul.

3

TextGrad ● Fears for t n pension after chatcustomers representing hours at turner newall complain they are’disappointed’after
chat with stricken parent provider federal mogul.

3

TextFooler ● Fears for T percent pension after debateSyndicatesportrayal worker at Turner Newall say they are ’disappointed’ after
chatter with bereaved parenting corporationsCanada Mogul.

0

DeepWordBug ● Fears for T N pension after alks Unions representing workers at Turner Newall say they are ’disppointed’ after taclks
with stricken parent firm GFederal Mogul.

2

BAE-R ● Fears for T pl pension after talks Unions representing workers at Turner controls say they are ’disappointed’ after
talks with stricken parent firm Federal Mogul.

3

BERT-attack ● Fears for T e pension after talks Unions representing workers at Turner Newall say they are ’disappointed, after
discussion with stricken parent firm global Mogul.

3

GBDA ● fears for t n pension after talks unions representing workers at turner newall say they are’disappointed’after talks
with stricken parent knesset federal mogul’

0

CWBA ● fe±rs for t n pen8314ion af1408er ta322ks un1603ons representing wo248yers at tu650ner newall say they
are’disaxacalanted’after ta38525ks with stfucken par12459nt firm federal mogul.

3

(Pruthi et al., 2019) ● Fears for T N pension after talks Unions representing workers at Tuurner Neqall say they are ’disappointed’ after
talks with stricken parent firm Federal Mogul.

0

Charmer ● Fears for T E pension :fter talks Unions representing workers at Turner Newall say they are ’disappointed’ after talks
with stricken parent firm Federal Mogul.

3

Original The Race is On: Second Private Team Sets Launch Date for Human Spaceflight (SPACE.com) SPACE.com - TORONTO, Canada
- A second \team of rocketeers competing for the #36;10 million Ansari X Prize, a contest for\privately funded
suborbital space flight, has officially announced the first\launch date for its manned rocket.

3

TextBugger ● The Race is On: SegundoOwn Team Sets InitiateStardate for Humanitarian Spaceflight (SPACE.com) SAPCE.com - VANCOUVER,
Canadian - per secs\team of rocketeers compete for the #36;10 m1110llion Asari X Prize, a contest for\secretly funded
suborbital space flight, has solemn announced the first\lau1400ch date for its manned rocket.

3

TextGrad ● The election is on: second private party sets eva date for human spacecapsule (moon.com) space.com - paris,
canada -- a fourth\trio of rocketeers seeking for the #36;10 million ansari x prize, a contest for\privately dollar
suborbitapollo space jump, has openly announced the first\launch date for its young child.

0

TextFooler ● The Race is Around: Second Privy Remit Set Lanza Timeline for Humanitarian Spaceflight (SEPARATION.com)
SEPARATION.com - CANADIENS, Countries - para second\squad of rocketeers suitors for the #36;10 billion Ansari X Nobel,
a contestant for\covertly championed suborbital spaceship plane, had solemnly proclaim the first\begantimeline for its
desolatebomb.

0

DeepWordBug ● The Race is On: Second Private Tam Sets ZLaunch Date for HumJan Spaceflight (SPACE.com) SPACE.col - TORONTO, Canada
- A second\team of rocketeers competing for the #3;1 million Asari X Priz, a contest for\privately ufnded suborbitIal
space flight, has officially announced the first\launch Bate for its mannwed rocket.

3

BAE-R ● The Race is On: current Private Team Sets launches Date for Human Spaceflight (SPACE.com) SPACE.com - TORONTO,
sa--canada second\jury of rocketeers competing for the #36;10 million Ansari X s, a contest for\privately financed
suborbital space flight, has just announced the first\launch date for its proposed rocket.

3

BERT-attack ● The Race is On: Second Private Team Sets landing Date for earth Spaceflight (mars.com) SPACE.com - TORONTO, Canada
- is current\team of rocketeers competing for the #36;10 million Ansari X quest, a contest for\privately financed
suborbital space launch, has officially announced the first\landingnumber for its apollo rocket.

3

GBDA ● the race is on : second private team sets launch date for human spaceflight ( barack. com ) continents. com -
newsweek, cuba - - a second \team of rocketeers competing for the # 36 ; 10 million ansari x prize, a contest for
\privately funded suborbital space flight, has officially announced the first \launch date for its manned rocket.

0

CWBA ● t20234e rauee is on : sec601nd private te4536m sets lau1410ch da1746e for human space969light ( sp*ce. c2m )
sp64257ce. c699m - tor8482nto, can8482da - - a second \team of rockiaeers com0sting for the # 36 ; 10 million ansari
x pr3936ze, a contest for \privately fun24179ed suborbital space flight, has offeldally announced the first \launch
date for its man2488ed roc20986et.

3

(Pruthi et al., 2019) ● The Race is On: Second Privqte Team Sets Launch Dajte for Himan Spacefight (SPADE.com) SPADE.com - TODONTO, Cahada -
A sdcond\tam of rocketees copmeting for the #36;10 million Anqari X Pfize, a cntest for\privately funedd sublorbital
space fight, has offically announced the first\launch date for its mabned rocket.

3

Charmer ● The Race is On: SeZond Private Team Sets LaunchDate for ?uQan Spaceflight (SPACE/com) SPDACE.0om - TORONTO, Canada U-
A second"team f rocketeers competing for the #36;10 million Ansari X Prize, a contest forDrivatelB funded suborbital
space flight, has officially announced ’he first$launch date for its manned rocket.

0

Original Ky. Company Wins Grant to Study Peptides (AP) AP - A company founded by a chemistry researcher at the University of
Louisville won a grant to develop a method of producing better peptides, which are short chains of amino acids, the
building blocks of proteins.

3

TextBugger ● Ky. Compnay Wins Subsidies to Examine Ppetides (AP) APS - A company based by a chemist research1077r at the Academia
of Indianapolis won a grant to develop a methodology of production best peptides, which are brief string of amino aids,
the building block of prote1110ns.

3

TextGrad ● Ky. company wins awarded to treat peptides (ab) ao - a company founded by a chemistry researcher at the time of
louisville won a lead to develop a treatment of producing greater peptides, which are short chains of fatty acids, the
basis blocks of muscle.

2

TextFooler ● Ky. Businesses Wins Grant to Study Peptides (HAS) HAS - A company founded by a chemistry researcher at the University
of Louisville won a grant to develop a method of producing better peptides, which are short chains of amino acids, the
building blocks of proteins.

2

DeepWordBug ● Ky. Comapny Wins Grant to SWtudy Peptieds (A) AP - A company foRnded by a cFhemistry researchfer at the Univrsity
of Louisvlle won a grant to devIelop a Qethod of proucing bette peptides, which are short Shains of amino acids, the
bunlding blocks of profteins.

2

BAE-R ● Ky. mit Wins Grant to Study Peptides (AP) AP - biotechnology company founded by a chemistry researcher at the
University of Louisville won a grant to study a method of producing better peptides, which are short chain of amino
acids, the building blocks of genes.

3

BERT-attack ● Ky. university Wins commission to research Peptides (AP) AP - A company owned by a chemistry lecturer at the
University of ky won a grant to research a method of research better peptides, which are short chains of amino acids,
the building blocks of protein.

3

GBDA ● ky. company wins grant to study peptides ( ap ) ap - a company founded by a chemistry researcher at the university of
louisville won a grant to develop a method of producing better peptides, which are short chains of amino acids, the
building blocks of proteins.

3

CWBA ● ky. com1405any wi2327s gr9824nt to stjdy pep65293ides ( ap ) ap - a company fzonded by a chehritry ressefcher at
the unfeitsity of louisdille wan a gr12449nt to devefop a met12369od of producing better pep1110ides, which are short
chains of am1074no ac1495ds, the building blocks of profcins.

1

(Pruthi et al., 2019) ● Ky. Compahy Wins Grant to Stuwy Peptdies (AP) AP - A company founded by a chemistry researcher at the UQniversity of
Louisville won a grant to develop a method of producing better pepgides, which are short chains of amino aids, the
building blocks of proheins.

1

Charmer ● Ky. Company Wins Grant to StuJdy Peptides (AP) AFP - A company founded by a chemistry researcher at the University of
Louisville won a grant to develop a method of producing better peptides, which are short chains of amino acids, the
building blocks of proteins.

0
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Table S9: Attack examples in the first 3 sentences of MNLI-m.

Method Sentence Prediction

Original Everyone really likes the newest benefits 2
TextBugger ● Somebody really lies the newest benefits 0
TextGrad ● Everyone really hates the newest benefits 0
TextFooler ● Nobody really likes the newest benefits 0
DeepWordBug ● Everyone really yikes the newest benefits 0
BAE-R ● nobody really likes the newest benefits 0
BERT-attack ● Everyone really hates the newest benefits 0
GBDA ● everyone really likes the newest misery 0
(Pruthi et al., 2019) ● Everyone really lies the newest benefits 0
Charmer ● Everyone really Yikes the newest benefits 0

Original The Government Executive articles housed on the website are not able to
be searched.

0

TextBugger ● The Government Executive articles housed on the websites are not able
to be searched.

2

TextGrad ● The government executive articles housed on the website are not able to
be destroyed.

2

TextFooler ● The Government Executive articles housed on the website are not
incapable to be searched.

2

DeepWordBug ● The Government Executive articles housed on the website are not able to
be sarched.

2

BAE-R ● The Government cabinet articles housed on the website are not likely to
be searched.

2

BERT-attack ● The Government Executive articles housed on the website are not to to
be visited.

2

GBDA ● the government executive articles housed on the website are not sure to
be raided.

2

(Pruthi et al., 2019) ● The Government Executive articles housed on the website are not able to
be sarched.

2

Charmer ● The Government Executive articles housed on the website are Got able to
be searched.

1

Original I like him for the most part, but would still enjoy seeing someone beat
him.

1

TextBugger ● I like him for the most part, but would still enjoy seeing someone beat
him.

1

TextGrad ● I like him for the most cent, but would never enjoy seeing someone beat
him.

0

TextFooler ● I like him for the most portion, but would still cherishes seeing
someone conquering him.

2

DeepWordBug ● I like him for the most art, but would still enjoy seeing someone beat
him.

2

BAE-R ● I like him for the most people, but would still enjoy seeing someone
beat him.

2

BERT-attack ● I like him for the most all, but would still enjoy seeing someone beat
him.

2

GBDA ● i like him for the most part, but howard always regrets seeing someone
beat him.

2

(Pruthi et al., 2019) ● I like him for the most part, but would still enjoy sewing someone beat
him.

2

Charmer ● I like him for the most p4art, but would still enjoy seeing someone
beat him.

2
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Table S10: Attack examples in the first 3 sentences of QNLI.

Method Sentence Prediction

Original As of that day, the new constitution heralding the Second Republic came
into force.

0

TextBugger ● As of that day, the new constitution heralding the Second Republics
came into for1010e.

1

TextGrad ● As of that day, the new constitution heralding the second republic
registered into real.

1

TextFooler ● As of that day, the new constitution heralding the Second Republics
went into troupes.

1

DeepWordBug ● As of that day, the new constitution heralding the Second Republic came
into ofrce.

1

BAE-R ● As of that document, the new constitution heralding the Second republic
came into existence.

0

BERT-attack ● As of that day, the new constitution heraldof the Second Republic came
into real.

1

GBDA ● as of that day, the new constitution heralding the second republic came
into force.

0

(Pruthi et al., 2019) ● As of that day, the new constitution heralding the Second Republic came
into forde.

1

Charmer ● As of that day, the new constitution heralding the Second Republic came
into for$ce.

1

Original The most important tributaries in this area are the Ill below of
Strasbourg, the Neckar in Mannheim and the Main across from Mainz.

1

TextBugger ● The most important tributaries in this areas are the Ill below of
Strasbourg, the Neckar in Mannheim and the Main across from Mainz.

0

TextGrad ● The most important tributaries in this area are the ill below of
strasbourg, the neckar in mannheim and the main across from cincinnati.

0

TextFooler ● The most important tributaries in this areas are the Ill below of
Strasbourg, the Neckar in Mannheim and the Main across from Mainz.

0

DeepWordBug ● The most important tributaries in this area are the IAl below of
Strasbourg, the Neckar in Mannheim and the Main across from Mainz.

0

BAE-R ● The most important tributaries in this sector are the Ill below of
Strasbourg, the Neckar in Mannheim and the Main across from Mainz.

0

BERT-attack ● The most important tributaries in this area are the far below of
Strasbourg, the Neckar in Mannheim and the Main across from Mainz.

0

GBDA ● the most important tributaries in this area are the ill below of
strasbourg, the neckar in mannheim and the jedi across from mainz.

0

(Pruthi et al., 2019) ● The most important tributaries in this area are the Ill below of
Strasbourg, the Neckar in Mannheim and the Main across from Mainz.

1

Charmer ● The most iðportant tributaries in this area are the Ill below of
Strasbourg, the Neckar in Mannheim and the Main across from Mainz.

0

Original In most provinces a second Bachelor’s Degree such as a Bachelor of
Education is required to become a qualified teacher.

1

TextBugger ● In most provinces a s1077cond Bac1392elor’s Degrees such as a
Bachelo11397 of Education is required to become a qualified teacher.

0

TextGrad ● In most provinces a minimum bachelor’s degree such as a bachelor of
education is required to become a qualified teacher.

0

TextFooler ● ing most provinces a second Bachelor’s Grades such as a Diplomas of
Tuition is required to become a qualified teacher.

0

DeepWordBug ● I most provinces a qecond Bachelor’s Wegree such as a BFchelor of
ducation is required to beome a qualified teachr.

0

BAE-R ● In most provinces a basic Bachelor’s Degree such as a bachelor of
studies is needed to become a qualified teacher.

1

BERT-attack ● In most canadian a diploma bachelorthethe Degree such as a major of
Education is required to become a qualified teacher.

0

GBDA ● in most provinces a second bachelor’s degree such as a bachelor of
education is minimum to become a qualified teacher.

0

(Pruthi et al., 2019) ● In most provinces a second Bachelor’s Degree such as a Bachelor of
Education is required to become a qualified teacher.

1

Charmer ● In most provinces a2second Bachelor’s Degree such as a Bachelor of
Education is required to become a qualified teacher.

0
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Table S11: Attack examples in the first 3 sentences of RTE.

Method Sentence Prediction

Original Christopher Reeve had an accident. 1
TextBugger ● Christopher Reeve had an accident. 1
TextGrad ● Christopher reeve had an career. 0
TextFooler ● Valeria Reeve was an collisions. 0
DeepWordBug ● Christopher Reeve had an accidnt. 1
BAE-R ● karen Reeve had an accident. 1
BERT-attack ● david Reeve had an stroke. 0
GBDA ● christopher reeve had an stroke. 0
(Pruthi et al., 2019) ● Christopher Reeve had an acciSdent. 1
Charmer ● Christopher Reeve had an accidentS 0

Original Pennsylvania has the biggest Amish community in the U.S. 1
TextBugger ● Penn has the largest Amish community in the U.S. 0
TextFooler ● Pennsylvania has the wide Amish community in the U.S. 0
DeepWordBug ● Pennsylvania has the bigges Amish community in the U.S. 1
BAE-R ● Pennsylvania has the large Amish community in the U.S. 0
BERT-attack ● Pennsylvania has the huge Amish community in the U.S. 1
GBDA ● pennsylvania has the strongest amish community in the state. nara

geographical
0

(Pruthi et al., 2019) ● Pennsylvania has the biggeat Amish community in the U.S. 0
Charmer ● Pennsylvania has the biggeAt Amish community in the U.S. 0

Original Security forces were on high alert after a campaign marred by violence. 0
TextBugger ● Security forces were on high alert after a countryside marred by

violence.
1

TextGrad ● Security families were on high alert after a month marred by violence. 1
TextFooler ● Security forces were on high alert after a countryside marred by

violence.
1

DeepWordBug ● Security forces were on high alert after a cmpaign marred by violence. 1
BAE-R ● ransport force were on high alert after a campaigning marred by

violence.
1

GBDA ● security forces were on high alert after a campaign marred by marches. 1
(Pruthi et al., 2019) ● Security forces were on high alert after a campairn marred by violence. 1
Charmer ● Security forces were on high alert after a2campaign marred by violence. 1

E.4 ATTACK TRANSFERABILITY

In this section we study the transferability of Charmer attacks. This is a widely studied setup in
the computer vision community (Demontis et al., 2019). For each dataset, attack and model, we
generate the attacked sentences and evaluate the ASR when using them for attacking other models.
As a reference we take the best token-level method from Table 1, i.e., TextFooler.

In Table S5 we can observe both TextFooler and Charmer fail to produce high ASRs in the transfer
attack setup. As a reference, the highest transfer ASR was 55.48% and was attained by Charmer in
the MNLI-m dataset, with BERT as a Source Model and RoBERTa as the target model. We notice in
the AG-News dataset it is considerably harder to produce transfer attacks, with the highest transfer
ASR being 9.77% among all setups. We believe improving the ASR in the transfer attack setup is an
interesting avenue.

E.5 ROBUST WORD RECOGNITION DEFENSES

To complete the analysis, we repeat the experiments in Sec. 3.4 in the RTE, MNLI-m and QNLI
datasets5.

In Table S15 we can observe a similar phenomenon as in Table S15, i.e., robust word encoding
defenses only work when assuming the attacker adopts the PJC constraints. When either the
LowEng, Start or End constrants are relaxed, the ASR considerably grows close to 100%. It is
worth mentioning that in the RTE dataset, defending with Jones et al. (2020) results in Charmer
without any constraints achieving only 65.93% ASR. Nevertheless, this defense degrades the clean
accuracy to less than 50%. If the dataset is balanced, as RTE approximately is6, a constant classifier
can achieve 50% clean accuracy and 0% ASR. This fact shows the little value of the RTE defended
model in Jones et al. (2020).

5The AG-News dataset is not studied in Pruthi et al. (2019); Jones et al. (2020).
6https://huggingface.co/datasets/glue/viewer/rte/validation
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Table S12: Attack examples in the first 3 sentences of SST-2.

Method Sentence Prediction

Original it ’s a charming and often affecting journey . 1
TextBugger ● it ’s a ch593rming and often affecting voyage . 1
TextGrad ● it’s a dangerous and often affecting travelling. 0
TextFooler ● it ’s a cutie and often afflicts journey . 0
DeepWordBug ● it ’s a Wcharming and otfen affceting journey . 0
BAE-R ● it ’s a dark and often winding journey . 0
BERT-attack ● it ’s a one and often another journey . 1
GBDA ● it’s a colourful and not affecting journey. 0
CWBA ● it’s a char640ing a→d ofwen affe37070ting jo1657ney. 0
(Pruthi et al., 2019) ● it ’s a chrming and often acfecting journey . 0
Charmer ● it ’s a %harming and often affecting journey . 0

Original unflinchingly bleak and desperate 0
TextBugger ● unflinchingly somber and desperate 1
TextGrad ● unflinchingly dark and desperate 1
TextFooler ● unflinchingly eerie and desperate 1
DeepWordBug ● unflinchingly blak and despertae 1
BAE-R ● unflinchingly happy and desperate 1
BERT-attack ● unflinchingly dark and desperate 1
GBDA ● unflinchingly picturesque and desperate 1
CWBA ● unfl30340aringly byaak ayod deshilarate 1
(Pruthi et al., 2019) ● unflinchingly beak and deseprate 1
Charmer ● unflinchingly àbleak and desperate 1

Original allows us to hope that nolan is poised to embark a major career as a
commercial yet inventive filmmaker .

1

TextBugger ● allows nous to hope that nolan is poised to embark a major career as a
commercial however invntive cinematographers .

0

TextGrad ● allows us to argue that nolan is ineligible to embark a major career as
a commercial fails inventive filmmaker.

0

TextFooler ● allows ourselves to hope that nolan is poised to embarked a severe
career as a commercial yet noveltysuperintendent .

0

DeepWordBug ● allows Gs to hope that nolan is Loised to embark a major career as a
commercial yet invewntive filmmaker .

0

BAE-R ● allows it to hope that nolan is poised to assume a major career as a
commercial yet amateur filmmaker .

1

BERT-attack ● allows to to hope that nolan is eligible to embark a major career as a
commercial yet inventexperienced filmmaking .

0

GBDA ● allows us to doubt that nolan is poised to embark a major career as a
commercial lower inventive writer.

0

CWBA ● all21335ws us to ho26954e that nolan is po2313sed to embark a major
career as a commbecial y1705t inventive filmmaker.

0

(Pruthi et al., 2019) ● allows us to hope that nolan is poised to ebark a major career as a
commercial yet infentive filmmaker .

0

Charmer ● allows us to hope that no$an is poised to embark a major career as a
commercial yet inventive filmmaker .

0
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Table S13: Attack evaluation in the TextAttack BERT and RoBERTa models in QNLI, MNLI-m
and RTE.

BERT RoBERTa
Method ASR (%) ↑ dlev(S, S

′) ↓ Sim(S, S′) ↑ Time (s) ↓ ASR (%) ↑ dlev(S, S
′) ↓ Sim(S, S′) ↑ Time (s) ↓

M
N

L
I-

m

GBDA ● 97.97 11.45±(6.52) 0.73±(0.16) 11.68±(3.23) - - - -
BAE-R ● 70.00 6.46±(3.32) 0.83±(0.15) 0.53±(0.44) 67.39 6.47±(3.31) 0.84±(0.14) 0.54±(0.37)

BERT-attack ● 92.41 6.95±(6.57) 0.83±(0.13) 26.53±(204.23) 97.62 6.56±(4.16) 0.83±(0.14) 2.60±(15.58)

DeepWordBug ● 84.88 2.30±(1.68) 0.75±(0.18) 0.23±(0.12) 78.41 2.79±(2.02) 0.71±(0.21) 0.27±(0.15)

TextBugger ● 85.36 4.17±(4.33) 0.83±(0.13) 0.44±(0.32) 86.36 5.41±(5.40) 0.80±(0.15) 0.51±(0.38)

TextFooler ● 92.26 9.83±(6.87) 0.82±(0.14) 0.52±(0.41) 90.23 10.50±(7.79) 0.81±(0.14) 0.54±(0.42)

TextGrad ● 93.69 9.98±(5.66) 0.75±(0.13) 2.50±(1.97) 95.44 9.10±(5.30) 0.79±(0.12) 3.56±(2.83)

(Pruthi et al., 2019) ● 57.62 1.32±(0.64) 0.83±(0.12) 4.48±(3.73) 52.84 1.36±(0.63) 0.82±(0.13) 7.48±(6.49)

Charmer-Fast (Ours) ● 100.00 1.23±(0.58) 0.85±(0.14) 0.21±(0.17) 100.00 1.36±(0.78) 0.82±(0.15) 0.23±(0.19)

Charmer (Ours) ● 100.00 1.14±(0.42) 0.85±(0.13) 1.45±(0.81) 100.00 1.17±(0.46) 0.84±(0.13) 1.49±(0.82)

Q
N

L
I

GBDA ● 47.16 11.88±(7.02) 0.93±(0.06) 13.85±(2.94) - - - -
BAE-R ● 40.04 11.44±(8.30) 0.95±(0.07) 2.31±(2.36) 41.66 10.37±(9.05) 0.96±(0.04) 2.18±(2.77)

BERT-attack ● 70.21 16.21±(12.44) 0.90±(0.08) 239.86±(1395.15) 70.65 17.78±(13.28) 0.89±(0.12) 2.70±(12.58)

DeepWordBug ● 71.57 4.52±(4.04) 0.86±(0.15) 0.50±(0.34) 64.34 5.07±(4.67) 0.85±(0.17) 0.59±(0.41)

TextBugger ● 75.77 8.16±(9.93) 0.89±(0.10) 0.99±(0.78) 67.39 9.08±(10.31) 0.90±(0.10) 0.90±(0.72)

TextFooler ● 80.64 23.42±(21.56) 0.87±(0.12) 1.90±(1.70) 76.01 25.74±(28.53) 0.87±(0.12) 2.00±(2.09)

TextGrad ● 77.35 30.03±(20.41) 0.82±(0.10) 4.54±(3.82) 76.80 21.56±(15.74) 0.87±(0.08) 5.80±(4.58)

(Pruthi et al., 2019) ● 17.70 1.57±(0.81) 0.93±(0.07) 7.22±(4.91) 17.45 1.54±(0.88) 0.93±(0.08) 7.46±(5.33)

Charmer-Fast (Ours) ● 94.69 2.21±(1.69) 0.93±(0.09) 1.33±(1.55) 96.95 2.73±(2.15) 0.90±(0.12) 1.72±(2.27)

Charmer (Ours) ● 97.68 1.94±(1.48) 0.94±(0.07) 9.19±(9.60) 97.86 2.20±(1.69) 0.92±(0.08) 10.55±(9.69)

R
T

E

GBDA ● 76.62 8.99±(4.74) 0.78±(0.13) 16.71±(7.29) - - - -
BAE-R ● 64.68 6.98±(3.39) 0.87±(0.09) 0.84±(0.65) 64.06 6.11±(3.84) 0.89±(0.08) 0.76±(0.69)

BERT-attack ● 68.00 10.06±(9.75) 0.78±(0.19) 23.67±(51.78) 31.34 6.00±(3.96) 0.86±(0.08) 5.36±(20.47)

DeepWordBug ● 65.67 1.64±(0.82) 0.85±(0.10) 0.12±(0.03) 62.67 1.83±(1.09) 0.82±(0.14) 0.13±(0.04)

TextBugger ● 74.13 3.38±(3.48) 0.88±(0.09) 0.35±(0.18) 71.43 3.91±(3.73) 0.89±(0.08) 0.38±(0.40)

TextFooler ● 79.60 7.42±(6.10) 0.88±(0.09) 0.47±(0.59) 74.19 7.68±(5.94) 0.88±(0.09) 0.47±(0.59)

TextGrad ● 81.77 10.02±(5.69) 0.76±(0.13) 2.44±(1.06) 73.97 6.40±(3.30) 0.84±(0.08) 3.57±(3.61)

(Pruthi et al., 2019) ● 62.19 1.18±(0.41) 0.86±(0.08) 8.45±(6.25) 49.31 1.21±(0.54) 0.87±(0.08) 12.23±(8.84)

Charmer-Fast (Ours) ● 89.55 1.36±(0.93) 0.87±(0.12) 0.29±(0.27) 91.71 1.78±(1.71) 0.82±(0.15) 0.41±(0.54)

Charmer (Ours) ● 97.01 1.55±(1.42) 0.86±(0.13) 2.50±(2.33) 97.24 1.61±(1.39) 0.85±(0.13) 2.74±(2.87)

E.6 ATTACK OF LLM CLASSIFIER

The prompt design in attacking different LLMs is summarized in Table S18. A schematic of attacking
LLMs is present in Fig. S7. In this experiment, we use token-based position selection to further
accelerate the process of attack. Specifically, we mask each token in the inputs and select the top ten
tokens with the highest loss. Since some tokens consist of many characters, we only use 40 positions
of these tokens to perform Algorithm 1. The remaining step is the same as in Algorithm 2. Notably,
in Table S16, we see that such a process can significantly accelerate the attack while maintaining
the performance of ASR and other metrics. The result on Vicuna 7B is present in Table S17, where
we can see the proposed Charmer achieves much higher ASR than other baselines with less edit
distance.

it 's a c harming and often affecting journey .à

Is the given review positive or negative?

The answer is

negative

Charmer

LLM

Success

Figure S7: Schematic of the proposed Charmer in attacking LLM-classifiers. Charmer modifies
the input to S′ with a small perturbation (annotated in green color) to the original input so that the
model produces the desired output y. SP1

and SP2
are auxiliary prompts that remain unchanged

during the attack.
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Table S14: Attack evaluation in the TextAttack ALBERT models: Token-level and character-level
attacks are highlighted with ● and ● respectively. for each metric, the best method is highlighted in
bold and the runner-up in underlined. Charmer consistently achieves highest Attack Success Rate
(ASR).

ALBERT
Method ASR (%) ↑ dlev(S, S

′) ↓ Sim(S, S′) ↑ Time (s) ↓

A
G

-N
ew

s

CWBA ● 57.96 22.69±(21.07) 0.64±(0.22) 205.69±(162.00)

BAE-R ● 18.26 15.15±(11.28) 0.97±(0.02) 1.84±(1.70)

BERT-attack ● 37.23 21.34±(15.29) 0.93±(0.05) 2.41±(2.14)

DeepWordBug ● 56.90 9.77±(6.77) 0.83±(0.14) 0.73±(0.40)

TextBugger ● 71.76 17.48±(16.82) 0.91±(0.06) 1.38±(0.98)

TextFooler ● 76.22 46.51±(35.21) 0.87±(0.10) 3.89±(3.11)

TextGrad ● 75.37 42.43±(19.05) 0.85±(0.07) 8.23±(9.15)

(Pruthi et al., 2019) ● 88.00 5.50±(4.74) 0.89±(0.13) 29.17±(25.58)

Charmer-Fast ● 95.44 3.25±(2.88) 0.95±(0.06) 2.38±(3.27)

Charmer ● 97.13 2.45±(2.31) 0.97±(0.04) 6.94±(12.33)

M
N

L
I-

m

BAE-R ● 71.57 6.28±(3.27) 0.84±(0.14) 0.54±(0.34)

BERT-attack ● 97.50 7.14±(5.17) 0.84±(0.12) 2.96±(16.16)

DeepWordBug ● 85.90 2.31±(1.63) 0.77±(0.17) 0.27±(0.13)

TextBugger ● 88.05 4.86±(4.64) 0.82±(0.13) 0.55±(0.38)

TextFooler ● 94.98 9.49±(6.45) 0.82±(0.13) 0.55±(0.40)

TextGrad ● 94.15 8.96±(4.90) 0.79±(0.12) 2.33±(1.63)

(Pruthi et al., 2019) ● 58.18 1.26±(0.57) 0.84±(0.11) 5.14±(5.25)

Charmer-Fast ● 100.00 1.17±(0.42) 0.85±(0.13) 0.22±(0.15)

Charmer ● 100.00 1.08±(0.28) 0.86±(0.11) 1.53±(0.70)

Q
N

L
I

BAE-R ● 45.97 10.94±(7.57) 0.95±(0.06) 2.52±(2.46)

BERT-attack ● 73.40 16.74±(16.94) 0.90±(0.10) 760.09±(5904.67)

DeepWordBug ● 74.07 5.00±(4.36) 0.85±(0.16) 0.57±(0.43)

TextBugger ● 76.03 9.59±(11.48) 0.90±(0.10) 1.15±(0.99)

TextFooler ● 80.72 22.56±(20.96) 0.88±(0.11) 2.13±(2.00)

TextGrad ● 74.78 28.47±(17.98) 0.84±(0.09) 5.78±(6.02)

(Pruthi et al., 2019) ● 26.47 1.85±(1.18) 0.93±(0.09) 10.12±(8.49)

Charmer-Fast ● 96.19 2.26±(1.74) 0.93±(0.08) 1.58±(2.36)

Charmer ● 96.23 1.78±(1.11) 0.94±(0.07) 9.60±(8.10)

R
T

E

BAE-R ● 61.14 6.69±(3.43) 0.88±(0.09) 0.82±(0.53)

BERT-attack ● 9.80 5.20±(2.95) 0.86±(0.16) 21.39±(34.86)

DeepWordBug ● 59.24 1.54±(0.84) 0.84±(0.13) 0.13±(0.05)

TextBugger ● 70.62 4.45±(5.24) 0.87±(0.11) 0.44±(0.33)

TextFooler ● 68.25 7.60±(5.61) 0.89±(0.09) 0.52±(0.65)

TextGrad ● 70.70 7.07±(3.25) 0.83±(0.10) 2.56±(2.28)

(Pruthi et al., 2019) ● 48.34 1.22±(0.41) 0.86±(0.09) 11.56±(7.69)

Charmer-Fast ● 97.16 1.68±(1.32) 0.83±(0.14) 0.42±(0.44)

Charmer ● 100.00 1.29±(0.65) 0.87±(0.10) 2.49±(2.13)

SS
T-

2

CWBA ● 77.88 11.18±(4.58) 0.55±(0.25) 58.28±(50.83)

BAE-R ● 62.77 10.25±(7.24) 0.85±(0.16) 0.78±(0.77)

BERT-attack ● 72.34 11.57±(6.89) 0.85±(0.10) 148.11±(1077.71)

DeepWordBug ● 84.78 3.37±(2.47) 0.82±(0.16) 0.23±(0.12)

TextBugger ● 72.52 5.61±(5.51) 0.91±(0.06) 1.85±(0.90)

TextFooler ● 95.79 15.79±(11.12) 0.83±(0.14) 1.11±(0.74)

TextGrad ● 96.28 18.67±(9.73) 0.80±(0.11) 2.95±(1.65)

(Pruthi et al., 2019) ● 95.05 1.98±(1.28) 0.87±(0.13) 4.66±(3.98)

Charmer-Fast ● 99.88 1.62±(0.88) 0.89±(0.12) 0.38±(0.34)

Charmer ● 100.00 1.38±(0.67) 0.91±(0.10) 1.38±(0.93)
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Table S15: Effect of each PJC constraint: Charmer ASR when individually removing each
constraint while keeping the rest. Performance with no constraints (None) put as reference. The ASR
drastically increases when removing the LowEng, End or Start constraints, proving the fragility
of existing robust word recognition defenses.

SST-2 RTE MNLI-m QNLI
Defense Attack constraint Acc. (%) ASR Acc. (%) ASR (%) Acc. (%) ASR (%) Acc. (%) ASR (%)

(P
ru

th
ie

ta
l.,

20
19

) None

88.53

100.00

60.36

92.17

76.33

100.00

73.55

86.38
PJC 70.34 42.17 87.39 43.05
-LowEng 99.22 70.48 97.90 65.53
-Length 74.61 45.78 92.51 46.19
-End 93.91 63.86 96.19 57.63
-Start 98.58 69.88 97.11 57.08
-NoRepeat 74.09 42.17 89.36 42.51

(J
on

es
et

al
.,

20
20

) None

83.94

100.00

48.74

65.93

68.44

100.00

76.20

98.56
PJC 0.96 2.96 2.93 1.05
-LowEng 98.09 57.04 96.63 94.62
-Length 0.96 2.96 2.93 0.79
-End 71.72 44.44 75.26 54.99
-Start 88.93 47.41 82.87 67.32
-NoRepeat 5.46 6.67 9.81 3.81

Table S16: Ablation study on the time efficiency of different methods of position selection in Llama
2-Chat 7B. We choose the fast version of Charmer with n = 1 and k = 10. The result shows that
combing Algorithm 1 with a token-based pre-selection procedure can notably improve the efficiency
of the proposed Charmer.

Method ASR (%) dlev(S, S
′) Sim(S, S′) Time

SS
T-

2 Charmer-Fast (Token-based Algorithm 1) 95.47 2.55 0.83 1.47
Charmer-Fast (Algorithm 1) 95.60 2.56 0.85 3.32

Q
N

L
I Charmer-Fast (Token-based Algorithm 1) 93.51 2.40 0.93 5.66

Charmer-Fast (Algorithm 1) 96.82 2.34 0.94 10.30

R
T

E Charmer-Fast(Token-based Algorithm 1) 97.10 1.68 0.82 2.06
Charmer-Fast(Algorithm 1) 98.07 1.64 0.84 2.63

E.7 JAILBREAKING LLM

Disclaimer: this attack can lead to harmful content
In this section, we showcase that the proposed method can also be applied to jailbreaking LLMs,
which refers to designing prompts to allow LLMs to output harmful content. We compare against the
recent jailbreaking attacks GCG (Zou et al., 2023) and AutoDAN (Liu et al., 2023) in the AdvBench
banchmark (Zou et al., 2023). First, we overview the formulation of jailbreaking LLM. Given a
harmful query S, the goal of jailbreaking is to make the model answer certain query S even when
the safety system prompt Ssystem is provided, see Fig. 1b for an illustration of Ssystem. Formally, our
attacker aims to find an adversarial example S′ based on S such that:

max
S′∈Sk(S,Σ)

L (f(Ssystem ⊕ S′), y) := max
S′∈Sk(S,Σ)

P(y|Ssystem ⊕ S′)

where L is defined as the probability of generating the target y := “Sure, here is”⊕ S. For example,
if S is “how to make a bomb”, then y is “Sure, here is how to make a bomb”.

In this experiment, we use the Advbench dataset proposed by Zou et al. (2023), which consists
of harmful and toxic sentences across different topics. Due to the costly computational budget
of attacking LLMs, we only use the first 50 sentences in the dataset. We compare the proposed
Charmer against the white-box attack GCG Zou et al. (2023) and black-box attack AutoDAN Liu
et al. (2023). We adopt the same hyper-parameters of LLM and criterion of success as in Zou et al.
(2023). The result in Table S19 shows that Charmer can pass the safety alignment process of LLMs
with much less change in terms of Levenshtein distance.

26



Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Table S17: Attack evaluation in Vicuna 7B: We choose the fast version of Charmer with n = 1
and k = 10. Charmer outperforms baselines in terms of attack success rate, Levenshtein distance ,
and achieves comparative similarity and speed.

Method ASR (%) dlev(S, S
′) Sim(S, S′) Time

Q
N

L
I

BAE-R ● 40.66 12.36 0.96 3.11
BERT-attack ● 56.67 16.61 0.91 4.03

DeepWordBug ● 43.77 3.63 0.91 1.32
TextBugger ● 53.11 9.08 0.93 2.56
TextFooler ● 51.28 20.70 0.92 4.76

Charmer-Fast ● 98.35 2.04 0.94 4.89

R
T

E

BAE-R ● 64.11 5.96 0.89 1.23
BERT-attack ● 82.78 8.92 0.82 1.60

DeepWordBug ● 50.97 2.67 0.76 0.61
TextBugger ● 71.77 6.63 0.84 1.12
TextFooler ● 78.47 7.94 0.86 1.64

Charmer-Fast ● 89.05 1.56 0.85 1.98

SS
T-

2

BAE-R ● 43.22 14.29 0.75 3.28
BERT-attack ● 32.31 13.21 0.85 2.42

DeepWordBug ● 30.72 4.22 0.76 0.88
TextBugger ● 23.01 9.97 0.88 1.73
TextFooler ● 64.04 18.03 0.91 4.05

Charmer-Fast ● 91.89 2.47 0.85 1.66

Table S18: Prompting in different LLMs and datasets. The sentences outside “[Input]” are considered
as auxiliary prompts SP1

and SP2
, as demonstrated in Fig. S7.

Model Dataset Prompt design
Llama 2-Chat 7B SST-2 Is the given review positive or negative? [Input] The answer is

RTE [Input premise] Based on the paragraph above can we conclude the
following sentence, answer with yes or no. [Input hypothesis] The
answer is

QNLI Does the sentence answer the question? Answer with yes or no. Question:
[Input premise] Sentence: [Input hypothesis] The answer is

Vicuna 7B SST-2 Analyze the tone of this statement and respond with either positive or
negative: [Input] The answer is:

RTE [Input premise] Based on the paragraph above can we conclude the
following sentence, answer with yes or no. [Input hypothesis] The
answer is

QNLI [Input premise] Based on the question above, does the following sentence
answer the question? [Input hypothesis] Answer with yes or no. The
answer is

F ADDITIONAL METHOD DETAILS

F.1 PRE-SELECTION OF REPLACEMENT LOCATIONS

In Proposition S3, we consider all possible locations (i ∈ [2 · |S| + 1]), leading to |S1(S,Γ)| ≤
(|Γ|+ 1) · (2 · |S|+ 1) by Corollary S6, which can be relatively big for lengthy sentences (e.g., |S|
can be up to 844 for AG-News). We propose considering a subset of n locations in order to remove
the dependency on the length of the sentence. To select the top n locations, we propose testing the
relevance of each position by replacing each character with a “test" character and looking at the

7In Vicuna 7B and Guanaco 7B, AutoDAN uses the initialized handcrafted prefix in jailbreaks successfully
so that the time is 0. Our method can also work on top of these handcrafted prefixes.
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Table S19: Attack evaluation in jailbreaking different large language models.

Model Method ASR (%) dlev(S, S
′) Time

Vicuna 7B GCG 100.00 35.26 56.32
AutoDAN 100.00 3677 -7

Charmer 100.00 3.44 17.41

Guanaco 7B GCG 100.00 55.34 30.06
AutoDAN 100.00 3677.00 - 7

Charmer 100.00 4.98 24.99

Llama 2-Chat 7B GCG 86.00 76.74 948.44
AutoDAN 18.00 3209.33 29.01
Charmer 94.00 28.02 341.66

change in the loss. In Algorithm 1 we formalize our proposed strategy. Note that if the test character
is going to be replaced by itself in a certain position, we replace by the special character ξ (Line 5 in
Algorithm 1). In practice we use the white space (U+0020) as the test character. Overall, Algorithm 1
performs O(|S|) forward passes trough the language model.

F.2 ATTACK CLASSIFIER

In the case of using a classifier f : S(Γ) → Ro, where the predicted class is given by ŷ =
argmaxy∈[o] f(S)y with o classes, we follow Hou et al. (2023) and use the Carlini-Wagner Loss8

(Carlini and Wagner, 2017):

L(f(S), y) = max
ŷ ̸=y

f(S)ŷ − f(S)y . (2)

In this case, a sentence S′ is an adversarial example when L(f(S′), y) ≥ 0. To search the closest
sentence in Levenshtein distance that produces a misclassification, we iteratively solve Eq. (1) with
k = 1 until the adversarial sentence S′ is misclassified. Our attack pseudo-code is presented in
Algorithm 2.

F.3 ATTACK LLM

Now we illustrate how to apply our method on attacking LLM-based classifiers. Given a data sample
(S, y) ∈ S × [C], the input to LLMs is formulated by concatenating the original sentences with
some instructive prompts SP1 , SP2 in the format of SP1 ⊕ S ⊕ SP2 . A schematic for illustration and
additional details on the prompting strategy can be found in Appendix E.6. Similar to Eq. (1), we aim
to solve:

max
S′∈Sk(S,Σ)

L (f(SP1 ⊕ S′ ⊕ SP2), y) ,

where the model output f(SP1 ⊕ S′ ⊕ SP2)i := P(i|SP1 ⊕ S′ ⊕ SP2) is the conditional probability
of the next token i. We can still use the Carlini-Wagner Loss defined in Eq. (2) by considering the
next token probability for the classes.

G PROOF OF COROLLARY S6

In this section, we provide the technical proof of Corollary S6.

8In the original paper, Carlini and Wagner (2017) clip the value of the loss to be 0 at maximum. We do not
clip in order to deal with cases where the loss is positive for different adversarial examples.
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Proof. Starting with the upper bound, in the base case, we have |S0| = |{S}| = 1. Then, we will
prove the relationship between |Sk| and |Sk−1|. For a certain S′ ∈ Sk−1, we have:

|Sk(S,Γ)| =

∣∣∣∣∣∣
⋃

S′∈Sk−1

{S′′ : dlev(S
′, S′′) ≤ 1}

∣∣∣∣∣∣
≤

∑
S′∈Sk−1

|{S′′ : dlev(S
′, S′′) ≤ 1}|

[Proposition S3] =
∑

S′∈Sk−1

∣∣∣{ψ (
ϕ (S′)

i← c
)
∀i ∈ [2|S′|+ 1],∀c ∈ Γ ∪ {ξ}

}∣∣∣
[# combinations of i’s and c’s] ≤

∑
S′∈Sk−1

(2|S′|+ 1) · (|Γ|+ 1)

[|S′| ≤ |S|+ k ∀S′ ∈ Sk] ≤
∑

S′∈Sk−1

(2(|S|+ k)− 1) · (|Γ|+ 1)

= (2(|S|+ k)− 1) · (|Γ|+ 1) · |Sk−1| .

Finally, by induction we have

|Sk(S,Γ)| ≤ (|Γ|+ 1)k ·
k∏

j=1

(2(|S|+ k)− 1) .

For the lower bound, it is enough to compute the size of the set of strings obtained by adding just
prefixes:

|Sk(S,Γ)| ≥ |{ψ(P ⊕ ϕ(S)),∀P ∈ {P ′ ∈ S(Γ ∪ {ξ}), |P ′| ≤ k}}|
= |{ψ(P ),∀P ∈ {P ′ ∈ S(Γ ∪ {ξ}), |P | ≤ k}}|

=

∣∣∣∣∣
k⋃

i=0

{P ′ ∈ S(Γ), |P ′| = i}

∣∣∣∣∣
[Disjoint sets] =

k∑
i=0

|{P ′ ∈ S(Γ), |P ′| = i}|

=

k∑
i=0

|Γ|i

[Geometric series] =

{
1−|Γ|k+1

1−|Γ| if |Γ| > 1

k + 1 if |Γ| = 1

H ALTERNATIVE ATTACK DESIGNS

In this section, we cover alternative algorithmic designs called PGA-Charmer for solving Eq. (1)
Specifically, we study relaxing the binary constraints in Eq. (BP) in order to perform a Projected
Gradient Ascent (PGA) procedure.

H.1 PGA-CHARMER

Let E(i) = Token(S(i))T ∈ Rli×d be the embeddings of tokens for any sentence S(i) ∈ S ′ ⊆ S(Γ)
with i ∈ [|S ′|]. The zero-padded embeddings for the sentences in the set S ′ become:

Ê(i) = E(i) ⊕ 0(l−li)×d ∈ Rl×d, ∀i ∈ [|S ′|] ,

where l = max{li : i ∈ [|S ′|]} and ⊕ is the concatenation operator along the first dimension.
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Remark S1 (Model output after zero padding). Given a function f , the output before and after zero
padding is unchanged, i.e., f(Ê(i)) = f(E(i)) ∀E(i) ∈ S ′.

We can reformulate the problem in Eq. (1) as:

max
u∈R|Sk(S,Γ)|

L
(
f
(∑|Sk(S,Γ)|

i=1 ui · Ê(i)
)
, y
)

s.t. ui ∈ {0, 1} ∀i ∈ [|Sk(S,Γ)|], ||u||1 = 1
, (BP)

which is a constrained binary optimization problem. Note that given uBP a maximizer of Eq. (BP)
with iBP := argmaxi∈[|Sk(S,Γ)|] u

BP
i , we have that the sentence S(iBP) ∈ Sk(S,Γ) is a maximizer of

Eq. (1).

However, solving Eq. (BP) is as hard as solving Eq. (1) because of the exponential size of Sk(S,Γ),
see Corollary S6. Alternatively, we can relax the binary constraints from the u vector and solve:

maxu∈R|Sk(S,Γ)| L
(
f
(∑|Sk|

i=1 ui · Ê(i)
)
, y
)

s.t. ui ∈ [0, 1] ∀i ∈ [|Sk(S,Γ)|], ||u||1 = 1.
(SP)

In this case, given uSP a maximizer of Eq. (SP), we know:

L
(
f
(∑|Sk(S,Γ)|

i=1 uSP
i · Ê(i)

)
, y
)
≥ L

(
f
(∑|Sk(S,Γ)|

i=1 uBP
i · Ê(i)

)
, y
)
.

Note that the embeddings
∑|Sk(S,Γ)|

i=1 uSP
i · Ê(i) have no correspondence to any sentence in Sk(S,Γ).

However, we can still take iSP = argmaxi∈[|Sk(S,Γ)|] u
SP
i and hopefully S(iSP) ∈ Sk(S,Γ) is an

adversarial example. To solve Eq. (SP), we employ projection gradient ascent with step-size η as
follows:

ut+1 = Π∆(u
t + η∇Lu(u

t)) ,

where Π∆(·) is the projection function. Let us denote by û := ut + η∇Lu(u
t) for notation

simplification, then the projection step essentially aims to solve the following quadratic programming
problem:

ut+1 = argmin
u

1

2
||u− û||22,

subject to :
∑

ui = 1, ui ≥ 0.

(QP)

The Lagrangian associated with Eq. (QP) is as follows:

L(u, λ,v) := 1

2
||u− û||22 + λ(u⊤1− 1)− v⊤û ,

where λ ∈ R,v ∈ R|Sall| are the Lagrange multipliers. The Karush-Kuhn-Tucker optimality condi-
tions are necessary and sufficient for solving Eq. (QP), that is:

∇uL(u, λ,v) = u− û+ λ1− v = 0, (3)
ui ≥ 0 , (4)∑

ui − 1 = 0 , (5)

vi ≥ 0 , (6)
viui = 0 . (7)

Clearly, given any λ, if we set ui = max(ûi − λ, 0), vi = max(λ− ûi, 0), then Eqs. (3), (4), (6)
and (7) can be satisfied. Therefore, the remaining problem reduces to find a λ that satisfies Eq. (5),
i.e., ∑

ui − 1 =
∑

max(ûi − λ, 0)− 1 = 0 .

We employ the algorithm proposed in Held et al. (1974) to solve it, as presented in Algorithm 3.
Lastly, we select the argmaxj(u

⋆
j ) element in Sall as the attack sentence S′.
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Algorithm 3 Projection into simplex (Held et al., 1974)

Input: û := ut + η∇Lu(u
t) ∈ R|Sall|.

Sort û such that û1 ≤ û2 ≤ · · · ≤ û|Sall|.

Set J0 := max(J :
−1+

∑|Sall|
i=J+1 ûi

|Sall|−J > ûJ).

Calculate λ =
−1+

∑|Sall|
i=J0+1 ûi

|Sall|−J .

Set ut+1
i = max(ûi − λ, 0).

Output: ut+1

Table S20: Comparison between our PGA-Charmer and query-based Charmer (proposed
in the main body) in BERT: The best method is highlighted in bold. While the PGA-Charmer
strategy can noticeably improve the runtime, the ASR, Levenshtine distance and similarity are
considerably degraded.

Method ASR (%) ↑ dlev(S, S
′) ↓ Sim(S, S′) ↑ Time (s) ↓

AG-News PGA-Charmer 86.94 7.33±(5.01) 0.87±(0.11) 8.15±(7.04)

Charmer 98.51 3.68±(3.08) 0.95±(0.06) 8.74±(11.10)

MNLI-m PGA-Charmer 99.05 2.11±(1.53) 0.79±(0.19) 0.85±(0.72)

Charmer 100.00 1.14±(0.42) 0.85±(0.13) 1.45±(0.81)

QNLI PGA-Charmer 81.19 3.46±(2.32) 0.89±(0.12) 5.15±(4.60)

Charmer 97.68 1.94±(1.48) 0.94±(0.07) 9.19±(9.60)

RTE PGA-Charmer 72.64 1.53±(1.45) 0.86±(0.11) 0.65±(0.71)

Charmer 97.01 1.55±(1.42) 0.86±(0.13) 2.50±(2.33)

SST-2 PGA-Charmer 97.52 2.68±(1.82) 0.84±(0.16) 1.09±(0.89)

Charmer 100.00 1.47±(0.74) 0.90±(0.11) 1.27±(0.84)

H.2 COMPARISON BETWEEN PGA-CHARMER AND QUERY-BASED CHARMER

In this section, we experimentally validate the efficiency of PGA-Charmer and compare it against
query-based Charmer, which is proposed in the main body. The result in Table S20 shows that
PGA-Charmer can efficiently reduce the runtime as it does not require the forward pass over a
mini-batch of sentences after position selection. However, PGA-Charmer is worse than Charmer
on other metrics, e.g., ASR, Levenshtine distance and similarity are degraded. We believe that
combining the efficiency of PGA-Charmer and high ASR in -Charmer holds promise for future
research endeavors.
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